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Learning by Comparing: Boosting Multimodal Affective
Computing through Ordinal Learning

Anonymous Author(s)∗

Abstract
Multimodal affective computing aims to integrate information from
multiple modalities for the analysis of human affective states, opin-
ion tendencies, behavior intentions, etc. Previous studies primarily
focus on approximating predictions to annotated labels, often ne-
glecting the ordinal nature of affective states. In this paper, we
address this issue by exploring ordinal learning, and a Multimodal
Ordinal Affective Computing (MOAC) framework is designed to en-
hance the understanding of the nature of affective concepts. Specif-
ically, we propose coarse-grained label-level ordinal learning that
prompts the model to learn to compare in the label space, encour-
aging higher predictive values for samples annotated with larger
labels over those with smaller labels. Moreover, a regularization
loss is proposed to prevent the output distributions from deviating
significantly from the annotated label distributions. Fine-grained
feature-level ordinal learning is then performed via the feature dif-
ference operation and the neutral embedding. The former compares
samples in the feature space, calculating the difference between
features of different samples to generate ‘new’ features for a more
robust training. The latter seeks to reduce the difficulty of prediction
by estimating the difference between the target multimodal rep-
resentations and a neutral reference. We first demonstrate MOAC
in multimodal sentiment analysis, which is a regression task that
aligns well with the function of ordinal learning. Then we extend
MOAC to classification tasks includingmultimodal humor detection
and sarcasm detection to evaluate its generalizability. Experiments
suggest that MOAC outperforms state-of-the-art methods.

CCS Concepts
• Computing methodologies→ Learning to rank; Supervised
learning by regression; Supervised learning by classification; • Infor-
mation systems→Multimedia information systems.
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ing; Sentiment Analysis
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1 Introduction
With the development of social media and Internet, abundant mul-
timodal contents have been posted on the Internet in every single
day, many of which are presented in video forms for individuals
to convey their opinion inclinations and affective states. As a cru-
cial and rapidly emerging field in multimodal machine learning
[2, 29], Multimodal Affective Computing (MAC) helps uncover the
intentions and opinions that lie beneath and has gained substan-
tial research interest recently [20, 40]. MAC could contribute to
transforming the Internet into a more emotionally intelligent and
responsive environment. By integrating information from acoustic
clues, spoken language, and visual expressions, it provides advanced
analysis of users’ sentiment polarities, opinion tendencies, behavior
intentions, emotional states, etc [4], which helps enhance the expe-
rience of human-computer interactions. In this paper, we focus on
three downstream tasks of MAC, including Multimodal Sentiment
Analysis (MSA) [65], Multimodal Humor Detection (MHD) [14],
and Multimodal Sarcasm Detection (MSD) [5].

Figure 1: A simple diagram of (a) traditional optimization
strategy and (b) the proposed ordinal learning strategy. The
neutral embedding is not shown in the figure for clarity.

The majority of prior MAC methods focus on devising fusion
strategies to thoroughly investigate the interactions among modal-
ities, and subsequently make predictions based on the integrated
multimodal representations [18, 33, 34, 50, 55, 59]. As shown in
Fig. 1, traditional methods generally learn by conducting the main
task of affective computing, which directly approximate predictions
to annotated labels. However, it has been revealed that assigning
absolute values to affective concepts is not only prone to noise
but also unsuitable due to their subjective and ambiguous nature
[47, 61]. Yannakakis et al. [61] argue that ordinal labels provide
a more appropriate representation for affective states, suggesting
that compared to assigning absolute values, the task of assign-
ing reference-based (relative) values to subjective notions is better
aligned with their underlying features. Humans also tend to per-
ceive and interpret affective notions in an ordinal way. For example,
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for sentiment perception, instead of exactly perceiving an absolute
value of sentiment intensity, we typical understand humans’ senti-
ment states via comparison, e.g., ‘excellent’ conveys more intense
sentiment than ‘good’. Leveraging the ordinal nature of affective
states, we can provide the model with rich knowledge of affective
comprehension and a better understanding of affective concepts.

Drawing inspiration from theway that humans perceive affective
notions, we propose a Multimodal Ordinal Affective Computing
(MOAC) framework to explore another perspective for affective
understanding. MOAC learns by comparing affective concepts in
a manner similar to human perception, which is realized by the
design of label-level and feature-level ordinal learning. Specifically,
in label-level ordinal learning, we require the model to learn to com-
pare in the label space, encouraging samples with larger annotated
labels to receive higher predicted values than those with smaller la-
bels. By comparing the predictive values between multiple samples
rather than directly predicting the absolute labels for individual
samples, the model is encouraged to emulate human-like reasoning
and uncover the semantic meanings of affective notions. Moreover,
to prevent the model from deviating significantly from the distri-
butions of the annotated labels, we further devise a regularization
loss to align the distributions of the learned and the annotated label
spaces, providing a better parameter initialization for the model.

Feature-level ordinal learning is then developed to perform fine-
grained learning by calculating the difference between features from
different samples. Specifically, we conduct feature difference oper-
ation based on two samples and then let the model to predict the
label difference between them. In this way, the model is encouraged
to learn features that reflect the label information (magnitudes and
directions) in an explicit way. Moreover, this operation can generate
abundant ‘new’ samples for a more robust training. In addition, we
dynamically maintain a neutral embedding that enables ordinal
learning during the prediction. The neutral embedding seeks to
reduce the difficulty of prediction via inferring the polarities and
intensities (directions and magnitudes) of labels in an easier way,
which is achieved by estimating the difference between the target
multimodal representations and a neutral reference.

We first demonstrate the proposed MOAC in the context of MSA,
which is a regression task that predicts a sentiment value for each
video utterance, naturally aligning well with our ordinal learning.
Afterwards, we extend MOAC to classification tasks (including
MHD and MSD) to verify the generalizability of MOAC.

To sum up, the contributions of MOAC are listed as below:

• We elaborately devise an ordinal learning framework to
align with the nature of ordinal affective concepts. In this
way, we encourage the model to think like humans, dis-
cover the semantic meanings of affective concepts, and
understand the ordinal relationships between samples.

• We propose label-level ordinal learning that encourages the
model to learn to compare, forcing the samples with larger
labels to have higher predicted values than the samples with
smaller labels. Moreover, a regularization loss is introduced
to prevent the distributions of predictions from diverging
significantly from the distributions of the annotated labels.

• Feature-level ordinal learning is devised to compare the
features of two samples and generate the feature difference

for robust prediction. Moreover, a neutral embedding is
introduced to perform ordinal learning during prediction
and reduce the difficulty of prediction.

• MOAC outperforms state-of-the-art algorithms on multiple
MAC tasks across various datasets.

2 Related Work
2.1 Multimodal Affective Computing
A plethora of previous research for MAC focus on devising fu-
sion techniques to generate insightful multimodal representations
[40, 48, 63, 67]. For instance, methods based on tensor fusion [24,
28, 62] are widely-used as they are capable of learning multimodal
representations that possess substantial expressive capabilities. Fur-
thermore, various methods utilize Kullback–Leibler divergence,
canonical correlation analysis and information bottleneck to regu-
late the learning of unimodal distributions [9, 46, 49]. For example,
the Information-Theoretic Hierarchical Perception (ITHP) frame-
work [57] employs the information bottleneck principle to learn
representations. ITHP identifies a primarymodality and treats other
modalities as detectors within the information pathway, which are
utilized to distill the flow of information. In the wake of BERT’s
success [8], there has been a burgeoning trend towards fine-tuning
large pre-trained transformer models using multimodal datasets
[26, 44]. For example, Kim and Park [23] introduce multimodal
masked language modeling and alignment prediction to further
pre-train BERT, thereby effectively capturing intra- and inter-modal
dynamics. Additionally, Liu et al. [30] employ advanced ensemble
techniques to maximize the benefits of multiple pre-trained models
(such as GPT-2 [41]) for both language and visual modalities. Re-
cently, self-/weakly-supervised learning onmultimodal datasets has
garnered considerable interest [10, 32]. A prevalent approach is the
application of contrastive learning to extract representations from
multimodal data [6, 27, 39, 60]. For example, Hybrid Contrastive
Learning (HyCon) [37] introduces a methodology for intra- and
inter-modal contrastive learning, which promotes closer alignment
of unimodal representations within the same category while en-
couraging greater separation between those of different categories.

