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Abstract
Achieving effective unified pretraining on large
time series corpora remains an open challenge in
developing time series foundation models. Ex-
isting methods, such as MOIRAI, introduce mul-
tiple projection layers for time series of differ-
ent frequencies to account for high data hetero-
geneity. We identify major drawbacks to this
human-imposed frequency-level model specializa-
tion. First, frequency is not a reliable indicator for
grouping pretraining data. Second, time series can
display varied distributions even within a short
window. Frequency-level specialization overlooks
the diversity at this granularity. To address these
issues, this paper introduces MOIRAI-MOE, ex-
cluding human-defined data groupings while dele-
gating the modeling of diverse time series patterns
to the sparse mixture of experts (MoE) within
Transformers. With this design, MOIRAI-MOE
eliminates reliance on heuristics and enables auto-
matic token-level specialization. Extensive evalu-
ations on 39 datasets demonstrate the superiority
of MOIRAI-MOE over state-of-the-art foundation
models. This study also conducts comprehensive
model analyses to explore the inner workings of
time series MoE foundation models.

1. Introduction
Time series forecasting is experiencing a major shift (Liang
et al., 2024). The traditional approach of developing sepa-
rate models for each dataset is being replaced by the con-
cept of universal forecasting (Woo et al., 2024), where a
pretrained foundation model can be applied across diverse
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downstream forecasting tasks in a zero-shot manner, regard-
less of variations in domain, frequency, dimensionality, con-
text, or prediction length. This new paradigm significantly
reduces the complexity of building numerous specialized
models, paving the way for forecasting-as-a-service.

However, unlike language and vision modalities which ben-
efit from standardized input formats, time series corpora
are highly heterogeneous, posing significant challenges dur-
ing model pretraining. Existing solutions such as UniTime
(Liu et al., 2024a) and TEMPO (Cao et al., 2024) lever-
age language prompts to discern the source of data, thereby
achieving dataset-level model specialization. MOIRAI (Woo
et al., 2024) goes a step further and proposes a more gran-
ular categorization based on a time series meta feature –
frequency. Specifically, they design multiple input/output
projection layers with each layer specialized to handle data
from a specific frequency, thereby enabling frequency-level
specialization. TimesFM (Das et al., 2024) is at this level as
well, grouping data via a frequency embedding mapping.

Given the heterogeneity of time series, we acknowledge
the value of model specialization; however, we argue that
human-imposed frequency-level specialization lacks gen-
eralizability and introduces several limitations. First, fre-
quency is not a reliable indicator for grouping pretraining
corpora. As shown in Figure 1, time series with different
frequencies can exhibit similar patterns, while those with
the same frequency may display diverse and unrelated pat-
terns. This human-imposed mismatch between frequency
and pattern undermines the efficacy of model specializa-
tion. Furthermore, real-world time series are inherently non-
stationary (Liu et al., 2022), displaying varied distributions
even within a short window. Frequency-level specialization
overlooks the diversity at this granularity, underscoring the
need for more fine-grained modeling approaches.

To tackle the aforementioned issues, this paper introduces
MOIRAI-MOE, an innovative solution for effective and
efficient time series pretraining, inspired by recent devel-
opments of Sparse Mixture of Experts (MoE) Transform-
ers (Lepikhin et al., 2021; Fedus et al., 2022; Dai et al.,
2024). The core idea of MOIRAI-MOE is to exclude human-
defined time series groupings while delegating the model-
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Figure 1. An illustration of the challenges arising from grouping time series by frequency and imposing frequency-level model specializa-
tion: the diversity of patterns within the same frequency group, the similarity of patterns across different frequencies, and the variability of
distributions within a single time series. The examples presented are real time series in the Monash benchmark (Godahewa et al., 2021).

ing of diverse time series patterns to the sparsely activated
experts in Transformer layers. With this design, specializa-
tion of MOIRAI-MOE is achieved in a data-driven manner
and operates at the time series token level. It also benefits
from the enhanced computational efficiency and scalability
brought by the MoE architecture. Moreover, this study in-
vestigates existing expert gating functions that generally use
a randomly initialized linear layer for expert assignments
(Shazeer et al., 2017; Jiang et al., 2024) and proposes a new
function that leverages cluster centroids derived from an
existing pretrained dense model to guide expert allocations.

We extensively evaluate MOIRAI-MOE using a total of 39
datasets in in-distribution and zero-shot forecasting scenar-
ios. The results confirm the superiority of MOIRAI-MOE
over state-of-the-art foundation models. Additionally, we
conduct comprehensive model analyses, as the first attempt,
to explore the inner workings of time series MoE foun-
dation models. It reveals that MOIRAI-MOE acquires the
capability to achieve frequency-invariant representations
and essentially performs progressive denoising throughout
the model. Our contributions are summarized as follows:

• We propose MOIRAI-MOE, a pioneering mixture-of-
experts time series foundation model, achieving token-
level model specialization in a data-driven manner. We
introduce a new expert gating function for accurate expert
assignments and improved performance.

• Extensive experiments on 39 datasets reveal that
MOIRAI-MOE delivers up to 17% performance improve-
ments over MOIRAI at the same level of model size, and
outperforms other time series foundation models with up
to 65× fewer activated parameters.

• We conduct thorough model analyses to deepen under-
standing of the inner workings of time series MoE foun-
dation models and summarize insights for future research.

2. Related Work
Module Specialization for Time Series Foundation Mod-
els A key challenge in pretraining time series foundation
models lies in accommodating high data diversity, under-
scoring the need for designing specialization modules. Ap-
proaches like UniTime (Liu et al., 2024a) and TEMPO (Cao
et al., 2024) utilize prompts to identify data sources, facil-
itating dataset-level specialization. MOIRAI (Woo et al.,
2024) and TimesFM (Das et al., 2024) refine this further
by grouping data based on a time series meta feature – fre-
quency. While Moment (Goswami et al., 2024) and UniTS
(Gao et al., 2024) employ different projection heads for var-
ious time series analysis tasks, including classification and
anomaly detection. Methods like Chronos (Ansari et al.,
2024), Lag-LLaMA (Rasul et al., 2023), and Timer (Liu
et al., 2024c) lack specialization modules, potentially in-
creasing learning complexity and requiring more parameters
to handle diverse inputs. In this work, we propose automatic
time series token-level specialization, where diverse tokens
are handled by different experts, while similar tokens share
parameter space, reducing learning complexity.

Mixture-of-Experts Time Series Models In vision and
language, sparse mixture of experts (MoE) has proven effec-
tive for scaling Transformer capacity while minimizing com-
putational overheads (Fedus et al., 2022; Dai et al., 2024;
Zhu et al., 2024). The application of Mixture of Experts
(MoE) in time series research remains limited, with only a
few studies exploring MoE concepts in dataset-specific train-
ing (Ismail et al., 2022; Ni et al., 2024). In these studies, the
experts are typically linear models, such as autoregressive
models and DLinear (Zeng et al., 2023), which are small-
scale models. In contrast, MOIRAI-MOE represents a time
series foundation model capable of scaling efficiently with-
out a significant increase in computational costs. A concur-
rent work, Time-MoE (Shi et al., 2024), also integrates MoE
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Figure 2. Comparison of MOIRAI (left) and MOIRAI-MOE (right).

into time series foundation models. However, it relies on
existing gating functions without proposing new alternatives
or investigating the internal mechanisms of MoE models.
Additionally, Time-MoE employs point-wise tokenization,
which may fail to capture the underlying semantics of time
series data (Zeng et al., 2023), limiting its performance.

3. Methodology
In this section, we present MOIRAI-MOE, a scalable time
series foundation model built upon MOIRAI (Woo et al.,
2024). Figure 2 presents a comparison. MOIRAI-MOE
significantly improves MOIRAI by removing the heuris-
tically defined input/output projection layers that handle
data of varying frequencies. Instead, MOIRAI-MOE lever-
ages sparse mixture of experts within Transformers to au-
tonomously capture the diverse patterns in time series data,
allowing for greater flexibility. In addition, MOIRAI-MOE
proposes a novel gating function that routes tokens based on
the knowledge of an existing pretrained dense model, and
adopts the next-token prediction objective to improve pre-
training efficiency by enabling parallel learning of various
context lengths in a single model update.

3.1. Time Series Token Construction

Patching techniques, first introduced in PatchTST (Nie et al.,
2023), have become a prevalent method in time series fore-
casting (Das et al., 2024; Liu et al., 2024a; Woo et al., 2024).
By aggregating adjacent time series data into patches, this
technique effectively captures local semantic information
and significantly reduces computational overhead when pro-
cessing long inputs. Given a time series with length S, we
segment it into non-overlapping patches of size P , resulting
in a sequence of patches x ∈ RN×P , where N = ⌈ S

P ⌉.

We then normalize the patches to mitigate distribution shift
issues (Liu et al., 2022; Wu et al., 2023). In a decoder-only
(autoregressive) model, where each patch predicts its suc-

ceeding patch, applying a causal normalizer to each patch
is the most effective way to achieve accurate normalization.
However, this approach generates N subsequences with dif-
ferent lengths, diminishing the parallel training that decoder-
only models typically offer. To address this, we introduce
the masking ratio r as a hyperparameter, which specifies the
portion of the entire sequence used exclusively for robust
normalizer calculation, without contributing to the predic-
tion loss. Finally, we forward the patches through a single
projection layer to generate time series tokens x ∈ RN×D,
where D is the dimension of Transformers. We pass on
the capability of learning diverse time series patterns to the
vast number of parameters in Transformers. This projection
layer is implemented as a residual multi-layer perceptron to
enhance representation capacity (Das et al., 2023).

