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Abstract

For text-based Al systems to interact in the real
world, causal reasoning is an essential skill. Since
interventional data is costly to generate, we study
to what extent an agent can learn causal rea-
soning from passive data. We consider an ax-
iomatic training setup where an agent learns from
multiple demonstrations of a causal axiom (or
rule), rather than incorporating the axiom as an
inductive bias or inferring it from data values. A
key question is whether transformers could learn
to generalize from the axiom demonstrations to
larger and more complex scenarios. Our results,
based on a novel axiomatic training scheme, in-
dicate that such generalization is possible. We
consider the task of inferring whether a variable
causes another variable, given a causal graph
structure. We find that a 67 million parameter
transformer model, when trained on linear causal
chains (along with some variations) can general-
ize well to new kinds of graphs, including longer
causal chains, causal chains with reversed order,
and graphs with branching; even when it is not
explicitly trained for such settings. Our model
performs at par (or better) than many larger lan-
guage models such as GPT-4, Gemini Pro, and
Phi-3. Our framework enables learning causal
reasoning and arbitrary axioms from passive data.

1. Introduction

Causal reasoning can be defined as a set of reasoning proce-
dures consistent with pre-defined axioms or rules that are
specific to causality (Galles & Pearl, 1997). For instance,
d-separation and rules of do-calculus can be considered
as axioms and specifications of a collider or a backdoor
set can be considered as rules that can be derived from
axioms. Typically, causal reasoning is done over data cor-
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responding to variables in a system. Axioms or rules are
incorporated as inductive biases in a machine learning (ML)
model, through regularization, model architecture, or the
choice of variables for a particular analysis. Depending on
the kind of available data—observational, interventional,
or counterfactual—Pearl’s ladder of causation (Bareinboim
et al., 2022; Pearl & Mackenzie, 2018) defines the kinds of
causal reasoning that is possible.

As axioms are the building blocks of causality, we study
whether it is possible to directly learn the axioms using
ML models. That is, rather than learning from data that
is the result of axioms followed by a data-generating pro-
cess, what if a model can learn an axiom (and thus causal
reasoning) directly from symbolic demonstrations of the
axiom? Such a model has the advantage that it can be ap-
plied for causal reasoning in diverse downstream scenarios,
compared to task-specific causal models built using spe-
cific data distributions. This question gains relevance as
language models make it possible to learn over symbolic
data expressed in natural language. In fact, recent studies
have evaluated whether large language models (LLMs) can
do causal reasoning by creating benchmarks that encode
causal reasoning problems in natural language (Kiciman
et al., 2023; Jin et al., 2024a;b; Ban et al., 2023; Long et al.,
2023; Willig et al., 2022; Vashishtha et al., 2023).

Specifically, we propose a new way of learning causal rea-
soning through axiomatic training. We posit that causal
axioms can be expressed as the following symbolic tuple,
(premise, hypothesis, conclusion) where hypothesis refers to
a causal claim and premise refers to any relevant information
to decide whether the claim is true or not (conclusion). The
conclusion could simply be “Yes” or “No”. For example, the
collider axiom from (Jin et al., 2024b) can be expressed as,
premise: “A 1l B,B I C; A JL C”; hypothesis: “Does
A cause C?7”; and the conclusion as “Yes”. Based on this
template, a large number of synthetic tuples can be gener-
ated, e.g., by changing the variable names, changing the
number of variables, changing the order, and so on. The
key question is: if a model is trained on such data, would it
learn how to apply the axiom to new scenarios?

