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Abstract- At the time of restoration transmission line switching is 

one of the major causes, which creates transient overvoltages. 

Though detailed Electro Magnetic Transient studies are carried 

out extensively for the planning and design of transmission 

systems, such studies are not common in a day-today operation of 

power systems. However it is important for the operator to ensure 

during restoration of supply that peak overvoltages resulting from 

the switching operations are well within safe limits. This paper 

presents a support vector machine approach to classify the various 

cases of line energization in the category of safe or unsafe based 

upon the peak value of overvoltage at the receiving end of line. 

Operator can define the threshold value of voltage to assign the 

data pattern in either of the class. For illustration of proposed 

approach the power system used for switching transient peak 

overvoltages tests is a 400 kV equivalent system of an Indian 

southern grid 

I. INTRODUCTION 

The power system must be prepared for the rare occasion 

when all or partial portion of the system is forced out of 

service. If this occurs, the system must be able to be restored 

to normal operations as quickly as possible. The three phases 

of power system restoration are [1]: 

• Planning of restart and reintegration of the power supply  

• Action during system degradation for saving and retaining 

critical sources of power 

• Restoration when the power system has stabilized at some 

degraded level 

In the planning phase, problems can be addressed primarily 

by offline analysis and simulation. During the degradation 

phase, control problems need solutions in real-time and 

within the short time ratings of lines and equipment. In 

restoration Phase, problem can be addressed by online 

simulation, presenting results to the operator for 

implementation.  

During the early stages of restoring EHV overhead 

transmission lines, transient voltages or switching surges are 

caused by energizing large segments of a transmission system 

or by switching capacitive elements [2]. The magnitude and 

shape of the switching overvoltages vary with the system 

parameters and network configuration. Even with the same 

system parameters and network configuration, the switching 

overvoltages are highly dependent on the characteristics of 

the circuit breaker operation and the point-on-wave where the 

switching operation takes place.  

Extensive EMTP simulation studies are carried out during 

planning stage of transmission system. A line energization is 

an intended operation, certain initial condition are required in 

the studies and the main purpose of studies is to provide 

proper protection system, such as lightning arrester, shunt 

reactor etc. to limit the overvoltages to specified design limits 

as per the utility limit.  However during system operation a 

large disturbances or a partial blackout, the system condition 

can be very abnormal. Thus during such situation many 

transmission lines indented to be energized. It is important 

obtain the safe order of the transmission lines for restoration 

in sequence.   

The knowledge of switching overvoltages severity during 

the intended operations of transmission lines are important 

from the operator point of view to take safe decisions about 

the operations. Digital computer tool such as Electro 

Magnetic Transients Program (EMTP) is universally accepted 

as industry standard for computation of both switching and 

temporary over voltages at the planning stage but in a day-to-

day operation of power systems [3][4], EMTP simulations are 

not common due to enormous cases require to be carried out 

to estimate the worse switching overvoltages. However 

during day-to-day operation such studies, by the operators are 

prohibitive due to actual detail data required and also large 

computational time involved. During power system 

restoration there is a need for real time tool, which can 

provide crucial knowledge about peak overvoltages, 

generated during energization of transmission line.

This paper applies a learning-based nonlinear classifier, the 

support vector machine (SVM) for peak over voltages under 

switching transients during line charging. The proposed 

methodology adopts the pattern recognition approach to 

classify the switching overvoltages generated during line 

energization in two classes safe and unsafe. A tool such as 

proposed in this paper that can give the idea about switching 

overvoltage severity would be helpful for the operator. Data 

pattern assign to either of the class on the basis of peak 

overvoltage appears at receiving end bus. The proposed SVM 

is expected to learn many scenarios of operation to give the 

maximum peak overvoltage in a shortest computational time, 

which is the requirement during online operation of power 

systems. In the proposed approach we have considered the 

most important aspects, which influence the transient 
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overvoltages such as line length, switching angle, source 

strength and receiving end reactor. This information will help 

the operator to select the proper sequence of transmission line 

to be energized safely with transients appearing safe within 

the limits. Results of the studies are presented for a sample 

system and also for an equivalent EHV system of Indian 

southern grid to illustrate the proposed approach. Operator 

can define the threshold value of voltage to assign the data 

pattern in either of the class. 

