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ABSTRACT

Learning physical equations from data is essential for scientific discovery and
engineering modeling. However, most of the existing methods rely on two rules:
(1) learn a sparse representation to fit data and (2) check if the loss objective
function satisfies error thresholds. This paper illustrates that such conditions are
far from sufficient. Specifically, we show that sparse non-physical approximations
exist with excellent fitting accuracy, but fail to adequately model the situation.
To fundamentally resolve the data-fitting problem, we propose a physical neural
network (PNN) utilizing ‘“Range, Inertia, Symmetry, and Extrapolation” (RISE)
constraints. RISE is based on a complete analysis for the generalizability of data
properties for physical systems. The first three techniques focus on the definition
of physics in space and time. The last technique of extrapolation is novel based on
active learning without an inquiry, using cross-model validation. We validate the
proposed PNN-RISE method via a synthetic dataset, power system dataset, and
mass-damper system dataset. Numerical results show the universal capability of
the PNN-RISE approach to quickly identify the hidden physical models without
local optima, opening the door for the fast and highly accurate discovery of the
physical laws or systems with external loads.

1 INTRODUCTION

Internet of Everything (IoE) connects new edge devices into an intelligent web at an unprecedented
speed. If utilized systematically, IoE can create much more efficient productivity via coordinated
effort among humans, processes, data, and things (Li et al.| 2020). Among various analytical frame-
works, dynamic data-driven applications systems (DDDAS) naturally interweaves diversified infor-
mation via data-driven analysis to assimilate the system model for a wide range of applications
(Blasch et al.| |2018)), thus significantly increasing the performance of both the simulation and ap-
plication models. The simulation model usually incorporates physical methods (Nasiakou et al.,
2018} |(Chowdhury & Subramanil 2020) which provides a structure for model-based and data-driven
coordination. However, many of the physical laws in the web of IoE can be unknown, which remain
to be discovered manually or automatically to enable down-streaming applications with accurate
modeling.

The most economically efficient way of physical law discovery is to use machine learning to ana-
lyze the pattern behind the data stream, which is an important topic (Sahoo et al., 2018; Udrescu &
Tegmarkl [2020). In previous studies, such as symbolic regression (Petersen, |2019), the sparsity rep-
resentation is used to measure the accountability of physics (Brunton et al.,|2016). The underlying
assumption is that sparsity can ensure physical exactness due to parsimonious principle (Li, | 2013).
While low complexity of learning models is a necessary condition for enhancing the understanding
of physical laws (Scholkopf et al., 20025 Blasch et al.,|[2021]), there is not a universal sufficient condi-
tion to solve model recovery problem with a guarantee. Therefore, one approach is to add additional
conditions to ensure a physical recovery, e.g., near-zero fitting errors (Champion et al.,2019) or/and
cross validation (Kim et al.,|2020). However, it can be observed that different models easily fit the
available data with a sparse but wrong model, which can happen even with cross-validation.

The overfitting should challenge the directions of many researchers in physical system discovery,
who believe that only the true physical laws can achieve sparse recovery with a perfect fit. To
resolve the problem, we first eliminate non-physical local optima of the neural network (NN) by
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discarding all the non-physical parameters, i.e., model parameters indirectly related to the physical
representation. The process is novel as existing NN-based methods require certain non-physical
parameters to control the representation sparsity (Liu & Laili, 2018} |Petersen, |2019). We show how
to design a NN with pure physical parameters, entitled a physical neural network (PNN). The key
of PNN is to enforce activation to physical weights for sparse selection, completely removing the
non-physical parameters and local optima.

In training the PNN, there can still be local optimum solutions, the actual knowledge of physical
system can enhance model fidelity. To obtain the ground truth, physical system examination can be
used to extract common and universal properties. Subsequently, the PNN is restricted to systemat-
ically obey the physical system properties. Specifically, constraints based on the physical distance
and symmetry are embedded in the training function to quantify the spatial relationship enforced
by physical law. Furthermore, as physical systems evolve over time, inertial property for physical
systems are extracted and updated. In general, the regularization from physical laws focuses the
learning/optimization towards a more meaningful fitness understanding of the given data.

Although the two designs of PNN and physics constraints aim to obtain the physical laws via fit-
ting existing data, the incorporation of physical laws’ biggest impact is its capability to achieve
zero fitting errors even beyond the training data range. Unfortunately, it will be costly if not im-
possible to conduct active learning for every Internet of Things (IoT) system due to its scale. To
provide the “free lunch” of adding the extrapolation capability of PNN, we propose a new learning
method for cross-model validation based on probabilistic estimates with physical kernels. We use
a physically meaningful forecast to identify out-of-sample points with a confidence level. Then,
the results are integrated as a weak supervision for learning the exact physics for extrapolation, in
addition to the constrained PNN. Together, PNN-RISE uses the PNN container to include the RISE
principles, enforcing the recovered function to satisfy constraints on range (R), inertia (1), symmetry
(S), and extrapolation (E). Empirically, extensive validations show that the PNN-RISE outperforms
the state-of-the-art methods. Consistently, scenarios with or without each constraint in RISE vali-
date the approach. Furthermore, for each constraint, we quantify its strength with different levels,
highlighting that loose constraints are enough to obtain high accuracy in the proposed PNN.
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Figure 1: The proposed framework.