Despite obtaining satisfactory results, these methods fail to con-
sider the ordinal characteristics of affective concepts, merely calcu-
lating the loss between annotated labels and predictions for individ-
ual samples. In contrast, MOAC introduces feature- and label-level
ordinal losses that capitalize on ordinal relationships between sam-
ples to bolster the model’s comprehension of affective notions.

2.2 Ordinal Learning in Affective Computing
The annotation of affective concepts is inherently subjective and
prone to ambiguity [17, 45, 47]. Yannakakis et al. [61] posit that
ordinal labels provide a more appropriate way for representing
affective notions, as assigning relative values to these subjective
notions aligns more closely with their inherent characteristics than
assigning absolute values. They introduce the preference learning
paradigm to train affective models using ordinal data, and verify
the advantages of relative annotation in affective computing. To
address the challenge of sentiment annotation, Stoehr et al. [47]
design a Bayesian generative model that learns a composite senti-
ment dictionary, incorporating an ordinal scale of ordered discrete
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sentiment values within the learned dictionary. Contrary to these
methods, MOAC seeks to harness the ordinal information inher-
ently present in the annotations of affective concepts to enrich
the model’s knowledge of affective comprehension rather than
attempting to resolve the annotation challenge.

To effectively utilize the ordinal information inherently hidden
in emotional ranks, Han et al. [12] propose a deep learning frame-
work based on COnsistent RAnk Logits (CORAL) for ordinal Speech
Emotion Recognition (SER) tasks. This framework simplifies amulti-
class ordinal SER task into a series of binary SER sub-tasks, each
predicting whether an utterance’s emotion exceeds a specific rank.
Furthermore, Xie et al. [58] incorporate ordinal regression to es-
tablish an ordinal-aware sentiment space, utilizing a triplet loss to
ensure that the feature distance between an anchor and its positive
sample is less than that between the anchor and its negative sample.
In contrast, our label-level ordinal loss operates directly on the label
space rather than the feature space, aligning more closely with the
optimization objectives. Additionally, we introduce feature differ-
ence operation and neutral embedding to thoroughly capture the
ordinal relationships among samples and enable ordinal learning
during prediction, which can learn more discriminative features.
Finally, while Xie et al. [58] select a single positive and a single
negative sample per anchor, our MOAC selects multiple sample
pairs for training, providing richer information for optimization.

3 Algorithm
In this section, we describe our MOAC in detail, and the diagram
of MOAC is presented in Fig. 2. MOAC is evaluated on the MSA,
MHD, and MSD tasks. The input is an utterance [38], defined as a
segment of a video bounded by a sentence. The videos are collected
from the Internet or TV shows, showcasing the behavior inten-
tions, opinion tendencies, and affective states of speakers. Typically,
each utterance has three modalities, i.e., acoustic (𝑎), visual (𝑣), and
language (𝑙). For MHD and MSD, to better capture humor-related
information, following prior methods [13, 36], Human Centric Fea-
ture (HCF) is additionally extracted from language to serve as the
fourth modality (please see [13] for more details) and is denoted
as 𝑼𝒉 ∈ R𝑇×𝑑ℎ (𝑇 is the sequence length). In particular, for MHD
and MSD, each sample consists of a target punchline utterance
and its preceding context utterance. We concatenate the punchline
and context feature sequences in the time dimension to generate
unimodal inputs 𝑼𝒎 ∈ R𝑇×𝑑𝑚 (𝑚 ∈ M = {𝑎, 𝑣, 𝑙, ℎ}).

As the MSA task (which is a regression task that predicts contin-
uous sentiment scores) aligns well with ordinal learning, we first
take MSA as an example to illustrate the algorithm design, and then
extend MOAC to classification tasks (MHD and MSD).

3.1 Model Pipeline
3.1.1 Unimodal Learning Networks. Generally, unimodal net-
works are utilized to extract unimodal representations {𝒙𝑚 ∈
R𝑇×𝑑 |𝑚 ∈ {𝑎, 𝑣, 𝑙}} based on the input features {𝑼𝑚 ∈ R𝑇×𝑑𝑚 |𝑚 ∈
{𝑎, 𝑣, 𝑙}} (𝑚 ∈ {𝑎, 𝑣, 𝑙, ℎ} for MSD and MHD), where 𝑑 is the shared
feature dimensionality. Due to space limitations, the detail introduc-
tion of unimodal networks is placed in Section A.1 of the Appendix.

3.1.2 Fusion Network. Given that the primary focus of MOAC
is not the design of fusion strategies, we simply utilize a multi-layer

perception network to derive the multimodal representation:
𝒙 = Fusion(𝒙𝑙 ⊕ 𝒙𝑎 ⊕ 𝒙𝑣 ; 𝜃 𝑓 ) ∈ R𝑇×𝑑 (1)

𝒙 ←− 1
𝑇

𝑇∑︁
𝑡=1
(𝒙)𝑡 ∈ R1×𝑑 (2)

where 𝒙 ∈ R1×𝑑 is the multimodal representation. Notably, for
MHD and MSD, 𝒙ℎ is also used for fusion. Our experiments indi-
cate that, even when employing a straightforward fusion network,
MOAC achieves state-of-the-art performance, which further under-
scores the efficacy of the proposed MOAC. Due to space constraints,
the architecture of the fusion network is delineated in the Appendix.

3.1.3 Neutral Embedding. After obtaining the multimodal rep-
resentation 𝒙 , the regular procedure is to feed 𝒙 into the final
predictor to infer the prediction. Differently, in our framework, we
innovatively introduce the neutral embedding in the prediction
procedure, which enables the model to perform ordinal learning in
the feature space by estimating the difference between each target
multimodal representation and the neutral embedding. Based on
the feature difference (i.e., the bias) that is input to the predictor,
the model is able to infer the polarity and intensity of the sentiment
in an easier way, reducing the difficulty of prediction.

The proposed neutral embedding is made up of two terms: a
global embedding and a learnable bias embedding. The global em-
bedding 𝒙𝑔 ∈ R1×𝑑 is initialized randomly before training and is
subsequently updated using the following equation:

𝒙𝑔 ←− 𝜆 × 𝒙𝑔 + (1 − 𝜆) ×
1
|S𝑛 |

∑︁
𝑗∈S𝑛

𝒙 𝑗
𝑛𝑒𝑢 (3)

where 𝜆 is the hyperparameter, 𝒙 𝑗
𝑛𝑒𝑢 denotes the representation of

the 𝑗𝑡ℎ neutral sample in the neutral set S𝑛 , and |S𝑛 | is the number
of neutral samples in S𝑛 (S𝑛 is selected from a batch of data D).

However, the global embedding alone might not be a perfect
choice to serve as the embedding that reveals the general properties
and distributions of neutral samples. This is because in practice, we
can only select a small proportion of neutral samples for each up-
dating due to the memory limitation of hardware, which inevitably
introduces noise. Moreover, the embeddings of neutral samples
change across iterations, and it may be difficult to balance the con-
tribution of the previous embedding and the current one. Therefore,
we seek to learn a bias embedding 𝒙𝑏 ∈ R1×𝑑 that automatically
compensates for the possible noise and error introduced by the
global embedding. The final neutral embedding is thus defined as:

𝒙𝑛 =
1
2
(𝒙𝑔 + 𝒙𝑏 ) (4)

Nevertheless, the introduction of bias embedding raises another
question: How to train the bias embedding? We explore a simple
and intuitive solution: We feed the neutral embedding 𝒙𝑛 to the
predictor, and force the prediction to be zero. In this way, 𝒙𝑛 is
encouraged to preserve the neutral sentiment nature, which ulti-
mately modifies the bias embedding towards a suitable direction.
The neutral loss is thus defined as:

L𝑛𝑒𝑢 = | |Predictor(𝒙𝑛 ; 𝜃𝑝 ) | |2 (5)
where Predictor is the final predictor parameterized by 𝜃𝑝 . Notably,
here we stop the flow of gradients back to the neutral samples to
avoid the possible interference with the regular training.