To answer this question, we train a transformer model from
scratch on synthetic data generated using symbolic demon-
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strations of the causal irrelevance axiom (Galles & Pearl,
1997). To evaluate generalizability, we train on simple
chains of the causal irrelevance axiom of size 3-6 nodes
and test on multiple different aspects of generalization, in-
cluding length generalization (chains of size 7-15), name
generalization (longer variable names), order generalization
(chains with reversed edges or shuffled nodes), structure gen-
eralization (graphs with branching). We find that a model
trained on simple chains generalizes to applying the axiom
multiple times over larger chains, but it is unable to gener-
alize to the more complex scenarios like order or structure
generalization. When we train a model on a combination
of simple chains and chains with some edges randomly re-
versed, however, we find that the model generalizes well
across all kinds of evaluation scenarios. Extending the find-
ings on length generalization for NLP tasks (Kazemnejad
et al., 2023; Bhattamishra et al., 2020; Haviv et al., 2022;
Furrer et al., 2021), we find a critical role of different po-
sitional embeddings (Radford et al., 2018; Vaswani et al.,
2023; Kazemnejad et al., 2023) in ensuring causal gener-
alization across length and other aspects. Our best model
has no positional encoding, although we find that learnable
and sinusoidal encodings also work well for some scenar-
ios. The axiomatic training approach also generalizes to a
harder problem proposed in (Jin et al., 2024b). The task
to distinguish correlation from causation given a premise
containing statistical independence statements. Solving this
task requires knowledge of multiple axioms, including d-
separation, Markov property, and others. Using the same
method to generate synthetic training data and train the
model as above, we find that a transformer trained on task
demonstrations over 3-4 variables learns to solve this task
for graphs with 5 variables. On this task, our model’s accu-
racy is higher than much larger LLMs such as GPT-4.

Our work provides a new paradigm of teaching models
causal reasoning through symbolic demonstrations of ax-
ioms, which we call axiomatic training. The data generation
and training setup is general and can be applied to learn any
new axiom, as long as it can be expressed in the symbolic
tuple format. More generally, our results contribute to the
literature on causal learning from passive data (Lampinen
et al., 2023), showing a general way to learn any causal
axiom through passive demonstrations.

2. Learning Causal Axioms In Transformers

Instead of performing causal reasoning using observational
or interventional data, we study whether it is possible to
learn some of the general rules of causality directly from
symbolic axioms. More specifically, we incorporate rules
for causal reasoning in transformers as inductive biases. We
begin by asking the question “are there any minimal suffi-
cient characterization of causal principles that hold true in
general?”. There has been a fundamental work from Galles

& Pearl (1997) where they axiomatize the causal relevance
(or equivalently irrelevance). They show that for a given sta-
ble probabilistic causal model (defined below), there exists
a finite set of axioms that completely characterized by ax-
ioms of path interception in corresponding directed graphs.
We now study how such causal relevance statements can be
incorporated into transformer models.

Let M = (X,U,F) be a causal model defined over a
set of endogenous variables X, exogenous variables U
and the causal relationship between then defined by set of
structural equations F (Galles & Pearl, 1997). Let G be the
causal graph associated with the causal model M where the
nodes V' in G correspond to the variables in M and an edge
Vi — Vj between any two nodes V;, V; denote the causal
relationship between them.

Definition 2.1 (Causal Irrelevance, Defn. 7 in (Galles &
Pearl, 1997)). X is probabilistically causally irrelevant to
Y given Z, written (X - Y|2) iff: P(y|z,do(X) = x) =
P(y|z,do(X) = 2') ,Va,2',y, z i.e., once we hold Z fixed
at z, intervening on X will not change the probability of Y.

Under the stability assumption (see Assm G.1), Galles &
Pearl (1997) characterizes six axioms that completely char-
acterize causal irrelevance (Def 2.1) or equivalent causal
relevance statements after using the corresponding contra-
positive statements. An axiom of causal irrelevance is of the
form (given in conjunctive normal form):

/\\/(X:’t N X;,t|Xlz,t) — /\\/(Xf,n N le_,n X]i,n)
s t I n

where A is “logical and”, V is “logical or” and for a given
(s,t) or (I,n) pair, X;, X, X}, are disjoint subsets of ob-
served variables X . In the above causal irrelevance state-
ment, if the antecedent is true, the consequent is also true.

Transitivity Axiom: For the scope of our study, we focus
on the transitivity axiom (Axiom 3.6, Fig. 7 in (Galles
& Pearl, 1997)) because it is a generic axiom, which can
be used to represent complex structures like forks, collid-
ers and chains which are used as building blocks of any
causal structure. Below, we restate the transitivity axiom
where A, X, Y, Z are endogenous variables of the system.
(X »Y|Z) = (X » A|lZ)V(A»Y|Z)VA ¢
{X,Y,Z} Which could be equivalency converted into
a causal relevance statement by taking the contrapositive:
JA¢XUYUZ st. (X 2 AZ)ANA—>Y|Z) =