3.2. Sparse Mixture-of-Experts Transformers

A decoder-only Transformer (Dubey et al., 2024) is con-
structed by stacking L layers of Transformer blocks. The
block at the l-th layer is represented as follows:

x̃l = CSA(LN(xl)) + xl (1)

xl+1 = FFN(LN(x̃l)) + x̃l (2)

where CSA, FFN, and LN denote a causal self-attention
module, a feed-forward network, and the layer normal-
ization, respectively. x̃l ∈ RN×D are the hidden states
of tokens after the attention module of the l-th layer and
xl = xl+1 ∈ RN×D are the input and output hidden states
of the l-th layer. Note that MOIRAI-MOE considers multi-
variate correlations by flattening all variates into a sequence.
During causal attention, each token attends to both its pre-
ceding tokens and those from other variates, enabling the
model to capture intra- and inter-variate dependencies.

Next, we establish the mixture of experts by replacing each
FFN with a MoE layer, which is composed of M expert
networks {E1, . . . , EM} and a gating function G. Only
a subset of experts is activated for each token, allowing
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experts to specialize in distinct patterns of time series data
and ensuring computational efficiency. The output of the
MoE layer is computed as:

M∑
i=1

G(x̃l)i · Ei(x̃
l) (3)

where Ei(x̃
l) is the output of the i-th expert network, and

G(x̃l)i is the i-th token-to-expert affinity score generated
by the gating function. Following (Lepikhin et al., 2021;
Zhu et al., 2024; Jiang et al., 2024), we set the number of
activated experts to K = 2.

3.2.1. GATING FUNCTION

The most common linear gating mechanism projects MoE
inputs x̃l by weights Wg ∈ RD×M , then selects the top-K
logits and applies the softmax function over them (Shazeer
et al., 2017; Jiang et al., 2024; Dai et al., 2024):

G(x̃l) = Softmax(TopK(x̃l ·Wg)) (4)

To mitigate the load balancing issue (Shazeer et al., 2017)
with this sparse gating, an auxiliary loss is typically applied
to encourage an even distribution of tokens across experts
(Lepikhin et al., 2021; Jiang et al., 2024; Dai et al., 2024).
Formally, the load balancing loss for a batch B containing
T tokens is defined as:

Lload =

M∑
i=1

DiPi, Di =
1

T

T∑
t=1

1{Token t selects Expert i},

(5)

Pi =
1

T

T∑
t=1

G(x̃l)i (6)

where 1 is the indicator function, Di denotes the fraction of
tokens routed to expert i, and Pi indicates the proportion
of the gating probability allocated to expert i. The loss
Lload is applied to each Transformer layer l. The loss is
then aggregated by computing the mean across all layers
and added to the prediction loss Lpred with a weight of 0.01
(Jiang et al., 2024; Dai et al., 2024).

While effective, these gating functions are learned entirely
from scratch, and poor initialization may negatively impact
their performance. Recent advances in developing MoE
leveraged pretrained dense models to introduce inductive
bias for enhancing performance (Komatsuzaki et al., 2022;
Qwen, 2024). Inspired by these successes, we propose
a novel gating mechanism using cluster centroids derived
from a dense model to guide expert allocations. The intu-
ition is that clusters of pretrained token embeddings more
closely reflect the real distribution of data, leading to more
effective expert specialization and improved performance.

Token Clusters as Gating Function Technically, we first
pretrain a MOIRAI model using single-patch input/output
projection layers to remove the human-imposed frequency
biases in MOIRAI. We then perform inference using our
pretraining data LOTSA (Woo et al., 2024). For a batch
B containing T tokens, we extract the attention outputs
x̃l ∈ RT×D at each layer and perform mini-batch k-means
clustering on them to continuously update cluster centroids
Cl ∈ RM×D at each layer, where the number of clusters is
set to match the total number of experts. During MoE pre-
training, for each layer, each token computes the Euclidean
distance to the cluster centroids, and these distances serve
as token-to-expert affinity scores for expert assignments:

G(x̃l) = Softmax(TopK(Euclidean(x̃l,Cl))) (7)

3.3. Pretraining Objective

Let xt−l+1:t = {xt−l+1, . . . ,xt} denote the context win-
dow of length l for a token at position t. In this study, to
facilitate both point and probabilistic forecasting, our goal is
formulated as forecasting the distribution of the next token
p(xt+1|ϕ) by predicting the mixture distribution parameters
ϕ̂ (Woo et al., 2024). These parameters are derived from the
output tokens of the Transformer, followed by a single out-
put projection layer. The following negative log-likelihood
is minimized during pretraining:

Lpred = − log p(xt+1| ϕ̂), ϕ̂ = fθ(xt−l+1:t) (8)

4. Experiments
4.1. MOIRAI-MOE Setup

To ensure a fair comparison with MOIRAI in terms of ac-
tivated parameters, we set the number of activated experts
to 2 for MOIRAI-MOE, resulting in 11M/86M activated
parameters per token for MOIRAI-MOES/MOIRAI-MOEB,
closely matching the dense model MOIRAIS/MOIRAIB that
contains 14M/91M activated parameters. The total num-
ber of experts is set to 32, yielding total parameter sizes of
117M for MOIRAI-MOES and 935M for MOIRAI-MOEB.
MOIRAI-MOEL is not presented due to the significant re-
quirements of computational resources. The specific con-
figurations are outlined in Table 1. See the effects of the
number of MoE layers in Appendix B.2.

Table 1. Model configurations of MOIRAI and MOIRAI-MOE.

Model Layers dmodel dff Activated Params Total Params

MOIRAIS 6 384 1,024 14M 14M
MOIRAIB 12 768 2,048 91M 91M
MOIRAIL 24 1,024 2,736 310M 310M
MOIRAI-MOES 6 384 512 11M 117M
MOIRAI-MOEB 12 768 1,024 86M 935M
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Figure 3. In-distribution evaluation using 29 datasets from the Monash benchmark (Godahewa et al., 2021). * indicates that the methods
includes the test datasets here in their pretraining corpora. The aggregated MAE is reported, with each dataset’s MAE normalized by
seasonal naive, followed by geometric mean. Dataset details, full results, and context lengths are in Appendix A.1 and A.4.

4.2. Main Results

In-distribution Forecasting We begin with an in-
distribution evaluation using a total of 29 datasets from the
Monash benchmark (Godahewa et al., 2021). Their train-
ing set are included in LOTSA (Woo et al., 2024), holding
out the test set which we now use for assessments. Figure
3 summarizes the results based on the aggregated mean
absolute error (MAE), in comparison with the baselines pre-
sented in the Monash benchmark and following foundation
models: LLMTime (Gruver et al., 2023), TimesFM (Das
et al., 2024), Chronos (Ansari et al., 2024), and MOIRAI
(Woo et al., 2024). Dataset details and full results are
provided in Appendix A.1. The evaluation results show
that MOIRAI-MOE beats all competitors. In particular,
MOIRAI-MOES drastically surpasses its dense counterpart
MOIRAIS by 17%, and outperforms the larger MOIRAIB and
MOIRAIL by 8% and 7%, respectively. MOIRAI-MOEB
delivers a further 3% improvement over MOIRAI-MOES.
Compared to Chronos, which MOIRAI could not surpass,
MOIRAI-MOE successfully bridges the gap and delivers
superior results with up to 65× fewer activated parameters.

Zero-shot Forecasting Next, we conduct an out-of-
distribution evaluation on 10 datasets not included in LOTSA
(see dataset details in Appendix A.2). To establish a compre-
hensive comparison, we report results for both probabilis-
tic and point forecasting using 6 metrics. The continuous
ranked probability score (CRPS) and mean absolute scaled
error (MASE) are shown in Table 2, with additional metrics
in Table 9 and 10. For baselines, we compare against foun-
dation models: TTM (Ekambaram et al., 2024), Timer (Liu
et al., 2024c), TimesFM, Chronos, MOIRAI, and Time-MoE
(Shi et al., 2024), as well as state-of-the-art full-shot mod-
els trained on individual datasets: TiDE (Das et al., 2023),
PatchTST (Nie et al., 2023), iTransformer (Liu et al., 2024b),
and MoLE-DLinear (Ni et al., 2024). Context lengths of all
methods are provided in Appendix A.4. Due to page limits,
partial baselines are presented in Table 2 and full results
are in Table 8. MOIRAI-MOEB achieves the best over-

all zero-shot performance, outperforming baselines that
included partial test data in their pretraining corpora.
When compared to all sizes of MOIRAI, MOIRAI-MOES de-
livers a 3%–14% improvement in CRPS and an 8%–16% im-
provement in MASE. These improvements are remarkable,
considering that MOIRAI-MOES has only 11M activated
parameters – 28× fewer than MOIRAIL.