3
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Figure 2: Diagram of MOAC. Here we use two samples consisting of three modalities to illustrate the pipeline.

3.1.4 Prediction Generation. Finally, given the multimodal rep-
resentation 𝒙 ∈ R1×𝑑 and neutral embedding 𝒙𝑛 ∈ R1×𝑑 , the
procedure for generating the prediction can be formulated as:

𝑦 = Predictor(𝒙 − 𝒙𝑛 ; 𝜃𝑝 ) ∈ R1 (6)
where 𝑦 denotes the prediction. The predictive loss is defined as:

L𝑝 =
1
|D|

∑︁
𝑗∈D
| |𝑦 𝑗 − 𝑦 𝑗 | |2 (7)

where 𝑦 𝑗 is the annotated label of sample 𝑗 , L𝑝 denotes the predic-
tive loss, D is a collection of data (typically a mini-batch sampled
from the whole dataset), and |D| is the number of samples in D.

3.2 Ordinal Learning
3.2.1 Label-level Ordinal Learning. Firstly, we conduct coarse-
grained label learning via the proposed label-level ordinal learning.
Leveraging the ordinal nature of affective notions to pre-train the
model with rich knowledge of affective comprehension, this stage
provides the model with a good initialization of parameters and a
better understanding of affective states. Prior methods generally
directly predict sentiment values to approximate the ground-truth
labels [50, 57]. However, it has been revealed that assigning relative
values instead of absolute values to affective notions is more suitable
due to their subjective and ordinal nature [47, 61]. Inspired by this
observation, we design the label-level ordinal loss to rank affective
states of different samples rather than predicting absolute values
for individual samples, encouraging the model to think like humans
and grasp the intrinsic semantics of affective concepts.

Our ordinal loss is inspired by Bradley-Terry (BT) model [3] that
aims to rank two samples and has been successfully applied in large
language model training [42]. Specifically, the model preference

distribution between two samples can be written as:

𝑝 (𝑦𝑖1 > 𝑦𝑖2 ) = 𝑒𝑥𝑝 (𝑛𝑒𝑡 ({𝑼 𝑖1
𝑚 };𝜃 ))

𝑒𝑥𝑝 (𝑛𝑒𝑡 ({𝑼 𝑖1
𝑚 };𝜃 )) + 𝑒𝑥𝑝 (𝑛𝑒𝑡 ({𝑼 𝑖2

𝑚 };𝜃 ))

=
𝑒𝑥𝑝 (𝑦𝑖1 )

𝑒𝑥𝑝 (𝑦𝑖1 ) + 𝑒𝑥𝑝 (𝑦𝑖2 )

(8)

where 𝑛𝑒𝑡 denotes the whole model parameterized by 𝜃 (consist-
ing of unimodal networks, fusion network and predictor), {𝑼 𝑖1

𝑚 }
denotes the set of input features of sample 𝑖1 for short (e.g., {𝑼 𝑖1

𝑚 } =
{𝑼 𝑖1

𝑎 , 𝑼
𝑖1
𝑣 , 𝑼

𝑖1
𝑙
} for MSA), 𝑦𝑖1 and 𝑦𝑖2 denote the predictive labels for

sample 𝑖1 and sample 𝑖2, respectively. Notably, the label of sample 𝑖1
should be larger than that of sample 𝑖2. Provided a collection of data
D, we can conduct random sampling to select abundant comparison
pairs for training the model via maximum likelihood. Simplifying
Eq. 8 and take the logarithm of both sides of the equation, we have
the following negative log-likelihood loss function:

𝑝 (𝑦𝑖1 > 𝑦𝑖2 ) = 1
1 + 𝑒𝑥𝑝 (𝑦𝑖2 − 𝑦𝑖1 )

= 𝜎 (𝑦𝑖1 − 𝑦𝑖2 ) (9)

L𝑙𝑜 = −E({𝑼 𝑖1
𝑚 },𝑦𝑖1 ) ∈D; ({𝑼 𝑖2

𝑚 },𝑦𝑖2 ) ∈D
[𝑙𝑜𝑔 𝜎 (𝑦𝑖1 − 𝑦𝑖2 )] (10)

where E denotes the expectation operation over all sampled pairs, 𝜎
is the Sigmoid function, and ({𝑼 𝑖1

𝑚 }, 𝑦𝑖1 ) ∈ D denotes that sample
𝑖1 comes from D (hereafter we use 𝑖1 ∈ D for short). In this way,
L𝑙𝑜 encourages the samples with more intense sentiment labels to
have larger predictive values than those with less intense labels.

However, L𝑙𝑜 may encourage the output distributions to deviate
from the distributions of the annotated labels, as it generally encour-
ages the predictive values of the ‘preferred’/‘unpreferred’ samples
to become larger/smaller without imposing any constraints. There-
fore, we add a regularization term to constrain the distributions

4
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of the predictive labels to be close to those of the annotated labels.
Specifically, we calculate the means and standard deviations of the
predictive and annotated labels, and then align them with a margin:

L𝑟𝑒 =𝑚𝑎𝑥 (0, | |𝑀𝑟 −𝑀𝑝 | |2 − 𝛾1) +𝑚𝑎𝑥 (0, | |𝐷𝑟 − 𝐷𝑝 | |2 − 𝛾1) (11)
where L𝑟𝑒 represents the regularization loss, 𝛾1 is the margin hy-
perparameter,𝑀𝑟 and𝑀𝑝 denote the averaged values for annotated
labels and predictive labels respectively, and 𝐷𝑟 and 𝐷𝑝 denote the
standard deviations for the annotated and predictive labels respec-
tively. The existence of 𝛾1 allows the presence of a certain degree of
distributional disparity, enabling the alignment to be easier (in the
coarse-grained label learning stage, we do not require a fine-grained
alignment between the learned and annotated labels). In this way,
we force the predictive scores to have distributions similar to those
of the annotated labels, providing a good initialization of the model
parameters for the second stage.

Rather than predicting an exact sentiment score, the proposed
ordinal loss forces the model to learn to compare, encouraging
that samples with higher annotated values are assigned greater
predictive values than those with lower annotated values. This
optimization strategy is more similar to the human behavior of
perceiving affective concepts and provides the model with richer
insights into affective comprehension. In contrast to employing a
triplet loss to perform ordinal learning in the feature space [58],
our label-level ordinal loss conducts ordinal learning directly in the
label space, aligning more closely with the optimization objective.

3.2.2 Feature-level Ordinal Learning. The previous stage con-
ducts coarse-grained label-level ordinal learning to help the model
understand the semanticmeanings and alignwith the ordinal nature
of sentiment, providing a good initialization for parameters. In this
stage, fine-grained ordinal learning is conducted to refine the model
predictions and provide ordinal information at the feature-level.

Specifically, similar to label-level ordinal learning, given a col-
lection of data D, we conduct random sampling to select abundant
comparison pairs S𝑐 = {(𝑖1, 𝑖2) |𝑖1 ∈ D, 𝑖2 ∈ D} for training. Given
a sample pair (𝑖1, 𝑖2) ∈ S𝑐 , we first compute the difference between
their multimodal representations and annotated labels:

𝑦
𝑖1,𝑖2
𝑑𝑖 𝑓

= 𝑦𝑖1 − 𝑦𝑖2 , 𝒙𝑖1,𝑖2
𝑑𝑖 𝑓

= 𝒙𝑖1 − 𝒙𝑖2 (12)

Notably, different from label-level ordinal learning, 𝑦𝑖1 is not neces-
sarily larger than𝑦𝑖2 , which helps to avoid the predictive bias where
the model tends to generate positive predictions. Then, we feed the
feature difference 𝒙𝑖1,𝑖2

𝑑𝑖 𝑓
into the predictor to infer the prediction

and compute the feature difference loss as:
𝑦
𝑖1,𝑖2
𝑑𝑖 𝑓

= Predictor(𝒙𝑖1,𝑖2
𝑑𝑖 𝑓

; 𝜃𝑝 ) (13)

L𝑓 𝑑 = E(𝑖1,𝑖2 ) ∈S𝑐 [𝑚𝑎𝑥 (0, | |𝑦
𝑖1,𝑖2
𝑑𝑖 𝑓
− 𝑦𝑖1,𝑖2

𝑑𝑖 𝑓
| |2 − 𝛾2)] (14)

Notably, here we do not require the model to exactly predict the
label difference𝑦𝑖1,𝑖2

𝑑𝑖 𝑓
based on the feature difference 𝒙𝑖1,𝑖2

𝑑𝑖 𝑓
, but allow

certain error via the introduction of the hyperparameter 𝛾2. This
is because it is a very difficult task to explicitly predict the label
difference between two different samples, which requires the model
to have a deep understanding of the semantic meanings of the af-
fective concepts. Moreover, the forced prediction of label difference
may introduce noise to the model, because 𝑦𝑖1,𝑖2

𝑑𝑖 𝑓
is a computed

pseudo label that might be inaccurate under some circumstances.
Since we use the same model pipeline to process the generated
pseudo samples and the real samples, the noise might inevitably
affect the learning of the network with respect to the real samples.

