
Published as a conference paper at ICLR 2025

TOPER: TOPOLOGICAL EMBEDDINGS IN
GRAPH REPRESENTATION LEARNING

ABSTRACT

Graph embeddings play a critical role in graph representation learning, allowing
machine learning models to explore and interpret graph-structured data. However,
existing methods often rely on opaque, high-dimensional embeddings, limiting
interpretability and practical visualization.
In this work, we introduce Topological Evolution Rate (TopER), a novel, low-
dimensional embedding approach grounded in topological data analysis. TopER
simplifies a key topological approach, Persistent Homology, by calculating the
evolution rate of graph substructures, resulting in intuitive and interpretable vi-
sualizations of graph data. This approach not only enhances the exploration of
graph datasets but also delivers competitive performance in graph clustering and
classification tasks. Our TopER-based models achieve or surpass state-of-the-art
results across molecular, biological, and social network datasets in tasks such as
classification, clustering, and visualization.

1 INTRODUCTION

Graphs are a fundamental data structure utilized extensively to model complex interactions within
various domains, such as social networks (Leskovec et al., 2008), molecular structures (You et al.,
2018), and transportation systems (Duan et al., 2022). Their inherent flexibility, however, introduces
significant challenges when applied to machine learning tasks, primarily due to their irregular and
high-dimensional nature. Due to the fact that graph data lacks inherent ordering and consistent
dimensionality, traditional machine learning methods—designed for data in vector spaces—struggle
with it.

Graph Neural Networks (GNNs) have emerged as the state-of-the-art models for tackling graph
machine learning tasks due to their ability to learn effectively from graph-structured data. In the
predominant paradigm of message-passing GNNs, the process begins by generating node embeddings.
These embeddings can then be used in tasks such as node classification or link prediction. However,
for graph-related tasks, such as molecular property prediction, the embeddings must be aggregated
through a pooling layer to form graph-level representations. This method is computationally intensive,
largely because the generation and management of node embeddings as intermediate steps substan-
tially increase the overall computational burden. Ideally, an approach would allow for the direct
creation of graph embeddings, circumventing the need to generate node-level representations first.
Furthermore, these graph embeddings must be both low-dimensional and interpretable to maximize
their practical utility and efficiency in various applications.

Topological Data Analysis (TDA) is well-suited for directly constructing graph representations
without costly node embeddings. Topology studies the shape of data, and TDA primarily focuses on
the qualitative properties of space, such as continuity and connectivity (Coskunuzer and Akçora, 2024).
A particularly effective technique in TDA is Persistent Homology (PH), which tracks topological
features—like connected components and cycles—across various scales via a process known as
filtration. Filtration is adept at revealing both local and global structures within graphs. It proves
exceptionally useful for comparing graphs of different sizes that maintain the same inherent structure,
which may suggest similar properties in graph datasets. For instance, similar substructures in protein
interaction networks across different species may indicate comparable biological functions. By
focusing on data shape, PH proves invaluable in graph tasks that benefit from a graph-centric approach,
offering insights that might not be as apparent when focusing on individual node analysis. This shift
from a node-centric to a graph-centric perspective can dramatically improve the understanding and

1

Published as a conference paper at ICLR 2025

50 40 30 20 10 0 10
pivot (a)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

gr
ow

th
 (b

)

MUTAG
PROTEINS
COX2

(a) 3 DATASETS

10 8 6 4 2
pivot (a)

0.9

1.0

1.1

1.2

1.3

gr
ow

th
 (b

)

Class A
Class B

(b) MUTAG

100 80 60 40 20 0
pivot (a)

2

4

6

8

10

12

14

gr
ow

th
 (b

)

Class A
Class B

(c) IMDB-B

Figure 1: TopER Visualizations. In the figures above, each point represents an individual graph. On the left,
TopER is applied to three benchmark compound datasets using closeness sublevel filtration. The middle panel
zooms in on the red point cloud from the left, demonstrating TopER’s effectiveness in distinguishing between
classes within the MUTAG dataset. On the right, a TopER visualization for the IMDB-B dataset is displayed.

application of graph data in fields like bioinformatics and network analysis. However, the utility of
Persistent Homology is limited by the high computational demands involved in extracting topological
features during the filtration process, mainly due to its cubic time complexity (Otter et al., 2017).
This constraint reduces its practicality for large-scale graphs and has restricted the broader integration
of PH in graph representation learning.