P:premise

(X — Y|Z) Given a premise, we can map the hypothesis
—_——

H:hypothesis
based on that to the correct label (‘Yes’ or ‘No’). Thus we

can enumerate all possible tuples of {(P;, H;, L;)}; where
P; is the premise, H; is the hypothesis and L; is the label
(Yes/No) for a particular setting of the variables X, Y, Z, A.
If the premise P, is true for the given causal graph and the
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Figure 1. Evaluating structural generalization of transformers through Axiomatic training: Our pretraining setup is made of linear
sequential chains of small length, no branching, and randomly revrsed edge directions. After training the transformer with our pre-training
data D with introduced variability, structural generalization across different dimensions is observed. Specifically across more branched
networks with higher average in-degree and out-degree, complete reversals, longer sequences, shuffled natural language statements of

sequences and longer node names.

hypothesis can be derived by applying the above axiom
(once or more than once inductively), then label L; has to
be Yes; otherwise, No. For example, let the underlying true
causal graph of the system has the topology of a chain, i.e.
say X1 — X9 = X3 — -+ = X,,. Then, a possible
premise could be X; — Xo A X9 — X3, and the corre-
sponding hypothesis X7 — X3 will have label Yes whereas
another hypothesis X3 — X; will have label No. The
above axiom could be inductively applied multiple times to
generate more complex premise, hypothesis, and labels.

2.1. Data Format for Training a Transformer Model

To develop a general axiomatic understanding of causal-
ity, we propose generating synthetic training data based on
causal irrelevance axioms with some variability. This setup
tests if transformers can learn and apply these axioms to di-
verse structures, including those not in the training set. For
our training setup, our synthetic dataset D is constructed
with N axiomatic instances generated using the transitivity
axiom A;. Each instance in D is structured in the form of a
premise P, which is the natural language expression of the
causal chain (e.g., “X causes Y, Y causes Z”), followed
by the hypothesis in the form of a question H,, (e.g., “Does
X cause Y'?”), which is then followed by the final label L
(e.g., “Yes” or “No”). Each instance in D is structured as
(PZ', HqijaLi); 1€ {1, - 7N}7qij S {1, ey (g)} where
n is the number of nodes in each premise, thus effectively
covering all pairs of nodes in each unique chain.

2.2. Axiomatic Learning through Data Variability: A
Key to Robust Model Generalization

We introduce variability at multiple levels in the training

data to maximize diversity in the distribution of the training

set for the transformer model, as explained below.

1. Length level: We restrict clength of chains to a range of
3 to 6 nodes, for our training set.

2. Node Level: Each node in the chain has a randomly gen-
erated alphanumeric name of 1-3 characters to prevent
model failure from fixed name lengths.

3. Edge Level: We have two main types of causal chains in
our models’ training set: (a) Sequential: All edges are di-
rected forward, creating a typical transitivity chain (e.g.,
X —-Y — 7). (b) Random Flipping: Given a chain
of sequential nodes, we randomly reverse some edges,
adding complexity by disrupting direct paths between
subsequent nodes (e.g., X — Y + 2).

Random flipping introduces forks and colliders, which form
the building blocks of any causal DAG. This helps incorpo-
rate complexity in model training, thus aiding its capability
to generalize across multiple structural dimensions.

2.3. Evaluation Strategies

To verify whether models learn axioms rather than
surface-level features or trends, we design a true Out-Of-
Distribution evaluation set. We evaluate models with various
ablations and complex structures to analyze generalization.

1. Length: Evaluating if our model accurately infers causal
relationships for chains (both sequential and randomly
flipped) longer than those in the training set.

2. Node Name Shift: Testing the model’s performance
with longer node names, increasing from 1-3 characters
used in the training set to 8-10 characters.

3. Order of Chains: (a) Completely reversed chains:
Inspired by the reversal curse (Berglund et al., 2024),
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which reveals LLMs’ generalization failures, as they
struggle to answer questions in reversed sequences
despite knowing the answers in the original order.
(b) Shuffling of Sequences with Random Flipping:
Shuffling of sequences assess transformers’ ability to
infer accurate relationships regardless of sequence order.
Longer chains (>6 nodes) also evaluated.