In addition to the feature difference operation, the incorporation
of the neutral embedding can be seen as another form of feature-
level ordinal learning (see Section 3.1.3). Therefore, the total loss of
the feature-level ordinal learning is the sum of L𝑓 𝑑 and L𝑛𝑒𝑢 .

Compared to simply using triplet loss to conduct ordinal learning
in the feature space via optimizing the feature distance between
two samples [58], our feature difference operation directly predicts
the label difference between two samples, using label information
to learn discriminative features that reflect the polarities and in-
tensities of the labels in an explicit way. In addition, the proposed
operation can generates abundant ‘new’ samples, helping to train
a more robust predictor. Moreover, we demonstrate that feature
difference operation is similar to the widely-used mix-up operation
[21, 54, 66]. Mix-up operation mixes the anchor with its augmented
version or other sample from the same class, generating mixed
features for training a robust model and thus addressing the lim-
ited training samples problem to some extent. Similar to mix-up
operation, our method conducts learning based on the features
of two samples to generate new features for training. Differently,
our method computes the feature difference between two different
samples, and the two samples are not necessarily from the same
category, which can generate more diverse and enriched features.
In Section 4.6, we demonstrate that feature difference operation
slightly outperforms mix-up operation in our framework.

3.3 Model Optimization
The optimization of MOAC is divided into two stages: (1) Label-level
ordinal learning stage: Coarse-grained label learning is performed
in this stage to pre-train the model with abundant knowledge of
affective comprehension and provides a good initialization for the
parameters; (2) Feature-level ordinal learning stage: Fine-grained
label learning is conducted in this stage via the main task loss (pre-
dictive loss, see Eq. 7) and the feature-level ordinal loss, equipping
the model with fine-grained affective comprehension information.

Specifically, in the first stage, we optimize the model with the
label-level ordinal loss and the regularization loss:

L = L𝑙𝑜 + 𝛼 × L𝑟𝑒 (15)

where 𝛼 is the weight of the regularization loss. After obtaining a
good initialization of model parameters, in the second stage, we
train the model with feature-level ordinal loss and main task loss:

L = L𝑝 + 𝛽 × (L𝑛𝑒𝑢 + L𝑓 𝑑 ) (16)

where 𝛽 is the hyperparameter for the weight of feature-level ordi-
nal loss. The auxiliary losses equip the model with extra knowledge
of affective state comprehension, helping MOAC understand and
interpret the semantic meanings of affective notions.

3.4 Extending to Classification Tasks
Our main task is MSA, which is a regression task that aligns well
with the function of ordinal learning. Nevertheless, we demonstrate
that MOAC can be extended to classification tasks. Due to space
limitations, we place the analysis in Section A.2 of the Appendix.
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4 Experiments
We conduct extensive experiments to evaluate MOAC using CMU-
MOSI [65], CMU-MOSEI [64], UR-FUNNY [14], and MUStARD [5]
datasets. Due to space limitations, the introduction of datasets, base-
lines, and experimental settings is placed in the Appendix. Addi-
tional experimental results (e.g., hyperparameter robustness
analysis, see Section A.8) are also shown in the Appendix.

4.1 Results on MSA
We evaluate the performance of MOAC against competitive base-
lines using two well-established datasets for MSA. The results in
Table 1 indicate that MOAC demonstrates superior results, con-
sistently outperforming baselines across most of the evaluation
metrics on both the CMU-MOSI and CMU-MOSEI datasets. Specifi-
cally, on CMU-MOSI, MOAC outperforms ITHP [57] that also uses
DeBERTa [16] as the language network by 0.9% in Acc7, 0.5% in
Acc2 and F1 score, and it outperforms UniMSE [19] that applies the
powerful T5 [43] as the language network by over 2% and 2.5% in
Acc2 and F1 score respectively. Furthermore, MOAC surpasses ex-
isting approaches in terms of MAE by a substantial margin. Notably,
the improvement of MOAC is remarkable given that the state-of-
the-art methods have already exceeded human performance [62].
On CMU-MOSEI, MOAC achieves improvements of 2.1%, 0.5%, and
0.5% over the state-of-the-art algorithm ITHP in terms of Acc7,
Acc2, and F1 score, respectively. Additionally, MOAC outperforms
UniMSE in terms of Acc2, F1 score, MAE, and Corr. Considering the
results across two datasets, MOAC demonstrates state-of-the-art
performance in MSA. In contrast to those methods that neglect
the ordinal characteristics of affective concepts, MOAC introduces
feature- and label-level ordinal learning to better align with the
intrinsic ordinal nature of subjective notions and enrich the model’s
understanding of affective nuances. Notably, despite delivering com-
mendable performance, MOAC has not yet achieved the highest
scores in Acc7. We hypothesize that this shortfall may be partly at-
tributed to the intentional introduction of the margin in the ordinal
learning. The margin is designed to reduce the noise introduced by
ordinal learning but permit certain levels of error in the regulariza-
tion and feature difference losses, which does not specifically tailor
a more fine-grained learning strategy for sentiment labels.

Furthermore, compared with TMSON [58] that also incorporates
ordinal learning, MOAC demonstrates a significant performance
advantage across both datasets, which underscores the effectiveness
of our ordinal learning strategy. In contrast to utilizing a triplet loss
[56] solely for ordinal learning within the feature space [58], our
ordinal losses are operated on both the label and feature spaces. The
proposed label-level ordinal loss is more closely aligned with the
optimization objective, facilitating the model’s direct acquisition of
label information. Moreover, unlike TMSON that implicitly learns
label information by optimizing the feature distance between a pair
of samples, our feature difference loss explicitly predicts the label
disparity between a pair of samples and leverages label information
for direct feature optimization, enhancing the discriminative power
of the learned features with respect to the labels.

These findings underscore the efficacy of our MOAC, highlight-
ing the significance of conducting ordinal learning that is attuned
to the intrinsic nature of affective concepts.

4.2 Results on MHD and MSD
To further evaluate the generalizability of MOAC with respect to
multimodal classification tasks, we carry out experiments on the
tasks of MHD and MSD using UR-FUNNY [14] and MUStARD
[5] datasets. As presented in Table 2 and Table 3, for the MHD
and MSD task, the proposed MOAC outperforms state-of-the-art
methods HKT [13], MCL [35] and MGCL [36]. As for the trainable
parameters, MOAC has fewer parameters than the baselines due
to the use of simple fusion network and predictor. Therefore, the
space complexity of the proposed MOAC is acceptable. Generally,
MOAC reaches state-of-the-art performance with lower complexity
in the MHD and MSD tasks, demonstrating the effectiveness and
the generalizability of MOAC to the multimodal classification tasks.

