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ABSTRACT

Machine learning (ML) models are susceptible to membership inference attacks
(MIAs), where adversaries attempt to determine whether a specific data point is
part of the model’s training data. Recent studies suggest that MIAs often exploit the
model’s overconfidence in predicting training samples, albeit using various proxy
indicators. To mitigate this vulnerability, we introduce Adaptive Logit Scaling
(ALS) loss, a simple yet effective modification to the standard Cross-Entropy
loss. ALS adaptively constrains the norm of the output logits for each sample
during training by decoupling and dynamically scaling overly large logits based
on their magnitudes. The proposed approach reduces the models’ overconfidence
and ensures that they produce less distinguishable output metrics between member
and non-member data. Extensive evaluations across four benchmark datasets
show that ALS consistently achieves strong membership privacy while maintaining
high model accuracy. Further comparisons with nine state-of-the-art defenses
against eight MIAs demonstrate that ALS effectively optimizes both sides of the
privacy-utility trade-off, offering an effective and practical defense against MIAs.

1 INTRODUCTION

Machine learning (ML) models have demonstrated remarkable success in a wide range of applications.
However, their widespread deployment raises significant privacy concerns, particularly in domains
involving sensitive data, such as healthcare (Erickson et al., 2017; Ran et al., 2023) and facial
recognition (Parkhi et al., 2015). One critical threat is membership inference attacks (MIAs) (Shokri
et al., 2017), where adversaries attempt to determine whether a specific data point was part of the
model’s training dataset.

A major enabler of MIAs is model overconfidence (Shokri et al., 2017; Salem et al., 2018; Chen &
Pattabiraman, 2024)—the tendency of deep learning models to assign excessively high confidence
scores to training samples compared to unseen data. This overconfidence behavior creates a clear
statistical distinction between training (member) and non-training (non-member) data, allowing
adversaries to exploit output statistics such as confidence scores (Song & Mittal, 2021; Yeom et al.,
2018), entropy (Shokri et al., 2017; Yeom et al., 2018), or loss values (Yeom et al., 2018) to infer
data membership. While numerous defense mechanisms have been proposed to mitigate membership
privacy risks (Nasr et al., 2018; Jia et al., 2019; Shejwalkar & Houmansadr, 2021; Tang et al., 2022;
Abadi et al., 2016; Song & Mittal, 2021; Chen et al., 2022), many come at the cost of reduced model
utility, require auxiliary data that may not always be accessible, or impose additional computational
overhead, limiting their practicality.

This paper proposes Adaptive Logit Scaling (ALS) loss, a novel loss function designed to mitigate
model overconfidence by adaptively constraining the output logit norms during training. Unlike
the standard Cross-Entropy loss, which allows logits to grow arbitrarily large, ALS decouples the
impact of the logit norm and adaptively regulates the output logit magnitude for each training sample
during optimization, thereby preventing the model from assigning overly confident predictions and
reducing the distinguishability between member and non-member samples while preserving high
model accuracy. Our contributions can be summarized as follows: (1) We introduce Adaptive
Logit Scaling (ALS) loss, a simple yet effective modification to Cross-Entropy loss that adaptively
constrains logit magnitudes during training to mitigate overconfidence, thereby reducing membership
inference risks. (2) Extensive experiments on four benchmark datasets show that models trained with
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ALS achieve state-of-the-art membership privacy protection while preserving high model accuracy.
(3) We further compare ALS against eight existing defense methods, demonstrating that it effectively
balances the trade-off between privacy and utility (i.e., achieving strong membership inference privacy
without significantly compromising the models’ prediction performance), outperforming the baselines
without requiring extra data and incurring additional computational overhead.

2 RELATED WORK

Membership Inference Attacks. MIAs (Shokri et al., 2017) seek to identify whether a specific data
sample x was included in the training dataset of a machine learning model. Given access to a target
model h, an adversary constructs an inference classifier A to predict membership A(x;h) ∈ {0, 1},
where A(x;h) = 1 if x is a training sample (member), and A(x;h) = 0 otherwise (non-member).
Existing MIAs exploit statistical differences in a model’s output behavior by leveraging various
output proxies, and they can be broadly categorized into score-based attacks and label-only attacks.

In score-based attacks, adversaries exploit the target model’s output, such as loss values (Yeom et al.,
2018), confidence scores (Song & Mittal, 2021; Yeom et al., 2018), entropy scores (Shokri et al.,
2017; Yeom et al., 2018), modified-entropy scores (Song & Mittal, 2021). These output values serve
as indicators for distinguishing between member and non-member samples, either through fixed
thresholds or learned classifiers (e.g., neural networks (NN)-based attack (Nasr et al., 2019)). The
Likelihood Ratio Attack (LiRA) (Carlini et al., 2022) represents the state-of-the-art score-based
attacks. LiRA trains N shadow models, half with the target samples and half without them. It then
approximates their output distributions using Gaussian distributions and applies a likelihood-ratio
test to infer membership.

In label-only attacks, the adversary has access only to the predicted class label. These attacks rely
on the observation that training members tend to be more robust to perturbations or transformations
than non-members. For example, the prediction-correctness attack (Yeom et al., 2018) labels any
misclassified data point as a non-member. The boundary attack (Choquette-Choo et al., 2021; Li
& Zhang, 2021) utilizes adversarial examples such as CW2 (Carlini & Wagner, 2017) to measure
the distance of samples to the target model’s decision boundary, inferring membership based on
a threshold τ . Augmentation attacks (Choquette-Choo et al., 2021) members’ resilience to data
augmentations, such as translations, and infer the membership of the query input x based on the
target model’s classification consistency across augmented versions.

Defenses Against MIAs. Multiple defenses have been developed to mitigate MIAs. They can be
grouped into several categories. Adversarial methods, such as Adversarial Regularization (Nasr
et al., 2018) and MemGuard (Jia et al., 2019) aim to reduce privacy risks by employing adversarial
training or perturbations to obscure membership signals in the model outputs. Knowledge distillation
approaches such as DMP (Shejwalkar & Houmansadr, 2021) and SELENA (Tang et al., 2022)
improve privacy by training teacher models on private datasets and transferring their knowledge to
student models, thus hiding private information in the teacher models. Differential privacy techniques,
such as DPSGD (Abadi et al., 2016), train models with a formal privacy guarantee by injecting noise
into gradients during optimization. Regularization-based techniques aim to reduce overfitting, a
primary enabler of MIAs (Truex et al., 2019). Methods like label smoothing(Guo et al., 2017) and
early stopping(Caruana et al., 2000; Song & Mittal, 2021) improve generalization and decrease the
model’s tendency to memorize training data.