Summary Our extensive evaluation validates the effec-
tiveness of MOIRAI-MOE’s design and showcases its strong
generalization abilities. It also highlights the superiority of
token-level specialization over frequency-based approaches
(TimesFM, MOIRAI) and models without specialization
modules (Chronos, TTM). Additionally, MOIRAI-MOE sig-
nificantly outperforms Time-MoE, underscoring the advan-
tages of cluster-based gating and patch-based tokenization.

4.3. Ablation Studies

Model Design In the main results, we simultaneously
enable the mixture of experts and switch the pretraining
objective from a masked filling approach to a next-token
prediction approach. To ensure a more rigorous comparison,
we conduct further experiments where only the learning ob-
jective is changed. Table 3 presents the Monash evaluation
results, with the first and last rows representing MOIRAIS
and MOIRAI-MOES, respectively. This outcome suggests
that altering the learning objective alone yields modest per-
formance improvements, while the major gains stem from
leveraging experts for automatic token-level specialization.

Pretraining Objective We adopt the next-token predic-
tion objective for its superior pretraining efficiency com-
pared to the masked filling. To illustrate this, we conduct
experiments with varying pretraining steps, as shown in
Figure 4 (left). The results show that the next-token pre-
diction approach consistently outperforms masked filling at
each evaluated step. Moreover, next-token prediction pre-
training with 50k steps achieves comparable performance
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Table 2. Zero-shot performance comparisons with * indicates the non-zero-shot datasets. The Avg column is computed by normalizing
each dataset’s MAE by seasonal naive, then applying the geometric mean. Two Avg values are shown: one that averages all, and another
(non-leak) excludes Electricity and Solar. Best results are in red. Second best results are in blue. Power: Turkey Power. Traffic: Istanbul
Traffic. Weather: Jena Weather. BizITObs: BizITObs-L2C. Dataset details, full results, and context lengths are in Appendix A.2 and A.4.

Method Metric Electricity Solar Power ETT1 ETT2 Traffic MDENSE Walmart Weather BizITObs Avg (all) Avg (non-leak)

Seasonal Naive CRPS 0.070 0.512 0.085 0.515 0.205 0.257 0.294 0.151 0.068 0.262 1.000 1.000
MASE 0.881 1.203 0.906 1.778 1.390 1.137 1.669 1.236 0.782 0.986 1.000 1.000

iTransformer CRPS 0.057 0.443 0.056 0.344 0.129 0.105 0.072 0.070 0.053 0.077 0.540 0.483
MASE 0.875 1.342 1.076 2.393 1.841 0.581 0.727 0.761 0.623 0.271 0.767 0.708

TTM CRPS 0.075 0.534* 0.059 0.417 0.122 0.210 0.150 0.192 0.055 0.102 0.758 0.697
MASE 0.802 1.255* 0.898 1.934 1.547 0.901 1.195 1.477 0.506 0.308 0.831 0.798

TimesFM CRPS 0.045* 0.456 0.037 0.280 0.113 0.131 0.070 0.067 0.042 0.080 0.488 0.439
MASE 0.655* 1.391 0.851 1.700 1.644 0.678 0.702 0.735 0.440 0.310 0.689 0.640

ChronosS
CRPS 0.043* 0.389* 0.038 0.360 0.097 0.124 0.087 0.079 0.089 0.087 0.543 0.513
MASE 0.629* 1.193* 0.717 1.799 1.431 0.622 0.834 0.849 0.606 0.301 0.694 0.661

ChronosB
CRPS 0.041* 0.341* 0.039 0.387 0.092 0.109 0.075 0.080 0.058 0.084 0.499 0.471
MASE 0.617* 1.002* 0.722 1.898 1.265 0.553 0.712 0.849 0.583 0.301 0.656 0.631

ChronosL
CRPS 0.041* 0.339* 0.038 0.404 0.091 0.117 0.075 0.073 0.062 0.084 0.500 0.473
MASE 0.615* 0.987* 0.702 1.959 1.270 0.597 0.724 0.788 0.601 0.310 0.660 0.638

MOIRAIS
CRPS 0.072 0.471 0.048 0.275 0.101 0.173 0.084 0.103 0.049 0.081 0.578 0.507
MASE 0.981 1.465 0.948 1.701 1.417 0.990 0.836 1.048 0.521 0.301 0.798 0.726

MOIRAIB
CRPS 0.055 0.419 0.040 0.301 0.095 0.116 0.104 0.093 0.041 0.078 0.520 0.467
MASE 0.792 1.292 0.888 1.736 1.314 0.644 1.101 0.964 0.487 0.291 0.736 0.685

MOIRAIL
CRPS 0.050 0.406 0.036 0.286 0.094 0.112 0.095 0.098 0.051 0.079 0.514 0.467
MASE 0.751 1.237 0.870 1.750 1.436 0.631 0.957 1.007 0.515 0.285 0.729 0.685

Time-MoEB
CRPS 0.051* 0.230* 0.044 0.392 0.125 0.152 0.099 0.100 0.070 0.112 0.583 0.586
MASE 0.587* 0.535* 0.800 1.823 1.672 0.672 0.846 0.833 0.558 0.343 0.662 0.695

Time-MoEL
CRPS 0.051* 0.294* 0.045 0.386 0.131 0.172 0.090 0.097 0.058 0.111 0.589 0.576
MASE 0.581* 0.689* 0.790 1.773 1.878 0.762 0.759 0.817 0.524 0.337 0.678 0.695

MOIRAI-MOES
CRPS 0.046 0.429 0.036 0.288 0.093 0.108 0.071 0.090 0.056 0.081 0.497 0.450
MASE 0.719 1.222 0.737 1.750 1.248 0.563 0.746 0.927 0.476 0.298 0.670 0.620

MOIRAI-MOEB
CRPS 0.041 0.382 0.034 0.296 0.091 0.100 0.071 0.088 0.057 0.079 0.478 0.439
MASE 0.638 1.161 0.725 1.748 1.247 0.510 0.721 0.918 0.509 0.290 0.651 0.611

to masked filling with 100k steps, highlighting the substan-
tial efficiency gains provided by the next-token prediction
objective. In Appendix B.1, we present further results il-
lustrating how MOIRAI-MOE’s downstream performance
evolves during pretraining, compared to MOIRAI.

Gating Function In Figure 4 (right), we vary the total
number of experts and examine the impact of gating func-
tions on performance. Across all gating functions, per-
formance consistently improves as the number of experts
increases until 32. Moreover, our proposed token clustering
method proves to be consistently superior to other gating
variants across all expert configurations. This indicates that
the clustering approach aligns closely with the distribution
of data representations that have been optimized in pretrain-
ing, leading to more effective expert specialization than
randomly initialized gating.

Table 3. Model variants performance on Monash.

Model Variant Aggregated MAE

Multi Projection w/ Masked Filling 0.78
Multi Projection w/ Next-Token Prediction 0.75
Single Projection & MoE w/ Next-Token Prediction 0.65

4.4. Model Analyses

In this section, we delve deeper into the learned to-
ken embeddings and expert assignment distribution of
MOIRAI-MOE to shed light on the inner workings of the
time series MoE foundation model.

Obs 1: MOIRAI-MOE produces token embeddings in
a data-driven way, effectively improving performance.
In Figure 5, we utilize the T-SNE visualization (Van der
Maaten & Hinton, 2008) to compare the token embeddings
generated from the input projection layers of MOIRAI and
MOIRAI-MOE. (1) In the first row, we examine the NN5
Daily and Traffic Hourly datasets, which have different
frequencies but exhibit similar underlying patterns (visual-
izations of these patterns are in Appendix D). The figure
illustrates that MOIRAI produces distinct embeddings due
to the use of separate frequency projection layers, while
MOIRAI-MOE successfully blends their representations to-
gether. Their inherent similarities are further demonstrated
by their comparable expert distributions in the last two
columns. (2) In the second row, we analyze another daily
frequency dataset, Covid Daily Deaths, which shows dis-
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Figure 4. Ablation studies of the pretraining objective and gating function using MOIRAI-MOES.
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Figure 5. The first two columns are the comparison of embeddings from MOIRAIS and MOIRAI-MOES. The last two columns are the
expert assignment distributions of MOIRAI-MOES in layer 1: the x-axis corresponds to the 32 experts in a layer, and the y-axis is the
proportion of tokens that choose experts.

tinct patterns compared to NN5 Daily. We observe that the
embeddings of these two datasets overlap to some extent
in MOIRAI but are effectively separated in MOIRAI-MOE.
Moreover, the Covid Daily dataset shows a different ex-
pert distribution than NN5 Daily due to different token
embeddings. The data-driven modeling paradigm of
MOIRAI-MOE ultimately leads to significant perfor-
mance boosts, reducing the NN5 Daily MAE from 5.37
to 4.04 (a 25% improvement), the Traffic Hourly MAE from
0.02 to 0.013 (a 35% improvement), and the Covid Daily
Deaths MAE from 124.32 to 119 (a 4% improvement).