4.3 Ablation and Comparison Experiments
In this section, we conduct extensive ablation experiments to eval-
uate the effectiveness of each component in MOAC:

(1) The importance of Ordinal Learning: In the case of ‘W/O
Ordinal Learning’, we remove the ordinal learning such that our
MOAC becomes a regular multimodal model. As shown in Table 4,
the performance of the model drops by 5.5%, 3.8%, 3.8% in Acc7,
Acc2 and F1 score respectively, demonstrating the importance of
learning ordinal relationships between samples to uncover the
semantic meanings and inherent nature of affective concepts;

(2) Discussion on Label-level Ordinal Learning: In‘W/O
Label-level Ordinal Learning’, we remove the label-level ordinal
loss and the accompanied regularization loss. The results suggest
that the model’s performance declines by approximately 1.5% in
Acc7, Acc2 and F1 score, revealing that it is of great significance
to learn ordinal relationships between samples in the label space,
which helps understand the nature of affective concepts. Addition-
ally, solely removing the regularization loss leads to a decrease
in performance by 2.3%, 0.9%, 0.9% in Acc7, Acc2 and F1 score,
respectively (see ‘W/O Regularization Loss’), demonstrating the
effectiveness of regularization loss for regularizing the output dis-
tributions and providing a better initialization for the parameters;

(3) Discussion on Feature-level Ordinal Learning: In the
case of ‘W/O Feature-level Ordinal Learning’, we remove neutral
embedding, neutral loss, and feature difference operation. The per-
formance of MOAC exhibits a significant decline, and the decline
is greater than when label-level ordinal learning is removed. This
is reasonable because feature-level ordinal learning can reduce
the difficulty of prediction, learn more discriminative features that
reflect the magnitudes and directions of sentiment labels in an ex-
plicit way, and generate abundant ‘new’ features to enhance model
robustness. We also investigate the importance of different oper-
ations in feature-level ordinal learning. As we can infer from the
results of ‘W/O Feature Difference Operation’ and ‘W/O Neutral
Embedding’, these two techniques both contribute significantly
to the improvement of the model. We argue that this is because
the feature difference operation encourages the model to directly
learn features that reflect label information and generates abundant
features for a more robust training, and neutral embedding helps
the model infer the polarities and intensities of labels in an easier
way via estimating the difference between the target multimodal
representations and a neutral reference. Additionally, we estimate
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Table 1: The results on CMU-MOSI and CMU-MOSEI. Apart from TMSON, ConFEDE and UniMSE, the results of baselines are
derived from our experiments. The best results are highlighted in bold, and the runner-up results are indicated with underlines.

CMU-MOSI CMU-MOSEI
Acc7↑ Acc2↑ F1↑ MAE↓ Corr↑ Acc7↑ Acc2↑ F1↑ MAE↓ Corr↑

Graph-MFN [64] 34.4 80.2 80.1 0.939 0.656 51.9 84.0 83.8 0.569 0.725
MFM [51] 33.3 80.0 80.1 0.948 0.664 50.8 83.4 83.4 0.580 0.722
MMIM [11] 45.0 85.1 85.0 0.738 0.781 53.1 85.1 85.0 0.547 0.752
HyCon [37] 46.6 85.2 85.1 0.741 0.779 52.8 85.4 85.6 0.554 0.751
UniMSE† [19] 48.7 86.9 86.4 0.691 0.809 54.4 87.5 87.5 0.523 0.773
ConFEDE† [60] 42.3 85.5 85.5 0.742 0.782 54.9 85.8 85.8 0.522 0.780
TMSON† [58] 47.4 87.2 87.2 0.687 0.809 55.6 86.4 86.2 0.526 0.766
MGCL [36] 49.3 86.7 86.7 0.685 0.707 53.9 86.4 86.4 0.535 0.772
ITHP [57] 47.7 88.5 88.5 0.663 0.856 52.2 87.1 87.1 0.550 0.792
MOAC 48.6 89.0 89.0 0.605 0.857 54.3 87.6 87.6 0.512 0.793

Table 2: The comparison with baselines on UR-FUNNY. The
results of the baselines labeled by † are taken from [13], and
other results are obtained in our own experiments.

Model Accuracy Number of Parameters
MISA-ALBERT† [15] 69.82 -
MAG-ALBERT† [44] 72.43 -

HKT† [13] 77.36 -
HKT [13] 76.46 17,066,564
MCL [35] 77.67 13,762,973
MGCL [36] 78.06 14,062,342
MOAC 78.57 13,272,272

Table 3: The comparison with baselines on MUStARD.

Model Accuracy Number of Parameters
MISA-ALBERT† [15] 66.18 -
MAG-ALBERT† [44] 69.12 -

HKT† [13] 79.41 -
HKT [13] 76.47 17,101,372
MCL [35] 77.94 13,828,449
MGCL [36] 77.94 14,282,000
MOAC 80.88 13,454,832

the effectiveness of the margin 𝛾2 in feature difference loss, and the
results of ‘W/O Margin 𝛾2’ suggest that 𝛾2 slightly improves the
performance of the model, which can reduce the noise introduced
by the generated features of the feature difference operation.

(4) Further Discussion on Neutral Embedding: Moreover,
we estimate the roles of global embedding and learnable bias em-
bedding in the neutral embedding, respectively. As we can infer
from the results of ‘W/O Global Embedding’ and ‘W/O Bias Em-
bedding’, when the global/bias embedding is removed, the model
performance exhibits a slight decline, but it still obtains satisfactory
results, indicating the effectiveness of bias/global embedding. Fur-
thermore, the learnable bias embedding is more effective than the
global embedding, verifying our assumption that adding a learnable
embedding to the global embedding can reduce the noise and better
represent the general properties of the neutral samples.

4.4 Visualization of Multimodal Features
We provide the visualization for the distributions of multimodal
representations using the t-SNE [52] algorithm on the CMU-MOSI

Table 4: Ablation experiments on CMU-MOSI dataset.

Acc7 Acc2 F1 MAE Corr
W/O Ordinal Learning 43.1 85.2 85.2 0.690 0.817

W/O Label-level Ordinal Learning 47.0 87.5 87.5 0.639 0.843
W/O Regularization Loss 46.3 88.1 88.1 0.630 0.847

W/O Feature-level Ordinal Learning 46.9 87.0 87.1 0.639 0.848
W/O Feature Difference Operation 48.9 87.9 88.0 0.624 0.848

W/O Neutral Embedding 46.9 88.1 88.1 0.626 0.850
W/O Margin 𝛾2 48.3 88.7 88.7 0.607 0.860

W/O Global Embedding 48.8 88.7 88.7 0.606 0.862
W/O Bias Embedding 47.9 88.5 88.5 0.624 0.850

MOAC 48.6 89.0 89.0 0.605 0.857

(a) Without Ordinal Learning (b) With Ordinal Learning

Figure 3: T-SNE visualization of multimodal features.

testing set, and the results are illustrated in Figure 3.We can observe
that compared to the situation that the ordinal learning is removed,
when the ordinal learning is applied, the positive and negative data
points are more distinctly separated, with data points within the
positive/negative category being more tightly and centrally clus-
tered. Additionally, the neutral data points are more concentrated
in the middle between the positive and negative clusters. This in-
dicates that the ordinal learning can help the model discover the
relative sentiment magnitudes between different samples, possess
a deeper understanding of the nature of sentiment, and learn more
discriminative multimodal representations. Nevertheless, Figure 3
indicates that, although the neutral data points are situated between
the positive and negative groups, there remains a degree of overlap
and ambiguity with the positive and negative samples, which are
not clearly differentiated. This issue might stem from the limited
number of neutral utterances, hindering the model’s ability to effi-
ciently distinguish the neutral samples from the weakly positive
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(a) Label-level Ordinal Loss (b) Regularization Loss

(c) Feature Difference Loss (d) Neutral Loss

Figure 4: Learning curves of ordinal losses on CMU-MOSEI.

Table 5: Discussion of ordinal losses.

Acc7 (↑) Acc2 (↑) F1 (↑) MAE (↓) Corr (↑)
Reducing Sampled Pairs 46.9 88.4 88.4 0.629 0.849

Mix-up Operation 49.3 88.9 88.9 0.612 0.852
Ordinal Loss [58] 48.9 88.7 88.7 0.614 0.857

MOAC 48.6 89.0 89.0 0.605 0.857

and weakly negative samples. This observation has inspired our fu-
ture research to develop more effective representations for neutral
utterances under conditions of insufficient data.

