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ABSTRACT

Vision-language models (VLMs) are known to be susceptible to distribution shifts
between pre-training data and test data, and test-time adaptation (TTA) methods
for VLMs have been proposed to mitigate the detrimental impact of the distri-
bution shifts. However, the existing methods solely rely on the internal knowl-
edge encoded within the parameters, which are constrained to pre-training data.
To complement the limitation of the internal knowledge, we propose retrieval-
augmented-TTA (RA-TTA) for adapting VLMs to test distribution using external
knowledge obtained from a web-scale image database. Fully exploiting the bi-
modality of VLMs, fine-grained text descriptions are used both for retrieving
proper external images and refining VLMs’ predictions with the retrieved external
images. As a result, the pivotal features of test images are more precisely recog-
nized through the text descriptions. Extensive evaluations on 17 datasets validate
that RA-TTA outperforms the state-of-the-art methods by 2.49–8.45% on average.

1 INTRODUCTION

In recent years, vision-language models (VLMs) pre-trained on large corpora of image-text pairs
have garnered significant attention (Radford et al., 2021; Jia et al., 2021; Li et al., 2022; Sun et al.,
2023; Zhang et al., 2024a). When transferring the pre-trained knowledge of VLMs at test time,
distribution shifts between pre-training data and test data deteriorate the zero-shot transferability
of VLMs (Bommasani et al., 2021; Nguyen et al., 2022; Fang et al., 2022; Santurkar et al., 2023).
Thus, a number of test time adaptation (TTA) methods for VLMs (Shu et al., 2022; Feng et al., 2023;
Zhao et al., 2024b; Yoon et al., 2024) have been proposed to mitigate the detrimental impact of the
distribution shifts. For adapting to an unlabeled test image, the existing methods typically rely on
the outputs of VLMs on the test image, which are determined by the pre-trained knowledge encoded
within the model parameters. However, this internal knowledge learned from the pre-training data
may be insufficient to address unseen test data potentially deviated by distribution shifts in the real
world (Agarwal et al., 2021; Menon et al., 2024; Parashar et al., 2024).

Due to the difficulty of updating pre-trained models frequently, retrieval-augmented generation
(RAG) (Gao et al., 2023; Zhao et al., 2024a; Fan et al., 2024) is proposed in language domains,
and it incorporates external knowledge from a document database into a query to complement new
or focused knowledge absent in the pre-trained knowledge. Thus, in accordance with the philosophy
of using external knowledge, we propose a retrieval-augmented approach for TTA with VLMs and
refer to this approach as retrieval-augmented-TTA (RA-TTA). Figure 1(a) shows the overall proce-
dure of RA-TTA: (i) a VLM is requested to provide an answer in response to a test image; (ii) the
test image is queried against a web-scale image database to retrieve relevant and useful images for
the purpose of TTA; (iii) the final answer is adjusted on the fly using both the answer from the VLM
and the retrieved external images. The image database usually contains only the images without
labels and captions (Caron et al., 2019; Tian et al., 2021; Goyal et al., 2021).

It is evident that the external images offer insights into a test image only when properly retrieved.
For example, let’s consider a task that recognizes a vehicle type (e.g., Chevrolet Impala) from an
image. If a test image depicts the front and side of a vehicle while obscuring the rear, the external
images with pivotal features such as the headlight must be helpful, whereas those with non-visible
features such as the taillight or irrelevant features such as a ski-box would not aid in the recognition.
This objective aligns with RAG for retrieving documents that contain critical information relevant
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(a) Overview of the proposed RA-TTA. (b) Overview of the description-based retrieval.

Figure 1: Key idea of RA-TTA: (a) shows the overall procedure of RA-TTA; (b) elaborates on the
description-based retrieval strategy, where a VLM embeds a test image into the embedding space
and identifies its pivotal features (text descriptions), e.g., boomerang-shaped headlight of CX-9, and
the neighboring images to the identified descriptions in the embedding space are retrieved.

to a given query. However, naive image-to-image similarity search (Iscen et al., 2023) often fails
to retrieve the images with the pivotal features. The primary reason is that an image, similar to
a lengthy document, often encompasses multiple diverse semantics, e.g., a vehicle image with a
headlight and a ski-box in Figure 1(b). That is, images may be quite intricate to be encapsulated
by single embeddings. Recall that, in RAG, a document is divided into multiple chunks, with each
chunk intended to contain a specific piece of information (Lewis et al., 2020; Wang et al., 2024a).
This chunking enables the capture of more relevant and coherent information for a query. On the
other hand, because precise image segmentation is very costly and challenging, applying image
segmentation to achieve an effect analogous to document chunking for images is infeasible.

In this paper, to retrieve proper external images and ultimately improve the zero-shot transferabil-
ity of a VLM at test time, we propose a description-based retrieval approach that fully leverages
the bi-modality of VLMs. Figure 1(b) elaborates on its overall procedure: (i) Multiple (e.g., 20)
fine-grained visual features for each target class are extracted in the form of text descriptions, such
as “Santafe FE has parametric patterns” and “Mazda CX-9 has a boomerang-shaped headlight,” by
LLMs. (ii) Text descriptions relevant to a given test image are selected by image-to-text similar-
ity search on the embedding space of a VLM, which we regard as the pivotal features of the test
image. (iii) External images aligned with these selected text descriptions are retrieved by text-to-
image similarity search on the same embedding space. We contend that image retrieval through
text descriptions is comparable to document chunking, as it divides images into multiple semantic
chunks for effective retrieval. In Figure 1(b), due to the text descriptions on the headlight of CX-9,
its headlights are desirably dominant in the retrieved images. In contrast, arbitrary SUV images with
a ski-box could be retrieved if a naive image-to-image similarity search were employed. Moreover,
we also propose a description-based adaptation approach that exploits the selected text descriptions
for the adaptation with the retrieved images.

Overall, the proposed RA-TTA equipped with the description-based retrieval and adaptation signif-
icantly outperforms the state-of-the-art TTA methods on 17 datasets, including the standard trans-
fer learning and natural distribution shift benchmarks. According to our extensive evaluation, the
impact of external images was higher when the strength of distribution shifts became higher, and
the advantages of the description-based retrieval were more pronounced when test data exhib-
ited more complex semantics (see § 4.2 and § 4.5). The source code of RA-TTA is available at
https://anonymous.4open.science/r/RA_TTA_for_VLMs.

2 RELATED WORK AND PRELIMINARY

2.1 VISION-LANGUAGE MODELS

Vision-language models (VLMs) such as CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021), and
LongCLIP (Zhang et al., 2024a) are pre-trained to align images with corresponding text descriptions,
thereby understanding the relationships between arbitrary image-text pairs. These models have
demonstrated excellent zero-shot transferability for image classification tasks, where classes are rep-
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resented by text prompts, and images are classified based on the similarity to these prompts (Radford
et al., 2021). Previous approaches employ coarse text prompts, such as “a photo of Chevrolet Im-
pala,” which do not fully utilize the contextual richness of language. Recent advancements shift to-
wards incorporating fine-grained visual details in prompts, such as “Chevrolet Impala has sharp and
muscular styling,” to enhance representational capacity. For example, VisDesc (Menon & Vondrick,
2022) and CuPL (Pratt et al., 2023) propose a query strategy that employs class-specific, LLM-
generated text descriptions as the prompts for VLMs. WaffleCLIP (Roth et al., 2023) proposes a
novel prompting technique for VLMs to improve the utility of the text descriptions by analyzing the
effect of LLM-generated text descriptions. Following these studies, our research further explores
the utility of fine-grained text descriptions to improve VLM efficacy.

2.2 TEST-TIME ADAPTATION FOR VISION-LANGUAGE MODELS

When transferring the zero-shot capabilities of VLMs, the distribution shift between pre-training
data and test data is the main obstacle. Test-time adaptation (TTA) methods for VLMs have been
proposed to adapt VLMs to the distribution shift. These methods adapt to an input test image on-
the-fly, without any training requirements. Because only a single unlabeled test image is available,
they leverage the outputs of VLMs on the test image for the adaptation. TPT (Shu et al., 2022)
uses data augmentation to enrich the test image, filters out unreliable augmented images based on
prediction entropy, and then updates learnable prompts by minimizing the entropy of the reliable
predictions. DiffTPT (Feng et al., 2023) enhances TPT by augmenting an input image with infor-
mative and diverse images generated from a pre-trained diffusion model. C-TPT (Yoon et al., 2024)
also enhances TPT by calibrating the prediction uncertainty. RLCF (Zhao et al., 2024b) shows that
the prediction entropy minimization loss could be stuck in wrong predictions and introduces a CLIP
score-based loss to guide the prediction on a test image in the right direction. However, existing
methods solely rely on the internal knowledge encoded in the VLM parameters, which are con-
strained to the pre-training data (Agarwal et al., 2021; Menon et al., 2024; Parashar et al., 2024). In
contrast, we leverage external knowledge retrieved from a web-scale image database.