Several novel loss functions have been proposed to directly target overfitting and overconfidence in
the context of MIA defense. For instance, RelaxLoss (Chen et al., 2022) applies gradient ascent to
samples prone to overfitting during training to discourage memorization. However, this approach
slows down model convergence and reduces model utility. HAMP (Chen & Pattabiraman, 2024) trains
models with high-entropy soft labels and incorporates entropy regularization into the loss function
to encourage output uncertainty. While effective in reducing privacy leakage, HAMP introduces
additional computational overhead at inference time. It requires an extra forward pass on random
noise and ranks its output relative to the original prediction to obtain the final result.

Broader Impact of Overconfidence. Beyond privacy leakage, overconfidence in model predictions
is closely linked to poor calibration (Guo et al., 2017), which undermines the reliability of predicted
probabilities. Poorly calibrated models are more vulnerable to adversarial examples, less effective at
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out-of-distribution (OOD) detection (Wei et al., 2022), and more prone to causing factual hallucina-
tions in large language models (Tian et al., 2023). Building on prior efforts in improving confidence
calibration (Guo et al., 2017; Müller et al., 2019; Wei et al., 2022), our approach focuses on reducing
overconfidence to improve membership privacy and maintain strong model utility without incurring
additional data or inference overhead.

3 METHODOLOGY

3.1 PROBLEM STATEMENT

Overfitting in machine learning models has been demonstrated as a primary factor of membership
privacy leakage (Salem et al., 2018; Shokri et al., 2017). MIAs exploit overfitting using various
strategies to infer whether a specific data point was used during training. (Chen & Pattabiraman,
2024) offers a unifying perspective, arguing that the root cause underlying MIAs is overconfidence,
where training samples are assigned disproportionately higher confidence scores than unseen data. A
theoretical explanation for why neural networks trained with the standard softmax Cross-Entropy
(CE) loss often produce overconfident outputs is provided in (Wei et al., 2022). The key insight is that
overconfidence stems from the large magnitude of the neural network’s output logits. This inflated
output scaling amplifies confidence scores to produce overconfidence in predictions, particularly for
training examples.

Let f denote the network output f(x; θ), where x represents the input and θ corresponds to the
model parameters. This output, also referred to as the logit vector f or pre-softmax output, can be
decomposed into two components:

f = ∥f∥ · f̂ , (1)
where ∥f∥ =

√
f2
1 + f2

2 + · · ·+ f2
k is the Euclidean norm (magnitude) of the logit vector ∥f∥, and

f̂ is the corresponding unit vector indicating its direction. The standard Cross-Entropy loss can then
be reformulated as

LCE(f(x; θ), y) = − log p(y|x) = − log
e∥f∥·f̂y∑k
i=1 e

∥f∥·f̂i
.

This expression reveals that the training loss depends on both the magnitude ∥f∥ and the direction f̂
of the logit vector. When the model correctly classifies an input y = argmaxi(fi), further increasing
∥f∥ results in an increase in p(y|x), the predicted probability confidence for the correct class, and
subsequently minimizes the loss. This process leads the model to amplify the logit magnitudes
for training examples, which results in highly confident predictions. As shown in Figure 1a, this
behavior causes models trained with Cross-Entropy loss to assign near-maximal confidence (close to
1.0) to training samples, making them easily distinguishable from non-members.

Building on the above analysis, Wei et al. (2022) proposed a normalization-based strategy called
LogitNorm to constrain the magnitude of the logit vector during training. Specifically, they enforce
a fixed L2 norm by rescaling the logits before applying the softmax, which leads to the following
modified loss:

L(f(x; θ), y) = − log
efy/∥f∥∑k
i=1 e

fi/∥f∥
, (2)

This formulation can be generalized by introducing a temperature parameter τ that controls the
scaling of logits (with τ = 1 in Equation 2 as a special case). Reducing the logit magnitude has been
shown to improve robustness to out-of-distribution (OOD) inputs by mitigating overconfidence.

However, in the context of privacy protection, this fixed-norm approach has a key limitation: it
applies the same scaling factor τ to all samples, neglecting the fact that certain training points are
more prone to memorization and overfitting than others. As a result, a one-size-fits-all normalization
strategy may not adequately mitigate privacy risks for the most vulnerable data points.

3.2 ADAPTIVE LOGIT SCALING

To address this limitation, we propose Adaptive Logit Scaling (ALS) loss, which introduces an
adaptive penalty that dynamically adjusts the scaling strength based on the magnitude of the logits.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Cross-Entropy (b) LogitNorm (c) ALS (ours)

(d) Cross-Entropy (e) LogitNorm (f) ALS (ours)

Figure 1: Output distribution of member and non-member data on the Purchase100 dataset. Figures
(a), (b), and (c) show the distributions of the maximum softmax confidence score for models trained
with Cross-Entropy loss, Logitnorm, and our proposed ALS loss, respectively. Figures (d), (e), and
(f) present the corresponding output entropy distributions for models trained with Cross-Entropy loss,
Logitnorm, and our proposed ALS loss, respectively.

The core intuition is that samples with larger logit norms are more likely to overfit. By adaptively
modulating the scaling, ALS suppresses overconfident predictions on memorized data without
compromising overall model utility. In addition, we incorporate an entropy regularization term that
encourages high-entropy outputs, preventing overconfidence. Formally, the objective function of
ALS is defined as:

LALS(f(x; θ), y) = − log
efy/(α∥f∥)∑k
i=1 e

fi/(α∥f∥)
− λH(σ(f/∥f∥)), (3)

where σ(·) is the softmax function, H(σ(f/∥f∥)) denotes the entropy of the output, and λ is a
hyperparameter that controls the entropy regularization. The temperature α is an adaptive function of
the logit norm, defined as α = 1 + log(1 + ∥f∥

s ), with s controlling the sensitivity of the scaling,
i.e., how strongly α responds to changes in ∥f∥. Smaller s values cause α to increase more rapidly,
whereas larger s dampen this effect. This adaptive design ensures that samples with larger logit norms
yield larger α, which in turn yields more uniform predicted probabilities and mitigates overconfidence.