4.5 Learning Curves of Ordinal Losses
In this section, we provide the learning curves of ordinal losses
on CMU-MOSEI dataset (note that here we average the results of
every ten iterations to make the losses smoother). Firstly, for first-
stage training, it can be seen from Fig. 4 (a) that the decline in the
label-level ordinal loss is substantial, and the loss continues to drop
sharply before the end of the first stage, indicating that the model
can learn to capture information about the relative magnitudes
of labels across different samples. For the regularization loss, at
the early-stage of the first-stage training, the value of the regular-
ization loss becomes zero, suggesting that it effectively aligns the
distributions of the predictive and annotated labels. To our surprise,
even though we do not conduct main task training in the first stage,
the model still reaches satisfactory performance merely using the
label-level ordinal learning (40.4% Acc7 and 86.0% Acc2 on CMU-
MOSEI, 39.0% Acc7 and 87.3% Acc2 on CMU-MOSI), which further
demonstrates the effectiveness of the proposed ordinal learning.
The results on Acc7 also reveal that the label-level ordinal learning
is coarse-grained, and that is why we need feature-level ordinal
learning and main task learning to refine the predictions.

For the feature difference loss, it can be seen that although the
loss has decreased, its rate of decline is not as significant as other
losses, indicating that the feature difference operation is extremely
challenging. As for the neutral loss, its value has already become
very small in the initial phase of the second-stage training, which
is reasonable because the global embedding has already to some
extent integrated information from neutral samples and we only
require the loss of one neutral embedding to become zero (i.e., the
task is relatively easy via training the bias embedding).

4.6 Further Discussion on Ordinal Losses
Here we replace our ordinal losses with other losses to further eval-
uate their performance. Firstly, we design a simple variant for the
feature difference loss and label-level ordinal loss, where the num-
ber of sampled pairs are the same as the batch size |D| (the default
setting is twice the batch size). As shown in the ‘Reducing Sampled
Pairs’ case in Table 5, the model’s performance drops by over 1.5%
in Acc7 and 0.5% in Acc2, and the performance on other metrics
also decreases. This is reasonable because sampling limited training
pairs is not sufficient for learning ordinal relationships between
samples and cannot provide abundant ordinal information for op-
timization. Our ordinal losses sample abundant pairs to provide
the model with richer knowledge about affective comprehension,
which is shown to be effective in contrastive learning [22, 37].

We demonstrate that our feature difference operation is similar
to mix-up operation [54, 66] in Section 3.2.2, and in this section we
empirically analyze the advantage of feature difference operation
over mix-up operation. Specifically, we replace feature difference
operation with mix-up operation that mixes the features of two
samples from the same category with equal weighting (the number
of sampled pairs is the same as ours), and the results of ‘Mix-up
Operation’ suggest that feature difference operation suppresses
mix-up operation on all the metrics except for the Acc7. Combining
the results on all the evaluation metrics, the feature difference
operation slightly outperforms mix-up operation. We speculate
that it is partly because our feature difference operation does not
require that the selected two samples come from the same category,
which can generate a more diverse and enriched set of features.

Furthermore, we replace the feature difference operation with
the ordinal loss proposed in TMSON [58], which conducts ordinal
learning in the feature space using a triplet loss [56]. The ordinal
loss in TMSON uses hard sampling strategy, i.e., for each anchor
𝑎, the selected two samples for comparison (denoted as 𝑟 and ℎ)
satisfy the following constraint: 0 < |𝑦𝑎 −𝑦ℎ | − |𝑦𝑎 −𝑦𝑟 | < 𝛾 where
𝛾 is the defined minimum value. The ordinal loss is formulated as:
L𝑜𝑟𝑑 = 1

𝑛

∑𝑛
𝑎=1𝑚𝑎𝑥 (0, 𝑑 (𝒙𝑎, 𝒙𝑟 ) +𝛾1 −𝑑 (𝒙𝑎, 𝒙ℎ)) where 𝑑 (∗, ∗) is

the distance function, 𝛾1 is the defined margin, and 𝑛 is the batch
size. As shown in Table 5, when the feature difference loss is re-
placed with ordinal loss, the performance of the model declines in
the majority of the evaluation metrics. We argue that this is because
instead of optimizing the feature distance between two samples
which learns the label information implicitly, the proposed feature
difference operation predicts the label difference between two sam-
ples and directly optimizes the features using the label information,
enabling the learned features to have higher discriminative power
with respect to the labels.

5 Conclusion
We incorporate ordinal learning intoMAC via the label- and feature-
level ordinal learning. The label-level ordinal learning encourages
the model to learn to compare in the label space. The feature-level
ordinal learning computes the difference of the features from two
samples to generate ‘new’ features. Particularly, we introduce neu-
tral embedding to conduct ordinal learning during prediction and
reduce the difficulty of prediction. Experiments indicate that MOAC
reaches state-of-the-art performance on multiple MAC tasks.
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A Appendix
A.1 Unimodal Learning Networks
In this section, we illustrate the structures of unimodal networks
and the procedures to obtain the unimodal representations for the
later fusion. Following the state-of-the-art models [13, 57], pre-
trained language models [16, 25] are used to extract high-level
language representations. Specifically, the procedures of the lan-
guage learning network are shown as below:

�̂�𝑙 = PLM(𝑼𝑙 ; 𝜃𝑙 ) ∈ R𝑇×𝑑𝑙

𝒙𝑙 =(�̂�𝑙𝑾𝑝𝑟𝑜 + 𝒃𝑝𝑟𝑜 ) ∈ R𝑇×𝑑
(17)

where PLM denotes the pre-trained language model, 𝑼𝑙 is the in-
put token sequence and 𝑇 is the sequence length.𝑾𝑝𝑟𝑜 ∈ R𝑑𝑙×𝑑

and 𝒃𝑝𝑟𝑜 ∈ R1×𝑑 are trainable parameters that map the output
dimensionality of language learning network to the shared feature
dimensionality 𝑑 . For the acoustic and visual learning networks
that are composed of transformer encoder layers [53], the pipelines
are presented as follows:

�̂�𝑚 = Conv 1D(𝑼𝑚 ; 𝐾𝑚) ∈ R𝑇×𝑑 , 𝑚 ∈ {𝑎, 𝑣}

𝒙𝑚 = Transformer(�̂�𝑚 ; 𝜃𝑚) ∈ R𝑇×𝑑
(18)

where Conv 1D represents the temporal convolution whose kernel
size 𝐾𝑚 is set to 3.

Please note that for MHD and MSD, the unimodal learning net-
work of the HCF modality also consists of transformer encoder
layers, which basically has the same structure as that of visual and
acoustic modalities. Specifically, for MHD and MSD, the procedures
of the transformer unimodal networks are illustrated as follows:

�̂�𝑚 = Transformer(𝑼𝑚 ; 𝜃𝑚) ∈ R𝑇×𝑑𝑚 , 𝑚 ∈ {𝑎, 𝑣, ℎ}

𝒙𝑚 = Conv 1D(�̂�𝑚 ; 𝐾𝑚) ∈ R𝑇×𝑑
(19)

The generated unimodal representation 𝒙𝑚 is used for multimodal
fusion.

A.2 Extending to Classification Tasks
The main downstream task focused on this paper is MSA, which
is a regression task that aligns well with the function of ordinal
learning. In this section, we demonstrate that MOAC can be easily
extended to multimodal classification tasks.

As any multi-class classification problem can be formulated as
multiple binary classification tasks, we take binary classification
problem as an example to illustrate the pipeline. For instance, for
the MHD task, we need to predict whether the speaker expresses
a humorous intention, where the model is required to output a
probability 𝜎 (𝑦) with 𝜎 being the Sigmoid function. The larger the
value of 𝜎 (𝑦), the higher the likelihood that the speaker expresses
a humorous intention. This aligns well with the nature of ordinal
learning, and thus it is suitable to apply ordinal learning to learn
humorous labels.