2.3 RETRIEVAL-AUGMENTED STRATEGY FOR VISION-LANGUAGE MODELS

Since not all knowledge can be encoded within model parameters, retrieval-augmented strategies
have been adopted as a solution, which can leverage external knowledge in the world. They can be
mainly categorized into training-based and training-free methods. REACT (Liu et al., 2023) fine-
tunes VLMs by constructing datasets about downstream tasks through retrieval. RA-CLIP (Xie et al.,
2023) and RECO (Iscen et al., 2023) introduce additional parameters that enable VLMs to leverage
retrieved images and train the parameters using large-scale image-text datasets (e.g., WebLI (Chen
et al., 2023), YFCC (Thomee et al., 2016), and Conceptual Captions 12M (Changpinyo et al., 2021)).
K-LITE (Shen et al., 2022) augments text supervisions by incorporating external textual knowledge
such as Wiktionary and uses these enhanced supervisions to train VLMs. However, these meth-
ods require extensive training before test time, which demands high computational resources, mak-
ing them hard to deploy in resource-constrained environments. In contrast, our method requires
neither training before test time nor additional parameters. SuS-X (Udandarao et al., 2023), Ret-
Adapter (Ming & Li, 2024), and Neural Priming (Wallingford et al., 2023) retrieve training datasets
like REACT and perform training-free adaptation for VLMs using the retrieved datasets. However,
since they conduct the retrieval before test time, their retrieved images are static; thus, they cannot
adaptively cope with unseen test images deviated by distribution shifts. On the other hand, we re-
trieve external images adaptive to test images on-the-fly and can flexibly handle distribution shifts.

2.4 BACKGROUND ON THE CLIP MODEL

The contrastive language-image pre-trained (CLIP) model (Radford et al., 2021) consists of an image
encoder f(·) and a text encoder g(·), each of which maps an image x ∈ R3×h×w and a text prompt t
into a d-dimensional shared embedding space, respectively. By calculating cosine similarity between
the mapped embeddings eI ∈ Rd for the image and eT ∈ Rd for the text prompt, CLIP produces
the image-text alignment score salign = cos(eI , eT ), which measures semantic similarity between
the image x and the text prompt t. For text prompts, text descriptions that represent the fine-grained
visual features of objects can be utilized. For each class c, multiple L text descriptions {tc,l}Ll=1
are generated and mapped to the embedding space. The embeddings of these descriptions for each
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Figure 2: Overall procedure of RA-TTA.

class c are averaged, and the averaged embedding ēTc is used as a prototype for the class c. Using
the prototypes, the prediction probability for an image x being a class c can be calculated as

p(c |x) = exp(cos(eI , ēTc )/τ)∑C
i=1 exp(cos(e

I , ēTi )/τ)
, (1)

where C is the number of classes and τ is a temperature parameter.

3 RA-TTA: RETRIEVAL-AUGMENTED TEST-TIME ADAPTATION FOR VLMS

3.1 PROBLEM STATEMENT AND OVERVIEW

Problem Statement. RA-TTA aims to adapt a VLM (e.g., CLIP) to classify a test image xtest as
its label y by leveraging a set of N external image embeddings R= {eIe

k }Nk=1 retrieved from an
image vector database D={eIe

j }Dj=1, where D is the database size, eI
e

j ∈Rd is the image embedding
computed by an image encoder f(·) for the external image xe

j .1 In line with TPT (Shu et al., 2022),
the labeled training data is unavailable, the training pipeline cannot be modified, and the adaptation
is conducted online on a single image.

Overview. Figure 2 illustrates the retrieval-and-adaptation procedure of RA-TTA. In Step I, for a
test image, description-based retrieval selects relevant text descriptions and retrieves external im-
ages aligned with the selected text descriptions (§ 3.2). In Step II, description-based adaptation
calculates relevance scores for the retrieved images with respect to the test image, and both the rel-
evance scores and the initial prediction are fused to produce the augmented prediction (§ 3.3). Its
pseudocode is presented in Appendix B.

3.2 STEP I: DESCRIPTION-BASED RETRIEVAL

Figure 3 details the procedure of the description-based retrieval step. The retrieved images should
include the visible features of the target object in a test image xtest, which are pivotal for recognizing
the corresponding label y. To achieve this goal, multiple fine-grained visual features of each target
class are extracted offline by LLMs in the form of text descriptions, which can be represented as T =
∪C
c=1{tc,l}Ll=1. Based on the descriptions in T , we present a description-based retrieval approach to

retrieve images that include the pivotal features of xtest from D. The bi-modality of VLMs is fully
exploited first through image-to-text search (Left of Figure 3, § 3.2.1) and then through text-to-image
search (Right of Figure 3, § 3.2.2).

3.2.1 IMAGE-TO-DESCRIPTION SELECTION (LEFT OF FIGURE 3)

Robust Image-Text Alignment. The image-text alignment scores between a test image and the
text descriptions in T are calculated for selecting text descriptions. Misleading descriptions may
be inaccurately aligned with the test image, mainly due to non-target objects, likely leading to the
retrieval of irrelevant images. To select only relevant descriptions without misleading ones, we
enable a VLM to analyze a test image from multiple perspectives, thereby understanding it com-
prehensively. Specifically, the standard augmentation A(·), including random resized cropping and
random flipping, is applied to a test image xtest, obtaining the augmented images A={xm}Mm=0,
where M is the number of augmented images by A(·) and the original test image xtest is denoted
as x0. Subsequently, the alignment scores of each description tc,l are calculated with the images in
A. That is, Stc,l={salignm,tc,l

|xm ∈A}, where salignm,tc,l
=cos(eIm, eTc,l), e

I
m=f(xm), and eTc,l=g(tc,l).

Although misleading descriptions may result in inaccurately elevated alignment scores for certain
augmentations, the majority of augmentations overlook these misleading descriptions; the scores of

1For simplicity, we refer to eI and eT as an image and a text description, respectively, omitting the term
“embedding” hereafter.
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Figure 3: Description-based retrieval. Left: Image-to-description selection. A test image is aug-
mented to produce multiple views, and the image-text alignment scores between the augmented
images and the text descriptions are calculated. The top-K descriptions are selected based on the
third quartile (Q3) value of the alignment scores of each description to avoid misleading and irrel-
evant descriptions. Right: Description-to-image retrieval. The selected descriptions are grouped
by their corresponding class, and those in each group are embedded and averaged to build a text
prototype. Finally, the external images closest to the prototypes are retrieved.

the misleading descriptions are generally low, with only a few exceptions. Thus, to avoid select-
ing the misleading descriptions (i.e., features), the p-percentile of the scores in Stc,l is used as the
representative image-text alignment score for the description tc,l, which is represented by

saligntc,l
= percentilep(Stc,l) = percentilep({s

align
m,tc,l

}Mm=0), (2)
where percentilep(·) returns the 100p-th (p ∈ [0, 1]) percentile of a set. We choose p=0.75, with
which the function returns the third quartile (Q3) value of Stc,l . Consequently, the robust alignment
scores of the test image xtest with the text descriptions in T become

ST = {saligntc,l
| tc,l ∈ T }. (3)

Description Selection. Since the high image-text alignment score of an image-text pair represents
the high correspondence between them, the top KD descriptions in TKD

are selected as the pivotal
features of xtest using the alignment scores in ST , which can be represented by

TKD
= {tc,l | saligntc,l

∈ Top-K(ST ;KD)}, (4)
where Top-K( · ;K) is a function that selects the K highest values from a set.

3.2.2 DESCRIPTION-TO-IMAGE RETRIEVAL (RIGHT OF FIGURE 3)

Description Grouping. Before conducting the retrieval, we arrange the selected descriptions be-
cause those of different classes could be mixed, where the corresponding classes of the descriptions
in TKD

are denoted as C={c | tc,l∈ TKD
}. The text descriptions in TKD

are grouped by their corre-
sponding class as G={Gc}c∈C , where Gc includes those of a class c and represents the semantics of
the class c with the features indicated by the belonging descriptions.

Prototype-Based Retrieval. Based on the descriptions in Gc, we retrieve the external images that
can be interpreted as representing the semantics of Gc and attach c as their pseudo label. First, the
embeddings of the descriptions in Gc are simply averaged to build a text prototype ēTGc

that serves as
the representative embedding of the semantics in Gc. Then, the alignment scores between ēTGc

and
the embeddings of external images in D={eIe

j }Dj=1 are calculated, and the top KS external images
are retrieved using the alignment scores, which can be represented as

RGc
={xe

j | s
align
j ∈ Top-K(SD;KS)}, (5)

where SD= {salignj }Dj=1 and salignj = cos(eI
e

j , ēTGc
).2 The same procedure is applied separately to

each group Gc. Since the same number (KS) of images are retrieved for each group, the total number
of retrieved images is N = KS × |C|. Finally, R = {RGc}c∈C is fed to the next step.