Obs 2: Different frequency data exhibit different expert
selection distributions at shallow layers but similar distri-
butions at deep layers. We present the expert allocation
distributions on Monash grouped by frequency in Figure
6. In the shallow layers, expert selection is notably diverse
across frequencies. While by the final layer (layer 6), expert
allocation becomes nearly identical across all frequencies,
suggesting that the model has abstracted time series into
high-level representations largely independent of the fre-
quency. This evidence indicates that MOIRAI-MOE effec-
tively achieves frequency-invariant hidden representa-
tions, which are crucial for model generalization (Van Ness
et al., 2023). The shared parameter space in the last layer
also shows that it is sufficient for generating representations
needed to make diverse predictions. Additionally, we recog-

nize that some experts in MOIRAI-MOE are rarely selected
during inference on Monash. Pruning these underutilized
experts for inference efficiency is left for future work.

Obs 3: Shallow layers have more routing preferences
than deep layers. According to Figure 6, in the shallow
layers, the model relies on multiple experts to manage the
high level of short-term variability, such as cyclical, sea-
sonal, or abrupt changes. As tokens are aggregated in deeper
layers, the model shifts its focus to more generalizable tem-
poral dependencies, such as broader trends and long-term
patterns, that can be shared across different frequencies and
leads to more concentrated experts being selected. This
behavior contrasts with patterns observed in LLMs (Zhu
et al., 2024), where earlier layers typically concentrate on
a limited number of experts to capture common linguistic
features, while deeper layers target more task-specific char-
acteristics. This divergence may stem from the dynamic
and noisier nature of time series tokens, which are gen-
erated from small time windows, unlike language tokens
derived from a fixed vocabulary. Our findings suggest
that denoising processes occur progressively through-
out the model. This observation aligns with conclusions
from GPT4TS (Zhou et al., 2023), which found that as the
layer depth increases, token vectors are projected into the
low-dimensional top eigenvector space of input patterns.
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Figure 6. Visualization of the distribution of expert allocation for MOIRAI-MOES layers 2, 4, and 6 (the last layer) using the Monash
benchmark grouped by time series frequency.

Table 4. Inference cost evaluation. The values in brackets represent the parameter sizes of the foundation models. For MoE models, the
two values indicate the number of activated parameters and the total number of parameters. The spent time is in seconds.

Model ChronosS ChronosB ChronosL MOIRAIS MOIRAIB MOIRAIL MOIRAI-MOES MOIRAI-MOEB
(46M) (200M) (710M) (14M) (91M) (310M) (11M/117M) (86M/935M)

Spent Time (s) 551 1,177 2,780 264 358 537 273 370

4.5. Efficiency Analyses

In this section, we aim to validate whether the inference
speeds of MOIRAI and MOIRAI-MOE are comparable, as
we have configured them with similar activated parame-
ters. Additionally, due to the difference in the inference
algorithms (the mask filling in MOIRAI predicts all tokens
simultaneously, while the next-token prediction approach
in MOIRAI-MOE generates predictions autoregressively),
we evaluate the inference cost on a subset of the Monash
benchmark where the predicted token is one (correspond-
ing to 16 time steps) to eliminate this discrepancy. To also
compare to the foundation model Chronos, we align with
the setting in Chronos by setting the context length to 512
and the number of sampling samples to 20.

We present the summarized results in Table 4 and conclude
that MOIRAI-MOES and MOIRAI-MOEB exhibit similar
inference times to MOIRAIS and MOIRAIB, respectively.
These results highlight that MOIRAI-MOE not only main-

tains the same level of efficiency as MOIRAI but also de-
livers substantial performance improvements. Additionally,
when comparing MOIRAI-MOE to Chronos, which also em-
ploys autoregressive inference, we find that MOIRAI-MOE
is significantly faster. This speed advantage stems from the
fact that MOIRAI-MOE generates predictions using patches
of size 16, while Chronos uses a patch size of 1, which
greatly affects its inference efficiency.

5. Conclusion
In this work, we introduce a pioneering time series MoE
foundation model MOIRAI-MOE that utilizes sparse experts
to model diverse time series patterns in a data-driven manner.
Empirical experiments demonstrate that MOIRAI-MOE not
only achieves significant performance improvements over
all sizes of its predecessor MOIRAI, but also outperforms
other competitive foundation models with much fewer acti-
vated parameters. Moreover, comprehensive model analyses
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have been conducted to gain a deeper understanding of time
series MoE foundation models.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Experimental Details
A.1. In-distribution Forecasting Datasets and Full Performance Results

Following MOIRAI (Woo et al., 2024), we perform evaluations on 29 datasets from the Monash benchmark (Godahewa et al.,
2021), including M1 Monthly, M3 Monthly, M3 Other, M4 Monthly, M4 Weekly, M4 Daily, M4 Hourly, Tourism Quarterly,
Tourism Monthly, CIF 2016, Australian Electricity Demand, Bitcoin, Pedestrian Counts, Vehicle Trips, KDD Cup 2018,
Australia Weather, NN5 Daily, NN5 Weekly, Carparts, FRED-MD, Traffic Hourly, Traffic Weekly, Rideshare, Hospital,
COVID Deaths, Temperature Rain, Sunspot, Saugeen River Flow, and US Births. The statistics of data are provided in Table
5 and full results of time series foundation models are shown in Table 6.

Table 5. Summary of datasets used in the in-distribution forecasting evaluations.

Dataset Domain Frequency Number of Series Prediction Length

M1 Monthly Econ/Fin M 617 18
M3 Monthly Econ/Fin M 1,428 18
M3 Other Econ/Fin M 174 8
M4 Monthly Econ/Fin M 48,000 18
M4 Weekly Econ/Fin W 359 13
M4 Daily Econ/Fin D 4,227 14
M4 Hourly Econ/Fin H 414 48
Tourism Quarterly Econ/Fin Q 427 8
Tourism Monthly Econ/Fin M 366 24
CIF 2016 Econ/Fin M 72 12
Aus. Elec. Demand Energy 30T 5 336
Bitcoin Econ/Fin D 18 30
Pedestrain Counts Transport H 66 24
Vehicle Trips Transport D 329 30
KDD Cup 2018 Energy H 270 168
Australia Weather Nature D 3,010 30
NN5 Daily Econ/Fin D 111 56
NN5 Weekly Econ/Fin W 111 8
Carparts Sales M 2,674 12
FRED-MD Econ/Fin M 107 12
Traffic Hourly Transport H 862 168
Traffic Weekly Transport W 862 8
Rideshare Transport H 2,304 168
Hospital Healthcare M 767 12
COVID Deaths Healthcare D 266 30
Temperature Rain Nature D 32,072 30
Sunspot Nature D 1 30
Saugeen River Flow Nature D 1 30
US Births Healthcare D 1 30

A.2. Zero-shot Forecasting Datasets and Full Performance Results

Dataset Details We conduct zero-shot evaluations on the datasets listed in Table 7, which cover five domains and span
frequencies ranging from minute-level to weekly. We use a non-overlapping rolling window approach, where the stride
equals the prediction length. The test set consists of the last h ∗ r time steps, where h is the forecast horizon and r is the
number of rolling evaluation windows. The validation set is defined as the last forecast horizon before the test set, while the
training set includes all preceding data.

Dataset Selection Justification The benchmarks set by previous studies – specifically the datasets ETTh1 (H), ETTh2
(H), ETTm1 (15T), ETTm2 (15T), Electricity (H), Weather (10T), Traffic (H), and Solar (10T) – exhibit a strong bias toward
the electricity data and the frequencies of hourly and minutely. Additionally, ETTh1 and ETTm1, as well as ETTh2 and
ETTm2, are essentially derived from the same underlying data. Furthermore, some of these datasets were already part of our
pretraining corpus, raising potential data leakage concerns.

11



Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts

Table 6. Full MAE results of time series foundation models on the Monash Benchmark. Other baseline results are in (Woo et al., 2024).
Dataset Seasonal Naive LLMTime TimesFM MOIRAISmall MOIRAIBase MOIRAILarge ChronosSmall ChronosBase ChronosLarge MOIRAI-MOESmall MOIRAI-MOEBase