To be more specific, for the label-level ordinal learning, the se-
lected comparison pairs shall come from different classes, and the
loss function is still defined as:

L𝑙𝑜 = −E({𝑼 𝑖1
𝑚 },𝑦𝑖1 ) ∈D; ({𝑼 𝑖2

𝑚 },𝑦𝑖2 ) ∈D
[𝑙𝑜𝑔 𝜎 (𝑦𝑖1 − 𝑦𝑖2 )] (20)
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where ({𝑼 𝑖1
𝑚 }, 𝑦𝑖1 ) comes from the humorous class (1), and ({𝑼 𝑖2

𝑚 }, 𝑦𝑖2 )
comes from the non-humorous class (0). This is reasonable because
this optimization objective encourages 𝑦𝑖2 /𝑦𝑖1 to be smaller/larger
so that 𝜎 (𝑦𝑖2 )/𝜎 (𝑦𝑖1 ) can approximate 0/1, which aligns well with
the objective of binary classification tasks. As for the regularization
term, since the means and standard deviations of the predicted and
annotated labels are continuous values instead of discrete labels,
the original form of the regularization loss shown in Eq. 11 is still
applicable.

For feature-level ordinal learning, the neutral samples are the
samples in which the speaker does not express humorous intention.
Thus, the global embedding 𝒙𝑔 is updated using the non-humorous
samples. Naturally, the calculation of L𝑛𝑒𝑢 in Eq. 5 becomes:

L𝑛𝑒𝑢 = −𝑙𝑜𝑔(1 − 𝜎 (Predictor(𝒙𝑛 ; 𝜃𝑝 ))) (21)

As for the feature difference operation, different from the original
setting, in all the sampled pairs S𝑐 = {(𝑖1, 𝑖2) |𝑖1 ∈ D, 𝑖2 ∈ D}, the
annotated label of sample 𝑖1 should be larger than or equal to the
label of sample 𝑖2. If the annotated label of sample 𝑖1 is larger than
that of sample 𝑖2 which means that 𝑦𝑖1 = 1 and 𝑦𝑖2 = 0, the label
difference is equal to 1 (i.e., humorous). If the labels of sample 𝑖1
and sample 𝑖2 are the same, the label difference is equal to 0 (i.e.,
non-humorous). Therefore, the feature-level ordinal learning will
not introduce bias into the predictions of the model. Finally, the
feature difference loss is formulated as:

L𝑓 𝑑 = E(𝑖1,𝑖2 ) ∈S𝑐 [𝑚𝑎𝑥 (0, −𝑦
𝑖1,𝑖2
𝑑𝑖 𝑓

𝑙𝑜𝑔𝜎 (𝑦𝑖1,𝑖2
𝑑𝑖 𝑓
)−

(1 − 𝑦𝑖1,𝑖2
𝑑𝑖 𝑓
) log(1 − 𝜎 (𝑦𝑖1,𝑖2

𝑑𝑖 𝑓
)) − 𝛾2)]

(22)

A.3 Datasets
We use the following datasets to evaluate the performance of the
proposed MOAC:

(1) CMU-MOSI [65]: The CMU-MOSI dataset, widely utilized in
Multimodal Sentiment Analysis (MSA), comprises over 2,000 video
utterances collected from online websites. Each video utterance in
this dataset is scored for sentiment intensity on a Likert scale from
-3 to 3, where 3 represents the strongest positive sentiment and -3
represents the strongest negative sentiment.

(2) CMU-MOSEI [64]: CMU-MOSEI is a large scale multimodal
dataset for MSA. It consists of more than 22,000 video utterances
from over 1,000 YouTube speakers across 250 distinct topics. These
utterances are randomly selected from a diverse array of topics and
monologue videos. Each utterance is annotated from two perspec-
tives: emotions categorized into six distinct values, and sentiment
scores ranging from -3 to 3. We utilize the sentiment labels from
the CMU-MOSEI dataset for our MSA task, which have the same
sentiment scale as that of the CMU-MOSI dataset.

(3) UR-FUNNY [14]: The UR-FUNNY dataset is derived from
TED talk videos with 1,741 speakers for the Multimodal Humor De-
tection (MHD) task. Each target video utterance in the UR-FUNNY
dataset is called punchline, which encompasses language, acous-
tic, and visual modalities. The utterances preceding the punchline
are the context utterances, which are fed into the model with the
punchline for contextual analysis. The punchlines are identified
using the ‘laughter’ tag in the transcripts, which indicates when the
audience laughed during the talk. Negative samples are similarly
identified, where the target punchline utterances are not followed

by the ‘laughter’ tag. The UR-FUNNY dataset is divided into a train-
ing set with 7,614 instances, a validation set with 980 instances,
and a testing set with 994 instances. In line with state-of-the-art
methodologies [13, 35, 36], we employ version 2 of the UR-FUNNY
dataset for our experimental analysis.

(4)MUStARD [5]: The MUStARD dataset is a Multimodal Sar-
casm Detection (MSD) dataset sourced from popular television
series such as Friends, The Big Bang Theory, The Golden Girls, and
Sarcasmaholics. It comprises 690 video utterances that have been
manually labeled as either sarcastic or non-sarcastic. The dataset
includes the target punchline utterances along with the relevant
preceding dialogues to provide contextual information.

A.4 Evaluation Metrics
We assess the performance of the model on the MSA task using the
following evaluation metrics: (1) Acc7: the accuracy of classifying
sentiment scores into seven discrete classes; (2) Acc2: the binary ac-
curacy for differentiating between positive and negative sentiments;
(3) F1 score: a harmonic mean that balances precision and recall
for binary sentiment classification; (4) MAE: the mean absolute
error between the model’s predictions and the annotated senti-
ment labels; and (5) Corr: the correlation coefficient indicating the
strength and direction of the relationship between the predictions
of the model and the human annotations. For Acc7, the model’s
predictions are rounded to the nearest integer within the scale from
-3 to 3. When calculating Acc2 and F1 score, neutral utterances
are not considered. And the neutral utterances are included in the
calculations of MAE, Corr, and Acc7.

For MHD and MSD tasks, in alignment with prior methodologies
[13, 35, 36], we report the binary accuracy (i.e., humorous or non-
humorous, sarcastic or non-sarcastic) of the model.

A.5 Feature Extraction Details
Visual Modality: Facet 1 is utilized to extract a series of visual
features, including facial action units, facial landmarks, head pose,
and others. These visual features are captured from each utterance,
resulting in a temporal sequence that represents the facial expres-
sions over time. For MHD and MSD, to be consistent with previous
methods [13, 35], OpenFace 2 [1] is applied to extract facial action
unit features as well as rigid and non-rigid facial shape parameters.

Acoustic Modality: COVAREP [7] is employed for the extrac-
tion of a series of acoustic features. These features encompass 12
Mel-frequency cepstral coefficients, pitch tracking, speech polarity,
glottal closure instants, and spectral envelope, etc. Extracted from
the full audio clip of each utterance, these features form a sequence
that reflects the dynamic changes in vocal tone over the course of
the utterance.

Language Modality: For the MSA task, following the state-of-
the-art methods [57], DeBERTa [16] is employed to extract high-
level textual representations. For the MHD and MSD tasks, fol-
lowing the state-of-the-art methods [13, 35, 36], ALBERT [25] is
applied as the language learning network. For MHD and MSD, we
concatenate the punchline and context token sequences to generate
the final input: 𝑼𝒍 = 𝑪𝒍 ⊕ [𝑆𝐸𝑃] ⊕ 𝑷𝒍 , where the [𝑆𝐸𝑃] token is

1iMotions 2017. https://imotions.com/
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used to separate the context tokens 𝑪𝒍 from the punchline tokens
𝑷𝒍 [13].

For the CMU-MOSI dataset, the dimensionality of the language,
acoustic, and visual features are 768, 74, and 47, respectively. For
the CMU-MOSEI dataset, the dimensionality of the corresponding
unimodal features are 768, 74, and 35, respectively. For the UR-
FUNNY and MUStARD datasets, the dimensionality of features of
the language, acoustic, visual and HCF modalities are 768, 60, 36,
and 4 respectively. For the feature extraction of the HCF modality,
please refer to [13] for more details.