II. SWITCHING TRANSIENTS 

An electrical transient is the outward manifestation of the 

sudden change in circuit conditions, as when a switch opens 

or close or a fault occurs on a system. Generally a switching 

operation in a power system changes the state of the system 

from those conditions existing prior to switching to those 

existing after the operation, this generates transient 

phenomena. The power frequency voltage before and after 

the switching operation may be of a different value due to the 

change in the state of the system. This means that the total 

amplitude of the overvoltage due to switching may be 

considered in two parts; namely a transient component which 

is superimposed on a power frequency component [5]. In 

EHV and UHV systems there are a number of switching

operations, which require special consideration as they may 

lead to magnitudes of the switching transient, which 

influence the choice of the system insulation level. However 

the overvoltages produced during the switching of reactors 

and transformers may readily be limited by surge diverters 

[5] and are therefore not considered here. Of the other 

switching operations, line closing and reclosing generally 

produce the larger overvoltages and consequently we

concentrate on line energization in this paper. In general, the 

highest switching overvoltage in a high voltage network is 

caused by energizing and re-energizing of unloaded line. 

When the line is connected to the source, traveling wave will 

start to travel along the line towards the receiving end and 

double there at the open end with an overvoltage near to 2 

p.u. 

A 400kV 3-bus system with a transmission line of 200kms 

is shown in Fig.1. For the system considered normal peak 

voltage in a phase is ( 400 2 3 )kv and this value is taken 

as base for voltage pu and in the system studies 400kv is base 

voltage and 100 MVA is base power.  Line is switched from 

bus 2 and the switching transients observe at bus 3 when line 

is energized. In practical system a number of factors affect 

the overvoltages factors due to energization or re-closing.  

In energizing transmission lines during power system 

restoration, operators are often concerned with the length of 

line to be energized, the adequacy of on-line generation, and 

the presence of reactor. In general, it is desirable to energize 

as large sections of lines as the sustained and transient over-

voltages will allow [2]. Energizing small sections tends to 

prolong the restoration process. In energizing a large section 

however, there is the risk of damaging the equipment 

insulations because as line length increases charging current 

also increases which creates higher overvoltage at receiving 

end bus [6]. The effect of transmission line length on 

switching overvoltage at bus 3 is shown in Fig 2. 

Fig. 1. Sample system G: Generator S: Switch R: Reactor 
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Fig. 2. Transient Voltage peak at bus 3 as line length increases, while 
the source strength is 1000 MVA with PIR 
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Fig. 3. Transient Voltage peak at bus 3 as source strength increases, 
while the switching angle is kept fixed at 50

o
 with PIR 

Energizing lines with inadequate sources could result in 

higher sustained and transient voltages than equipment can 

withstand. The start-up of more out.of-sequence generators 

however, would use critical time, and delay the overall 

restoration process [2] [6]. Overvoltage reduces as the size of 

system increases; this reduction is due to the superposition of 

a number of different frequencies not due to the damping of 

switching overvoltage. Fig.3 and 4 shows the effect of source 
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strength on overvoltage at different line length and switching 

angle respectively. 
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Fig. 4. Transient Voltage peak at bus 3 as source strength increases, 
while line length is 300km with PIR 

Shunt reactors either permanently connected or switchable 

are used on the EHV transmission systems for limiting the 

steady-state overvoltages during light load condition and also 

to avoid leading power factor operation of generators, which 

may cause stability problem. Fortunately, they are also 

effective in reducing switching surges to a considerable 

degree. The reason for this reduction is primarily the lower 

steady-state voltage at receiving end of the line resulting from 

the shunt reactor supplying the line's capacitive var 

requirement. The reactor at receiving end of the offers a finite 

impedance, which tends to reduce the coefficient of

reflection, thus also contributing surge reduction [5]. The 

shunt compensation effect is shown in the Fig. 5.  

Fig. 5. Transient Voltage peak at bus 3 at various values of receiving 
end reactor and without PIR, source strength is 1000 MVA and 

switching angle 90
o
. W.R. = Without Reactor 

Controlled Switching of high-voltage circuit breakers has 

become a commonly accepted means of reducing switching 

transients in power systems. The primary motivation for 

using controlled switching of transmission lines is to 

minimize the switching overvoltages during energization. If 

switching takes place at the voltage maximum i.e. at 90
o
 the 

voltage at first oscillate along the whole the line length to 

almost twice the value of the system voltage [7]. Fig.2 and 

Fig. 4 shows that for a particular line length and source 

strength transient voltage will be more at 90
o
 than 0

o
.  

As discussed above for an existing system the main factors, 

which affect the peak value of switching overvoltage, are 

switching angle, line length, source strength and shunt 

reactor. Here it should be mentioned that a single parameter 

often can not be regarded independently from the other 

important influencing factors. The magnitude of the

overvoltages normally does not depend directly on any single 

isolated parameter and a variation of one parameter can often 

alter the influence of another parameter, in other words there 

exists an interaction between the various system and breaker 

parameters. This forbids the derivation of precise generalized 

rule of simple formulae applicable to all cases. So a support 

vector approach can help to classify the peak value of 

switching overvoltages generated during line energization. 