4. Branching: Evaluating causal graphs with branching
across all nodes presents a challenging task. Unlike lin-
ear chains in the training set, this evaluation involves mul-
tiple branches, colliders, forks, and chains, significantly
increasing complexity. We evaluate multiple branched
networks constructed using the Erdos-Rényi model.

3. Learning Causal Transitivity Axioms

Pretraining Data: Employing a direct transitivity chain-
based training setup, we investigate how noise improves
the generalization capabilities of our transformer model to
manage longer, branched, and reordered complex scenar-
ios. We conduct various ablations using different training
sets to grasp potential factors influencing the model’s gener-
alization. Our pretraining comprises approximately 175K
instances of sequential chains, ranging from 3 to 6 nodes
in size. We employ three training data versions. 1) Only
causal chains (OCC). Sequential chains (175K) without
any random flip of edges; 2) Training Setup 1 (TS1). Com-
bines causal chains (101K) and sequences with flipped edges
(73K), while ensuring that (reversals removed and model
re-trained for evaluating on reversal chains); 3) Training
Setup 2 (TS2). Combines causal chains (132K) and se-
quences with flipped edges (42K) with a higher fraction of
causal chains. We exclude complete reversals in TS1 to
check generalization of the model to such a DAG.
Architectural and Model Training Details: We train a
GPT (Radford et al., 2018) decoder based 67 million param-
eter model, trained from scratch on our transitivity based
dataset. Our model is trained for 100 epochs (due to optimal
loss convergence), with 1e-4 learning rate. Our GPT2 based
model using AdamW optimizer has 12 attention layers, 8
attention heads and 512 embedding dimensions. Details of
our custom tokenizer are explained in Appx. § D and details
about our LLM baselines are explained in Appx. § E.

Loss Function: We optimize loss based on the ground

truth label for all settings, represented as E —
PquvLNRrain

log(P(L|P, Hy)). Our earlier analysis indicated promising
results with this approach compared to using next token
prediction loss.

Results - Data diversity matters. Models with No PEs
generalize well to longer lengths, even though they are only
trained on chain length of 3-6. Model trained on only se-
quential chain (OCC), however, only generalize to longer
Sequential chains (Table 4) but not to other DAG structures

(Figure 3 for edge flip, Figure 4 for reversal, Table 5 for
branching). Models trained on TS1 or TS2 generalize across
all scenarios, including edge flip, order, and branching. As
sequence length increases without random flipping, TS2
performs best, likely due to less noise in train set from fewer
flipped sequences. This suggests that while variability aids
structural generalization, excessive variability can hinder
it. Reversal and shuffling evaluations are tough because the
model hasn’t encountered such scenarios during training
to learn causal structure regardless of order. Branching is
challenging due to increased inter-node connections, since
training set only contains linear chains. Our findings under-
score the significance of diverse data for generalization.

Generalization Performances on Longer Node Names

" TS2 LPE
TS2 SPE
W TS2 NoPE
- GPT-4

3 4 5 6 7
Chain Length (Number of nodes)

Figure 2. Evaluating generalization on causal sequences with longer
node names (than the ones used in sequences in train set), and the
impact of different PEs for TS-2 training set, which yields the best
performance

Generalization Performances on Longer Chains with Random Flipping
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Figure 3. Generalizing to longer unseen causal sequences (>6
nodes) with random flipping using TS2 and OCC (with NoPE)
training sets. OCC-trained models struggle due to limited edge-
level variability, while TS2 NoPE consistently performs well, with
GPT-4 being the best

Axiom-trained transformer generalizes to complex
causal scenarios. Considering the model trained with
TS2 (best model), it performs well across all setups. Even
though our model is not explicitly trained on completely
reversed chains, it still performs at par with GPT-4 (Fig. 4).
Models trained on TS1 and TS2, trained explicitly without
shuffling, show similar trends when evaluated on shuffled
sequences with random flipping (Tab. 3). However, trans-
former trained on OCC setup fails for such settings. Our
best models (NoPE trained on TS1 and TS2) outperforms
random baselines (50%) and other billion scale models like
Gemini Pro and Phi-3 (and GPT-4 in multiple cases).