We illustrate the effects of training models with ALS and compare them with those trained under
Cross-Entropy and LogitNorm losses in Figure 1. In contrast to models trained with Cross-Entropy
loss (Figure 1a) and LogitNorm (Figure 1b), the confidence scores of training members under ALS
(Figure 1c) are significantly reduced, bringing them closer to those of non-members. This result
demonstrates that ALS can effectively mitigate overconfidence. Similarly, Figure 1f shows that the
entropy distributions of predictions for members and non-members are more closely aligned under
ALS compared to those of Cross-Entropy loss (Figure 1d) and LogitNorm (Figure 1e). This result
indicates that ALS can effectively reduce the distinguishability between the member and non-member
data. Importantly, while both LogitNorm and ALS can drive entropy toward its theoretical maximum
(e.g., log(100) = 4.06 for Purchase100 with 100 classes), ALS achieves this without degrading
predictive utility, as we will demonstrate in Section 4.

By incorporating adaptive logit scaling into ALS, the magnitude of the output vector of each data is
strictly restricted to a value no greater than 1, as the minimum value of the scaling temperature τ is 1.
Therefore, optimization under ALS (Eq. 3) focuses on adjusting the direction of the logit vector f
instead of increasing its magnitude. As a result, the model tends to produce more conservative predic-
tions, particularly for inputs that are far away from the model’s decision boundary (i.e., overfitted
training samples). To formally characterize this behavior and exploit ALS against overconfidence,
we derive a theoretical lower bound for the loss function defined in Eq.(3).

4
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Proposition 3.1 (Lower Bound of Loss). For any input x and any positive number τ ∈ R+, the
per-sample loss defined in Eq. (2) has a lower bound: LALS ≥ log k−λ

(
1 + (k − 1)e−2

)
, where k is

the number of classes and λ is the hyperparameter of the entropy regularization.

The proof is detailed in Appendix A. This proposition demonstrates that there is a lower bound for
adaptive logit scaling. This lower bound is determined by the hyperparameter λ and the number of
classes k. For example, when k = 10 and λ = 0.1, the lower bound is approximately 0.5769.

Inference-time scaling. During inference, we additionally apply logit scaling to the model’s outputs
to further reduce the separability between member and non-member samples, making their output
distributions more indistinguishable. This operation involves only a single scaling computation and
thus introduces virtually no additional inference overhead.

4 EXPERIMENTS

4.1 SETUPS

Datasets. We consider four benchmark datasets: Purchase100 Shokri et al. (2017), Texas100 Shokri
et al. (2017), CIFAR10 and CIFAR100 Krizhevsky et al. (2009). Following prior work Shejwalkar &
Houmansadr (2021); Chen & Pattabiraman (2024), the training splits are as follows: 20,000 samples
for Purchase100, 15,000 for Texas100, and 25,000 each for CIFAR10 and CIFAR100. Additional
dataset details are provided in Appendix B.

Models. For Purchase100 and Texas100, we use a fully connected (FC) network. For CIFAR10 and
CIFAR100, we use DenseNet100 Huang et al. (2017).

Attacks. We evaluate ALS against eight MIAs. For NN-based attacks, we employ the black-box
NSH attack Nasr et al. (2019), which leverages model loss, logit, and ground-truth labels to train the
attack inference model. Additionally, we consider the loss-based attack Yeom et al. (2018), as well as
confidence-, entropy-, and modified-entropy-based attacks described in Song & Mittal (2021). For
Likelihood Ratio Attack (LiRA) Carlini et al. (2022), we train 128 shadow models, with 64 IN and
64 OUT models tailored to the defense. Following Chen & Pattabiraman (2024), we also implement
boundary- and augmentation-based attacks in Choquette-Choo et al. (2021). Specifically, we employ
the CW2 attack Carlini & Wagner (2017) to generate adversarial samples and determine the distance
threshold for distinguishing members from non-members. For augmentation-based attacks, we apply
translation-based augmentation.

Defense baselines. We compare ALS with nine MIA defenses: AdvReg Nasr et al. (2018), Mem-
Guard Jia et al. (2019), DMP Shejwalkar & Houmansadr (2021), SELENA Tang et al. (2022), Label
Smoothing (LS) Szegedy et al. (2016), DPSGD Abadi et al. (2016), HAMP Chen & Pattabiraman
(2024), RelaxLoss Chen et al. (2022), and LogitNorm (Wei et al., 2022). While LogitNorm was origi-
nally proposed for OOD detection, we also adapt it as a baseline for comparison. Unless otherwise
stated, all baseline defenses are implemented as described in Chen & Pattabiraman (2024), more
details can be found in Appendix C.

Evaluation Metrics. An effective defense against MIAs should protect both members and non-
members. Following established evaluation standards Carlini et al. (2022), we consider two metrics:
(1) attack True Positive Rate evaluated at 0.1% False Positive Rate (Attack TPR @ 0.1% FPR) to
measure the protection for members, and (2) attack True Negative Rate at 0.1% False Negative Rate
(Attack TNR @ 0.1% FNR) to measure the protection for non-members.

4.2 RESULTS

Models trained with ALS significantly reduce membership privacy leakage compared to
those trained with Cross-Entropy. The first two columns in Figure 2 present the highest at-
tack TPR@0.1% FPR and TNR@ 0.1% FNR across all four datasets. Compared to undefended
models, those trained with ALS consistently achieve significantly lower MIA attack TPR@0.1%
FPR and TNR@0.1% FNR. For example, the average highest attack TPR@ 0.1FPR% across the four
datasets for undefended models is 8.18%, whereas ALS reduces it to merely 0.36%, representing a
95.6% reduction. Similarly, ALS reduces the attack TNR@ 0.1% FNR by 97.03%, from 14.16% in
the undefended models to 0.42%. These results demonstrate the effectiveness of ALS in mitigating
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Figure 2: Privacy-utility trade-off. The first two columns present Defense|Attack with the highest
TPR @ 0.1% FPR and the highest TNR@0.1% FNR in eight attacks for four datasets, respectively.
Since we report the best-performing attack per defense, the selected attacks may differ. The third
column shows the average Attack TPR@ 0.1% FPR across all eight attacks, while the last column
presents the average Attack TNR@ 0.1% FNR. The x-axis is the prediction accuracy delta, which
represents the change in accuracy relative to undefended models. An ideal defense should minimize
accuracy loss while maintaining a low attack TPR and TNR, positioning toward the bottom right
region of the figure. Overall, ALS consistently demonstrates strong privacy protection for both
members and non-members while preserving high model accuracy, achieving a preferred privacy-
utility trade-off compared to other defenses.

overconfidence, significantly limiting the adversary’s ability to infer data membership in the target
model. Detailed breakdowns of Figure 2 are provided in Table 5 and Table 6 in the Appendix.