With this work, we take a significant step forward in addressing the challenges of topological graph
representation learning and introduce Topological Evolution Rate (TopER). This novel approach
refines the Persistent Homology process to efficiently capture graph substructures, thereby mitigating
the significant computational demands of calculating complex topological features. As graph repre-
sentation learning aligns naturally with Topological Data Analysis, TopER excels in graph clustering
and classification tasks where it achieves the best rank in experiments. Furthermore, simplifying
graph data into a low dimensional space, TopER creates intuitive visualizations that reveal clusters,
outliers, and other essential topological features, as demonstrated in Figure 1. As a result, TopER
merges interpretability with efficiency in graph representation learning, providing an ideal balance
that can scale to large graphs.

To our knowledge, TopER is the first topology-based graph representation learning method that can
create low-dimensional, efficient, and scalable graph representations.

Our contributions can be summarized as follows:

• New Graph Embedding Method: We introduce TopER, a compact and computationally
feasible graph representation designed to capture the evolution of graph substructures.

• Interpretable Visualizations: TopER generates interpretable, low-dimensional embeddings,
enabling clear visualization of clusters and outliers. It excels in providing insights within
individual graph datasets and across multiple datasets, facilitating comparative analysis.

• Enhanced Use of Persistent Homology: TopER optimizes the filtration process in PH,
offering computational efficiency and compact outputs, while boosting the performance of
traditional PH methods.

• Theoretical Stability: We establish theoretical stability guarantees for TopER, ensuring that
the embeddings are reliable and robust across various filtration functions.

• Competitive Performance: Our extensive experiments on benchmark datasets demonstrate
that TopER delivers consistently competitive or superior performance in clustering and
classification tasks compared to state-of-the-art models.

2 RELATED WORK

Graph Representation Learning. Graph representation learning is a dynamic subfield of machine
learning, focusing on transforming graph data into efficient, low-dimensional vector representations
that encapsulate essential features of the data (Hamilton, 2020; Gao et al., 2019). These representa-
tions facilitate a deeper analytical understanding of graphs, which is critical for various applications
such as molecular graph property prediction (Dong et al., 2019).

2

Published as a conference paper at ICLR 2025

Graph Neural Networks. GNNs have revolutionized the analysis of graph data, drawing parallels
with the success of Convolutional Neural Networks in image processing (Errica et al., 2020). GNNs
utilize spectral and spatial approaches to graph convolutions based on the graph Laplacian and direct
graph convolutions, respectively (Bruna et al., 2014; Defferrard et al., 2016; Kipf and Welling, 2017).
Despite their success, GNNs often suffer from issues like over-smoothing and lack transparency,
making them less ideal for applications requiring interpretability (Günnemann, 2022).

TDA in Graph Representation Learning. TDA provides a robust and computationally efficient
framework to address the interpretability and over-smoothing issues present in GNNs (Aktas et al.,
2019). Persistent Homology, a key technique in TDA, has been applied successfully to graph
data, demonstrating potential to match or even exceed the performance of traditional methods in
classification and clustering tasks (Hensel et al., 2021; Demir et al., 2022; Hiraoka et al., 2024;
Immonen et al., 2024; Chen et al., 2024a; Loiseaux et al., 2024). However, the computational
intensity of PH limits its scalability (Hofer et al., 2019; Zhao et al., 2020; Akcora et al., 2022).

Graph Embeddings and Visualization. Graph embedding techniques, including spectral methods,
random walk-based approaches, and deep learning-based models, transform graph data into vector
representations to support tasks like visualization and machine learning (Cai et al., 2018; Goyal
and Ferrara, 2018; Xu, 2021). Approaches such as Laplacian Eigenmaps and DeepWalk have been
particularly effective in revealing clusters within graphs (Belkin and Niyogi, 2001; Perozzi et al.,
2014). However, these methods are predominantly applied to visualize a single graph in node
classification tasks, focusing on cluster identification (Wang et al., 2016; Mavromatis and Karypis,
2020; Tsitsulin et al., 2023). Furthermore, they often overlook domain-specific information, which
can limit their effectiveness in more specialized applications (Jin and Zafarani, 2020).