2K-nearest neighbor search can be performed very efficiently with conventional vector databases.
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3.3 STEP II: DESCRIPTION-BASED ADAPTATION

By leveraging the set of retrieved external images, R={RGc}c∈C , the VLM’s initial prediction for
a test image xtest is adjusted by an additional prediction based on R, where the initial prediction
p is conducted as in Eq. (1). Since each set of external images, RGc , is associated with its pseudo
label c, we first calculate the relevance score from xtest to the set of external images, RGc

, which is
then used to determine the probability of xtest belonging to the corresponding class c. Interestingly,
to calculate this relevance score, the selected text descriptions, TKD

in Eq. (4), are exploited again
(§ 3.3.1), where our description-based adaption kicks in. Both initial and additional predictions are
fused to produce the augmented prediction (§ 3.3.2). In short, this adaptation step can be viewed
as an ensemble procedure in which each retrieved external image casts a vote for the label of xtest

based on its pseudo label.

3.3.1 DESCRIPTION-BASED RELEVANCE

Target 
semantics 

𝑑!

𝑑"𝒆!"

𝒆#"

𝑑" − 𝑑!

Semantic 
gap

𝒆𝒢!
%

Figure 4: Semantic gap.

Semantic Gap. Since we use the pivotal features (i.e., text
descriptions) of a test image to retrieve external images, it is
logical to employ these descriptions to assess the relevance
between a test image and an external image. We intend to
measure the disparity between two images concerning a spe-
cific semantic aspect. We specifically introduce the semantic
gap between two images, which pertains to the specific se-
mantic aspect, in Definition 3.1. As illustrated in Figure 4, it
is the difference between the distances from each image em-
bedding to the embedding representing the semantic aspect of interest. For instance, when exam-
ining the front grille of vehicles, the semantic gap would signify the disparity between two vehicle
images in terms of the clarity with which they depict the front grille.

Definition 3.1 (SEMANTIC GAP). Given the descriptions in Gc, the semantic gap between two
images xi and xj is the absolute difference between their cosine similarities with the text prototype
ēTGc

of the descriptions in Gc in the embedding space of a VLM,

gap(xi, xj ,Gc) = |cos(eIi , ēTGc
)− cos(eIj , ē

T
Gc
)|, (6)

where eIi = f(xi), eIj = f(xj), and ēTGc
is the text prototype of the descriptions in Gc computed by

averaging their embeddings.

Semantic Relevance Computation. Through the concept of the semantic gap, we now derive the
relevance score of a test image to the set of external images for a specific class. To enhance its
reliability and robustness, we devise two simple yet effective techniques. First, we reuse the set
A of augmented images for the test image xtest instead of considering it only. As a result, the
relevance score is aggregated from the pair-wise semantic gaps between (M+1) augmented images
and KS external images. Second, the significance of each image to a text prototype is factored into
the relevance score. If an image is located closer to the text prototype in the embedding space of a
VLM, the image should be considered more importantly in aggregating the pair-wise semantic gaps.
Mathematically, a matrix CGc ∈ R(M+1)×KS has the pair-wise semantic gaps between xi ∈ A and
xe
j ∈ RGc , which can be represented as

CGc =
[
gap(xi, x

e
j ,Gc) |xi∈A,xe

j∈RGc

]
∈ R(M+1)×KS . (7)

For the significance of each image, we additionally define two weight vectors U ∈ R(M+1) and
V ∈ RKS : U contains the cosine similarity between the embedding of xi ∈ A and the prototype
ēTA of A, where ēTA is calculated by averaging the embeddings of the descriptions in TKD

(see
Eq. (4)); V contains the cosine similarity between the embedding of xj ∈ RGc

and ēTGc
(see Eq. (6)).

Considering these weight vectors, the pair-wise semantic gaps in CGc
are aggregated by the optimal

transport (OT) framework (Villani et al., 2009), and the relevance score to a class c is formulated by

srelGc
=

1

OT dist(CGc ,U ,V) + 1
, (8)

where OT dist(·, ·, ·) returns the aggregated distance based on the OT framework. The same pro-
cedure repeats for each group RGc

(i.e., for each class), resulting in RS={srel
Gc

| c∈C}. We further
provide the details of OT in Appendix A.
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3.3.2 KNOWLEDGE FUSION FOR ADAPTATION

We derive the retrieval-based prediction p̂ for xtest using the relevance scores in RS, and the pre-
diction probability for the image xtest of being a class c can be represented as

p̂(c |xtest) =


exp(srelGc

)/τ)∑
c∈C exp(s

rel
Gc
)/τ)

if c ∈ C

0 otherwise
. (9)

Finally, we fuse the retrieval-based prediction p̂ and the initial prediction p using the entropy of each
prediction, leading to the augmented prediction paug for the image xtest,

paug(c |xtest) = α× p(c |xtest) + (1− α)× p̂(c |xtest). (10)

Here, α= exp(1/(1+H))

exp(1/(1+H))+exp(1/(1+Ĥ))
, where H (or Ĥ) is the entropy of P (or P̂ ).

4 EVALUATION

4.1 EXPERIMENT SETTING

Datasets. To evaluate the zero-shot transferability, we use standard transfer learning and natural
distribution shift benchmarks, including 17 datasets that span a wide range of image classifica-
tion tasks: ImageNet (Deng et al., 2009), Flowers102 (Nilsback & Zisserman, 2008), DTD (Cimpoi
et al., 2014), Oxford pets (Parkhi et al., 2012), Stanford cars (Krause et al., 2013), UCF101 (Soomro
et al., 2012), Caltech101 (Fei-Fei et al., 2004), Food101 (Bossard et al., 2014), SUN397 (Xiao et al.,
2010), FGVC aircraft (Maji et al., 2013), RESISC45 (Cheng et al., 2017), Caltech256 (Griffin et al.,
2007), and CUB200 (Wah et al., 2011) as transfer learning benchmarks, and natural distribution shift
benchmarks, including ImageNet adversarial (Hendrycks et al., 2021b), ImageNet V2 (Recht et al.,
2019), ImageNet rendition (Hendrycks et al., 2021a), and ImageNet sketch (Wang et al., 2019). The
details of each dataset can be found in Appendix C.1.

Compared Methods. We compare RA-TTA against four kinds of VLM adaptation methods that
do not require training procedures before test time: (1) zero-shot CLIP baselines, (2) tuning-based
methods, (3) text description-based methods, and (4) retrieval-based methods. For zero-shot CLIP
baselines, we include two zero-shot baselines of CLIP using a default prompt “a photo of a/an
<Class>,” and the ensemble of 80 hand-crafted prompts (Radford et al., 2021). For tuning-based
methods, we use TPT (Shu et al., 2022), C-TPT (Yoon et al., 2024), and RLCF (Zhao et al., 2024b),
which update parameters through back-propagation from VLM outputs for a test image. As text
description-based methods, we use VisDesc (Menon & Vondrick, 2022), WaffleCLIP (Roth et al.,
2023), and CuPL (Pratt et al., 2023), for which we generate their text descriptions using GPT-3.5
Turbo (Ouyang et al., 2022) with their own templates. For retrieval-based methods, we include
SuS-X-LC (Udandarao et al., 2023) and Neural Priming (Wallingford et al., 2023), which retrieve
external images from an image database offline and leverage them for VLM adaptations.