In summary, the contributions in Fig. [T]are 1) showing that the sparse recovery with low training
and testing errors does not ensure physical law recovery, 2) reducing the possibilities of local op-
tima significantly by eliminating non-physical parameters in learning model selection and design,
3) proposing four physical principles to completely characterize physical systems via constrained
learning, and 4) creating a novel learning method for physical systems extrapolation as probabilistic
forecasting out-of-sample cross-model validation (FOCV).

2 RELATED WORK

Physical System Identification. To recover system information, supervised learning (SL) can ap-
proximate input-output relationships for inferences (Huang et al.| 2006; [Hornik et al.,{1990). They
show good numerical performance in non-physical and physical applications, including computer
vision tasks and natural language processing (Lu & Weng, 2007; |Wang et al., 2017a; Karpathy
et al., 2014} Nadkarni et al., 2011 Hirschberg & Manning] |2015)). Deep neural networks (DNNs)
boost classification accuracy (Hinton et al., [2006; Krizhevsky et al, [2012) by using latent layers to
extract nonlinear features hidden in images. While it makes SL useful for non-physical systems,
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physical systems require a much higher accuracy for operation or control, e.g., near 100% for Six
Sigma performance (Walshe et al.l [2010), so that operators can safely operate the system to avoid
outages or cascading failures (Chung et al.| 2018} [Liu et al.,|2017). Even worse, many SL models
are black boxes that lack physical interpretability for reliable operations, as well as certifiability for
performance standards (Mestav et al., [2018}; |Du & Li,[2019; |Hu et al., 2020; Baghaee et al.,|[2017).

Therefore, some works find utilizing contextual information improves physical-system identification
where they assume a good knowledge of physical basis and sufficient measurements across the
system (Yu et al., 2017; (Chen et al.,[2020). Similarly, (Brunton et al., 2016} (Champion et al., 2019;
Li & Weng, [2021) assume prior symbols are known in a dictionary and introduce sparse regression
to select symbols. However, the assumptions are too limiting due to the difficulty of knowing all
the physical basis for arbitrary complex systems (Wang et al., 2017b; [Tarca et al., 2007). One
ad-hoc approach (Schmidt & Lipsonl [2009; |Petersen, 2019) uses a genetic algorithm to search for
the symbolic basis but the problem is NP-hard without any guarantee on recovering the governing
physical laws from empirical data. Thus, we investigate whether the sparsity technique and a small
modeling error are sufficient to claim the success of learning the physical model. Moreover, how
can analytical techniques ensure exact physics learning for domain-specific systems?

Constrained Machine Learning. There are many applications of constrained machine learning
(CML) in different systems. (Small et al., 201 1)) restricts the weight vectors with domain knowledge
in support vector machine and (L1 et al., [2021)) proposes constrained adversarial learning to gen-
erate adversarial examples under physical constraints. In deep learning applications, (Zhao et al.,
2019) employs constraints from conservation law to restrict the output variables of DNN. (Velloso
& Van Hentenryckl 2020; [Fioretto et al., 2020a) solve optimal power flow problems using DNN
with physical constraints, where the output variables are biased to guarantee feasible solution. (Tran
et al.l 2020) restricts the input to DNN into different groups to guarantee privacy. Among these
studies, (Fioretto et al., 2020b)) optimizes DNN with output constraints using Lagrangian duality.
These CML methods can solve their own problems effectively; however, there is a need for general
principles to embed the physical constraints systematically with efficient solutions.

Data Forecasting. For previous data forecasting methods, autoregressive moving average (ARMA)
and autoregressive integrated moving average (ARIMA) predict the evolving variables based on their
lagged values (Gilbert| [2005). To capture nonlinear correlations in the short-term and long-term,
there are many deep learning-based methods, e.g., recurrent Neural Network (RNN), long short-
term memory (LSTM), bidirectional LSTM (BiLSTM), gated recurrent units (GRUs), and varia-
tional autoencoder (VAE) (Zeroual et al., [2020). To forecast the result with confidence, methods
like Gaussian process (GP) (Quinonero-Candela & Rasmussen, 2005), Quantile Regression (Ma-
ciejowska et al.;[2016) and deep learning-based models (Salinas et al.|[2020) afford an efficient way
to predict distributions for the future data. Since the uncertainty evaluation is important to integrate
the forecast data into the physical learning process, probabilistic methods are presented to estimate
probability density functions in the proposed FOCV.

3 METHODS

The PNN-RISE approach is to understand the reason why a “good” sparse fitting is not physical ver-
ifiable, to design physical principles to guide the fitting internally based on a flexible PNN structure,
and to create a cost-free active learning method for extrapolation at unseen operating points.