This paper applies a recently introduced learning based 

nonlinear classifier, the support vector machine (SVM). In 

next section brief description of the proposed methodology, 

some theoretical background relevant to the SVM approach 

used for the present problem is given. 

III. SUPPORT VECTOR MACHINE 

In recent years, Support Vector Machines (SVMs) have 

risen as powerful tools for solving classification and, 

regression problems. Support vector machines (SVMs), a 

recently introduced learning paradigm, have very interesting 

theoretical and practical characteristics. They rely on so 

called support vectors (SVs) to identify the decision 

boundaries between different classes. The SVs are located 

near the separation surfaces, which are critical to achieve 

correct classifications. The SVs define the largest possible 

margin of separation. SVMs can map complex nonlinear 

input/output relationships [8]. SVMs are based on a linear 

machine in a high dimensional feature space, nonlinearly 

related to the input space, which has allowed the development 

of somewhat fast training techniques, even with a large 

number of input variables and big training sets. Traditional 

quadratic programming algorithms have been proposed, but 

these algorithms require enormous matrix storage and do 

expensive matrix operations. To avoid these problems, fast 

iterative algorithm like the Sequential Minimal Optimization 

(SMO), which is easy to implement is chosen for training the 

SVMs. In proposed approach two different kernel functions 

have been used, the RBF kernel and the Polynomial kernel. 

The parameters C, ρ and σ have been chosen by validation 

method. 

The SVMs employed for two-class problems are based on 

hyperplanes to separate the data, as shown in Fig. 6. An 

orthogonal W vector and a bias b, which identifies the points 

that satisfy, determine the hyperplane . 0t
b+ =w x . By 

finding a hyperplane that maximizes the margin of 

separation, where x is a real valued n-dimensional input 
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vector. The hyperplane with the largest margin on the training 

set can be completely determined by the nearest points to the 

hyperplane known as support vectors (SVs) [9] [10] [11]. 

Therefore, SVMs learn linear decision rules as 

( ) ( . )t
f x sign b= +w x    (1) 

Cost function to minimize is 

1
( ) .

2

t
V =w w w     (2) 

Subject to the constraint that all training patterns are correctly 

classified, that is 

.[ . ( ) ] 1,i t iy bΦ + ≥w x     (3) 

1, , .i N= …

Constraints can be modified to allow for training errors to 

make margin soft as shown in Fig.6. 

.[ . ( ) ] 1 ,i t i iy b εΦ + ≥ −w x    (4) 

The new cost function to minimize is become now 

1

1
( , ) .

2

N
t

i

i

V Cε ε
=

= + ∑w w w    (5) 

εi is the slack variable and εi  >1. Error control parameter, C

used to penalize training errors. By minimizing the first 

summand of, the complexity of the SVM is reduced, and by 

minimizing the second summand of, the number of training 

errors is decreased. C is a preselected positive penalty factor 

that acts as a tradeoff between the two terms. The dual of the 

optimization problem can be written as 

Fig. 6 Linear separating Hyperplane for the non separable case 
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Which is a quadratic optimization problem. The nonlinear 

mapping is indirectly obtained by the so-called Mercer 

Kernel functions, which correspond to inner products of data 

vectors in the expanded feature space. However, by 

substituting the nonlinear mapping by the Kernel function, all 

calculations are performed in the original input space 

dimension 

( ) ( ) . ( )t

n

K

R

= Φ Φ

∈

a,b a b

a,b
   (7) 

The most commonly used functions are the RBF kernel

2

2

( )K e σ

−

=

a-b

a,b     (8) 

and the polynomial kernel 

( ) ( . 1)t pK = +a,b a b     (9) 

Fig. 7. SVM architecture. 

SVM architecture is shown in Fig.7. The parameters ρ and

σ affect how sparse and easily separable the data are in the 

expanded feature space, and consequently, they affect the 

complexity of the resulting SVM classifier and the training 

error rate. The parameter C also affects the model 

complexity. In practice, a range of values has to be tried for C 

and for the Kernel parameters, and then the performance of 

the SVM classifier is estimated for each of these values 
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Proposed scheme 

As discussed in section II for an existing system the main 

factors, which affect the peak value of switching overvoltage, 

are switching angle, line length, source strength and shunt 

reactor. So in proposed scheme input vector consist four 

variables 

• Switching angle. 