TopER addresses these challenges by combining the interpretative benefits of TDA with the analytical
strength of modern graph machine learning. Distinct from current approaches, TopER employs a
simplified filtration process to create embeddings that are both interpretable and computationally
efficient. By extending the filtration to multiple functions, TopER stands out as one of the first
methods to offer effective and interpretable visualizations of graph datasets, while also achieving
superior performance in clustering and classification tasks.

3 BACKGROUND

TDA has emerged as a promising approach in graph representation learning (Aktas et al., 2019).
Among its various techniques, persistence homology (PH) is notable for its robust capacity to quantify
and monitor topological features across different scales.

3.1 PERSISTENT HOMOLOGY FOR GRAPHS

Persistent Homology applies algebraic topology to reveal hidden shape patterns within data, capturing
these insights by tracking the evolution of topological features like components, loops, and cavities at
varying resolutions (Coskunuzer and Akçora, 2024). The PH process involves constructing filtrations,
obtaining persistence diagrams, and vectorizations. Our model, however, primarily utilizes the
filtration step, reformulating the evolution information in a novel manner.

In the crucial filtration step, PH decomposes a graph G into a nested sequence of subgraphs G1 ⊆
G2 ⊆ . . . ⊆ Gn = G. For each Gi, an abstract simplicial complex Ĝi is defined, forming a filtration of
simplicial complexes. Clique complexes are typical choices, where each (k + 1)-complete subgraph
in G corresponds to a k-simplex (Aktas et al., 2019). To obtain effective filtrations, utilizing relevant
filtration functions is essential.

Filtration Functions. Filtration functions are essential in PH. For a given graph G = (V, E), a
common approach is to define a node filtration function f : V → R, which establishes a hierarchy
among the nodes. By selecting a monotone increasing set of thresholds I = {ϵi}ni=1, this method
generates subgraphs Gi = (Vi, Ei) where Vi = {v ∈ V | f(v) ≤ ϵi} and Ei is the set of edges in
E with endpoints in Vi. This is called a sublevel filtration induced by f (See Figure 2). Similarly,
superlevel filtrations can be constructed by defining Vi = {v ∈ V | f(v) ≥ ϵi} for decreasing
thresholds (Aktas et al., 2019).

3

Published as a conference paper at ICLR 2025

Similarly, one can use edge filtration functions g : E → R to define such a filtration. Similarly,
by defining Ei = {ejk ∈ E | g(ejk) ≤ ϵi}, and Vi as the all endpoints of Ei, one can define
a nested sequence {Gi}ni=1. Especially, for weighted graphs, this method is highly preferable as
weights naturally defines an edge filtration function. The common node filtration functions are degree,
betweenness, centrality, heat kernel signatures, and node functions coming from the domain of the
datasets (e.g., atomic number for molecular graphs). Common edge filtration functions are Ollivier
and Forman Ricci curvatures, and edge weights (e.g. transaction amounts for financial networks).

Figure 2: Filtration. For G = G3 in both examples, the
top figure illustrates superlevel filtration with node degree
function for thresholds {1, 2, 3}. Similarly, the bottom figure
illustrates sublevel filtration for edge weights with thresholds
{1.5, 1.8, 2.1}.

We developed a new filtration function, Pop-
ularity, in addition to existing approaches,
to enhance the topological representation of
graph-structured data in our studies. Popu-
larity is similar to the degree function (New-
man, 2003), but also considers the aver-
age degree of neighboring nodes of a given
node v. This function enriches node filtra-
tion by incorporating broader neighborhood
information, potentially revealing deeper
insights into graph structure. Mathemat-
ically, for each node v in the graph, we
define the popularity function as: P(v) =
deg(v) +

∑
u∈N(v) deg(u)

|N (v)| , where deg(v) is
the degree of node v and N (v) denotes the
set of nodes adjacent to v. This function
incorporates 2-neighborhood information by giving more weight to high-degree (popular) neighbors.
Popularity can be considered an improved version of the degree function, as it also accounts for the
popularity of a node’s neighbors. The intuition is that if degree represents the number of friends,
popularity accounts for the popular friends (node neighbors with high degree) with greater weight.
Detailed descriptions of filtration functions are given in Appendix D.