Symbolic regression (SR) is a common approach to find equation operators ({+, —, X, /}) and ex-
pressions like (a:Q, cos(x)), etc. Existing papers (Brunton et al.,[2016; |Sahoo et al.,|[2018;|Champion
et al.| 2019; |Petersen, [2019; [Kim et al., 2020) show that if the following three conditions are sat-
isfied, SR is capable to find the true equation: 1) apply the sparse regularization, 2) achieve nearly
zero training error, and 3) utilize cross validation to avoid overfitting. However, we observe that SR
methods are prone to non-physical solutions even when all three assumptions are satisfied. For ex-
ample, to learn the function y = 129+ xox3 from data, different SR methods can easily get trapped
in local optima. To see if these observations are special, we test different cases, where Fig. 2] shows
a table summary of four different cases, with integer coefficients or not. We also test different num-
bers for multiplication and summation. From all examples, one can see that the recovered objective
has sparse coefficients and negligible error (loss objective £) at non-desirable local optimums. Other
than the toy examples, we conduct a realistic power system case study and visualize the objective
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surface in Appendix [A] Similarly, for a small parameter range, there are points achieving the global
optimum or local optima that are very close to the global optimum. However, only one of them is
the physical ground truth. For example, one can go from the red point to a non-physical solution
with an error close to zero, even when the sparsity regularization is enforced. Therefore, we can see
that “good” sparse fitting is insufficient to avoid overfitting. Thus, we need to avoid overfitting for
physical systems not only by choosing sparse learning models, but also new ways to constrain the
learning process and avoid non-physical solutions.
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Figure 2: Absolute mismatches between the recovered functions and the physical ground truth.

3.1 PROPOSED METHOD: PHYSICAL NEURAL NETWORK WITH WEIGHT ACTIVATION

For complex physical systems, the governing functions are formed by basic operations such as
additive and multiplicative accumulations of variables. For example, the topology of power system
can be represented as a graph, where the interaction between different nodes along the lines is
represented by polynomials of the voltages for power flow (Yu et al.,[2017). To combine the benefit
of universal approximation and the freedom to choose activation function, we propose to use a NN
as a container to learn the representation of physical equations, and thus call it a physical neural
network (PNN), denoted as f. To train f, the training data set is {x;, y; }f\il, where x; and y; are
the 7" input and output of f, and N is the number of training samples.

To construct the physical equation in PNN, the key is to develop a sparse selection mechanism to
automatically select part of the variables to join summation/subtraction and multiplication/division.
For sparse selection, existing work utilizes sparse regularization like LASSO for weight updates
(Kim et al., 2020)), introduces extra neural network modules like gates (Liu & Lailil 2018)), or con-
ducts symbolic generators (Petersen, 2019). In general, they demand the quantification of extra
hyper-parameters (i.e., the LASSO penalty) or parameters (i.e., parameters in gates or symbolic
generators), which significantly increases the possibility of local optima.

In order to address the problem towards limiting local optima, we advocate the design philosophy:
enforce activation functions on weights for the sparse selection of features. Thus, no extra param-
eters are added, and the searching is only for physical parameters. To elaborate on our design, we
need to answer (1) which parameters need to be activated and (2) how to enforce the activation. For
parameter activation, we start from the basic symbolic operations in neural networks, e.g., multipli-
cations and divisions of the form z; = IINz,;P7, where 2, is the j'* element of the layer next to the
input. x; is the i*" element of the input vector variable & and p;; is the polynomial order number
(power) of x;. Note p;; € {—K,---,—1,0,1,--- , K}, where the positive integer represents the
multiplication, the possibility of O corresponds to the sparsity, and the negative integer represents the
division. Then, each z; is a more complex symbol for the next operation and p;; is the optimization
variable. To accommodate p;; into a NN, we adopt logarithm and exponential operators to achieve

a linear summation format z; = exp (Zf\rzl Dij ln(xi)) (Trask et al.,[2018). Thus, the linear layer
with weights p;; needs to be activated for arithmetic operations and sparsity. Considering the target
integer range of p;;, it’s vital to know how to control the values for parameter activation.

We first show how to enforce p;; € {—1,0, 1}. Since tanh function can restrict the output value to be
n [—1, 1], we can utilize a positive scaling factor ¢; and tanh to activate some free and optimizable
parameter w;; such that tanh(ciw;;) € {—1,1}, where the scaling is to make sure the output is
very close to the target —1 or 1. Subsequently, the network needs to enforce O for sparsity. We
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similarly create another sigmoid function to achieve a(czw;j) € {0,1}, where o is the sigmoid
function, cg is the positive scaling factor, and w;j is another optimizable parameter. To summarize,

we have p;; = tanh (ciw;;) - cr(czw;j), where p;; € (—1,1). The multiplication of tanh and
sigmoid functions not only generates a smooth optimization surface but also naturally results in
limited parameters. After that, a third linear layer is used to obtain y, = }_; m;z;, where mj
denote the layer weights for linear summation. Since the summation and abstraction are incorporated
into the linear layer, we completely represent y = f (). Using such a design as a basic unit, we can
extend from {—1,0,1} to {—K,--- ,—1,0,1,--- , K} for different physical systems.

Such a design converts the non-convex multiplication to a convex form of linear summation for NN
training. Based on this design, we show the following property of our PNN to guarantee the finding
of stationary points in the optimization. The following proposition states the finding of stationary
points using PNN with the design and the proof is included in Appendix.

Proposition 1 (Biconvexity of PNN). PNN is biconvex on the parameters of the logarithm and the
linear summation layers. The stationary points for physical function can be found in optimization.