• Source strength. 

• Transmission line length. 

• Receiving end reactor value. 

 For training data are classified in safe (class 1) and unsafe 

class (class 2), according to the peak absolute value of 

overvoltage occurred at bus 3 shown in Fig 1. The threshold 

value of overvoltage is kept at 2.2 and 2.4 p.u for two 

different case analyses. It is assumed that operator has choice 

about the receiving end reactor of various values. The block 

diagram of proposed scheme is shown in Fig.8. 

 
 

Fig 8. Block diagram of Proposed scheme 

IV. SIMULATED STUDIES AND RESULTS 

A. System Study 

The power system used for switching overvoltage 
classification tests is a subsystem of the Indian southern grid. 
The proposed scheme is trained with a sample three-bus 
400kV system. Single line diagram is shown in Fig. 1. The 
case of power system restoration stage is taken as an example 
for the proposed methodology. Studies are carried out with 
and without the receiving end reactor at bus3. Switching 
transients are simulated for various combinations of system 
parameters as follows: 

• Source strength: 1000-10000 MVA in step of 1000 MVA

• Line length       : 100kms - 400 kms in step of  50 kms 

• Switching angle: 0° - 90° in step of  30
o

 In the case of reactor presence at bus 3, the standard reactor 

values 50, 63 and 80 MVAR are considered. Testing of 

model is done by an 11-bus system shown in Fig.9. 

B. Data preprocessing 

Learning will be more quickly and give better performance 

if the input variables are pre-processed before being used to 

train the network. Using zero mean inputs can minimize the 

learning time. Input variables have different range like line 

length is in the order of 100kms, switching angle is in the 

order of 10
o
 and source strength is in the order of 1000MVA. 

Normalization of data is done to preprocessed inputs and 

single output, which is peak voltage in the range of 1-3 p.u. 

and which scaled into the range of (-1, 1). The data and 

targets are normalized can be done as follows:  

max min
min min

max min

x x
x y y x

y y

 −
= − + 

− 
  (10) 

x = normalized input; y = raw input 

xmax = +1; xmin = -1 

ymin  = minimum value of raw input 

ymax = maximum value of raw input 

Here, y represents each element of the input vector and 

also that of target vector. The targets in this case are scalar. 

As the dimension of input vector is  four in proposed scheme, 

curse of dimensionality do not affect the convergence of 

learning. 

C. SVM Training 

The SVM classifier is based on a subset of the training 

patterns, the support vectors, located at the separation region 

between the two classes. The SVs define the largest possible 

margin of separation. SVMs are nonlinear models based on 

theoretical results from the statistical learning theory. This 

theoretical framework formally generalizes the empirical risk 

minimization principle that is usually applied for NN training 

(i.e., the minimization of the number of training errors). In 

traditional NN training, several heuristics are applied in order 

to estimate a classifier with adequate complexity for the 

problem at hand. An SVM classifier minimizes the 

generalization error by optimizing the tradeoff between the 

number of training errors and the so-called Vapnik-

Chervonenkis (VC) dimension, which is a new concept of 

complexity measure.  

The SVM training process consists of a quadratic 

optimization problem in which the support vectors represent 

the minimum solution. The use of an augmented training set 

as in the MLP training is not appropriate because of linear 

dependencies in the constraints. Instead, to account for the 

training set unbalance, different values for C can be used. A 

large value of C for the unstable patterns and a small value 

for the stable ones have been adopted during the training 

process. In this way, the optimization process emphasizes the 

minimization of the unstable patterns training errors.  

Upon the data sets we prepare, SVM model is built to 

classify the switching transient overvoltage in safe or unsafe 

class denoting as class 1 and class 2 respectively on the basis 

of peak transient voltage occurring at the receiving end bus. 

The threshold value for the peak overvoltage to assign data 

Support 

Vector 

Machine 

• Reactor Value 

• Line Length 

• Source Strength 

• Switching Angle

Data 

class 
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either of the class is chosen 2.2 p.u. and 2.4 p.u. When 

training an SVM model, there are some parameters to choose. 

They would influence the performance of an SVM model. 

Therefore, in order to get a “good” model, these parameters 

need to be selected properly. Some important ones are: 

I. The mapping function; 

II. Cost of error; 

III. Constant ρ and σ

As searching for the proper parameters, we need to access 

the performance of models. To do this, usually we divide the 

training data into two sets. One of them is used to train a 

model while the other, called the validation set, is used for 

evaluating the model. According to their performance on the 

validation set, we try to infer the proper values of constants 

and mapping function. Total 1120 pattern is generated to train 

the SVM. Two different kernel functions have been used, the 

RBF kernel and the Polynomial kernel. The software SVM
light

has been used for training and testing the SVM models. The 

RBF kernel SVMs have shown satisfactory results, because 

in the test set they have minimum misclassified data no 

matter the values of the parameters. On the other hand, 

polynomial kernel SVMs also have been trained successfully, 

and the results of their performance on the test set will be 

presented in next sub section but it has less accuracy for test 

data. 