M1 Monthly 2,011.96 2,562.84 1,673.60 2,082.26 2,068.63 1,983.18 1,797.78 1,637.68 1,627.11 1,992.49 1,811.94
M3 Monthly 788.95 877.97 653.57 713.41 658.17 664.03 644.38 622.27 619.79 646.07 617.31
M3 Other 375.13 300.30 207.23 263.54 198.62 202.41 196.59 191.80 205.93 185.89 179.92
M4 Monthly 700.24 728.27 580.20 597.60 592.09 584.36 592.85 598.46 584.78 569.25 544.08
M4 Weekly 347.99 518.44 285.89 339.76 328.08 301.52 264.56 252.26 248.89 302.65 278.37
M4 Daily 180.83 266.52 172.98 189.10 192.66 189.78 169.91 177.49 168.41 172.45 163.40
M4 Hourly 353.86 576.06 196.20 268.04 209.87 197.79 214.18 230.70 201.14 241.58 217.35
Tourism Quarterly 11,405.45 16,918.86 10,568.92 18,352.44 17,196.86 15,820.02 7,823.27 8,835.52 8,521.70 9,508.07 7,374.27
Tourism Monthly 1,980.21 5,608.61 2,422.01 3,569.85 2,862.06 2,688.55 2,465.10 2,358.67 2,140.73 2,523.66 2,268.31
CIF 2016 743,512.31 599,313.84 819,922.44 655,888.58 539,222.03 695,156.92 649,110.99 604,088.54 728,981.15 453,631.21 568,283.48
Aus. Elec. Demand 455.96 760.81 525.73 266.57 201.39 177.68 267.18 236.27 330.04 215.28 227.92
Bitcoin 7.78E+17 1.74E+18 7.78E+17 1.76E+18 1.62E+18 1.87E+18 2.34E+18 2.27E+18 1.88E+18 1.55E+18 1.90E+18
Pedestrian Counts 65.60 97.77 45.03 54.88 54.08 41.66 29.77 27.34 26.95 41.35 32.37
Vehicle Trips 32.48 31.48 21.93 24.46 23.17 21.85 19.38 19.25 19.19 21.62 21.65
KDD Cup 2018 47.09 42.72 40.86 39.81 38.66 39.09 38.60 42.36 38.83 40.21 40.86
Australia Weather 2.36 2.17 2.07 1.96 1.80 1.75 1.96 1.84 1.85 1.76 1.75
NN5 Daily 8.26 7.10 3.85 5.37 4.26 3.77 3.83 3.67 3.53 4.04 3.49
NN5 Weekly 16.71 15.76 15.09 15.07 16.42 15.30 15.03 15.12 15.09 15.74 15.29
Carparts 0.67 0.44 0.50 0.53 0.47 0.49 0.52 0.54 0.53 0.45 0.44
FRED-MD 5,385.53 2,804.64 2,237.63 2,568.48 2,679.29 2,792.55 938.46 1,036.67 863.99 1,651.76 2,273.61
Traffic Hourly 0.013 0.030 0.009 0.020 0.020 0.010 0.013 0.012 0.010 0.013 0.014
Traffic Weekly 1.19 1.15 1.06 1.17 1.14 1.13 1.14 1.12 1.12 1.13 1.14
Rideshare 1.60 6.28 1.36 1.35 1.39 1.29 1.27 1.33 1.30 1.26 1.26
Hospital 20.01 25.68 18.54 23.00 19.40 19.44 19.74 19.75 19.88 20.17 19.60
COVID Deaths 353.71 653.31 623.47 124.32 126.11 117.11 207.47 118.26 190.01 119.00 102.92
Temperature Rain 9.39 6.37 5.27 5.30 5.08 5.27 5.35 5.17 5.19 5.33 5.36
Sunspot 3.93 5.07 1.07 0.11 0.08 0.13 0.20 2.45 3.45 0.10 0.08
Saugeen River Flow 21.50 34.84 25.16 24.07 24.40 24.76 23.57 25.54 26.25 23.05 24.40
US Births 1,152.67 1,374.99 461.58 872.51 624.30 476.50 432.14 420.08 432.14 411.61 385.24

To address these issues and establish a more diverse zero-shot evaluation scenario without data leakage, we adopt six
zero-shot datasets from the MOIRAI paper and incorporate four additional datasets. These added datasets enhance the
diversity of our evaluation, making our evaluation cover five domains and include frequencies ranging from minute-level to
weekly. However, due to the inherent nature of some datasets, such as limited test set lengths, it is not feasible to apply the
same prediction length uniformly across all data. Consequently, the prediction lengths vary across datasets in this study.

Full Performance Results Measured by 6 Metrics To comprehensively evaluate performance, we use three point
forecasting metrics: mean absolute scaled error (MASE), mean squared error (MSE), and mean absolute error (MAE).
For probabilistic forecasts, we evaluate using continuous ranked probability score (CRPS), prediction interval coverage
probability (PICP) (Yao et al., 2019), and quantile interval coverage error (QICE) (Han et al., 2022).

Performance results are presented in Table 8, 9, and 10. The results show that MOIRAI-MOE achieves the best overall
performance across all 6 metrics, highlighting its superiority in modeling point forecast accuracy, distribution accuracy and
distribution coverage.

Table 7. Summary of datasets used in the zero-shot forecasting evaluations.

Dataset Domain Frequency Prediction Length Rolling Evaluations

Electricity (Trindade, 2015) Energy H 24 7
Solar (Lai et al., 2018) Energy H 24 7
Turkey Power 1 Energy H 24 7
ETT1 (Zhou et al., 2021) Energy D 30 3
ETT2 (Zhou et al., 2021) Energy D 30 3
Istanbul Traffic 2 Transport H 24 7
M-DENSE (Jiang et al., 2023) Transport D 30 3
Walmart (Walmart Competition Admin, 2014) Sales W 8 4
Jena Weather (Wu et al., 2021) Nature 10T 144 7
BizITObs-L2C (Palaskar et al., 2024) Web/CloudOps 5T 48 20

1https://www.kaggle.com/datasets/dharanikra/electrical-power-demand-in-turkey
2https://www.kaggle.com/datasets/leonardo00/istanbul-traffic-index
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Table 8. Full zero-shot performance comparisons measured by CRPS and MASE. * indicates the non-zero-shot datasets. The Avg column
is computed by normalizing each dataset’s MAE by seasonal naive, then applying the geometric mean. Two Avg values are shown: one
that averages all, and another (non-leak) excludes Electricity and Solar. Best results are in red. Second best results are in blue. Power:
Turkey Power. Traffic: Istanbul Traffic. Weather: Jena Weather. BizITObs: BizITObs-L2C.

Method Metric Electricity Solar Power ETT1 ETT2 Traffic MDENSE Walmart Weather BizITObs Avg (all) Avg (non-leak)

Seasonal Naive CRPS 0.070 0.512 0.085 0.515 0.205 0.257 0.294 0.151 0.068 0.262 1.000 1.000
MASE 0.881 1.203 0.906 1.778 1.390 1.137 1.669 1.236 0.782 0.986 1.000 1.000

TiDE CRPS 0.048 0.420 0.046 1.056 0.130 0.110 0.091 0.077 0.054 0.124 0.631 0.604
MASE 0.706 1.265 0.904 6.898 2.189 0.618 0.911 0.814 0.832 0.450 0.931 0.934

PatchTST CRPS 0.052 0.518 0.054 0.304 0.131 0.112 0.070 0.082 0.059 0.074 0.549 0.490
MASE 0.753 1.607 1.234 1.680 2.168 0.653 0.732 0.867 0.844 0.266 0.808 0.753

iTransformer CRPS 0.057 0.443 0.056 0.344 0.129 0.105 0.072 0.070 0.053 0.077 0.540 0.483
MASE 0.875 1.342 1.076 2.393 1.841 0.581 0.727 0.761 0.623 0.271 0.767 0.708

MoLE-DLinear CRPS 0.083 0.535 0.072 0.344 0.188 0.237 0.108 0.137 0.079 0.095 0.780 0.714
MASE 0.984 1.257 1.325 1.606 3.194 1.016 0.914 1.115 0.925 0.282 0.938 0.906

TTM CRPS 0.075 0.534* 0.059 0.417 0.122 0.210 0.150 0.192 0.055 0.102 0.758 0.697
MASE 0.802 1.255* 0.898 1.934 1.547 0.901 1.195 1.477 0.506 0.308 0.831 0.798

Timer CRPS 0.084 0.573 0.066 0.345 0.135 0.182 0.152 0.151 0.092 0.120 0.797 0.726
MASE 0.967 1.344 1.006 1.697 1.754 0.770 1.196 1.219 0.655 0.376 0.871 0.820

TimesFM CRPS 0.045* 0.456 0.037 0.280 0.113 0.131 0.070 0.067 0.042 0.080 0.488 0.439
MASE 0.655* 1.391 0.851 1.700 1.644 0.678 0.702 0.735 0.440 0.310 0.689 0.640

ChronosS
CRPS 0.043* 0.389* 0.038 0.360 0.097 0.124 0.087 0.079 0.089 0.087 0.543 0.513
MASE 0.629* 1.193* 0.717 1.799 1.431 0.622 0.834 0.849 0.606 0.301 0.694 0.661

ChronosB
CRPS 0.041* 0.341* 0.039 0.387 0.092 0.109 0.075 0.080 0.058 0.084 0.499 0.471
MASE 0.617* 1.002* 0.722 1.898 1.265 0.553 0.712 0.849 0.583 0.301 0.656 0.631

ChronosL
CRPS 0.041* 0.339* 0.038 0.404 0.091 0.117 0.075 0.073 0.062 0.084 0.500 0.473
MASE 0.615* 0.987* 0.702 1.959 1.270 0.597 0.724 0.788 0.601 0.310 0.660 0.638

MOIRAIS
CRPS 0.072 0.471 0.048 0.275 0.101 0.173 0.084 0.103 0.049 0.081 0.578 0.507
MASE 0.981 1.465 0.948 1.701 1.417 0.990 0.836 1.048 0.521 0.301 0.798 0.726

MOIRAIB
CRPS 0.055 0.419 0.040 0.301 0.095 0.116 0.104 0.093 0.041 0.078 0.520 0.467
MASE 0.792 1.292 0.888 1.736 1.314 0.644 1.101 0.964 0.487 0.291 0.736 0.685

MOIRAIL
CRPS 0.050 0.406 0.036 0.286 0.094 0.112 0.095 0.098 0.051 0.079 0.514 0.467
MASE 0.751 1.237 0.870 1.750 1.436 0.631 0.957 1.007 0.515 0.285 0.729 0.685