Role of positional encodings: We also study the effect
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of positional encoding. Sinusoidal (SPE) and Learnable
PEs (LPE) perform well on longer chains but poorly when
node names’ length increases, even with small chain lengths
(Figure 2). Similarly, SPE does not perform well across
different structural dimensions like branching, and order
based settings. NoPE performs consistently well across all
settings showcasing its efficiency for generalization even
beyond length. For a detailed discussion see Appendix H

4. Correlation to Causation w/ Axioms

We use the same model architecture from our transitivity
based experiments and train it from scratch for 100 epochs
using NoPE, since it performed consistently well across
diverse OOD settings in our transitivity based experiments.
For creating a train set, we consider the subset of the original
dataset with correlational statements for graph consisting
of 3 and 4 nodes. As the test set, we evaluate the model’s
performance directly on 5 node correlational statements.

Model \ Precision  Recall F1 Score  Accuracy
Ours 0.72 0.50 0.59 0.64
Phi-3 0.52 0.60 0.56 0.52
Gemini pro 0.52 0.59 0.55 0.52
GPT-4 0.59 0.50 0.54 0.58

Table 1. Correlation to Causation Experiments adapted from (Jin
et al., 2024b)

To aid generalization, we take inspiration from our
transitivity-based experiments and create different combi-
nations of randomly created alphanumeric node names. We
then derive a training set from the original dataset by instan-
tiating the correlational statements with different combina-
tions of alphanumeric node names. We balance the dataset
by sampling equally from both classes to avoid bias in our
transformer model to get a train set with 113099 instances.
Then, we create a test set with 1000 randomly sampled
instances of correlational statements for 5-node graph net-
works. Since the correlational statements are not simplistic
unlike the premise from our transitivity experiments, there-
fore our approach of tokenizing at the character level for
nodes, otherwise at the token level for rest is complicated
to extend. For a straightforward extension, we tokenize the
input text at the token level and use the same node names
for evaluation as in the training set to avoid potential out-of-
vocabulary issues.

Comparison with Baselines: As reported in (Jin et al.,
2024b), due to the complexity of the task, we find that pre-
trained LMs such as Gemini Pro and Phi-3 perform similar
to a random guess (52% accuracy, see Table 1). While
GPT-4 does perform slightly better, it’s performance is still
low (58% accuracy). Remarkably, our small transformer
model performs better than all baselines with 64% accuracys;
6% points higher than GPT-4. With further exploration of
different training setups, axiomatically-trained transformer
models may be optimised further for such causal reasoning

tasks.

5. Discussion and Conclusion

We propose an axiomatic training method to teach causal
reasoning to transformers. Our results show that a trans-
former can learn to apply a causal axiom and generalize to
multiple, complex graph structures that were not seen during
training. Future work includes extending axiomatic training
to learn multiple axioms, operate on naturally-occuring text
data, and explore different pre-training losses.

Applicability to Causal Tasks: While our current work
focuses on the transitivity axiom for causal relevance, ex-
tending the work to other causal axioms from (Galles &
Pearl, 1997) is an interesting research direction. In addi-
tion, we may consider other axioms that are relevant for
downstream tasks such as effect inference. For example, if a
transformer model can be trained to validate the d-separation
rule—given two variables X and Y, are they independent
given a variable set Z?—then repeated applications of the
rule can be used to derive a backdoor set. Another inter-
esting direction is to extend the training approach for both
deterministic and probabilistic causal models.

Generalization to Logical Reasoning: While we focused
on causal reasoning axioms, our axiomatic training approach
is general and can be applied to any formal system based on
axioms. For instance, the same axiomatic training procedure
can be used for teaching LMs logical reasoning tasks such
as deductive reasoning. For instance, recent work (Saparov
et al., 2023) evaluates the deductive reasoning capabilities
of LLMs and measures their generalization abilities along
depth, width, and compositional abilities. As the depth
increases, performance of LLMs deteriorates. It will be in-
teresting to see whether axiomatic training can be applied to
learn deductive reasoning axioms and improve the reasoning
abilities of LMs.
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Appendix
A. Performance Results for Different Evaluation Setups

Tables 2 and 3 shows the results of generalization to reversal and shuffling; Table 4 shows the results on length generalization;
and Table 5 shows the results on branching generalization. Figures 4 and ?? highlight generalization performance on reversal
and longer chains.