D. SVM  Testing and results 

All experiments have been repeated for different system 

parameters. After learning, all parameters of the trained 

networks have been frozen and then used in the retrieval 

mode for testing the capabilities of the system on the data not 

used in learning. The testing data samples have been 

generated through the EMTP program by placing the 

parameter values not used in learning, by applying different 

source strength values, and different switching angle and line 

length. A large number of testing data have been used to 

check the proposed solution in the most objective way at 

practically all possible parameters variation. 

i.) Results for 3 bus model.Test data obtained by EMTP 

program, where line length varied in steps of 25kms, 

switching angle in steps of 10
o
 and source strength in steps of 

500MVA. Varying the parameter in the steps mention above 

250 patterns are generated. Table 1 shows the results for 3-

bus system shown in Fig 1.  

Table 1: Results for proposed 3 bus model 
 

Type of 

kernel 

Function

RBF

Threshold 

Voltage 

p.u.

No 

of 

SVs

Class1 

sample 

(Safe)

Class 2 

sample 

(Unsafe)

SVM’s 

Accuracy 

%

2.2 243 43 207 98.0 
RBF

2.4 455 104 146 98.4 

2.2 252 43 207 97.6 
Polynomial

2.4 476 104 146 96.4 

ii.) Results for 11 bus system. The proposed SVM approach is 

also tested with an 11-bus system (Fig. 9), which is an 

equivalent EHV system of Indian southern grid shown in 

Fig.10. The various cases of line energization are taken into 

account and corresponding peak overvoltages are computed 

from EMTP program. Equivalent source strengths were

obtained at all buses for various conditions. Energization of 

lines from either end of a transmission line is considered. 

Typical system scenarios are considered for exhaustive 

training patterns for proposed ANN. Summary of few results 

are presented in the table 2. It can be seen from the results 

that the SVM is able to learn the patterns and give results to 

acceptable accuracy.The threshold value of overvoltage is 

kept at 2.4 pu. Both RBF and polynomial kernel function 

model is used to classify data in safe and unsafe class. RBF 

SVM has accurately classified all cases but the polynomial 

kernel SVM has misclassified one case. 

Table 2. Results for 11 bus system 

 

SVM output

Line 

Switchi

ng 

End 

Bus No.

R 

MVAR

LL  

km 

SS 

MVA

SA 

Deg. 

EMTP 

voltage 

Peak pu RBF 
Polyn

omial

0 295 4756 0 2.38 1 1 

0 295 4756 60 2.56 2 2 

63 295 4756 60 2.37 1 1 
11 

63 295 4756 90 2.27 1 1 

0 295 1006 60 2.64 2 2 

11-5

5 
0 295 1006 90 2.64 2 2 

0 257 4188 0 2.14 1 1 

0 257 4188 90 2.51 2 2 

50 257 4188 60 2.30 1 1 
11 

50 257 4188 90 2.40 1 2 

0 257 3000 0 2.20 1 1 

11-4

4 
0 257 3000 60 2.57 2 2 

0 282 4555 0 2.27 1 1 

0 282 4555 90 2.37 1 1 

50 282 4555 0 2.25 1 1 
11 

50 282 4555 90 2.35 1 1 

0 282 1289 0 2.52 2 2 

11-10

10 
0 282 1289 90 2.59 2 2 

R : Receiving end Reactor; LL : Line Length;  SS : Source Strength; 
SA : Switching Angle ; 1 = Safe (Class 1); 2 = Unsafe (Class 2)

V. CONCLUSION 

A support vector machine approach to distinguish safe or 

unsafe the peak over voltages under switching transient was 

proposed and implemented. Both RBF and polynomial kernel 

function is used to map input vector into higher dimension 

feature space. The performance of RBF SVM is better than 

polynomial SVM. The proposed methodology is tested with a 

three bus and an 11-bus system. The simulated results clearly 

show that the proposed technique can classify the peak values 
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of switching overvoltages with good accuracy into the safe 

and unsafe class. Further work can be carry out by taking the 

various optimal values of PIR and PIR duration time.  

Fig. 9. 11 Bus transmission system 
 
 

 
Fig. 10 Indian southern grid 
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