Time-MoEB
CRPS 0.051* 0.230* 0.044 0.392 0.125 0.152 0.099 0.100 0.070 0.112 0.583 0.586
MASE 0.587* 0.535* 0.800 1.823 1.672 0.672 0.846 0.833 0.558 0.343 0.662 0.695

Time-MoEL
CRPS 0.051* 0.294* 0.045 0.386 0.131 0.172 0.090 0.097 0.058 0.111 0.589 0.576
MASE 0.581* 0.689* 0.790 1.773 1.878 0.762 0.759 0.817 0.524 0.337 0.678 0.695

MOIRAI-MOES
CRPS 0.046 0.429 0.036 0.288 0.093 0.108 0.071 0.090 0.056 0.081 0.497 0.450
MASE 0.719 1.222 0.737 1.750 1.248 0.563 0.746 0.927 0.476 0.298 0.670 0.620

MOIRAI-MOEB
CRPS 0.041 0.382 0.034 0.296 0.091 0.100 0.071 0.088 0.057 0.079 0.478 0.439
MASE 0.638 1.161 0.725 1.748 1.247 0.510 0.721 0.918 0.509 0.290 0.651 0.611
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Table 9. Full zero-shot performance comparisons measured by MSE and MAE. Note that the MSE and MAE values are relatively
large compared to those reported in previous studies like PatchTST, primarily because we compute the loss using raw time series
values rather than normalized ones. This approach can more accurately reflect the forecasting accuracy gap. Best results are in red.
Second best results are in blue. Power: Turkey Power. Traffic: Istanbul Traffic. Weather: Jena Weather. BizITObs: BizITObs-L2C.

Method Metric Electricity Solar Power ETT1 ETT2 Traffic MDENSE Walmart Weather BizITObs Avg (all) Avg (non-leak)

Seasonal Naive MSE 1299429.16 1293.24 1798196.83 57976.63 122878.95 203.32 39929.67 32876026.66 2197.23 174.31 1.000 1.000
MAE 166.20 15.77 492.60 154.98 211.56 8.72 118.38 2637.43 10.96 9.69 1.000 1.000

iTransformer MSE 1264494.38 1183.57 968959.56 55320.57 178757.02 41.77 9905.39 10922819.00 1885.01 20.55 0.508 0.435
MAE 165.89 17.61 399.09 170.83 279.21 4.85 51.06 1560.68 10.65 2.66 0.741 0.678

MoLE-DLinear MSE 1901617.97 1098.56 1071490.46 39026.37 195287.19 153.71 13016.78 26832049.08 1649.90 21.57 0.656 0.575
MAE 197.06 16.47 420.67 130.79 328.28 8.48 62.43 2395.50 12.81 2.75 0.857 0.803

TTM MSE 2432897.66 884.33* 647289.67 56256.46 116203.30 114.79 18425.62 39297380.00 1122.55 23.41 0.625 0.538
MAE 179.56 16.46* 341.96 158.85 213.61 7.53 86.44 3360.79 8.88 2.97 0.833 0.784

Timer MSE 2205084.30 962.26 687600.25 39235.36 129063.67 75.23 19875.60 29410540.00 1873.68 27.21 0.613 0.527
MAE 200.62 17.57 370.53 131.31 235.27 6.42 87.72 2646.92 13.65 3.50 0.865 0.804

TimesFM MSE 1378828.95* 1061.70 384815.80 42789.02 169714.41 106.01 10194.73 9494507.86 1317.09 23.23 0.475 0.401
MAE 137.57* 18.07 277.94 138.42 245.61 5.75 49.78 1484.68 7.94 2.89 0.672 0.612

ChronosS
MSE 1251170.49* 1405.10* 418195.72 60157.02 112472.02 100.62 15377.29 14697271.28 3945.04 23.89 0.587 0.511
MAE 126.25* 15.79* 275.11 161.23 207.11 5.28 59.26 1693.33 16.90 2.94 0.724 0.691

ChronosB
MSE 1147348.35* 1062.73* 400709.37 66320.26 107178.21 80.48 12770.66 15813384.14 1720.53 22.78 0.501 0.439
MAE 121.69* 13.18* 285.79 169.60 194.70 4.69 51.58 1706.11 10.28 2.82 0.656 0.628

ChronosL
MSE 1073679.39* 1017.98* 362386.33 73974.48 106362.90 98.20 13625.07 12339319.84 1874.83 23.61 0.503 0.447
MAE 121.06* 12.86* 277.64 177.68 191.07 5.07 53.61 1560.11 11.30 2.89 0.664 0.639

MOIRAIS
MSE 4015423.50 1429.82 757613.06 39481.46 118636.33 146.24 11041.41 19886286.00 1932.16 22.48 0.647 0.498
MAE 219.02 19.19 358.01 133.82 209.68 8.71 58.25 2112.07 10.23 2.90 0.802 0.715

MOIRAIB
MSE 1734656.25 1105.95 477193.47 51793.64 113074.23 44.60 17724.71 18981036.00 1196.21 22.44 0.500 0.414
MAE 164.94 16.97 293.74 149.15 202.89 4.72 79.41 2046.22 7.73 2.81 0.713 0.650

MOIRAIL
MSE 1229872.00 997.13 340307.44 44752.48 106513.38 101.17 14874.89 21274060.00 1914.39 21.79 0.511 0.449
MAE 150.66 16.25 262.70 142.21 204.72 5.93 69.73 2110.73 10.10 2.77 0.720 0.669

Time-MoEB
MSE 1158323.38* 176.27* 315704.91 50267.22 114374.42 89.87 11303.31 13934856.92 1371.87 28.51 0.395 0.408
MAE 120.52* 7.07* 254.28 149.21 218.55 5.70 57.43 1742.96 11.35 3.26 0.644 0.663

Time-MoEL
MSE 1203643.75* 194.84* 350989.67 47389.70 121112.59 99.13 9585.73 12876789.32 1264.26 27.34 0.394 0.400
MAE 120.53* 9.06* 262.48 147.11 229.67 6.45 52.10 1687.08 9.32 3.24 0.650 0.652

MOIRAI-MOES
MSE 930140.63 1113.50 360995.59 45412.81 114609.09 53.05 9426.45 18025986.00 1944.27 23.45 0.453 0.395
MAE 138.03 16.05 260.82 141.08 194.63 4.78 50.09 1955.77 10.08 2.89 0.668 0.617

MOIRAI-MOEB
MSE 907276.31 1047.63 311227.06 48487.21 107284.42 45.83 9740.51 17094764.00 1954.24 22.54 0.434 0.378
MAE 122.27 15.24 251.10 145.50 191.47 4.33 49.73 1919.31 10.31 2.80 0.646 0.605

Table 10. Full zero-shot performance comparisons measured by PICP and QICE. The absence of certain baselines reflects their inability to
compute PICP and QICE, as they only support point forecasting. The Avg column is computed by taking the geometric mean across all
datasets. Best results are in red. Power: Turkey Power. Traffic: Istanbul Traffic. Weather: Jena Weather. BizITObs: BizITObs-L2C.

Method Metric Electricity Solar Power ETT1 ETT2 Traffic MDENSE Walmart Weather BizITObs Avg (all)

ChronosS
PICP 8.653 55.871 21.356 39.286 5.635 21.720 13.000 17.612 43.276 21.042 20.021
QICE 1.694 6.192 3.144 4.885 1.129 3.857 2.189 2.341 5.331 3.480 3.037

ChronosB
PICP 8.201 56.031 23.075 46.111 4.841 18.280 11.333 17.494 44.140 18.021 19.205
QICE 1.785 6.205 3.490 5.697 1.869 3.545 2.305 2.298 5.335 2.887 3.218

ChronosL
PICP 7.645 56.379 20.827 43.095 10.079 14.312 8.889 16.530 43.110 17.485 19.015
QICE 1.661 6.243 3.373 5.467 1.746 3.868 1.901 2.216 5.253 2.708 3.082

MOIRAIS
PICP 1.184 3.436 1.283 1.508 1.984 3.413 0.259 1.908 3.239 3.452 1.766
QICE 0.915 2.152 2.786 2.698 2.610 2.769 2.342 1.508 1.433 0.971 1.871

MOIRAIB
PICP 1.132 3.549 0.470 1.508 3.730 2.884 0.148 1.416 0.267 2.098 1.137
QICE 0.422 1.469 1.372 2.575 2.698 3.504 3.140 1.100 1.196 0.997 1.560

MOIRAIL
PICP 0.032 2.545 0.489 1.984 3.254 1.296 1.778 1.385 0.588 5.223 1.098
QICE 0.343 3.506 1.357 2.504 1.834 3.063 1.140 0.827 1.271 2.396 1.520

MOIRAI-MOES
PICP 0.717 4.150 1.515 0.873 3.254 5.582 0.556 2.957 1.452 1.042 1.678
QICE 0.899 1.756 0.979 2.222 2.769 1.952 0.819 1.082 2.157 0.931 1.419

MOIRAI-MOEB
PICP 0.464 0.473 0.172 0.397 4.206 9.550 0.259 3.118 1.528 2.173 1.049
QICE 0.712 1.174 1.703 2.310 2.628 2.734 3.041 1.158 1.601 0.908 1.615
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A.3. Summary of Methods

The following is a brief introduction to the models used in the evaluation process.