Web-Scale External Image Database Construction. We construct the database for retrieval-based
methods, including SuS-X-LC, Neural Priming, and our proposed RA-TTA, with the following
objectives: ensuring relevance to downstream tasks and preserving the diversity and noisy nature
of a web-scale database. Thus, we explore LAION2B (Schuhmann et al., 2022) dataset that consists
of 2B web-scale image-caption pairs for the construction. Following keyword-based fast string
matching on LAION2B (Wallingford et al., 2023; Parashar et al., 2024), we downloaded images
whose text captions contain the target classes and used the downloaded images as external images.
This approach offers several advantages: it ensures the relevance and preserves the nature of a web-
scale database (Parashar et al., 2024), not to mention reproducibility. While using all images in
LAION2B may seem appealing, it requires 100 TB of storage. We conjecture that our database
achieves a practical balance between leveraging web-scale images and the complexity of evaluation.
The details for the image database construction can be found in Appendix C.2

Implementation Details. We implement RA-TTA using CLIP (Radford et al., 2021) with the ViT-
B/16 model (Dosovitskiy et al., 2021) as a VLM. We use a standard augmentation for A(·), including
random cropping and horizontal flipping, and set the augmentation size M to 100. For generating
text descriptions, we use GPT-3.5 Turbo (Ouyang et al., 2022) and CuPL (Pratt et al., 2023) style
hand-written templates. We configure K for Top-K operations at KD = 20 and KS = 20. We use
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Table 1: Overall results for test-time adaptation (or transfer learning). We report the top-1
accuracy (%) for 13 standard transfer learning datasets. The “Avg.” column indicates the average
accuracy of 13 datasets. The best results are in bold, and the second best results are underlined.
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CLIP 66.76 67.19 44.50 88.14 65.27 64.92 92.78 85.40 62.55 24.60 55.70 82.80 58.08 66.05
Ensemble 68.37 65.85 45.21 88.20 66.34 67.41 93.77 85.41 65.79 24.39 58.35 85.81 58.61 67.19
TPT 69.08 69.18 47.04 87.44 66.55 68.04 93.79 86.34 65.32 23.31 56.84 85.37 60.11 67.57
C-TPT 68.32 69.43 45.27 88.25 65.48 65.50 93.39 84.95 64.55 24.39 56.02 85.25 58.84 66.90
RLCF 68.61 67.72 46.40 86.73 66.51 66.98 93.83 86.09 64.92 23.43 56.89 85.18 57.91 67.02
VisDesc 69.09 71.86 50.41 88.55 65.48 69.52 94.81 86.43 68.25 25.59 57.81 88.17 60.13 68.93
WaffleCLIP 69.05 72.59 48.33 89.79 64.60 69.13 94.61 86.85 67.17 25.25 63.31 88.10 59.83 69.12
CuPL 68.98 76.13 58.04 91.36 66.78 67.80 92.98 86.05 66.31 28.89 63.98 87.68 60.18 70.34
SuS-X-LC 69.28 75.92 58.16 91.41 66.50 66.88 93.67 85.91 67.04 28.38 64.27 88.55 58.58 70.35
Neural Priming 69.13 72.15 55.61 89.51 65.90 68.65 94.56 86.40 67.44 26.82 62.67 88.35 56.94 69.55
RA-TTA (Ours) 69.53 78.11 59.99 92.11 69.43 70.81 94.84 86.43 68.78 31.51 65.14 88.86 62.45 72.15

a temperature parameter τ of 0.01, which is the default scale value of CLIP. We use the aforemen-
tioned configurations across all datasets because dataset-specific configurations are not preferred in
TTA. Further implementation details on the compared methods can be found in Appendix C.3. All
implementations are conducted using PyTorch 2.3.0 on an NVIDIA RTX 4090.

4.2 MAIN RESULTS

Table 1 shows a comparative analysis of RA-TTA against the compared methods for 13 transfer
learning benchmarks, evaluating how much the given methods can improve the zero-shot capability
of VLMs. RA-TTA outperforms all existing methods for 12 out of 13 datasets, with an average
improvement of 2.49–8.45% over the baselines, demonstrating its effectiveness in enhancing the
knowledge of VLMs at test time. The tuning-based methods (Shu et al., 2022; Yoon et al., 2024;
Zhao et al., 2024b) cannot leverage knowledge from an external database and the contextual infor-
mation from textual modality, thus failing to adapt. On the other hand, RA-TTA achieves the best
performance by leveraging the external knowledge and the textual information, even outperforming
text description-based methods (Menon & Vondrick, 2022; Pratt et al., 2023; Roth et al., 2023) that
adopt fine-grained text descriptions but cannot use external knowledge unlike RA-TTA.

RA-TTA is particularly effective in a specialized domain dataset, like RESISC45 for satellite im-
ages, and fine-grained datasets, such as FGVC aircraft, Flowers102, and Stanford cars, each of
which requires external knowledge due to the lack of pre-training data and the inherent complexity
of semantics, respectively. Compared to the previous retrieval-based methods, including SuS-X-
LC (Udandarao et al., 2023) and Neural Priming (Wallingford et al., 2023) that retrieve a fixed set of
external images for a given class, RA-TTA retrieves a customized set of external images for the test
image by identifying its pivotal features through the fine-grained descriptions.

Table 2: Performance for natural distribution
shifts. We report the top-1 accuracy (%) for four Im-
ageNet variants. The “Avg.” column indicates the
average accuracy of 4 datasets.

IN-A IN-V2 IN-R IN-K Avg. (4)

CLIP 47.51 60.80 73.98 46.19 57.12
Ensemble 50.04 61.89 77.58 48.29 59.45
TPT 54.39 63.48 77.27 47.95 60.77
C-TPT 50.28 62.47 75.68 47.42 58.96
RLCF 56.52 63.37 77.04 48.09 61.26
VisDesc 50.17 62.76 75.25 48.25 59.11
WaffleCLIP 50.51 62.68 75.81 48.73 59.43
CuPL 49.73 62.52 76.84 48.49 59.32
SuS-X-LC 49.64 62.96 77.02 48.81 59.61
Neural Priming 49.32 62.71 76.58 48.74 59.34
RA-TTA (Ours) 55.78 63.38 78.98 49.97 62.03

Moreover, Table 2 illustrates the perfor-
mance of RA-TTA for ImageNet vari-
ants (Hendrycks et al., 2021b; Recht et al.,
2019; Hendrycks et al., 2021a; Wang et al.,
2019) which are typically used to evaluate
the VLMs’ robustness to natural distribution
shifts, such as artistic rendition and black
and white sketches (Radford et al., 2021; Shu
et al., 2022). RA-TTA outperforms the com-
pared methods in terms of the average accu-
racy, demonstrating that RA-TTA can cope
with natural distribution shifts effectively.
Notably, the description-based methods (e.g.,
CuPL (Pratt et al., 2023)) that employ only
fine-grained descriptions without help from
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external knowledge show minor improvements or are even worse than Ensemble (Radford et al.,
2021). However, RA-TTA improves the accuracy by 9.18% over Ensemble, indicating that the ef-
fectiveness of RA-TTA arises not only from the use of fine-grained descriptions but also from the
sophisticated integration of external knowledge.

The standard deviations for Tables 1 and 2 are presented in Appendix D.1 owing to the lack of space.

4.3 ABLATION STUDY

Table 3: Ablation studies. We report the
top-1 accuracy (%) on the FGVC aircraft
dataset, where the benefit RA-TTA is signifi-
cant. Description-based retrieval, description-
based adaptation, and image weighting are dis-
abled separately.

Retrieval Adaptation Weighting FGVC aircraft
Var. 1 ✗ ✗ ✗ 29.16
Var. 2 ✓ ✗ ✗ 30.51
Var. 3 ✓ ✓ ✗ 31.38

RA-TTA ✓ ✓ ✓ 31.51

In Table 3, we conduct ablation studies to un-
derstand the impact of the description-based re-
trieval, the description-based adaptation, and the
image weighting scheme. (1) If the description-
based retrieval is disabled, the retrieval procedure
in Section 3.2 is simply replaced by image-to-
image similarity search. (2) If the description-
based adaptation is disabled, the semantic gap
in Definition 3.1 is simply replaced by image-to-
image cosine similarity. (3) If the image weight-
ing scheme is disabled, the weight vectors U and
V in Eq. (8) are not used for aggregating the pair-
wise distances. We prepare three different variants, denoted by Var. 1, Var. 2, and Var. 3 in Table 3,
by disabling three, two, and one component(s), respectively. While the description-based retrieval is
effective by itself (compare between Var. 1 and Var. 2), its effect is clearly boosted when combined
with the description-based adaptation (compare between Var. 2 and Var. 3). In addition, the image
weighting scheme adds a slight improvement (compare between Var. 3 and RA-TTA). Overall, all
three components are shown to be effective, supporting the superior performance of RA-TTA. More
results and implementation details can be found in Appendix D.2.

4.4 HYPERPARAMETER SENSITIVITY ANALYSIS

We conduct sensitivity analyses on four crucial hyperparameters which influence the performance
of RA-TTA. The results in Figure 5 report the averaged accuracy on 13 standard transfer learning
benchmarks. Refer to Appendix D.3 for more results.

• Effect of Augmentation Size. For mitigating the interfering effect of misleading descriptions,
RA-TTA conducts augmentations to analyze a test image from multiple perspectives. We analyze
the impact of the augmentation size M on the accuracy. As shown in Figure 5(a), increasing
the augmentation size improves the accuracy, with a plateau observed around 25. This result
suggests that while more augmentations are generally beneficial, the benefits diminish beyond a
certain point (around 25), where the accuracy stabilizes.

• Effect of KD for Description Selection. RA-TTA selects the top KD descriptions as the pivotal
features of a test image. Figure 5(b) demonstrates the accuracy concerning the KD. RA-TTA
performs best at KD = 20, after which the accuracy declines sharply. This result can be un-
derstood as increased KD may lead to selecting irrelevant or misleading descriptions, negatively
impacting the following retrieval and adaptation.