Importantly, ALS achieves strong membership privacy while maintaining high model accuracy.
Across all four datasets, ALS matches or exceeds the performance of the undefended model. As
shown in Table 1, the test accuracy drops by only 0.48% and 0.59% on CIFAR10 and CIFAR100,
respectively. On Purchase100 and Texas100, ALS even improves test accuracy by 0.25% and 4.47%.

With comparable model utility to the state-of-the-art defense methods that preserve model
utility, models trained with ALS consistently outperform them in membership privacy. We
next compare ALS with four state-of-the-art MIA defense baselines that preserve model utility with
minimal accuracy drops or even improve test accuracy: MemGuard, LS, SELENA, and HAMP, as
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Table 1: Test accuracy of each defense method across different datasets. ∆Acc. represents the
accuracy difference compared to the undefended model. ALS preserves model utility on par with the
undefended baseline, with minimal degradation and in some cases even improvement. Note that LS
and LogitNorm achieve slightly higher utility but incur higher privacy leakage, as shown in Figure 2.

Dataset Metrics Undefended MemGuard AdvReg DPSGD DMP LS SELENA HAMP RelaxLoss LogitNorm ALS (ours)

Train Acc. 99.36 99.36 93.97 61.06 49.57 99.54 85.19 91.12 97.96 99.45 97.06
Purchase100 Test Acc. 80.85 80.85 75.75 54.05 43.55 85.60 76.50 81.15 81.65 81.95 81.10

∆ Acc. 0.00 0.00 -5.10 -26.80 -37.30 +4.75 -4.35 +0.30 +0.80 +1.10 +0.25

Train Acc. 76.79 76.79 62.76 43.08 46.92 75.52 58.58 68.56 66.64 78.43 77.76
Texas100 Test Acc. 54.80 54.80 51.60 39.47 43.07 56.33 53.60 54.40 54.80 59.53 59.27

∆ Acc. 0.00 0.00 -3.20 -15.33 -11.73 +1.53 -1.20 -0.40 0.00 +4.73 +4.47

Train Acc. 98.72 98.72 86.73 44.24 91.08 97.63 86.86 95.88 82.72 98.58 98.19
CIFAR10 Test Acc. 86.72 86.72 82.16 44.12 85.56 86.16 84.52 86.28 79.32 86.36 86.24

∆ Acc. 0.00 0.00 -4.56 -42.60 -1.16 -0.56 -2.20 -0.44 -7.40 -0.36 -0.48

Train Acc. 86.21 86.21 55.78 9.46 53.37 88.80 62.15 68.44 45.47 94.12 89.08
CIFAR100 Test Acc. 59.56 59.56 44.36 9.48 47.52 63.24 57.64 58.92 40.88 58.86 58.97

∆Acc. 0.00 0.00 -15.20 -50.08 -12.04 +3.68 -1.92 -0.64 -18.68 -0.70 -0.59

- Average ∆ Acc. 0.00 0.00 -7.02 -33.70 -15.56 +2.35 -2.42 -0.30 -6.32 +1.95 +0.91

shown in Table 1 and Figure 2. Compared to MemGuard, ALS provides much stronger membership
privacy by reducing the average attack TPR@ 0.1% FPR (averaged from the highest attack TPR@
0.1% FPR across four datasets) by 14.1x (from 5.06% to 0.36%) and the average attack TNR@ 0.1%
FNR by 21.8x (from 9.15% to 0.42%).

Regarding LS, the test accuracy is improved by 4.75% on Purchase100, 1.53% on Texas100, and
3.68% on CIFAR100, but slightly drops by 0.56% on CIFAR10. Despite its general accuracy
improvements, the model trained with LS remains highly vulnerable to MIAs. The average attack
TPR@ 0.1% FPR on the LS-trained models is 4.29%, 11.9x higher than that by ALS. Similarly, the
average attack TNR@ 0.1% FNR on the LS-trained model is 8.4x higher than that of ALS.

SELENA experiences an accuracy drop of 4.35% on Purchase100, 1.2% on Texas100, 2.2% on
CIFAR10, and 1.92% on CIFAR100. Compared to it, the average attack TPR@ 0.1% FPR and the
average attack TNR@ 0.1% FNR of ALS are lower by 0.64% and 0.79%, respectively.

HAMP offers the strongest balance between privacy protection and model utility, with an average
attack TPR@ 0.1% FPR of 0.75% and TNR@ 0.1% FNR of 0.59% across four datasets. It also
improves test accuracy by 0.3% on Purchase100 while incurring minimal accuracy drops of 0.4%,
0.44%, and 0.64% on Texas100, CIFAR10, and CIFAR100, respectively. ALS performs on par with
HAMP in balancing the privacy-utility trade-off but is significantly more efficient. HAMP relies
on high-entropy soft label generation and requires dataset-specific tuning of the entropy threshold
to maintain accuracy. Furthermore, HAMP introduces additional computational overhead due to
its test-time defense mechanism, which involves generating random samples and performing an
additional inference step to determine the final output.

With comparable MIA privacy to the state-of-the-art defense methods that achieve the lowest
attack TPR and TNR, models trained with ALS consistently achieve better model utility. As
illustrated in Table 1 and Figure 2, DPSGD and DMP consistently achieve low attack TPR@ 0.1%
FPR and TNR@ 0.1% FNR across the four datasets. Specifically, DPSGD, trained with a privacy
budget of ϵ = 4, achieves the lowest attack TPR@ 0.1% FPR and TNR@ 0.1% FPR, with an average
attack TPR of 0.2% and an average TNR of 0.42%, which are lower than those of ALS by 0.16% and
the same as that of ALS, respectively. However, this strong privacy protection comes at the cost of
significant degradation of model utility, with accuracy drops of 26.8% on Purchase100, 15.33% on
Texas100, 42.6% on CIFAR10, and 50.08% on CIFAR100.

Similarly, DMP achieves an average attack TPR@ 0.1% FPR of 0.36% and an average TNR@
0.1% FNR of 0.33%. While it only experiences a slight accuracy drop of 1.16% on CIFAR10, it
suffers large accuracy reductions of 37.30% on Purchase100, 11.73% on Texas100, and 12.04% on
CIFAR100. In contrast, ALS achieves near-optimal privacy with barely any accuracy drop across all
four datasets, making it a more practical choice for balancing privacy and utility.