• TiDE (Das et al., 2023) encodes the historical data of a time series along with covariates using dense multi-layer
perceptrons (MLPs). It then decodes the time series while incorporating future covariates, also utilizing dense MLPs for
this process.

• PatchTST (Nie et al., 2023) employs Transformer encoders combined with patching and channel independence techniques
to enhance the performance of time series forecasting.

• iTransformer (Liu et al., 2024b) treats independent time series as tokens to effectively capture multivariate correlations
through self-attention.

• MoLE-DLinear (Ni et al., 2024) trains multiple linear-centric models (i.e., experts) and a router model that weighs and
mixes their outputs. In this study, we use the DLinear model as the experts.

• LLMTime (Gruver et al., 2023) is a method for time series forecasting that leverages Large Language Models by encoding
numerical data as text and generating possible future values through text completions.

• Moment (Goswami et al., 2024) refers to a family of open time series foundation models that canhandle different time series
analysis tasks. Note that Moment requires fine-tuning for forecast tasks and cannot directly do zero-shot forecast-
ing, as stated in the GitHub issue: https://github.com/moment-timeseries-foundation-model/
moment/issues/21#issuecomment-2138478827. Therefore, we exclude it in our model comparisons.

• TTM (Ekambaram et al., 2024) is a foundation model based on the light-weight TSMixer architecture, incorporating
innovations like adaptive patching, diverse resolution sampling, and resolution prefix tuning.

• Timer (Liu et al., 2024c) is a decoder-only foundation model, presenting notable few-shot generalization, scalability, and
task generality.

• TimesFM (Das et al., 2024) is a decoder-only time series foundation model that pretrained on a large corpus of time series
data, including both real-world and synthetic datasets.

• Chronos (Ansari et al., 2024) is an encoder-decoder time series foundation model that uses quantization to convert real
numbers into discrete tokens.

• MOIRAI (Woo et al., 2024) is a time series foundation model trained on the LOTSA dataset, which contains over 27 billion
observations across nine diverse domains.

• Time-MoE (Shi et al., 2024) is a concurrent work that applies mixture of experts techniques to time series foundation
models.

• MOIRAI-MOE is proposed in this study, which is capable of achieving automatic token-level specialization.

A.4. Settings of Methods

Context Length Setting for All Methods In Table 11, we detail the context lengths used for each method in this study,
and in their original paper. For full-shot deep learning models, we believe our searching range generally covers the lengths
set in their original paper. For foundation models, the choice of input lengths depends on their pretraining strategies. For
instance, in the case of TimesFM and Chronos, the input lengths are consistently set to 512 during pretraining. In contrast,
for MOIRAI and MOIRAI-MOE, the pretraining algorithm involves randomly sampling a context length in the range [2,
8192]. Thus, searching for the input length on validation set during inference is needed.
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Table 11. Comparison of methods’ context lengths: this study versus original papers.

Model In-Dist. Evaluation (29 datasets) Zero-Shot Evaluation (10 datasets) Original Paper

TiDE – Searching within prediction lengths * [2,20] 720
PatchTST – Searching within prediction lengths * [2,20] 336
iTransformer – Searching within prediction lengths * [2,20] 96
TTM – 512 512
Timer – 672 672
Time-MoE – 4,096 {512, 1024, 2048, 3072}
TimesFM 512 512 512
Chronos 512 512 512
MOIRAI 1000 Searching within range {1000, 2000, 3000, 4000, 5000} Searching within range {1000, 2000, 3000, 4000, 5000}
MOIRAI-MOE 1000 Searching within range {1000, 2000, 3000, 4000, 5000} Searching within range {1000, 2000, 3000, 4000, 5000}

Long Context Lengths for Full-Shot methods To investigate the potential unfair comparisons arising from relatively
shot context lengths of full-shot methods compared to foundation models, additional experiments are conducted: training
the state-of-the-art specialized models PatchTST and iTransformers using the same context length searching strategy as in
MOIRAI and MOIRAI-MOE.

Table 12 presents the results using MSE and MAE. Note that, for clarity, we use Range-1 to denote the searching range
within prediction lengths * [2, 20], which is approximately around the values of [50, 500]. This is the range we used in
our paper for specialized models. In addition, we use Range-2 to denote MOIRAI-MOE’s strategy: searching within 1000,
2000, 3000, 4000, 5000. According to the results, we observe that from Range-1 to Range-2, the input length searching
range increases substantially. However, the average performance of both PatchTST and iTransformer declines significantly
across all four metrics. For instance, the average MASE of PatchTST increases from 0.808 to 0.967, and the average MASE
of iTransformer rises from 0.767 to 1.013. These results suggest that neither PatchTST nor iTransformer benefits from
very long input lengths; in fact, such lengths negatively impact their performance. And the performance gap between these
models and the foundation models becomes even more pronounced.

Table 12. Performance comparison for different context lengths measured by MSE and MAE. Best results are in bold. Power: Turkey
Power. Traffic: Istanbul Traffic. Weather: Jena Weather. BizITObs: BizITObs-L2C.

Method Context Length Metric Electricity Solar Power ETT1 ETT2 Traffic MDENSE Walmart Weather BizITObs Avg (all)

Seasonal Naive – MSE 1299429.16 1293.24 1798196.83 57976.63 122878.95 203.32 39929.67 32876026.66 2197.23 174.31 1.000
– MAE 166.20 15.77 492.60 154.98 211.56 8.72 118.38 2637.43 10.96 9.69 1.000

PatchTST Range-1 MSE 1534813.00 1125.03 1605878.50 45755.70 167280.13 38.69 9240.59 13749435.00 1361.20 18.97 0.511
Range-1 MAE 171.95 17.03 478.86 141.03 291.80 4.51 49.45 1847.65 9.77 2.60 0.740

PatchTST Range-2 MSE 1433466.75 973.65 957680.50 249211.48 284311.13 45.14 38315.62 15738720.00 2020.57 15.18 0.717
Range-2 MAE 150.33 15.69 414.32 259.93 346.99 4.96 111.85 1859.13 15.96 2.36 0.880

iTransformer Range-1 MSE 1264494.38 1183.57 968959.56 55320.57 178757.02 41.77 9905.39 10922819.00 1885.01 20.55 0.508
Range-1 MAE 165.89 17.61 399.09 170.83 279.21 4.85 51.06 1560.68 10.65 2.66 0.741

iTransformer Range-2 MSE 1856541.38 2587.88 572127.56 54057.63 297574.38 39.58 19981.01 21888656.00 1375.14 50.39 0.689
Range-2 MAE 174.00 23.96 350.17 167.26 408.40 4.74 89.69 2504.30 10.11 5.53 0.930

MOIRAI-MOEB
Range-2 MSE 907276.31 1047.63 311227.06 48487.21 107284.42 45.83 9740.51 17094764.00 1954.24 22.54 0.434
Range-2 MAE 122.27 15.24 251.10 145.50 191.47 4.33 49.73 1919.31 10.31 2.80 0.646

Hyperparameter Search for Full-Shot Methods For the three full-shot models used in zero-shot forecasting part, i.e.,
TiDE (Das et al., 2023), PatchTST (Nie et al., 2023), and iTransformer (Liu et al., 2024b), we conduct hyperparameter
search based on the values specified in Table 13. In addition, we explore the learning rate in the range [1e-6, 1e-3] on a log
scale, and set the context length as l = m ∗ h, where m is tuned in the range [2, 20], and h is the prediction length. We
implement a random search across these parameters over 15 runs and report results based on the best validation CRPS.

Pretraining Details of MOIRAI-MOE All MOIRAI-MOE models are trained on 16 A100 (40G) GPUs using a batch
size of 1,024 and bfloat16 precision. The small and base model are trained for 50,000 and 250,000 steps on LOTSA (Woo
et al., 2024), respectively. The patch size P is set to 16 and the masking ratio r for next-token prediction pretraining is 0.3.
The corresponding experiments are in Appendix B.3 and B.4. For optimization, we utilize the AdamW optimizer with lr =
1e-3, weight decay = 1e-1, β1 = 0.9, β2 = 0.98. We also apply a learning rate scheduler with linear warmup for the first
10,000 steps, followed by cosine annealing.
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Table 13. Hyperparameter search values for TiDE, PatchTST, and iTransformer.

Hyperparameter Values

TiDE hidden dim {64, 128, 256}
num encoder layers [2, 6]
num decoder layers [2, 6]

PatchTST d model {64, 128, 256}
num encoder layers [2,6]

iTransformer d model {128, 256, 512}
num encoder layers [2, 4]

B. Additional Results
B.1. Comparison of MOIRAI and MOIRAI-MOE Pretraining Steps

In Figure 7, we present a comparison between MOIRAIS and MOIRAI-MOES in terms of pretraining steps. The results
demonstrate that MOIRAI-MOES outperforms MOIRAIS from the very first evaluation point – 25k steps. Furthermore,
MOIRAI-MOES at 25k steps achieves better performance than MOIRAIS at 125k steps. This figure highlights the clear
advantages of MOIRAI-MOE in terms of both model performance and reduced pretraining steps.
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Figure 7. Performance comparison between MOIRAIS and MOIRAI-MOES across pretraining steps.