• Effect of KS for Image Retrieval. RA-TTA retrieves the top KS images using the selected
text descriptions. Figure 5(c) illustrates the effect of KS . As for KD, we can infer that the
accuracy drops because outlier images can be included as KS increases. However, the accuracy
remains stable across different values of KS , with no significant drop even as KS increases. This
result suggests that when aggregating the semantic gap, representing the significance weights of
retrieved images makes RA-TTA robust to the retrieved outlier images.

• Effect of Alignment Score Percentile. Figure 5(d) shows the accuracy based on the percentile
value p for rejecting misleading descriptions. The best accuracy is achieved around 0.75, the third
quartile value, which is optimal for selecting relevant descriptions while rejecting misleading
descriptions. When the value is set too high (e.g., 1.0), the accuracy degrades, possibly due to the
inclusion of misleading descriptions.
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(a) Augmentation size. (b) # of selected descriptions. (c) # of retrieved images. (d) Score percentile.

Figure 5: Effects of the four hyperparameters on the accuracy. The green dashed line denotes the
accuracy of SuS-X-LC as a strong baseline.

4.5 QUALITATIVE ANALYSIS

In Figure 6, we present illustrative examples of the description-based retrieval of RA-TTA on the
Stanford Cars (Krause et al., 2013) and RESISC45 Cheng et al. (2017) datasets. We observe in Fig-
ure 6 that description-based retrieval allows us to retrieve external images with the pivotal features
of test images because the retrieval procedure focuses on a specific piece of information, i.e., a piv-
otal feature, without being distracted by other irrelevant information. Additional visualizations are
provided in Appendix D.7.

Test image Retrieved images

: Pivotal features

GT: 2012 Acura RL Sedan

GT: Thermal power plant

GT: Overload

GT: 2012 Porsche Panamera Sedan

I2T

I2T

I2T

T2I

T2I

I2T

T2I

T2I

…exterior styling,
which includes a 
sleek, low-slung profile 
with four doors…

Selected text descriptions
…specific features such as 
the distinctive grille 
with the Acura logo, 
the swept-back headlights…

…prominent structures 
such as cooling towers, 
smokestacks, and…

…road bridge from 
a top-down perspective, 
clearly revealing 
the intersections…

I2T : Image-to-text search T2I : Text-to-image search

Figure 6: Examples of the images retrieved by our description-based retrieval on the Stanford Cars
and RESISC45 datasets. The results of the image-to-description selection and the description-to-
image retrieval are shown individually. A pivotal feature is indicated by a red box in the images.

5 CONCLUSION

In this paper, we propose RA-TTA (Retrieval-Augmented Test-Time Adaptation), designed to lever-
age the external knowledge from a web-scale image database on-the-fly. By fully exploiting the text
descriptions, which represent fine-grained visual details, the description-based retrieval ensures to
retrieve external images with the pivotal features of a test image, and the description-based adapta-
tion allows a VLM to adapt to the test image using the inherent semantics of the retrieved images.
Our extensive experimental results demonstrate superior zero-shot transferability compared to the
state-of-the-art methods across 17 datasets. Overall, we believe that our work sheds light on the
effectiveness of external knowledge for the zero-shot transfer of VLMs.
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This work adheres to the ethical guidelines and principles of ICLR, ensuring that no harm was done
to individuals, groups, or environments during the study. A web-scale external image database may
contain problematic images if it is constructed carelessly. Even though we use a previous version
of LAION2B as the data source, we do not include the known problematic images, because normal,
unproblematic images are selected by querying the class names of our downstream tasks. Since a
cleaned version of LAION2B has been released just a month ago, to further strengthen our ethical
standard, we will reconstruct our external image database using the cleaned version.

REPRODUCIBILITY STATEMENT

In accordance with ICLR’s reproducibility guidelines, we provide an anonymized repository con-
taining the code used for our experiments: https://anonymous.4open.science/r/RA_
TTA_for_VLMs.
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A DISCUSSION

A.1 EXTENDED RELATED WORKS AND PRELIMINARY

Training-free Adaptation Methods for VLMs. Training-free adaptation methods for
VLMs (Zhang et al., 2022; 2023; Zhu et al., 2023; Wang et al., 2024b) have aimed to adapt VLMs
to downstream tasks without updating learnable parameters. They can conduct the adaptation effi-
ciently because they do not require backpropagation. Tip-Adapter (Zhang et al., 2022) introduced
a non-parametric cache model that stores the embedding of few-shot training images and the cor-
responding labels. For adaptation, Tip-Adapter computes the similarities between the embeddings
in the cache model and a test image, uses them as a weight to aggregate the labels in the cache
model, and integrates the aggregated pseudo-labels with the logits of CLIP. In order to improve
Tip-Adapter, CaFo (Zhang et al., 2023) added a vision foundation model called DINO, synthetic
images from DALL-E (Ramesh et al., 2021) to expand the few-shot training data, and generated
text descriptions from GPT-3 to use the richness of language context. APE (Zhu et al., 2023) im-
proved Tip-Adapter by extracting useful features from the cache model, and CLIP-GDA (Wang et al.,
2024b) applied the Gaussian Discriminant Analysis (GDA) to create a feature-based classifier. How-
ever, the training-free adaptation methods only focused on adapting VLMs without backpropagation
and did not account for using external knowledge. In contrast, the goal of RA-TTA is leveraging
external knowledge to complement the absent knowledge in the pre-trained knowledge, which is
orthogonal to the objective of the training-free methods.

Historical knowledge-based Adaptation for VLMs. Recent VLM adaptation approaches have
leveraged the past knowledge of historical test samples using memory (Karmanov et al., 2024; Zhang
et al., 2024c;b) or additional learnable models (Ma et al., 2023). DMN (Zhang et al., 2024c) pro-
posed the use of a memory buffer to accumulate the features of historical test samples, which are
then incorporated into a new test sample. TDA (Karmanov et al., 2024) introduced a negative mem-
ory, which stores knowledge that indicates the absence of certain classes. HisTPT (Zhang et al.,
2024b) proposed three types of memories: local, hard, and global, each storing different past knowl-
edge. SwapPrompt (Ma et al., 2023) used an exponential moving average prompt that is updated
by accumulating past prompts. While these methods only store past knowledge, which could be
irrelevant for unseen test samples, external knowledge has wide knowledge coverage compared to
past knowledge and thus can provide informative knowledge for unseen test samples.

Optimal Transport. Optimal Transport (OT) (Villani et al., 2009) is a framework for calculating the
distance between two distributions, typically represented by sampled data points. Mathematically,
each distribution is formulated as

U =

M∑
i=1

uiδxi
and V =

N∑
j=1

vjδyj
, (11)

where xi is a sample from U , ui is a probability mass of xi, i.e.,
∑M

i=1 ui=1, and δxi is a Dirac delta
function placed at xi. The same definition applies for V . Here, M and N denote the number of data
points sampled from U and V , respectively. When calculating the distance, OT requires a disparity
matrix C representing pairwise disparities between samples from the two distributions. Then, to
find the optimal transportation plan Γ∗, the optimization problem of OT is formulated as

min
Γ∈Π(u,v)

⟨Γ,C⟩ − λH(Γ), Π(u,v) =
{
Γ ∈ RM×N

+

∣∣ Γ1N = u, Γ⊤1M = v
}
, (12)

where C∈RM×N is a disparity matrix where each element ci,j represents the disparity between xi

and yj , u∈RM is a probability mass vector whose i-th element is ui, v∈RN is a probability mass
vector whose j-th element is vj , and H(Γ) = −

∑
i,j Γij log Γij is an entropic regularizer for an

efficient solution using the Sinkhorn-Knopp algorithm (Cuturi, 2013). 1N denotes the all-one vector
of dimension N . Using the optimal solution Γ∗, the distance between U and V is ⟨Γ∗,C⟩.

A.2 WHY OPTIMAL TRANSPORT IS USED TO CALCULATE THE RELEVANCE SCORE?

A key advantage of the OT framework is its flexibility to incorporate a user-defined disparity
function to measure the distance between two distributions. In RA-TTA, a novel disparity (i.e.,
cost) function called semantic gap is introduced to calculate the semantic disparity between a test
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image and a retrieved image. Moreover, we adopt two techniques to enhance the reliability and
robustness of the adaptation procedure:

• We reuse the augmented images of the test image, previously employed in description-based
retrieval. As a result, we have the test image set A (comprising the test image and its augmented
images) and the retrieved image set RGc that is related to the selected features of class c.

• We represent the importance of each image within these sets using alignment scores because the
importance of individual images may vary. This importance is normalized, allowing the two sets
to be interpreted as probability distributions.