Model 3 4 5 6
Baselines

GPT-4 097 099 098 0.92
Gemini Pro 0.61 0.59 0.66 0.62
Phi-3 080 0.69 0.73 0.69
Axiomatic Training

TS1 w NoPE 098 099 092 091
TS1w SPE 1.00 099 099 097
TS2 w NoPE 099 099 095 094
TS2 w SPE 098 097 093 094
TS2 w LPE 099 098 095 097
OCC w NoPE 033 0.18 0.10 0.09

Table 2. Evaluated on completely reversed chains, even when not explicitly trained on reversed chains. Model trained only on sequential
chains (OCC), performs the worst, while transfomer trained on both Sequential chains, and sequences with random flipping perform the
best (training sets: TS1 and TS2). Accuracy Metric reported. This setup is inspired by the (Berglund et al., 2024) setup

Model Config 3 4 5 6 7 8 9
Baselines

GPT-4 099 097 089 085 095 090 090
Gemini Pro 075 0.73 072 076 0.71 0.68 0.74
Phi-3 0.88 0.86 082 0.79 0.76 0.73 0.79

Axiomatic Training

TS1 NoPE 100 094 087 084 080 076 073
TSI LPE 100 095 087 083 078 078 0.71
TS1 SPE 100 094 086 083 076 073 0.68
TS2 NoPE 100 095 087 084 079 076 0.73
TS2 w LPE 100 094 087 0.84 080 076 0.73
TS2 w SPE 099 094 089 084 075 074 049
OCC w NoPE 069 062 057 054 057 053 052

Table 3. Evaluated on shuffled natural language sequence of randomly flipped sequence. Random flipping, length (7-9) and random
flipping add complexity to the evaluation setup, since our model is not trained on shuffled set. Accuracy metric is reported

B. Example of Instances from Corr2Causation Benchmark

Following is one of the example instances from the benchmark of Corr2Cause (Jin et al., 2024b), where the model has to
infer causal relationships from correlational statements.

Premise: Suppose there is a closed system of 4 variables, A, B, C and D. All the statistical relations among these 4 variables
are as follows: A correlates with B. A correlates with C. A correlates with D. B correlates with C. B correlates with D.
C correlates with D. However, B and D are independent given A. B and D are independent given A and C. C and D are
independent given A. C and D are independent given A and B. Hypothesis: There exists at least one collider (i.e., common
effect) of A and B.
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Generalization Performances on Completely Reversed Chains
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Figure 4. Performance comparison of our best performing transformer model trained on TS2 with NoPE (trained without any completely
reversed chains), against larger models like GPT-4, Gemini Pro and Phi-3.

C. Example of Instances from Our Evaluation Sets

Following is one of the instances from the evaluation set for sequences with random flipping, where the model has to infer
causal relationships from natural language statements.
Premise:V causes f. f causes jbj. ag causes jbj. ag causes rBz. rBz causes Tm2. EaT causes Tm2. Hypothesis: Does V cause

f?

Following is one of the instances from the evaluation set for sequences with reversals, where the model has to infer causal
relationships from natural language statements.
Premise:LQw causes e2. p causes LOw. u causes p. a causes u. Hypothesis: Does e2 cause LQw?

D. Custom Tokenizer details

For tokenization, we develop a custom tokenizer. Alphanumeric node names are tokenized at a character level, while terms
like ‘causes’, ‘Does’, ‘cause’, ‘Yes’, and ‘No’ are tokenized at the word level. The intuition behind this approach is to
avoid out of vocabulary (OOV) tokens in the test time, since the alphanumeric node names of test set are different then the
training set and are created randomly, therefore creating a high chance of coming across unseen node names. Following this
approach, the vocab size of our transformer model is extremely constrained (69) since it only contains 4-5 word tokens and
rest alphanumeric characters along with punctuation marks.