Proposition [I]indicates that PNN can find the stationary points (i.e., saddle points, local optima, and
global optima). Subsequently, can we find the global optima and can it represent the true physics?

3.2 EMBED PHYSICAL PRINCIPLES VIA CONSTRAINING PNN

After providing a flexible design to limit possibilities of local optima, we need comprehensive prin-
ciples to avoid non-physical local optima. If the derived constraints can be convex, they will provide
guarantees in solving or reducing the issue of non-physical local optima.

For physical systems, two important perspectives are physical existence and systematic behaviors.
As the components are physically located, there are geographical or electrical distances, etc. There-
fore, one common constraint through physical systems is the symmetric (S) property, e.g., a branch
connecting two components represents a common coupling. In addition, the links between different
components also have their physical limitations, leading to a range (R) constraint. At the system
level, the physical system will continue making an impact to the environment, leading to an inertia
(I) concept, which is the momentum from a physical object because physical systems typically have
natural inertia, whether it is strong or weak. For man-made systems, there could be additional ar-
tificial inertia due to factors such as guaranteeing stability for sustainable operation, e.g., in power
systems. Finally, such inertia does not only live in the temporal space but also in the input/output
data space. For example, the physical equations are typically continuous functions. These concepts
open the door to investigate the data range beyond the training and testing data. Such generalized
inertia leads to an important extrapolation (E) property across different physical systems to forecast
information yet to be observed but representative of plausible scenarios. The constraints based on
different properties of physical systems are called RISE concept by combining their initials, which is
demonstrated via a figure in Appendix. This subsection introduces the first three to constrain PNN in
Subsection[3.1|while Subsection[3.3]introduces the FOCV method for physical system extrapolation.

Range (R): Shape Constraint on Physical Parameters: While local optima generate many pos-
sible parameters to minimize the prediction error, the true physical parameters of corresponding
features usually yield specific shapes (Cotter et al., 2019). For example, the range of power line
admittance (reciprocal of impedance) of power distribution systems can be specified with voltage
level and line materials. In addition to the bound on value range of independent parameters, there
can also be shape constraints on the conditional relationships among parameters, e.g., longer lines
have larger resistance than shorter lines. Such a rule specified by the physical shape constraint func-
tion can filter out many local optima even with low errors. In order to enforce the learned physical
parameters W), within the constraint, a customized gate function is proposed to filter the weights: for
g(Wp) < Lgpls 9 (W) = Lgp]; for [g,] < g(W)p) < [gp], ¢'(Wp) = g(Wp); and ¢'(W},) = [gp]
for g(W,) > [gp]. g(-) is a function of physical weights W), to represent the type of shape con-
straint. As an example, g(-) is linear for specific value constraint of independent parameters, where
lgp| and [g, | are the lower and upper bounds, and ¢’(V,,) are the constrained weights.

Symmetry (S): Constraints on Physical Couplings: For physical systems with multiple outputs,
there are variable couplings among different outputs, e.g., one term is contained in two outputs.
Let’s use the power system as an example. A certain amount of power flowing from one place to
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another means that the same amount of power will be subtracted and added simultaneously at the two
places. Based on our observations, most of the local optima of NN do not satisfy such a rule. Thus,
the property is embedded by minimizing Lysyuar = ||[Wp — WpT |2+ [[rank (W}, ) = Nynutuat || 1. The
first term is an /2 norm penalty on the symmetry of recovered physical parameters and the second
term is to further ensure that the number of mutual terms N,,,,14q: Satisfies the system property, e.g.,
power system equation has N,,tuq1 = 2, because two nodes are connected by one power line. For
practical implementation, the [ norm is relaxed to ' norm in optimization.

Inertia (I): Constraints on Physical Tendency: For physical systems, the states are typically con-
tinuous and cannot change suddenly, leading to physical inertia. Such a property can be embedded
by bounding the outputs of two adjacent time slots. To ensure the partial convexity, the Euclidean
norm is modeled as a penalty in loss function Lyyertia = || f(®e11) — f(e)]|2-

3.3 CROSS-MODEL VALIDATION FOR PHYSICAL EXACTNESS AT UNKNOWN DATA REGION

Subsections [3.1] and [3.2] show how to avoid overfitting by considering the NN-based model design
and fitness of data to the physical laws. However, all these designs must be within the training data
range. What will happen beyond the training data range, e.g., a new operation point of physical
systems unseen in the past? Actually, determining the performance region is the most useful part
for physical systems modeling after understanding the physical laws, e.g., for universal data fitting
at arbitrary points. For example, Fig. [3] shows three globally optimal or near globally optimal lines
(red, blue, and green) that can fit data equally well within the training dataset. One way to avoid the
selection dilemma is to conduct an active inquiry out of the historical data range for a selection. For
example, Fig. [3]illustrates that a few out-of-sample data points in grey can regularize the learning to
the ground truth (dotted black line). However, the costs of such an inquiry can be quite expensive as
one inquiry may not be enough. Also, given the numerous networks that the internet of everything
(IoE) has, it is infeasible and sometimes impossible to conduct an inquiry for out-of-sample estima-
tion. Therefore, how can a learning approach avoid any cost of active learning but still explore the
generalization capability via some alternative active learning?
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Figure 3: Illustration of out-of-sample forecasting to improve extrapolation.