Thus, calculating the distance between the test image and the retrieved images is transformed into
calculating the distance between two distributions using our novel disparity function, semantic gap.
Consequently, the optimal transport framework is adopted in this context.

B PSEUDOCODE OF RA-TTA

The overall procedure of RA-TTA is described in Algorithm 1, which is self-explanatory.

Algorithm 1 RA-TTA: Overall Procedure

Require: a test image xtest, text descriptions T =∪C
c=1{tc,l}Ll=1, an external image vector database D, an

image encoder f(·), a text encoder g(·), augmentation size M , K for description selection KD , K for
image retrieval KS , percentile value p

Ensure: final prediction paug

1: /* STEP I: DESCRIPTION-BASED RETRIEVAL IN § 3.2 */
2: /* IMAGE-TO-DESCRIPTION SELECTION IN § 3.2.1 */
3: ST ← RobustAlignment(xtest, T ,M, p, f, g)
4: TKD ← DescriptionSelction(ST ,KD, T )
5: /* DESCRIPTION-TO-IMAGE RETRIEVAL IN § 3.2.2 */
6: G ← DescriptionGrouping(TKD )
7: R← PrototypeBasedRetrieval(G,D,KS , g)
8: /* STEP II: DESCRIPTION-BASED ADAPTATION IN § 3.3 */
9: /* DESCRIPTION-BASED RELEVANCE SCORE COMPUTATION IN § 3.3.1 */

10: C← SemanticGapComputation(xtest,G,R, f, g)
11: RS ← RelevanceScoreComputation(C, TKD ,G)
12: /* KNOWLEDGE FUSION IN § 3.3.2 */
13: p̂← RetrievalBasedPrediction(RS)
14: p← InitialPrediction(xtest, T , f, g)
15: paug ← Fusion(p̂, p)
16: return paug;

C FURTHER DETAILS FOR EVALUATION

C.1 DETAILS OF EVALUATION DATASETS

In Table 4, we provide detailed statistics on the evaluation datasets. We use the dataset configuration
of CoOp (Zhou et al., 2022) for the datasets except Caltech256 and RESISC45, which CoOp does
not handle. For Caltech256, we employ a test split from SuS-X (Udandarao et al., 2023), and for
RESISC45 (Cheng et al., 2017), we adopt a test split as described in (Neumann et al., 2020).

C.2 DETAILS OF EXTERNAL IMAGE DATABASE CONSTRUCTION

To construct a web-scale external image database, we explore the text captions of
LAION2B (Schuhmann et al., 2022) and download the images whose captions contain the target
class name, such as “Chevrolet Impala.” Specifically, the SQLite full-text search (FTS) table of the
text captions in LAION2B is first built, which enables efficient text search for the captions. Then, the
class names of downstream tasks are extracted from the definition of downstream tasks. The class
names are queried to the FTS table, and the table returns the indexes of the captions that contain the
queried class names. Finally, the corresponding images to the returned indexes are downloaded. The
database of each downstream task is constructed separately, and the database size for each down-
stream task is reported in Table 5. Because the database is constructed using the class name, the
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Table 4: Detailed statistics of datasets used in evaluations.
Dataset # Classes # Test samples Remark

ImageNet 1,000 50,000 WordNet categories classification
Flowers102 102 2,463 Fine-grained flowers classification
DTD 47 1,692 Textural classification
Oxford Pets 37 3,669 Fine-grained pets classification
Stanford Cars 196 8,041 Fine-grained car classification
UCF101 101 3,783 Human action classification
Caltech101 100 2,465 Object classification
Food101 101 30,300 Fine-grained food classification
Sun397 397 19,850 Scene classification
FGVCAircraft 100 3,333 Fine-grained aircraft classification
RESISC45 45 6,300 Remote sensing image scene classification
Caltech256 256 2465 Object classification
CUB200 200 5794 Fine-grained birds classification

ImageNet-V2 1,000 10,000 ImageNet variant of temporal shift
ImageNet-Sketch 1,000 50,889 ImageNet variant of sketches
ImageNet-Adversarial 200 7,500 ImageNet variant of adversarial samples
ImageNet-Rendition 200 30,000 ImageNet variant of artistic renditions

relevance of the database for each dataset to the corresponding task could be ensured (Wallingford
et al., 2023; Parashar et al., 2024).

Table 5: Detailed statistics of external image databases for the evaluation datasets.
Dataset D

ImageNet 10,695,986
Flowers102 2,128,144
DTD 452,735
Oxford Pets 1,328,173
Stanford Cars 374,413
UCF101 1,795,826
Caltech101 2,741,240
Food101 2,237,734
Sun397 6,267,408
FGVCAircraft 336,551
RESISC45 1,962,533
Caltech256 7,015,883
CUB200 644,720

The LAION2B consists of 2B image-caption pairs from the Web; thus, the downloaded images
contain the diversity of the Web. At the same time, the text captions of LAION2B are very noisy,
and, as shown in Figure 7, the downloaded image could be irrelevant to the queried class name
even if the caption contains the queried name, reflecting the Web’s noisy nature. Therefore, the
constructed databases preserve the nature of a web-scale image database.

C.3 DETAILS OF THE COMPARED METHODS

We evaluate ten methods to compare with our proposed RA-TTA. The implementation details for
the compared methods as follows.

• CLIP (Radford et al., 2021): A basic prompt “a photo of a/an <Class>” is used for the zero-shot
classification.3

• Ensemble (Radford et al., 2021): The ensemble of 80 hand-crafted prompts is used as a text
prompt.

• TPT (Shu et al., 2022): The official code4 released by the authors is used, and their default
hyperparameters are adopted.

3https://github.com/openai/CLIP
4https://github.com/azshue/TPT
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Query: PrisonQuery: Praying mantisQuery: Pelican Query: Bird house

Query: Banana Query: Ant Query: Hen

Figure 7: Examples of the downloaded noisy images with the corresponding queried class name
from ImageNet.

• C-TPT (Yoon et al., 2024): The official code5 released by the authors is used, and their default
hyperparameters are adopted.

• RLCF (Zhao et al., 2024b): The official code6 released by the authors is used, and their default
hyperparameters are adopted. The reward model is same with the main model.

• VisDesc (Menon & Vondrick, 2022): The official code7 released by the authors is used. The
default templates for generating text descriptions are adopted.

• WaffleCLIP (Roth et al., 2023): The official code8 released by the authors is used. The default
templates for generating text descriptions are adopted.

• CuPL (Pratt et al., 2023): The official code9 released by the authors is used. As remarked in
Appendix C.4, we slightly modified the default templates for generating text descriptions.

• SuS-X-LC (Udandarao et al., 2023): The official code10 released by the authors is used. Because
the validation dataset is unavailable in TTA, hyperparameter tuning for each dataset is prohibited.
Thus, the same hyperparameters are used across all datasets, which are reported to function well
in the original paper. For the fair comparison between the retrieval-based methods, including
SuS-X-LC, Neural Priming, and RA-TTA, the image database introduced in Appendix C.2 is
used for the retrieval.

• Neural Priming (Wallingford et al., 2023): The official code11 released by the authors is used,
and their default hyperparameters are adopted. As with SuS-X-LC, the image database introduced
in Appendix C.2 is used for the retrieval.

C.4 LLM TEMPLATES FOR GENERATING TEXT DESCRIPTIONS

In Table 6, we present the templates for GPT-3.5 Turbo (Ouyang et al., 2022) used to generate text
descriptions for each dataset. The templates are based on those from CuPL (Pratt et al., 2023), but
we slightly modified them for GPT-3.5 Turbo. Since the CuPL templates were initially designed for
text-davinci-002, which is based on GPT-3 and has now been deprecated, some of these templates
do not function as expected with GPT-3.5 turbo. For instance, when prompted with the original
CuPL template, “Describe an image from the internet of a goldfish,” GPT-3.5 turbo responds, “I
can’t access the internet to see the image of a goldfish.” Therefore, we carefully revised only those
templates that do not function properly with GPT-3.5 Turbo to ensure they work as intended.

5https://github.com/hee-suk-yoon/C-TPT
6https://github.com/mzhaoshuai/RLCF
7https://github.com/sachit-menon/classify_by_description_release
8https://github.com/ExplainableML/WaffleCLIP
9https://github.com/sarahpratt/CuPL

10https://github.com/vishaal27/SuS-X
11https://github.com/RAIVNLab/neural-priming
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Table 6: CuPL style hand-written templates for extracting text descriptions from LLMs.

Dataset CuPL style templates

ImageNet

- Describe a photo of {} {}.
- Describe what {} {} looks like.
- How can you identify {} {}?
- What does {} {} look like?
- Describe a photo of {} {} with distinctive visual features.
- A caption of an image of {} {}:

Flowers102

- What does {} {} flower look like.
- Describe the appearance of {} {}.
- Visually describe {} {}, a type of flower.
- A caption of an image of {} {}.