7 8 9 10 11 12 13 14 15
Model
FS RF FS RF FS RF FS RF FS RF FS RF FS RF FS RF FS RF
Baselines
GPT-4 095 098 097 093 0.87 094 091 087 090 095 092 092 085 093 093 0.93 0.89 0.86
Gem-Pro 0.63 073 0.69 074 0.64 075 065 081 072 0.78 0.60 0.80 0.59 0.68 0.67 0.64 0.61 0.66
Phi-3 0.81 085 096 085 085 085 087 089 090 086 084 085 091 0.84 090 0.80 0.78 0.85

Axiomatic Training

TS1 w NoPE 1.00 0.99 095 096 0.88 089 076 088 073 090 077 092 061 082 067 078 0.68 081
TS1 w LPE 098 096 092 0.97 077 090 059 087 057 086 057 084 055 073 051 076 050 0.68
TS1 w SPE 099 095 095 094 086 076 080 0.75 076 079 084 0.68 079 063 085 0.65 077 0.69
TS2 w NoPE 1.00 098 099 097 092 091 088 090 086 092 095 090 0.96 083 081 084 085 0.78
TS2 w LPE 1.00 098 088 0.97 080 088 062 092 066 09I 0.64 081 065 075 062 075 062 077
TS2 w SPE 095 093 081 084 056 034 050 038 050 044 051 057 046 074 052 075 050 0.77
OCC w NoPE 098 058 0.79 049 086 051 092 049 072 057 090 050 081 052 084 052 083 046

Table 4. Results on longer chains of linear sequential chains with all edges in forward direction (Only causal chains or forward sequence
denoted using FS) and sequences with randomly flipped edges (Random flipping so denoted with RF). TS1 and TS2 denote Pretraining
data setup 1 and 2 from Section 4. SPE: Sinusoidal PE, LPE: Learnable PE, w/o PE: No PE. Model remains the same across all setups (67
Million parameter based). For longer chains, NoPE performs best on sequential linear setup. Accuracy metric is used
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Model 5 8 10 12

BF=2 BF=1.4 BF=2 BF=1.4 BF=2 BF=1.4 BF=2 BF=1.4
Baselines
GPT-4 0.98 0.95 0.91 0.90 0.84 0.88 0.82 0.86
Gemini Pro 0.77 0.74 0.72 0.76 0.71 0.73 0.73 0.71
Phi-3 0.87 0.83 0.82 0.79 0.77 0.77 0.75 0.80

Axiomatic Training

OCC w NoPE 0.52 0.51 0.53 0.52 0.52 0.55 0.49 0.47
TS1 w LPE 0.79 0.84 0.71 0.76 0.68 0.69 0.65 0.65
TS1 w SPE 0.72 0.79 0.63 0.64 0.56 0.61 0.52 0.59
TS1 w NoPE 0.77 0.84 0.73 0.76 0.68 0.70 0.62 0.66
TS2 w LPE 0.72 0.80 0.61 0.71 0.62 0.63 0.56 0.63
TS2 w SPE 0.52 0.70 0.49 0.49 0.49 0.49 0.51 0.52
TS2 w NoPE 0.83 0.86 0.74 0.77 0.69 0.74 0.64 0.70

Table 5. Evaluated on branched graphs created using Erdos Renyl, with varying branching factors (calculated by number of edges/number
of nodes). TS1 and TS2 denote Pretraining data setup 1 and 2 from Section 3. OCC setup denotes Only sequential Causal Chains with no
random flipping. SPE: Sinusoidal PE, LPE: Learnable PE, w/o PE: No PE. Decoder model remains the same across all setups (67 Million
parameter), Accuracy metric is used

E. Baselines: How well do LLMs do on these evaluations?

Given recent work on how LLMs can be leveraged for causal reasoning (Kiciman et al., 2023; Vashishtha et al., 2023;
Ban et al., 2023), we include language models such as GPT-4 (gpt-4-32k) (?), Gemini (gemini-pro) (?) and Phi-3 (Phi-3-
mini-128k-instruct) (?) as baselines. Note that each of these models is significantly larger than our model and known to
perform well on reasoning tasks, with the smallest baseline model Phi-3 having 3.8 billion parameters. We incorporate both
commercial (GPT-4 and Gemini Pro) and open-source (Phi-3) models covering a range of size and capabilities. To evaluate
the baseline models, we follow a simple zero-shot prompting strategy. For each tuple, we provide the natural language
expression of the causal graph (Premise) followed by the question (Hypothesis) and prompt the LM to answer it in either
‘Yes’ or ‘No’ (Label). Here is an example prompt: “EX causes T. T causes 9. 9 causes W. W causes 7. 7 causes M. M causes
a. Does EX cause T? Answer in ‘Yes’ or ‘No’ only.”