Extrapolation (E): Constraints on Physical Validation at Unknown Regions: To conduct active
learning without an inquiry cost, we implement physically meaningful forecasts via a probabilistic
model for data points not existing in historical measurements. The learning objective is to provide
another level of physical guidance for the constrained PNN in previous subsections. Specifically, an
ensemble of forecasts is conducted for both the mean and variance, as the forecast ability decreases
when the inquiry point is far away from the data range. Another important design is to embed the
physical form into the forecast so that the model can cross-validate the learning models. We pro-
pose to utilize Gaussian Process (GP), which not only has computational efficiency in probabilistic
forecasts but also provides the flexibility to embed physical forms into its kernel function.

For training the GP, the data is represented as {x;, %; }_,, where x; represents the input samples
and &; represents a sample point k-step later than x,;. Based on such data, GP assumes prior func-
tion values in a Bayesian framework, e.g., p(g|x1, -+ ,zny) = N (0, K), where g is a vector of
latent function values, A represents normal distribution, and K is a kernelized covariance matrix.
In particular, we can add different kernel mappings to calculate K based on our priors of the physical
knowledge. For example, for power systems, the polynomial of order 2 is often utilized to represent
the relationship between voltages and powers (Yu et al.l [2017). Using data with kernel knowl-
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edge, we obtain a predicting function via Bayes rule p(g*) = ﬁ [ p(&|g)p(g,g*)dg, which has
a closed-form solution g* based on Gaussianity. The goal is to predict the k-step later points for
any input sample. Specifically, one can plug-in the input data = and obtain the distribution of the
k-step points p(g* (a:)) Thus, the GP-based forecasting not only brings the forecast point x, e.g.,
the mean of p(g* (a:)), but also the confidence level o, based on the standard deviation. Similarly,
we can obtain g and S, where ¥y is the forecast point for the output data y; and Sy is the corre-
sponding confidence level. Fig. [3]illustrates the results of GP, where the forecast points have smaller
uncertainty if they are closer to the dataset boundary.

With the forecast results from above, we can add x, (yy,) to the training data set, like active learning.
However, our method is different from active learning, which is associated with a cost. With the cost,
active learning can provide a highly accurate label. But, our new data points are always associated
with confidence bounds. The good news is that the FOCV method can provide infinite data points
without a cost. Therefore, different than active learning, FOCV uses all the data points with unequal
weights, e.g., the inverse of confidence level, to achieve model selection. Therefore, we propose
an integral-based regularization for extrapolation L gytrapor = Tlﬁk Z,ﬁ;(gk — f(Z1))%. With
extrapolation (E), the proposed methods complete the derivation of RISE. It’s important to note that
in RISE, the factors are decoupled out of the PNN. Furthermore, the factors can be relaxed into a
convex form, which significantly increases the probability of finding the global optima. Specifically,
Theorem [T highlights the regularization can lead to strong convexity over a set of closed and convex
regions of the parameter space, i.e., the piecewise strong convexity.

Theorem 1 (Piecewise strong convexity of PNN with regularization). With inertia and symmetry
regularization, the loss function of the PNN is piecewise strongly convex in the parameter space.

Proof. For the derivation simplicity, we denote TV as the parameter set of PNN and denote {(W) as
the loss function, i.e., mean square error. The range constraint (R) and the extrapolation constraint
(E) are included in [(W) as they are included in the PNN representation. Subsequently, the iner-
tia (I) and symmetry (S) regularizations help to define Iy (W) = I(W) + M Lrnertia + Larutual)
as the regularized loss function for training, where A is a positive penalty term. To determine

2
convexity, we write the second derivative of the regularized loss function ;’?h:oh(W +tX) =
2 . . .
L i—ol (W +tX) + Ah(W), where h(W) is the second derivative of Lipnertia + Larutual- Linertia
has a quadratic form to be convex. For symmetry L sy sual, the I1 norm regularization is convex and

h(W) > 0. However, due to the non-convexity of neural network, the first term 5722 le=ol(W + tX)
is generally not positive semi-definite. The following lemma in (Milne, |2018) proves a lower bound

for j—; lt=ol(W + tX) with respect to the loss value of [.

Lemma 1. Suppose ||yi|los < r,r > 0,V 1 < i < N. The second derivative of | in direction X
satisfies %h:OZ(W +tX) > —V2H(H — 1)||W||H+Y| X ||3r1(W)'/2, where H is the number of
hidden layers in a neural network, || - ||, is a defined norm such that ||W ||, = maxo<;<g ||Wil|2.

According to Lemmal[l] the second derivative of [ is lower-bounded by a term that depends on [ value.