DTD

- What does {} {} material look like? Please explain the characteristics and provide examples of where it is typically found.
- What does {} {} surface look like? Please explain the characteristics and provide examples of where it is typically found.
- What does {} {} texture look like? Please explain the characteristics and provide examples of where it is typically found.
- What does {} {} object look like? Please explain the characteristics and provide examples of where it is typically found.
- What does {} {} thing look like? Please explain the characteristics and provide examples of where it is typically found.
- What does {} {} pattern look like? Please explain the characteristics and provide examples of where it is typically found.

Oxford Pets - Describe what {} {} pet looks like.
- Visually describe {} {}, a type of pet.

Stanford Cars

- How can you identify {} {}.
- Description of {} {}, a type of car.
- A caption of a photo of {} {}:
- What are the primary characteristics of {} {}?
- Description of the exterior of {} {}.
- What are the identifying characteristics of {} {}, a type of car?
- Describe an image of {} {}.
- What does {} {} look like?
- Describe what {} {}, a type of car, looks like.

UCF101
- What does a person doing {} look like.
- Describe the process of {}.
- How does a person {}.

Caltech101 - Describe what {} {} looks like.
- Describe a photo of {} {} with distinctive visual features.

Food101

- Visually describe {} {}.
- Describe what {} {} looks like.
- Describe a photo of {} {} with distinctive visual features.
- How can you tell that the food in a photo is {} {}?

SUN397
- Describe what {} {} looks like.
- How can you identify {} {}?
- Describe a photo of {} {} with distinctive visual features.

FGVC Aircraft - Describe {} {} aircraft.

RESISC45

- Describe a satellite photo of {} {}.
- Describe {} {} as it would appear in an aerial image.
- How can you identify {} {} in an aerial photo?
- Describe the satellite photo of {} {}.
- Describe an aerial photo of {} {}.

Caltech256 - Describe what {} {} looks like.
- Describe a photo of {} {} with distinctive visual features.

CUB200

- Describe what {} {}, a species of bird, looks like.
- What does {} {} look like.
- Visually describe {} {}, a type of bird.
- A caption of an image of {} {}, a type of bird.
- Describe the appearance of {} {}.
- What are the prominent features to identify {} {} bird.

ImageNet rendition

- Describe an art drawing of {} {}.
- Describe artwork showing {} {}.
- Describe a cartoon {} {}.
- Describe an origami of {} {}.
- Describe a deviant art photo depicting {} {}.
- Describe an embroidery of {} {}.
- Describe a graffiti art showing {} {}.
- Describe a painting of {} {}.
- Describe a sculpture of {} {}.
- Describe a black and white sketch of {} {}.
- Describe a toy {} {}.
- Describe a video game of {} {}.

ImageNet sketch - Describe how a black and white sketch of {} {} looks like.
- Describe a black and white sketch of {} {}.
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D ADDITIONAL EVALUATION RESULTS

D.1 MAIN RESULTS WITH STATISTICAL SIGNIFICANCE

In Tables 7 and 8, we report the standard deviation omitted in Tables 1 and 2, where the value after
“±” represents the standard deviation over five different runs. Overall, RA-TTA demonstrates robust
performance, exhibiting low variability across most datasets.

Table 7: Statistical significance for the results in Table 1.
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TPT 69.08
(±0.08)
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(±0.12)

47.04
(±0.23)

87.44
(±0.09)

66.55
(±0.06)

68.04
(±0.33)
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(±0.08)

86.34
(±0.15)

65.32
(±0.08)

23.31
(±0.21)

56.84
(±0.19)

85.37
(±0.17)

60.11
(±0.16)

67.57
(±0.15)

C-TPT 68.32
(±0.07)

69.43
(±0.16)

45.27
(±0.14)

88.25
(±0.13)

65.48
(±0.15)

65.50
(±0.20)
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(±0.22)
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(±0.21)
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(±0.22)

24.39
(±0.17)
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(±0.11)

58.84
(±0.30)
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(±0.17)

RLCF 68.61
(±0.24)
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(±0.31)
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(±0.23)
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(±0.20)

66.51
(±0.30)

66.98
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(±0.23)

23.43
(±0.27)

56.89
(±0.18)

85.18
(±0.11)

57.91
(±0.31)

67.02
(±0.23)

RA-TTA (Ours) 69.53
(±0.13)

78.11
(±0.22)

59.99
(±0.18)

92.11
(±0.13)

69.43
(±0.14)

70.81
(±0.18)
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(±0.08)
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(±0.11)
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(±0.03)

31.51
(±0.17)

65.14
(±0.08)

88.86
(±0.06)

62.45
(±0.22)

72.15
(±0.13)

Table 8: Statistical significance for the results in Table 2.

IN-A IN-V2 IN-R IN-K Avg. (4)

TPT 55.78
(±0.17)

63.48
(±0.14)

78.98
(±0.10)

47.95
(±0.12)

60.77
(±0.13)

C-TPT 50.28
(±0.22)

62.47
(±0.28)

75.68
(±0.07)

47.42
(±0.13)

58.96
(±0.18)

RLCF 56.52
(±0.18)

63.37
(±0.22)

77.04
(±0.05)

48.09
(±0.14)

61.26
(±0.15)

RA-TTA (Ours) 55.78
(±0.60)

63.38
(±0.35)

78.98
(±0.11)

49.97
(±0.10)

62.03
(±0.29)

D.2 RESULTS ON ABLATION STUDY

We present the implementation details for the variants of RA-TTA. For the image-to-image similar-
ity search of Var. 1, we use simple cosine similarity between image embeddings and retrieve KS

external images for a test image. To replace the semantic gap computation for Var. 2, we adopt
simple cosine similarity between image embeddings. To realize Var. 3, we just use uniform weights
vectors for U and V .

In Table 9, we present results on ablation study across the standard transfer learning benchmarks,
and the similar trends in Section 4.3 are observed, where description-based approaches, including
Var. 3 and RA-TTA, outperform other variants.

Table 9: Results on ablation study for test-time adaptation (or transfer learning).
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Var. 1 68.41 77.87 56.44 91.06 67.46 67.27 93.50 86.27 68.19 29.16 62.79 88.36 60.37 70.55
Var. 2 67.97 77.75 58.27 91.31 67.78 68.86 92.05 85.03 67.77 30.51 64.87 87.50 60.92 70.81
Var. 3 69.72 79.21 58.86 91.55 69.60 69.99 93.75 86.75 69.01 31.38 65.13 88.44 62.65 72.00

RA-TTA (Ours) 69.53 78.11 59.99 92.11 69.43 70.81 94.84 86.43 68.78 31.51 65.14 88.86 62.45 72.15

D.3 RESULTS ON SENSITIVITY ANALYSIS

We present hyperparameter sensitivity analyses on the standard transfer learning datasets, and the
similar trends in Section 4.4 are observed as shown in Figures 8–20.
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(a) Augmentation size. (b) # of selected descriptions. (c) # of retrieved images. (d) Score percentile.

Figure 8: Effects of the four hyperparameters on the accuracy of ImageNet-1k.
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(a) Augmentation size. (b) # of selected descriptions. (c) # of retrieved images. (d) Score percentile.

Figure 9: Effects of the four hyperparameters on the accuracy of Flowers102.
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(a) Augmentation size. (b) # of selected descriptions. (c) # of retrieved images. (d) Score percentile.

Figure 10: Effects of the four hyperparameters on the accuracy of DTD.
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(a) Augmentation size. (b) # of selected descriptions. (c) # of retrieved images. (d) Score percentile.

Figure 11: Effects of the four hyperparameters on the accuracy of Oxford pets.
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(a) Augmentation size. (b) # of selected descriptions. (c) # of retrieved images. (d) Score percentile.

Figure 12: Effects of the four hyperparameters on the accuracy of Stanford cars.
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(a) Augmentation size. (b) # of selected descriptions. (c) # of retrieved images. (d) Score percentile.

Figure 13: Effects of the four hyperparameters on the accuracy of UCF101.
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(a) Augmentation size. (b) # of selected descriptions. (c) # of retrieved images. (d) Score percentile.

Figure 14: Effects of the four hyperparameters on the accuracy of Caltech101.
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(a) Augmentation size. (b) # of selected descriptions. (c) # of retrieved images. (d) Score percentile.

Figure 15: Effects of the four hyperparameters on the accuracy of Food101.
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(a) Augmentation size. (b) # of selected descriptions. (c) # of retrieved images. (d) Score percentile.

Figure 16: Effects of the four hyperparameters on the accuracy of SUN397.
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(a) Augmentation size. (b) # of selected descriptions. (c) # of retrieved images. (d) Score percentile.