RelaxLoss achieves low attack TPRs @ 0.1% FPRs of 0.46%, 0.13%, and 0.11% on Texas100,
CIFAR10, and CIFAR100, which are 0.1% higher, 0.28%, and 0.24% lower than those of ALS. Its
attack TNRs@ 0.1% FNRs of 0.53%, 0.48%, and 2.74% on these datasets are 0.19%, 0.06%, and
2.31% higher than ALS’s. However, RelaxLoss degrades model utility, reducing accuracy by 7.4%
on CIFAR10 and 18.68% on CIFAR100—likely due to its repeated gradient ascent on overfitted
training data. While it maintains utility on Purchase100, with 0.8% improvement compared to the
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Undefended model, its privacy leakage is substantial, with attack TPR@ 0.1% FPR and TNR@ 0.1%
FNR values 11.9x and 7.8x higher than those of ALS.

AdvReg achieves a low attack TPR@ 0.1% FPR of 0.57% and an attack TNR@ 0.1% FNR
of 0.63% on CIFAR10, at the cost of a large accuracy drop of 4.56%. It also achieves
a low attack TPR@ 0.1% FPR of 0.57% and an attack TNR@ 0.1% FNR of 0.71% and
0.85%, respectively on CIFAR100 while incurring a more significant accuracy degradation

Figure 3: Evaluation across different
model architectures. While models
trained with different architectures ex-
hibit varied degrees of MIA risks, ALS
consistently reduces membership pri-
vacy leakage.

of -15.2%. Although its test accuracy only drops by 5.1%
and 3.2% on Purchase100 and Texas100, respectively, Ad-
vReg fails to provide sufficient privacy protection. Specif-
ically, AdvReg achieves an average attack TPR@ 0.1%
FPR of 2.56% and an average arrack TNR@ 0.1% FNR
of 3.07% on these two datasets, which are 3.8× and 4.6×
higher than those of ALS, respectively.

ALS effectively enhances membership privacy across
different architectures. We next evaluate ALS on dif-
ferent model architectures, including ResNet18 He et al.
(2016), MobileNet Howard (2017) and ShuffleNet Zhang
et al. (2018), and DenseNet. We compare models trained
with Cross-Entropy (Undefended) and ALS for each archi-
tecture under the same hyperparameter setting. Figure 3
presents the attack ROC of different models. The results
indicate that different models trained with Cross-entropy
loss exhibit varying levels of vulnerability to MIAs, with
attack TPR@ 0.1% FPR ranging from 2.03%˜23.41%,
yielding an average attack TPR@ 0.1% FPR of 9.30%. In
contrast, models trained with ALS loss are able to mitigate
MIAs consistently, achieving attack TPR@ 0.1% FPR ranging 0.41%˜1.57%, with an average attack
TPR@ 0.1% FPR of 0.89%. On average, ALS reduces the attack TPR by 90.43% (from 9.30% to
0.89%). These results demonstrate that ALS provides strong protection against membership privacy
leakage across different architectures.

5 DISCUSSION

Figure 4: Logit distributions pro-
duced by shadow models for a
specific CIFAR-10 sample.

On the effectiveness against LiRA. The results in Section 4
highlight ALS’s effectiveness against different MIAs, including the
state-of-the-art LiRA. Following the methodology of (Hayes et al.,
2025), we examine the logit distribution of a specific sample from
CIFAR-10 across the IN and OUT shadow models used in LiRA.
Member logits correspond to shadow models trained on the sample,
whereas non-member logits are obtained from shadow models that
are not exposed to it during training. As shown in Figure 4, the two
distributions exhibit substantial overlap, with only minor statistical
differences. This further confirms the effectiveness of ALS, as
ALS reduces the separability of member and non-member logit
distributions from the shadow models, thereby effectively lowering
the attack performance of LiRA.

Effect of sensitivity s. In Figure 5, we examine how the sensitivity
s in ALS affects both model utility and membership privacy on
Purchase100 (results for Texas100 are provided in Figure 6 in
Appendix D). Specifically, we train models using the same hyperparameters while varying s in the
range [0.1, 0.5, 1.0, 5.0, 10.0, 20.0, 30.0, 40.0]. The reported attack TPR and TNR correspond to the
attack that achieves the highest success rate in each setting.

As the scaling sensitivity parameter s increases, test accuracy improves, but member privacy leakage
also gets worse, reflected by higher attack TPR@ 0.1% FPR and TNR@ 0.1% FNR values. This
trade-off arises because smaller s values make the adaptive scaling more sensitive to the logit norm,
leading to a stronger penalty that suppresses overconfident outputs. While this enhances privacy,
it also makes optimization less effective. In the extreme case where s → ∞, the adaptive scaling

8
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Table 2: Performance of ALS with different
entropy regularization λ on Purchase100.

λ Test Acc. Attack TPR Attack TNR
@0.1%FPR @0.1%FNR

0.5 77.86 0.11 0.18
0.1 79.41 0.21 0.28

0.05 79.45 0.27 0.23
0.01 80.30 0.31 0.29

0.005 80.10 0.34 0.25
0.001 81.20 0.44 0.32
0.0005 81.20 0.48 0.51
0.0001 81.35 0.63 0.59 Figure 5: Model utility and privacy leakage vs.

different sensitivity parameter s on Purchase100.

factor α → 1, reducing the ALS formulation to Eq. 2, equivalent to the ALS (fixed) baseline in our
ablation study. These results highlight the importance of carefully tuning the sensitivity parameter s
to balance privacy protection and model performance.

Strength of entropy regularization λ. To study the impact of entropy regularization. We vary its
strength λ in the range [0.0001, 0.5]. Increasing λ encourages the model to produce higher-entropy
(i.e., less confident) predictions, which helps mitigate overfitting and reduces susceptibility to MIAs.
As shown in Table 2, stronger regularization with a larger λ improves privacy protection, but at the
cost of reduced test accuracy.

Table 3: Ablation study under different
settings on Purchase100.

Setting Attack TPR Attack TPR
@0.1%FPR @0.1%FPR

Undefended 14.37 13.19
ALS-vanilla 2.13 1.26

ALS+reg 1.58 0.92
ALS+scaling 0.86 0.52
ALS(fixed) 0.76 0.58
ALS(ours) 0.32 0.47

Ablation Studies on Key Components. As described in
Section 3.2, ALS consists of three key components designed
to enhance membership privacy: (1) entropy regularization,
(2) inference-time scaling, and (3) adaptive scaling α dur-
ing training. To understand the contribution of each com-
ponent, we conduct ablation studies on the Purchase100
dataset. Specifically, we compare four configurations: (1)
ALS-vanilla, which denotes ALS without entropy regulariza-
tion and inference-time scaling; (2) ALS+reg, which denotes
ALS with entropy regularization but without inference-time
scaling; (3) ALS+scaling, which denotes ALS with inference-time scaling but without entopy reg-
ularization; (4) ALS(fixed), which denotes ALS without adaptive scaling α but with both entropy
regularization and inference-time scaling and (5) ALS, which is our complete setup.