Then, for regions with small loss values, the positive value A (V) helps to restrict % lt—oli (W+tX)
to a positive number, which determines the shape of the region to be convex. Mathematically,
we define the region U(),6), where A > 6 > 0, by U\, 0) = {WI(W)'/2|W||H-1 <

A—0)h ) . 2 e -
Wéfm}- It's obvious that YW € U(X, ), &5 |,_oli (W + tX) > 0. Namely, within

the region of U (A, ), the regularized loss function is strongly convex. In general, U(), ) is not a
convex set since many local optima points are disconnected and have small [ values. However, based
on measure theory, we can utilize a set of closed convex sets to completely cover U (], 8), leading to
piecewise strong convexity of PNN over these closed sets. Therefore, the piecewise strong convexity
from RISE regularization guarantees that we can find the global optimal point for each sub-region,
and the global optima satisfies constraints for physical parameters. [

4 EXPERIMENTS

Data Preparation. In experiments, we first use synthetic datasets for illustration and introduce real
physical system datasets of power systems and mass-damper systems as the underlying physical
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systems for model training and comparison. The datasets are summarized as follows: 1) Syn-
thetic dataset is generated from quadratic functions with adding random noises. 2) Power system
datasets: The full training datasets of nodal voltage states and power injections are generated from
power flow simulations using real feeder models (IEEE 8-bus system and Utility feeder), one-year
power consumption profiles, and distributed photovoltaics generation profiles (Yu et al.l [2017). 3)
Motion dynamics dataset: We simulate the dynamic process of the mass-dampers systems with 10
nodes and obtain the measurements of velocity and momentum for the test of physical equation dis-
covery. 4) Aerodynamic dataset: The aircraft sensor data for weight estimation is collected from
the aircraft simulation based on the aerodynamic model in (Chen et al.| [2018]).

Performance Evaluation Metrics. The following metrics based on (Blasch & Sung| [2021) are
used to evaluate the performance of learning physical system governing equations. Prediction error
is to evaluate the modeling accuracy and extrapolation capacity of learning model via mean square
error (MSE) of the output prediction. Physical exactness (PhyE) is to evaluate how much physics is
extracted by comparing the recovered symbolic function and related parameters with true physical
equation. Robustness to noise ratio (RNR) is proposed to average all results tested under different
signal-to-noise ratios for practical consideration. More details are provided in Appendix.

Benchmark Methods and Testing Scenarios. The following benchmark methods are used for
comparison: (1) sparse identification of nonlinear dynamics (SINDy) (Brunton et al., 2016), (2)
support vector regression (SVR) (Yu et al., [2017), (3) deep residual network (Resnet) (He et al.,
2016), and (4) equation learner (EQL™) (Sahoo et al.,[2018). Different scenarios are generated for
testing: .S; denotes the regular setup of dataset size and noise level (independent Gaussian noise with
zero mean and 0.01 standard deviation); S5 denotes a noisy setup with noises of 0.1 standard devi-
ation; S3 denotes a data-limited setup with 10% samples of original dataset available. The results

S* Data SVR Resnet SINDy EQL™ PNN-RISE
Sythetic  0.003+0.00 0.005+0.00 0.001£0.00 0.003+0.00 0.001 =+ 0.00
PS1 0.006 =0.00  0.01£0.00  0.004 % 0.00 0.007+0.00  0.001 £ 0.00
S PS2 0.05 +0.01 0.02+0.01 0.03 £0.02 0.07 £ 0.05 0.01 +0.01
Motion ~ 0.002+0.00 0.003+0.00 0.006 +0.00 0.001+0.00 0.001 =+ 0.00
Aero 0.003 +0.00 0.005+0.00 0.008+0.01 0.003+0.00 0.002+ 0.00
Sythetic  0.004 £0.00 0.007 £0.00 0.002+£0.00 0.006+0.00 0.001 =+ 0.00
PS1 0.005+0.00 0.01+£0.00 0.007£0.00 0.009 +0.00 0.001 =+ 0.00
Sa PS2 0.06 £+ 0.03 0.04 +£0.02 0.09 £+ 0.04 0.10 £ 0.02 0.01 +0.01
Motion ~ 0.003+0.00  0.005=+0.00 0.009+0.00 0.001+0.00 0.001+ 0.00
Aero 0.003 +0.00 0.02+0.01 0.01 £ 0.00 0.004 +0.00 0.003 £ 0.00
Sythetic ~ 0.006 £0.00  0.010£0.00 0.002 £ 0.00 0.008 +0.00 0.001 £ 0.00
PS1 0.008 +0.02  0.02+0.00  0.004 & 0.00 0.01 £+ 0.00 0.003 £ 0.00
S3 PS2 0.07 +0.03 0.04 +£0.01 0.03 £0.02 0.07 £ 0.05 0.02 + 0.01
Motion  0.004+0.00 0.007+0.00 0.006 +0.00 0.001 + 0.00 0.001 =+ 0.00
Aero 0.003 £+ 0.00 0.007 + 0.00 0.01+0.00 0.003 +0.00 0.002 + 0.00

Figure 4: Performances of mapping recovery on different datasets under different testing scenarios.

are summarized in Fig. @ Although other methods can have low errors in some testing cases, they
can not maintain the good performance as PNN-RISE does for all the datasets. Especially, EQL™
and SINDy’s performance deteriorates when the problem size becomes larger, e.g., power system
datasets with data from many nodes. While SVR is robust against noises, it can not recover the
nonlinear physical function exactly to further decrease the learning error. In this case, the proposed
method shows low learning error and a stable performance in both noisy and data-limited scenarios.
Moreover, the performance of function recovery is compared in Fig. [5] (left). The bar plot shows
the recovery rates (percentage of runs that correctly recover the ground truth symbolic expression)
and the line plot with shades shows the recovery accuracy of the corresponding physical parame-
ters. While EQL™ easily fails in large power system cases, PNN-RISE has high success rate in true
function recovery, merely trapped into local optima. For physical parameter recovery, PNN-RISE
not only has higher average accuracy but also has lower standard deviation than EQL ™.