F. Compute Resources

We run our experiments on 1 A-100 GPU system, for training our models from scratch and evaluating them. We use 1
GPT-4 API for baseline experiments, while Phi-3 and Gemini Pro provide free resources for inferencing.

G. Formal Definitions of Axioms of Causal Irrelevance

Here we restate the stability assumption for a causal model from (Galles & Pearl, 1997) that gives a richer set of finite
axiomatization for probabilistic causal irrelevance.

Assumption G.1 (Stability, Definition 9 in (Galles & Pearl, 1997)). Let M be a causal model. Then an irrelevance
(X - Y|Z) in M is stable it is shared by all possible probability distribution over M. The causal model M is stable if all
of the irrelevances in M are stable.

H. Trend Breakdown of Results

Length Generalization: Table 4 shows accuracy of different models when evaluated on larger causal chains that were
not seen during training. Among the baseline pre-trained LMs, GPT-4 obtains the highest accuracy on both standard and
randomly flipped chains. It is remarkable that our TS2 (NoPE) model obtains competitive performance to the trillion-scale
GPT-4 model, even though it had never seen larger sequences during training. In particular, for chains of size 7-13, TS2
(NoPE) obtains higher or comparable accuracy than GPT-4 across the standard and randomly flipped chains. Its accuracy
decreases for chains of length 14-15 (0.85 for standard chains and 0.78 for randomly flipped chains) but is still significantly
higher than that of LMs like Gemini-Pro and Phi-3. Note that a random prediction would yield a 50% accuracy, indicating
that the axiomatically-trained TS2 (NoPE) model can generalize its reasoning to causal chains much longer than 6 even
though it was trained only on chains upto length 6.
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Node Name Shift: For models trained on TS2 dataset, we also evaluate generalization to changes in variable names
(Figure 2). We find that TS2 (NoPE) is robust to node name changes and retains its high accuracy as new, longer names are
introduced. It also retains its generalizability to longer sequences with new node names, performing similarly to GPT-4.

Order of Causal Sequences: We now consider how variations in the causal structure impact generalization of axiomatically-
trained models. In Table 3, we consider the complex evaluation setup of shuffling, which includes shuffled order of causal
sequences with random flipping for increasing length (even beyond the ones in train set). On this task, TS2 (NoPE) obtains
higher accuracy than Gemini Pro and Phi-3 on chains of length up to 8. At length 9, TS2 (NoPE) obtains 0.73 accuracy
which is comparable to Gemini Pro (0.74) and significantly better than random.

We observe a similar pattern for evaluation on completely reversed sequences in Table 2. This is an extreme case of
out-of-distribution data since most causal edges are left-to-right in the training data whereas the test data contains all
right-to-left edges. On this task, our axiomatically trained model TS2 (NoPE) outperforms GPT-4 when restricted to chain
lengths of 3-6. In particular, its accuracy (0.94 for chains of length 6) is substantially higher than Gemini Pro and Phi-3
(0.62 and 0.69 respectively).

Branching: Finally, we consider the hardest evaluation task involving non-linear chains where we introduce general
Erdos-Renyi graphs as the causal sequences while the training data contains only linear chains. Here the length of sequence
corresponds to the number of nodes in the graph and we study the performance differences as the branching factor is varied.
While GPT-4 obtains the best accuracy across increasing graph sizes, our TS2 (NoPE) model obtains higher accuracy than
Gemini Pro for all graph sizes except one. Even when evaluated on graphs with 12 nodes and 1.4 branching factor, the TS2
(NoPE) model obtains 70% accuracy, significantly better than random (50%). Note that the training data only included
graphs with a branching factor of 1.

Summary: Across all evaluation setups, our axiomatically trained model TS2 (NoPE) performs significantly better than
random baselines even as chain lengths are increased beyond its training data. In particular, even though our model was not
trained on fully reversed chains, it performs at par with the significantly larger GPT-4 model (Fig. 4). For other tasks, it
often outperforms or matches the accuracy of billion-scale models like Gemini Pro and Phi-3. These results indicate that a
model trained axiomatically can learn to reason about more complex causal structures from demonstrations of simple causal
sequences. This suggests the potential of axiomatic training for reasoning over causal graphs.
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