Table 3 reports the highest attack TPR@ 0.1%FPR and TNR@ 0.1%FNR across all attacks on
Purchase100. Compared to the undefended model, training with ALS-vanilla reduces the TPR@
0.1%FPR to 2.13% and the TNR@ 0.1%FNR to 1.26%, corresponding to reductions by 85.18%
and 90.45%, respectively. Introducing entropy regularization further enhances privacy by promoting
higher-entropy predictions, lowering the TPR@ 0.1%FPR to 1.58% and the TNR@0.1%FNR to
0.92%. In addition, inference-time scaling enhances privacy by flattening the output distribution,
reducing the confidence gap between member and non-member examples. Importantly, this inference-
time scaling does not affect the model’s predicted class, as it applies only an input-dependent scaling
factor to the logits. Finally, adaptive scaling during training provides additional privacy benefits over
the fixed-scaling variant. Our full ALS implementation achieves the strongest privacy protection
among all configurations by combining all three components effectively.

6 CONCLUSION

This paper introduced Adaptive Scaled Logits (ALS) loss, a simple yet effective modification to the
standard Cross-Entropy loss that mitigates overconfidence and enhances membership privacy by
constraining the norm of the output logits during training. ALS dynamically rescales logits based on
their norms, decoupling magnitude from direction to suppress overconfident predictions and reduce
the distinguishability between member and non-member data. Through comprehensive evaluations
on four benchmark datasets and comparisons with nine state-of-the-art MIA defenses against eight
MIAs, we demonstrated that ALS consistently achieves strong membership privacy protection while
maintaining or even improving model accuracy.
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ETHICS STATEMENT

This work contributes to advancing membership privacy in machine learning by proposing an effective
defense against membership inference attacks (MIAs) that balances privacy and utility. It offers
practical benefits for safeguarding sensitive data in domains like healthcare and finance, where
privacy breaches can be particularly harmful. However, the method does not eliminate all privacy
leakage, and malicious adversaries may still exploit residual signals. We hope this research will
inspire further work on privacy-preserving learning and promote the development of more robust
defenses in real-world applications.

REPRODUCIBILITY STATEMENT

We have provided detailed implementation descriptions within the paper to facilitate reproducibility.
Additionally, we commit to releasing the source code and associated resources upon acceptance of
this work.
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A PROOF OF PROPOSITION 3.1

Let f̃ = f/(α∥f∥), then we have ∥f̃∥ = 1/α.

That is,
∑k

i=1 f̃
2
i = ∥f̃∥

2
= 1/α2.

Hence,
−1/α ≤ f̃i ≤ 1/α, ∀ i ∈ 1, . . . , k.

Let σ(f̃) = ef̃y∑k
i=1 ef̃i

, since α = 1 + log(1 + ∥f∥
s ) ≥ 1, then we have

σ(f̃) ≤ e1/α

e1/α + (k − 1)e−1/α

=
1

1 + (k − 1)e−2/α

≤ 1

1 + (k − 1)e−2

Hence,

LALS = − log(σ(f̃))− λH(f̃)

≥ − log
1

1 + (k − 1)e−2
− λ log k

= log(1 + (k − 1)e−2)− log kλ

= log k−λ(1 + (k − 1)e−2)

Thus Proposition 3.1 is proved.

B DATASETS

Purchase100 Shokri et al. (2017) includes 197,324 customer shopping records, each with 600 binary
features indicating whether a specific item was purchased. The classification task involves predicting
a customer’s shopping habits across 100 distinct classes.

Texas100 Shokri et al. (2017) contains 67,330 hospital discharge records, each containing 6,170
binary features indicating whether the patient has a particular symptom or not. The objective is to
predict the treatment category across 100 classes.

CIFAR10 and CIFAR100 Krizhevsky et al. (2009) are image classification datasets, each containing
60,000 images (32×32×3) spans across 10 and 100 classes, respectively.
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Table 4: Training details for ALS.

Dataset s Epochs Learning rate Weight decay Regulization λ

Purchase100 5.0 40 5e-4 2e-4 0.005
Texas100 0.5 10 5e-4 0.0 0.5
CIFAR10 1.0 100 0.5 1e-4 0.001

CIFAR100 1.0 100 0.5 1e-4 0.001

C IMPLEMENTATION DETAILS

Training details of ALS. We summarize the sensitivity s, learning rate, training epochs, and weight
decay for Purchase100, Texas100, CIFAR10, and CIFAR100 in Table 4. All experiments are
conducted on 2 NVIDIA GeForce RTX 4090.

Baselines Implementation. For all baselines, we follow the hyperparameter settings from the original
paper wherever applicable, making only minimal adaptations to ensure consistency across evaluations.
Specifically, for AdvReg, HAMP, RelaxLoss, and SELENA, we followed the hyperparameters in their
original codebase for different datasets. For label smoothing, we follow (Kaya & Dumitras, 2021;
Chen & Pattabiraman, 2024) to train LS with different smoothing intensities and select the model
with the highest accuracy. Purchase100 is trained with a smoothing intensity of 0.03, Texas with 0.09,
and CIFAR10 and CIFAR100 with 0.01. For DMP, we generated 200k synthetic tabular data with CT-
GAN for both Purchase100 and Texas100 to train a reference model, and used DCGAN to generate
150k synthetic image data for CIFAR10 and CIFAR100 to train a reference model. For DPSGD, we
used the implementation of DP-SGD using Pytorch Opacus (Kaya & Dumitras, 2021), and trained
the models on all datasets with budget ϵ = 4 following (Tang et al., 2022). For Memguard, we follow
Chen & Pattabiraman, 2024 and use the provided models to generate adversarial perturbations during
inference.

D ADDITIONAL RESULTS

Table 5 and Table 6 report the detailed performance of each defense method against individual
attacks. The final column summarizes the average attack success rate across all attacks for each
defense.

ALS enhances training effectiveness and improves model utility. Table 7 presents the training and
test accuracy of ResNet18, MobileNet, and ShuffleNet on CIFAR-10 using both Cross-Entropy (CE)
loss and our proposed ALS loss. The results demonstrate that models trained with ALS consistently
achieve higher test accuracy compared to those trained on CE. This improvement can be attributed to
several factors. First, ALS introduces an implicit regularization by adaptively scaling the logits, which
encourages the model to learn more generalizable representations and smoother decision boundaries,
instead of relying on extreme activations for the classification. Second, in the case of ResNet18,
ALS achieves lower training accuracy but higher test accuracy, indicating a reduction in overfitting.
Conversely, for MobileNet and ShuffleNet, ALS improves both training and test accuracy, suggesting
that the adaptive norm scaling of logits enforced by ALS stabilizes gradient computations during
backpropagation, enabling more effective training.