4.1 ABLATION STUDY FOR PHYSICAL CONSTRAINTS

In order to show the performance of using different physical constraints, we provide an ablation
study of the proposed NN. We first use the synthetic example to visualize the effect of constraints
and show in Appendix. Fig. [5] (right) presents the learning results on power system datasets (IEEE
8-bus system). The performance is evaluated in different test scenarios: 1) regular data acquisition,
2) limited input range (voltages within [0.98, 1.01] for training and [0.90, 1.10] for testing), 3) out-
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Figure 5: Left: Comparison of physics recovery. Right: Results of embedding different constraints.

of-scale invariants in a governing function, and 4) limited data amount. Generally, adding physical
constraints boosts the performance in different testing scenarios. The constraint on mutual variables
significantly reduces the learning error by pushing the features and parameters to be symmetric for
multiple-output problems. When the data amount is very limited to train NN efficiently, the bound
on the inertia of system outputs in time sequence improves the function recovery.

4.2 ILLUSTRATION OF THE EFFECTIVENESS OF FORECASTING-BASED PHYSICS LEARNING

o
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Figure 6: The results of GP-based PNN and GP-based Resnet for different systems.

To illustrate the effectiveness of GP forecasting, we utilize 200 samples for training and propose to
forecast {500, 1000, 1500, 2000} samples out of the training dataset. Also, we consider different
SNRs in {50, 100, 150}. The forecast samples are integrated into PNN model and other benchmark
models for comparisons. Fig. [6|demonstrates the results with respect to the forecast points. Due to
the space limit, we only show results of GP-based PNN and GP-based Resnet for comparisons. The
patterns of results for other benchmark methods are similar to GP-based Resent. We observe that
GP-based PNN performs much better than GP-based Resnet, which is consistent to observations
in the previous subsections. As the number of forecast data points increases, the prediction MSE
value generally decreases for both PNN model and Resnet model. It implies that our GP forecasting
produces accurate forecast points, suitable for all prediction models. When the number is larger than
500, the results don’t show a significant improvement. The reason is that forecast points far from the
training set boundary are with low confidence, which don’t have a big impact on learning results.

5 CONCLUSION

The lack of physical understanding makes it difficult for planning, monitoring, and control of IoE.
To learn governing physical equations from data, the paper first presents a fundamental challenge
for data-driven methods like symbolic regression and sparse regression. Data-driven only methods
cannot guarantee to find the exact physics because many low-complexity expressions can perfectly
fit the data. To resolve the issue, we propose a complete set of constraints based on physical princi-
ples to restrict search space. Thus, an efficient physical neural network (PNN-RISE) is developed.
Finally, the FOCV supports the scenario when (partial) physical constraints are unknown. The fore-
cast of data beyond the training dataset enhances model robustness with few extra costs. Results on
physical system datasets show the superior performance of proposed methods.
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Figure 7: Absolute mismatches between the recovered functions and the physical ground truth.

Sparse Fitting May not be Physical Verifiable For example, to learn the function y = z1z2+x2x3
from data, different SR methods can easily get trapped in local optima. To see if these observation
is special, we test different cases, where Fig. |Z] shows a table summary of four different cases, with
different coefficients. We also test different numbers for multiplication and summation. From all
examples, one can see that the recovered objective has sparse coefficients and negligible error (loss
objective £) at non-desirable local optimums. Specifically, the neural network naturally approxi-
mates towards reducing the learning error. Therefore, it could ignore the consistency with physical
governing functions and update in the wrong direction, leading to overfitting and the local optima
solution. Differently, for the last row, the learning parameter of 0.990 (or 1.980) is close to ground
truth 1 (or 2), which means “Near Global Optimum” that has 99% accuracy of parameter recovery.
However, the prediction error (highlighted in red) is larger than a direct approximation of a neural
network (highlighted in blue), where the parameters are far away from the ground truth.
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Figure 8: (Left:) Illustration of the possible saddle point, local optimum, and global optimum in
physical equation learning. We observe that local optima can perform numerically as well as the
global optimum (ground truth equation) since there is always a set of diversified equations to per-
fectly fit limited data. (Right:) Visualization of the arithmetic layer design function.

Test Sparse Fitting for Power System Identification. To make the realistic case study rather than
toy examples, we use a power system case study and visualize the objective surface in Fig. [§] (left).
Similarly, for a small parameter range, there are points achieving the global optimum or local optima
that are very close to the global optimum. However, only one of them is the physical ground truth.
For example, one can go from the red point to a non-physical solution with an error close to zero,
even when the sparsity regularization is enforced. From the observation, we can see that “good”
sparse fitting is insufficient to avoid overfitting in learning physical equations.

Visualization of Neural Arithmetic Design in PNN. We plot the surface of the neural arithmetic
design in Fig. [](right). The visualization shows that the multiplication of tanh and sigmoid functions
not only generates a smooth optimization surface but also naturally results in limited parameters.