Figure 17: Effects of the four hyperparameters on the accuracy of FGVC aircraft.
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(a) Augmentation size. (b) # of selected descriptions. (c) # of retrieved images. (d) Score percentile.

Figure 18: Effects of the four hyperparameters on the accuracy of RESISC45.
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(a) Augmentation size. (b) # of selected descriptions. (c) # of retrieved images. (d) Score percentile.

Figure 19: Effects of the four hyperparameters on the accuracy of Caltech256.
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(a) Augmentation size. (b) # of selected descriptions. (c) # of retrieved images. (d) Score percentile.

Figure 20: Effects of the four hyperparameters on the accuracy of CUB200.

D.4 ANALYSIS OF COMPUTATIONAL AND MEMORY OVERHEAD FOR INFERENCE

Table 10: Inference time for TPT and RA-TTA. We report the
average GPU inference time per sample (s/sample) measured
on a single RTX4090 for the FGVC aircraft, Stanford Cars,
and RESISC45 datasets.

FGVC aircraft Stanford cars RESISC45 Avg. (3)

TPT 0.103 0.155 0.95 0.118
RA-TTA (Ours) 0.113 0.117 0.121 0.117

In the context of test-time adapta-
tion, the efficiency of adaptation at
test time is indeed a critical factor
to consider. In contrast to previous
TTA methods, RA-TTA needs to
retrieve proper external images for
each test image, potentially posing
a significant bottleneck. Thus, we
provide an analysis of computational complexity, including inference time and GPU peak mem-
ory. Based on Table 10, which shows the GPU inference time per sample (i.e., ms/sample) for
the representative test-time adaptation method, TPT (Shu et al., 2022), and RA-TTA, the inference
time of RA-TTA is comparable to that of TPT. This is because FAISS (Johnson et al., 2019), an ad-
vanced and efficient search engine typically used for RAG-based approaches, enables fast nearest-
neighbor search. Additionally, our description-based adaptation does not require backpropagation
(i.e., training-free), which also contributes to the efficiency of RA-TTA. Furthermore, because RA-
TTA does not require backpropagation for adaptation, it results in lower GPU peak memory com-
pared to TPT, which uses backpropagation to update learnable prompts, as shown in Table 11.

Table 11: GPU peak memory for TPT and RA-TTA. We report the GPU peak memory (MB) on the
FGVC aircraft, Stanford cars, and RESISC45 datasets.

FGVC aircraft Stanford cars RESISC45 Avg. (3)

TPT 2213.53 3718.75 1358.73 2430.33
RA-TTA (Ours) 905.63 984.75 911.43 933.94
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D.5 ANALYSIS OF USING DIFFERENT LLMS FOR GENERATING TEXT DESCRIPTIONS

Table 12: Performance when using text descriptions generated by
ChatGPT and Claude3. We report the top-1 accuracy (%) on the
FGVC aircraft, Stanford cars, and RESISC45 datasets. The em-
ployed LLMs are indicated with the method name.

FGVC aircraft Stanford cars RESISC45 Avg. (3)

CuPL+Claude3 28.05 66.38 57.33 50.59
CuPL+ChatGPT 28.89 66.78 63.98 53.22
RA-TTA+Claude3 30.93 68.82 61.92 53.89
RA-TTA+ChatGPT 31.51 69.43 65.14 55.36

The description-based retrieval
relies on the LLMs to generate
detailed text descriptions. Thus,
we analyze how different LLMs
might affect description quality
and the final adaptation perfor-
mance. We conduct an addi-
tional experiment using text de-
scriptions generated by Claude-
Sonnet for this analysis. We
compare the performance of CuPL (Pratt et al., 2023) to investigate the quality of text descriptions,
as CuPL can achieve better performance with improved descriptions. As shown in the first two
rows of Table 12, CuPL with the descriptions of GPT works better than CuPL with those of Claude,
implying that the text descriptions generated by GPT are better than those of Claude. Thus, dif-
ferent LLMs can affect description quality even with the same generation prompts. Also, the last
two rows of Table 12 show that RA-TTA with the descriptions of GPT outperformed RA-TTA with
those of Claude. This indicates that the better descriptions facilitates the adaptation of RA-TTA
more effectively by improving the relevance and quality of retrieved images. Notably, RA-TTA
with the text descriptions of Claude outperforms the performance of the corresponding CuPL (i.e.,
CuPL+Claude3 vs. RA-TTA+Claude3), demonstrating that RA-TTA effectively leverages external
knowledge even when the quality of the description is not very good.

D.6 ANALYSIS OF DATABASE SIZE

We conduct the analysis on adaptation performance, including adaptation accuracy, storage costs,
and inference time, with respect to the database size. For this, we use random sampling to build the
subset of the original database. As shown in Table 13, accuracy improves alongside storage costs as
the database size increases. This result is expected because the likelihood of including informative
samples for adaptation increases with a larger database, albeit at the expense of increased storage
costs. Regarding inference time, thanks to efficient search engines, such as FAISS (Johnson et al.,
2019), the increase in latency remains negligible, as shown in the last row of Table 13. Additionally,
because web-scale datasets often contain noises, the adaptation accuracy can be improved even with
a smaller database (i.e., less storage costs) by conducting sampling with advanced filtering tools.

Table 13: Effects of the database size on accuracy, storage costs, and inference time of RA-TTA.
We report the top-1 accuracy (%), storage costs (MB), and average GPU inference time per sample
(s/sample) measured on a single RTX4090 for the Stanford cars dataset. The percentage represents
the proportion of the sampled database to the original database. The values in the parentheses
indicate the number of images in a database.

5%
(13,720)

10%
(37,441)

20%
(74,882)

40%
(149,765)

60%
(224,647)

80%
(299,530)

Original
(374,413)

Accuracy 67.63 68.62 68.84 69.03 69.21 69.24 69.42
Storage costs (MB) 18.28 36.56 73.13 146.25 219.38 292.51 365.64
Inference time (s/sample) 0.106 0.106 0.107 0.111 0.113 0.113 0.117

D.7 ADDITIONAL VISUALIZATION

In Figure 21, we present illustrative examples of the rejected/selected descriptions in description-
based retrieval on the Stanford Cars (Krause et al., 2013) and RESISC45 Cheng et al. (2017) datasets.
Figure 21 illustrates that the selected descriptions pay attention to a specific piece of information,
namely a pivotal feature, whereas the rejected descriptions emphasize irrelevant features. Figure 22
briefly illustrates the workflow of RA-TTA on the Stanford Cars and RESISC45 datasets.
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GT: Thermal 
power plant

GT: 2012 Porsche 
Panamera Sedan

Test image
Selected text descriptions

with relevant features

You can identify a 2012 Porsche Panamera
Sedan by looking for its distinct body style,
four-door design, aggressive front fascia
and signature Porsche logo on the front
and rear of the vehicle.

Rejected text descriptions
with irrelevant features

The 2012 Porsche Panamera Sedan features
sporty exterior styling, which includes a
sleek, low-slung profile with four doors,
and wide wheel arches. It has a distinctive
sloping roofline and a four-door layout,
combining the elegance of a coupe.

A thermal power plant in a satellite photo
appears as a large industrial complex with
prominent structures like cooling towers,
boiler units, and smokestacks. The photo may
show heat emissions in the form of thermal
plumes from the cooling towers and steam
vents, as well as energy production.

A thermal power plant in an aerial
image would show large buildings with
tall chimneys and a network of power
lines connecting it to the grid. It also
have fuel storage areas, water
reservoirs, and roads for transport.

GT: Harbor

A satellite photo of a harbor typically shows
a body of water surrounded by land with
docks, piers, and boats. The harbor may
appear as a dark area within the surrounding
land, with watercraft visible in the water.

A satellite photo of a harbor typically
shows ships and boats docked along piers
and quays, with cranes and containers
visible for cargo handling. The layout of
the harbor, such as breakwaters can be
seen along with surrounding infrastructure.

Figure 21: Examples of the selected and rejected text descriptions in our description-based retrieval
on the Stanford Cars and RESISC45 datasets. The results of the rejected text descriptions and the
selected text descriptions are shown individually. An irrelevant feature is colored yellow in the
descriptions, while a relevant feature is colored red.
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appear as a dark area within the surrounding
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Retrieved images Refined prediction

…

…

…

Before refinement
: 2012 BMW 
M3 Coupe
After refinement 
: 2012 Porsche 
Panamera Sedan

Before refinement
: Industrial area

After refinement 
: Thermal power plant

Before refinement
: Parking lot

After refinement 
: Harbor

Figure 22: Examples of the brief workflow of RA-TTA on the Stanford Cars and RESISC45 datasets.
The test image is queried to select text descriptions that include relevant features, and then proper
images are retrieved based on those text descriptions. The initial prediction is refined with the help
of the retrieved images.
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