Comparing with temperature scaling. Unlike ALS, which applies a data-dependent temperature
during training to normalize each sample’s logit norm, traditional temperature scaling uses a fixed
global temperature at inference time to improve calibration. To evaluate whether global temperature
scaling during training can help enhance privacy, we conduct experiments by tuning τ within [2, 10]
and selecting the value that minimizes attack TPR and TNR. Table 8 in the Appendix D presents the
results on all four datasets. We find that adding a global temperature scaling offers only marginal
privacy gains over the undefended model and fails to effectively reduce overconfidence, as the output
confidence scores for training data remain close to 1. In contrast, ALS dynamically adjusts the
temperature per sample by normalizing the logit magnitude to 1, focusing optimization on the logit
direction rather than its scale. This adaptive approach significantly reduces overconfidence and
provides stronger privacy protection.
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Table 5: Detailed attack TPR@0.1% FPR and TNR@0.1% FNR for each attack on Purchase100 and
Texas100. Bold indicates the highest attack values for each defense.

Dataset Defense Metric(%) NN
-based

Loss
-based

Confidence
-based

Entropy
-based

M-entropy
-based

Augmentation
-based

Boundary
-based LiRA Average

Pu
rc

ha
se

10
0

Undefended Attack TPR 14.37 0.09 0.09 0.08 0.08 N/A 0.00 1.86 2.37
Attack TNR 0.20 10.24 10.24 1.70 9.64 N/A 0.00 13.19 6.46

MemGuard Attack TPR 8.84 0.05 0.05 0.05 0.05 N/A 0.00 1.18 1.46
Attack TNR 0.10 7.23 7.23 0.16 7.32 N/A 0.00 11.19 4.75

AdvReg Attack TPR 2.93 0.14 0.14 0.13 0.13 N/A 0.00 1.39 0.69
Attack TNR 0.16 2.77 2.77 0.58 1.86 N/A 0.00 3.14 1.61

DPSGD Attack TPR 0.04 0.11 0.11 0.14 0.12 N/A 0.00 0.26 0.11
Attack TNR 0.06 0.03 0.03 0.11 0.03 N/A 0.00 0.26 0.07

DMP Attack TPR 0.10 0.11 0.11 0.11 0.11 N/A 0.00 0.15 0.10
Attack TNR 0.08 0.10 0.10 0.10 0.09 N/A 0.00 0.19 0.09

LS Attack TPR 3.22 0.08 0.08 0.08 0.08 N/A 0.00 5.83 1.34
Attack TNR 0.14 5.07 5.07 1.69 5.26 N/A 0.00 5.44 3.24

SELENA Attack TPR 0.70 0.09 0.09 0.09 0.08 N/A 0.00 0.77 0.26
Attack TNR 0.06 0.67 0.67 0.15 0.56 N/A 0.00 1.17 0.47

HAMP Attack TPR 0.39 0.09 0.09 0.11 0.09 N/A 0.00 0.40 0.17
Attack TNR 0.13 0.35 0.35 0.08 0.33 N/A 0.00 0.44 0.24

RelaxLoss Attack TPR 4.04 0.18 0.18 0.21 0.18 N/A 0.00 0.44 0.75
Attack TNR 0.02 3.66 3.66 1.30 3.90 N/A 0.00 0.19 1.82

LogitNorm Attack TPR 2.47 0.24 0.24 0.19 0.24 N/A 0.00 0.45 0.55
Attack TNR 0.41 0.47 0.49 0.22 0.49 N/A 0.00 0.47 0.36

ALS(ours) Attack TPR 0.32 0.09 0.09 0.04 0.09 N/A 0.00 0.34 0.14
Attack TNR 0.24 0.47 0.46 0.06 0.46 N/A 0.00 0.04 0.25

Te
xa

s1
00

Undefended Attack TPR 3.67 0.17 0.17 0.16 0.17 N/A 0.00 3.87 1.17
Attack TNR 0.68 2.03 2.03 0.40 1.87 N/A 0.00 13.13 2.88

MemGaurd Attack TPR 3.24 0.13 0.13 0.08 0.14 N/A 0.00 2.65 0.91
Attack TNR 0.56 1.93 1.93 0.23 1.88 N/A 0.00 9.64 2.31

AdvReg Attack TPR 0.07 0.16 0.16 0.17 0.13 N/A 0.00 2.19 0.41
Attack TNR 0.25 0.39 0.39 0.10 0.37 N/A 0.00 2.99 0.64

DPSGD Attack TPR 0.24 0.10 0.10 0.10 0.10 N/A 0.00 0.13 0.11
Attack TNR 0.12 0.19 0.19 0.07 0.14 N/A 0.00 0.29 0.14

DMP Attack TPR 0.24 0.05 0.05 0.04 0.09 N/A 0.00 0.16 0.09
Attack TNR 0.04 0.13 0.13 0.13 0.15 N/A 0.00 0.21 0.11

LS Attack TPR 1.11 0.15 0.15 0.16 0.15 N/A 0.00 5.61 1.05
Attack TNR 0.62 1.03 1.03 0.59 0.97 N/A 0.00 1.75 0.86

SELENA Attack TPR 0.31 0.08 0.08 0.08 0.07 N/A 0.00 0.53 0.16
Attack TNR 0.13 0.16 0.16 0.19 0.10 N/A 0.00 1.97 0.39

HAMP Attack TPR 0.31 0.12 0.12 0.07 0.12 N/A 0.00 1.20 0.28
Attack TNR 0.07 0.59 0.59 0.11 0.59 N/A 0.00 0.70 0.38

RelaxLoss Attack TPR 0.46 0.21 0.21 0.21 0.21 N/A 0.00 0.44 0.25
Attack TNR 0.13 0.46 0.46 0.15 0.45 N/A 0.00 0.53 0.31

LogitNorm Attack TPR 1.82 0.18 0.18 0.18 0.18 N/A 0.00 1.69 0.60
Attack TNR 0.59 0.41 0.41 0.27 0.41 N/A 0.00 1.04 0.45

ALS(ours) Attack TPR 0.33 0.21 0.00 0.00 0.00 N/A 0.00 0.10 0.09
Attack TNR 0.03 0.34 0.00 0.01 0.26 N/A 0.00 0.09 0.11
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Table 6: Detailed attack TPR@0.1% FPR and TNR@0.1% FNR for each attack on CIFAR10 and
CIFAR100. Bold indicates the highest attack values for each defense.