A.6 Experimental Details
We implement the proposed MOACmodel using the PyTorch frame-
work on an NVIDIA RTX2080Ti GPU with CUDA version 11.6 and
PyTorch version 1.13.1. The training of MOAC is facilitated by the
AdamW [31] optimizer. Please refer to Table 6 for detailed informa-
tion on the hyperparameter settings employed in our experiments.
We perform a comprehensive grid search with fifty random itera-
tions to identify the optimal hyperparameters. We search for the
the best batch size from {32, 40, 48, 50, 60, 64}, and we define the
search spaces for learning rate and shared feature dimensionality
𝑑 as {1e-6,2e-6, 3e-6, 4e-6, 5e-6, 1e-5, 2e-5} and {100, 150, 200, 256,
300,512}, respectively. We choose the hidden dimensionality 𝑑

′
from

{100, 128, 150, 200, 256}, and we choose the dropout rate from {0.3,
0.4, 0.5, 0.6, 0.7, 0.8}. We choose 𝛾1 and 𝛾2 from {0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. We define the search space for 𝛼 and 𝛽
as {1e-4, 0.001, 0.005, 0.01, 0.05, 0.1}. The other hyperparameters
are pre-defined. Notably, the number of sampled pairs for the label-
level ordinal loss and feature difference loss is set to twice the batch
size, which helps to improve the performance of the model.

The structures of the fusion network and the predictor are shown
in Fig. 5.

A.7 Baselines
We compare the proposed MOAC with the following competitive
baselines:

(1) Graph-MFN [64]: It introduces a multimodal graph neu-
ral network designed to investigate interactions at the unimodal,
bimodal, and trimodal levels;

(2)Multimodal Factorization Model (MFM) [51]: MFM fac-
torizes multimodal features into two sets of independent factors,
namely multimodal discriminative factors and modality-specific
generative factors, which can learn meaningful multimodal repre-
sentations and interpret factorized representations to understand
the interactions that influence multimodal learning;

(3)MultiModal InfoMax (MMIM) [11]: MMIM concurrently
optimizes the mutual information among diverse unimodal repre-
sentations and between multimodal representations and individual
unimodal representations, thereby enabling the acquisition of more
informative multimodal representations;

(4)Hybrid Contrastive Learning (HyCon) [37]: HyCon incor-
porates intra-modal and inter-modal contrastive learning strategies
to thoroughly investigate the interactions both within individual
samples and across different samples/categories;

(5) Unified MSA and ERC (UniMSE) [19]: UniMSE unifies the
tasks of multimodal sentiment analysis and multimodal emotion

Figure 5: The structures of the fusion network and the predic-
tor. 𝑑

′
represents the hidden dimensionality, and |M| denotes

the number ofmodalities in the taskwithM being themodal-
ity set.

recognition, casting them as generative tasks using the T5 [43]
model;

(6) Contrastive FEature DEcomposition (ConFEDE) [60]:
ConFEDE simultaneously performs contrastive representation learn-
ing and contrastive feature decomposition, thereby enriching the
multimodal representation;

(7) Trustworthy Multimodal Sentiment Ordinal Network
(TMSON) [58]: TMSON incorporates ordinal regression to establish
a sentiment space that is aware of ordinal relationships, which is
realized by a triplet loss;

(8) Information-Theoretic Hierarchical Perception (ITHP)
[57]: Based on information bottleneck, ITHP designates a primary
modality and treats the remainingmodalities as detectors within the
information pathway that serve to distill the flow of information;

(9) Multimodal Adaptation Gate ALBERT (MAG-ALBERT)
[44]: MAG-ALBERT introduces a multimodal adaptation gate that
enables large pre-trained transformer models to effectively process
multimodal data during the fine-tuning phase;

(10)Modality-Invariant and -SpecificRepresentation (MISA)
[15]: MISA projects modality-specific and -invariant unimodal fea-
tures into two distinct embedding subspaces for each individual
modality;

(11) Multimodal Global Contrastive Learning (MGCL) [36]:
MGCL conducts supervised contrastive learning based on multi-
modal representations and designs multiple operations to generate
positive and negative samples for each multimodal representation;

(12)Multimodal Correlation Learning (MCL) [35]: MCL pro-
poses supervised multimodal correlation learning task that is able
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Table 6: Hyperparameter Settings of MOAC. ‘Dropout Rate’ denotes the dropout rate of the dropout layer in the fusion network.
The ‘pre-training epochs’ denotes the number of epochs for the first-stage training, and the ‘training epochs’ is the total number
of epochs for the first and second stages.

CMU-MOSI CMU-MOSEI UR-FUNNY MUStARD
Batch Size 48 32 50 32

Learning Rate 1e-5 1e-5 4e-6 4e-6
Training Epochs 150 10 20 50

Pre-training Epochs 30 5 5 10
𝜆 for Global Embedding 0.95 0.95 0.95 0.95
Shared Dimensionality 𝑑 128 128 300 256
Hidden Dimensionality 𝑑

′
150 100 128 128

Dropout Rate 0.5 0.3 0.6 0.6
Margin 𝛾1 1 1 0.8 0.6
Margin 𝛾2 0.1 0.1 0.1 0.1

Regularization Loss Weight 𝛼 0.005 0.005 1e-4 1e-4
Feature-level Ordinal Loss Weight 𝛽 0.005 0.005 0.001 1e-4

to preserve the modality-specific information and learn more dis-
criminative embedding space;

(13) Humor Knowledge Enriched Transformer (HKT) [13]:
HKT is a promising method for MHD and MSD that incorporates
humor centric feature to serve as external knowledge to deal with
the ambiguity and sentiment presented in the language modality.

Figure 6: Model performance w.r.t the change of 𝛼 .

A.8 Hyperparameter Robustness Analysis
In this section, we assess the impact of the hyperparameter 𝛼 , which
denotes the weight of the regularization loss, on the CMU-MOSI
dataset. The model’s performance across various 𝛼 values is de-
picted in Fig. 6. As shown in Fig. 6, MOAC delivers satisfactory
performance when 𝛼 is configured to a moderate value. Conversely,
assigning a relatively small value to 𝛼 results in a marginal decline
in model performance. This is because when 𝛼 is not sufficiently
large, the contribution of the regularization loss is almost negli-
gible, and the distributions of the predictive labels might deviate
from the distributions of the annotated labels, which cannot pro-
vide a good parameter initialization for the model. Nevertheless,
compared to baselines, MOAC generally achieves satisfactory per-
formance in a wide range of hyperparameter settings for 𝛼 , which
to some extent suggests the robustness of MOAC. Notably, when 𝛼
is set to 0.009, the performance of the model exceeds the default
setting (i.e., 𝛼 = 0.005). It demonstrates that the performance of

(a) Label-level Ordinal Loss (b) Regularization Loss

(c) Feature Difference Loss (d) Neutral Loss

Figure 7: Learning curves of ordinal losses on CMU-MOSI.

Table 7: The testing results at the end of the first stage train-
ing on two datasets.

Dataset Acc7 Acc2 F1 MAE Corr
CMU-MOSEI 40.4 86.0 86.1 0.799 0.745
CMU-MOSI 39.0 87.3 87.3 0.746 0.806

the model can still be enhanced through further hyperparameter
tuning, indicating the potential of MOAC.

A.9 Learning Curves of Ordinal Losses on
CMU-MOSI

In this section, we additionally provide the learning curves of or-
dinal losses on CMU-MOSI dataset in Fig. 7. In fact, the learning
curves for the label-level ordinal loss, neutral loss, and regular-
ization loss on the CMU-MOSI dataset are similar to those on the
CMU-MOSEI dataset (see Section 4.5). While differently, the fea-
ture difference loss for the CMU-MOSI dataset approaches zero
at the end of the second-stage training. This is due to the larger
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number of training epochs in the second stage for CMU-MOSI, and
the relatively smaller size of the CMU-MOSI dataset compared to
CMU-MOSEI, which results in a higher degree of overfitting. This
overfitting concern is the main reason we have chosen to display
the learning curves on the CMU-MOSEI dataset in Section 4.5.

Moreover, we show the testing results at the end of the first stage
training on both datasets in Table 7 as supportive results for the
statement in Section 4.5. The results suggest that although we do

not conduct the main task training in the first stage, the model
still reaches satisfactory performance merely using the label-level
ordinal learning, which further demonstrates the effectiveness of
the proposed ordinal learning. Nevertheless, the relatively subop-
timal results on Acc7 reveal that the label-level ordinal learning
is coarse-grained, and that is why we need feature-level ordinal
learning and main task learning to refine the predictions.
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