B.2. Effects of the Number of MoE Layers

According to a recent survey on MoE-based Transformers (Cai et al., 2024), replacing all FFNs with MoE layers is a
common practice in recent and well-known LLMs, such as Mixtral 8x7B and Qwen1.5-MoE. Another popular choice is to
replace half of the FFN layers with MoE layers. To investigate the efficacy of this, we conduct experiments where one out of
every two FFN layers was replaced with MoE layers. As shown in Table 14, compared to replacing all FFN layers, this
”half” setting reduces pretraining time by 31%. While the downstream performance on Monash shows that replacing half of
the FFN layers results in a 5% performance drop. This demonstrates a trade-off between performance and pretraining cost.

Table 14. Effects of the number of MoE layers in MOIRAI-MOE.

Variant MoE Layers Total Layers Activated Params Total Params Monash Performance Pretraining Time

MOIRAI-MOES-Half 3 6 11M 64M 0.68 6.53h
MOIRAI-MOES 6 6 11M 117M 0.65 9.49h

B.3. Effects of Patch Size

In contrast to MOIRAI, which designs multiple input/output projection layers, each associated with a specific patch size,
MOIRAI-MOE utilizes a single projection layer with a single patch size. In this part, we conduct experiments to examine
the impact of different patch size choices. The evaluation results on the Monash benchmark are presented in Figure 8 (left),
where the patch size of 16 yields the best performance. Regarding the choice of patch size in relation to performance, the
patch size determines the time period encompassed within each token. If the patch size is too large (i.e., 64), the linear
projection layer may lack the capacity to capture the underlying patterns. Conversely, if the patch size is too small (i.e., 4),
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Figure 8. Effects of patch size and masking ratio using MOIRAI-MOES.

the time series token may not contain sufficient semantic information, as highlighted in DLinear. Additionally, patch size
affects inference speed; with a fixed context window, smaller patch sizes generate more time series tokens, increasing GPU
memory usage and ultimately slowing down inference. For instance, using a patch size of 4 can take over a day to complete
all evaluations. Our choice of a patch size of 16 not only delivers strong performance but also maintains a reasonable
inference speed.

Furthermore, to justify the choice of a single projection layer over multiple projection layers, we conducted experiments
using multiple input/output projection layers within MOIRAI-MOE. The results are presented in Table 15. The notation used
is as follows: MOIRAI-MOES-Multi refers to MOIRAI-MOES with a multi-patch strategy. MOIRAI-MOES-S4 represents
MOIRAI-MOES with a single patch size of 4. The same naming applies to other configurations. The results show that S4
and S64 do not perform as well as S16, however, they significantly outperform MOIRAIS and achieve comparable results to
MOIRAI-MOES-Muiti. These results indicate that the multi-patch strategy does not hold positive significance, since it is
comparable to the worst cases of single patch size.

Table 15. Effects of single projection layer and multiple projection layers in MOIRAI-MOE.

Method MOIRAIS MOIRAI-MOES-Multi MOIRAI-MOES-S4 MOIRAI-MOES-S8 MOIRAI-MOES-S16 MOIRAI-MOES-S32 MOIRAI-MOES-S64

Monash Performance 0.78 0.72 0.72 0.67 0.65 0.70 0.72

B.4. Effects of Masking Ratio

In this study, we introduce the masking ratio r as a hyperparameter that determines the portion of the entire sequence used
solely for robust normalizer calculation, helping to mitigate distribution shift issues. We conduct experiments to assess
the effects of different masking ratios, with the evaluation results on the Monash benchmark shown in Figure 8 (right).
A masking ratio of 0.3 delivers the best performance. A ratio of 0.1 uses too little data to compute a robust normalizer,
potentially failing to accurately represent the overall sequence statistics. Conversely, a ratio of 0.5 masks half of the data,
which may hinder the parallel learning efficiency in next-token prediction pretraining. Therefore, it is crucial to select an
appropriate data range that is small enough to avoid excessive masking, yet sufficiently representative for robust normalizer
computation.

B.5. Expert Distributions of Different Gating Function

In this part, we present an in-depth comparison of the different gating functions explored in this study. First, we provide
additional details on the implementation of the proposed token clustering method. The core idea of this approach is
to leverage cluster centroids derived from the token representations of a pretrained model to guide expert allocations.
Specifically, we perform inference on our pretraining corpus, LOTSA, using data amount corresponding to 100 epochs.
During this process, we extract the self-attention output representations from a pretrained MOIRAI model and apply mini-
batch k-means clustering to continuously update the clusters. The number of clusters is set to match the total number of
experts. During the pretraining of the MoE model, each token computes the Euclidean distance to each cluster centroid, and
these distances are used as token-to-expert affinity scores for expert assignments. Empirical evaluations have demonstrated
the effectiveness of this approach compared to randomly learned gating from scratch, indicating that the clustering method
better aligns with the inherent distribution of time series representations.

Using the three gating functions explored in this study, i.e., linear projection, linear projection with load balancing, and
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Figure 9. Visualization of the distribution of expert allocation for MOIRAI-MOES layers 2, 4, and 6 (the last layer) using all data from the
Monash benchmark.

token clustering, we present their expert allocation distributions aggregated across all datasets in the Monash benchmark, as
illustrated in Figure 9. In terms of selection diversity, we observe the following relationships: Token Clusters (least diverse)
< Pure Linear Projection (neutral) < Linear Projection with Load Balancing (most diverse). According to their performance
results shown in Figure 4, we can establish the following ranking: Token Clusters > Linear Projection with Load Balancing
> Pure Linear Projection. Based on all these observations, we offer the following explanation:

• In the token clusters approach, the expert selections are less diverse because the routing is grounded in pretrained
knowledge. The clustering step creates centroids that represent well-structured patterns in the data, and then tokens are
routed to specific experts that are particularly suited to handle the type of data represented by their corresponding cluster.
While this targeted routing reduces diversity, it enhances performance due to the selection of experts based on more
meaningful criteria.

• The addition of load balancing loss increases the diversity of expert selection by spreading the workload and encouraging
the use of all experts more evenly. This diversity prevents over-reliance on specific experts, potentially improving
generalization and performance compared to pure linear projection. However, this approach might be less targeted than
clustering, since it still depends on a learned gating function rather than pretrained centroids.

• In the pure linear projection method, the gating function is entirely learned from scratch. Without any additional constraints
(like load balancing), certain experts might get selected more often than others, leading to a neutral level of diversity. Since
there is no mechanism to encourage exploration (like load balancing) or specialized routing (like clustering), performance
remains lower than the other methods.

B.6. Visualization of Time Series Observations and Expert Allocations

Following the discussion in the main paper, this section investigates the relationship between raw time series observations
and their corresponding expert allocations. In Figure 10, the upper subfigure presents a Traffic Hourly time series sequence
with a length of 512. For enhanced visualization, the sequence is segmented using vertical dashed lines, each spanning 16
steps, which is equal to the length of a single time series token. The lower subfigure illustrates the expert allocations at
shallow layers for 32 tokens derived from the 512 observations. The yellow straight line represents the specific experts
selected by the token at each position. The alignment of subfigures facilitates an intuitive comparison between the time
series trends and the associated expert selections.

The figure includes red square boxes to highlight time series segments exhibiting a downward trend followed by a slight
upward pattern. These segments consistently correspond to the activation of two specific experts, as shown in the lower
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subfigure. This observation suggests that Moirai-MoE effectively captures time-based structures and demonstrates model
specialization at the token level.

Figure 10. Joint visualization of raw time series observations and their corresponding expert selection at shallow layers of MOIRAI-MOES.
The upper subfigure depicts the raw time series observations with the x-axis representing time step indices (0 to 511). The lower subfigure
shows the expert allocation distributions, where the x-axis corresponds to the time series token indices (0 to 31), and the y-axis represents
the indices of the 32 experts in the layer.

C. Limitation
The limitation of this study lies in the efficiency of autoregressive predictions during inference, a well-documented challenge
for decoder-only architectures. However, inference solutions developed for large language models (LLMs) could help
address this issue. For instance, many LLMs leverage quantization techniques (e.g., 8-bit or 4-bit weights) to significantly
reduce computational costs while maintaining performance. In future work, we plan to explore model quantization and
pruning methods to optimize efficiency. Additionally, we aim to implement key-value (KV) caching techniques to accelerate
inference. However, a key challenge lies in our use of instance normalization, which requires recalculating normalization
statistics whenever a new token is generated. This necessity could render the cached hidden states invalid, presenting an
obstacle to efficient caching.

D. Visualization
In this section, we visualize the datasets used in the model analyses (NN5 Daily (Figure 11), Traffic Hourly (Figure 12), and
Covid Daily Deaths (Figure 13)) to facilitate understanding of the patterns within the time series data.
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Figure 11. Visualization of NN5 Daily data, including both context length and forecast results.
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Figure 12. Visualization of Traffic Hourly data, including both context length and forecast results.
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Figure 13. Visualization of Covid Daily Deaths, including both context length and forecast results.
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