Dataset Defense Metric(%) NN
-based

Loss
-based

Confidence
-based

Entropy
-based

M-entropy
-based

Augmentation
-based

Boundary
-based LiRA Average

C
IF

A
R

10

Undefended Attack TPR 8.23 0.00 0.00 0.10 0.00 0.02 0.10 2.76 1.40
Attack TNR 0.05 6.24 5.99 0.40 6.00 3.63 0.00 10.15 4.06

MemGaurd Attack TPR 3.89 0.08 0.08 0.07 0.09 0.02 0.10 1.52 0.73
Attack TNR 0.13 2.96 2.96 0.20 3.35 3.63 0.00 6.57 2.48

AdvReg Attack TPR 0.57 0.09 0.09 0.14 0.14 0.05 0.13 0.18 0.17
Attack TNR 0.04 0.40 0.30 0.16 0.29 0.18 0.00 0.63 0.25

DPSGD Attack TPR 0.10 0.13 0.13 0.14 0.14 0.08 0.07 0.12 0.11
Attack TNR 0.07 0.12 0.12 0.10 0.13 0.03 0.00 0.40 0.12

DMP Attack TPR 0.73 0.06 0.00 0.10 0.00 0.10 0.10 0.12 0.15
Attack TNR 0.05 0.37 0.67 0.12 0.68 0.20 0.00 0.72 0.35

LS Attack TPR 1.22 0.00 0.00 0.07 0.00 0.23 0.08 1.68 0.41
Attack TNR 0.09 1.85 1.85 0.30 2.07 0.27 0.00 3.95 1.30

SELENA Attack TPR 0.18 0.00 0.00 0.11 0.00 0.13 0.05 0.98 0.18
Attack TNR 0.07 0.16 0.11 0.19 0.06 0.16 0.00 0.43 0.15

HAMP Attack TPR 0.39 0.00 0.11 0.00 0.00 0.08 0.12 0.92 0.20
Attack TNR 0.17 0.17 0.26 0.00 0.51 0.38 0.00 0.77 0.28

RelaxLoss Attack TPR 0.00 0.13 0.13 0.13 0.13 0.05 0.02 0.12 0.09
Attack TNR 0.09 0.18 0.18 0.09 0.18 0.00 0.00 0.48 0.15

LogitNorm Attack TPR 0.85 0.12 0.12 0.12 0.12 0.00 0.07 0.57 0.26
Attack TNR 0.32 0.47 0.47 0.18 0.47 0.05 0.00 0.85 0.35

ALS(ours) Attack TPR 0.41 0.05 0.00 0.08 0.00 0.00 0.00 0.09 0.08
Attack TNR 0.12 0.23 0.16 0.25 0.35 0.03 0.02 0.42 0.20

C
IF

A
R

10
0

Undefended Attack TPR 6.24 0.09 0.13 0.14 0.15 0.07 0.12 3.57 1.31
Attack TNR 0.46 2.80 2.56 0.24 2.52 1.05 0.10 20.16 3.74

MemGaurd Attack TPR 4.26 0.15 0.15 0.12 0.10 0.07 0.12 1.86 0.85
Attack TNR 0.14 2.28 2.28 0.20 2.37 1.05 0.10 9.21 2.20

AdvReg Attack TPR 0.71 0.00 0.00 0.12 0.00 0.08 0.12 0.13 0.15
Attack TNR 0.31 0.60 0.57 0.08 0.65 0.12 0.00 0.85 0.40

DPSGD Attack TPR 0.10 0.10 0.10 0.14 0.09 0.07 0.08 0.09 0.10
Attack TNR 0.12 0.08 0.08 0.06 0.08 0.05 0.00 0.74 0.15

DMP Attack TPR 0.30 0.11 0.20 0.20 0.21 0.21 0.09 0.21 0.19
Attack TNR 0.11 0.24 0.20 0.17 0.23 0.12 0.00 0.21 0.16

LS Attack TPR 1.56 0.07 0.08 0.08 0.08 0.30 0.09 4.03 0.79
Attack TNR 0.28 2.92 2.92 0.29 2.71 0.37 0.00 2.88 1.55

SELENA Attack TPR 0.15 0.06 0.06 0.07 0.06 0.19 0.08 1.72 0.30
Attack TNR 0.15 0.21 0.19 0.11 0.20 0.06 0.00 1.28 0.28

HAMP Attack TPR 0.22 0.16 0.16 0.00 0.17 0.09 0.10 0.46 0.17
Attack TNR 0.08 0.41 0.41 0.07 0.41 0.24 0.00 0.47 0.26

RelaxLoss Attack TPR 0.09 0.11 0.11 0.12 0.11 0.09 0.00 0.07 0.09
Attack TNR 0.14 0.26 0.26 0.06 0.28 0.06 0.02 2.74 0.48

LogitNorm Attack TPR 0.48 0.12 0.12 0.12 0.12 0.11 0.00 1.27 0.29
Attack TNR 0.19 0.42 0.42 0.18 0.42 0.09 0.07 0.83 0.33

ALS(ours) Attack TPR 0.35 0.10 0.00 0.00 0.00 0.10 0.06 0.10 0.12
Attack TNR 0.08 0.33 0.00 0.21 0.29 0.11 0.00 0.43 0.24
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Table 7: Train and Test accuracy (%) of different models on CIFAR10.

Model CE ALS

Train Acc. Test Acc. Train Acc. Test Acc.

ResNet 99.37 66.76 92.58 71.24
MobileNet 76.04 62.44 88.81 71.36
ShuffleNet 79.61 63.44 89.59 68.12

Table 8: Comparison with Temperature Scaling on Texas100, CIFAR10 and CIFAR100.

Datasets Method Attack TPR Attack TNR
@0.1%FPR @0.1%FNR

Purchase100
Undefended 14.37 13.19

Temperature Scaling 11.93 13.56
ALS(ours) 0.32 0.47

Texas100
Undefended 3.87 13.13

Temperature Scaling 1.16 3.13
ALS(ours) 0.33 0.34

CIFAR10
Undefended 8.23 10.15

Temperature Scaling 9.85 11.13
ALS(ours) 0.41 0.42

CIFAR100
Undefended 6.24 20.16

Temperature Scaling 7.11 17.20
ALS(ours) 0.35 0.43

Figure 6: Model utility and privacy leakage v.s. different temperature parameter τ on Texas100.
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