Illustration of RISE Constraints on PNN. For illustrating the completeness of these principles,
Fig. [0 presents the relationship among the four RISE concepts.
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Figure 9: RISE principles for physical laws.

B PROOF OF THEOREM 1

Proof. First, we define the biconvexity as follows (Gorski et al., [2007)).

Definition 1 (Biconvexity). A function ¢ : A x B — R is called biconvex if f(a,b) is convex in a
Sor fixed b € B, and f(a,b) is convex in b for fixed a € A.

Then, we prove PNN is biconvex. Recall for the PNN function y = f(x), the k" element can be
written as: yp = Zj MRz = Zj Mk €Xp (Zf;l Dij ln(xi)). Vj, k, if my is known, we need to
prove the convexity of f with respect to p;;, V1 < i < N.

Since the linear combination Zf\; pij In(x;) is convex with respect to p; ;, and the exponential func-
tion is convex, the convex function composition implies that exp ( Zfil Dij ln(xi)) is convex with
respect to p;;. Therefore, Vj, k, if 1y is known, the function yy = 3= ; m;y, exp (vazl pij In(z;))
is convex with respect to p;;,V1 < ¢ < N. On the other hand, Vi, j, if p;; is known, y;, =
> ; Myjk €XP (Zfil pij In(x; )) is a linear combination of m;. Therefore, y;, is convex with re-
spect to m g given p;;.

Therefore, PNN function y = f(«) is biconvex with respect to the logarithm layer and the linear
summation layer. The biconvexity can lead to an efficient alternate convex search (ACS) (Gorski
et al.| [2007) to seek for optimal solutions. Namely, ACS will fix one part of parameters to search for
the other part iteratively. Due to biconvexity, in each iteration, ACS will solve a convex problem.
Then, Corollary 4.10 in (Gorski et al., 2007) guarantees that the searched points will converge to
stationary points of f(x). O

C DETAILS OF DATASETS AND EXPERIMENT SETUPS

Synthetic dataset: generating random samples of & from Gaussian distribution A/(0, 1), and obtain
the outputs by y = ci1x172 + CQCE%.

Power system datasets: IEEE provides standard power system models, including the grid topol-
ogy, parameters, and generation models, etc., for simulations. The model files and the simulation
platform, MATPOWER (MATPOWER| [2020), are based on MATLAB. For simulations, the load
files are needed as the inputs to the systems. Thus, we introduce power consumption data from
PIJM Interconnection LLC (PJM Interconnection LLC} |2018)). Such load files contain hourly power
consumption in 2017 for the PJM RTO regions. With the above data, MATPOWER produces the
system states of voltages and nodal power injections. Then, we utilize the voltage as input and the
nodal power as the output to learn the physical mapping, for which the true physical function is used
for evaluations (Yu et al.| 2017). To diversify the system types, we utilize the mass-damper system
and aerodynamic system to further validate our results.

Motion dynamics dataset: mass dampers of in-plane wind turbine. The physical equation of the
mass-damper system is representative of aircraft motion for analysis of system dynamics (van der
Schaft, [2017; [McRuer et al.,|2014). Moreover, the active tuned mass dampers are implemented to
control in-plane blade vibrations (Fitzgerald et al., 2013). Using MATLAB, we simulate the dy-
namic process of the mass-damper system with 10 nodes and obtain the measurements of velocity
and momentum for the test of physical equation discovery.

Aerodynamic dataset: aircraft weight estimation: The aircraft sensor data is collected from the
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aircraft simulation in MATLAB and the corresponding aerodynamic model is illustrated in (Chen
et al.| [2018). In this case, the goal is to recover the aerodynamic model of gross weight and angle of
attack in a cambered airfoil.

For the implementation of machine learning methods, the prepared data samples are split as 60% for
training the model, 15% for validation of model hyperparameters, and 25% for testing. Specifically,
hyperparameters of the benchmark methods are selected through k-fold cross-validation. For SVR,
the kernel is chosen from the candidates that include polynomial kernel (27?-degree and 3"?-degree),
radial basis function (RBF) kernel, and hyperbolic tangent kernel. The box parameter is similarly
chosen from {1x 1073, 5x1073,1x1072,5x1072,1x 107, 5x 1071, 1x 10°,5x 10°, 1 x 101 }.

D RESULTS OF THE SYNTHETIC DATASETS
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Figure 10: Synthetic dataset: visualization of the function recovery with RISE constraints.

In order to show the performance of using different physical constraints, we provide an ablation
study of the proposed NN. We use the synthetic example to visualize the effect of constraints. The
left-hand side of Fig. [[0]compares the local optimum (transparent gray surface) learned by NN with
the true function (solid gray surface). Though there are some overlaps, the large gap between the
two surfaces causes large errors for generalization. By adding constraints, we observe in the middle
of Fig. [I0] that the variable coupling constraint rotates and stretches the surface to the correct shape
like the maximum and minimum values of the surface. On the other hand, the parameter range
constraint smoothes the surface of the local optimum. Together, the constraints push the recovered
function (cyan surface) towards the ground truth, where the overlap in Fig. [I0| (right) shows the
physical exactness in not only feature components but also the corresponding parameters.
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