4 TOPER: TOPOLOGICAL EVOLUTION RATE

The motivation for this paper is twofold. First, we aim to simplify and achieve computationally
feasible outputs in graph representation learning by leveraging the filtration argument in Persistent
Homology (PH). Second, we aim to create an effective low-dimensional embedding for graph datasets,
bridging the substantial gap in visualization capabilities highlighted earlier.

TopER innovatively extends the concept of filtration used in PH to track graph substructures more
efficiently. This reformulation reduces the computational overhead typically required for detailed
topological feature extraction. Unlike traditional Persistent Homology, which extracts costly topo-
logical features, TopER summarizes the filtration process through two key parameters derived via
regression: filtration sequences and evolution.

|V|

|E|
!! + #!$

%!

!" + #"$

|V|

|E|

fe
%"

!# + ##$

|V|

|E|

%#

!!
b

a !"
!#

Filtration and line fitting

Descriptors

Figure 3: TopER steps. The filtration process on three differ-
ent graphs using node or edge filtration. The graphs undergo
filtration, and for each graph, a best-fit line is determined
through the filtration data. The coefficients of these best-fit
lines are then used as descriptors for the graphs.

Filtration sequences. We first decompose
a graph G into a nested sequence of sub-
graphs (filtration graphs) G1 ⊆ G2 . . . ⊆
Gn = G by using a filtration function, such
as node degree or closeness. Let Gi ⊂ G, Vi
represent nodes in Gi and Ei represent the
edges. Next, we compute xi = |Vi| as the
count of nodes, and yi = |Ei| as the count
of edges. Then, for each filtration graph Gi,
we obtain the pair (xi, yi) ∈ R2, which
creates two monotone sequences, x1 ≤
x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · ≤ yn.
Hence, TopER yields two ordered setsX ,Y
describing the evolution of the filtration
graphs G1 ⊆ . . . ⊆ Gn = G, X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn). Here, n corre-
sponds to number of thresholds {ϵi}ni=1 used in the filtration step.

4

Published as a conference paper at ICLR 2025

Algorithm 1 TopER: Topological Evolution Rate

1: Input: Graph G, Filtration function f : V → R, Threshold set I = {ϵi}ni=0
2: Output: TopER vector T (G, f, I)
3: Initialize lists X = [], Y = []
4: for i = 1 to n do
5: Gi ← Induced subgraph of G where Vi ⊆ f−1([ϵ0, ϵi])
6: xi ← |Vi|
7: yi ← |Ei|
8: Append xi to X
9: Append yi to Y

10: end for
11: Fit a line L(x) = a+ bx to pairs (xi, yi) from lists X and Y using least squares
12: Extract coefficients a and b
13: Return (a, b) as the TopER vector T (G, f, I)

Consider the top row of Figure 2 where we have three filtration graphs (i.e., n=3); we have X =
(2, 3, 7) for node counts and Y = (0, 2, 6) for edge counts.

Evolution. In the next step, PH would typically compute topological features on each filtration and
create a persistence diagram to summarize the features. Not only it is costly, but the approach would
require efforts to vectorize the persistence diagrams. We circumvent this computationally costly
step and analyze how the number of edges {yi} relates to the number of nodes {xi} throughout the
filtration sequence. We use line fitting to characterize this relationship as follows.

Simple linear regression, often applied through the least squares method (James et al., 2013), is a
standard approach in regression analysis for fitting a linear equation to a set of data points {(xi, yi)} ⊂
R2. This method calculates the line L(x) = a + bx that best fits the data by minimizing the loss
function E =

∑N
i=1[L(xi) − yi]

2. The coefficients (a, b), obtained from this regression on the
filtration sequences, effectively describe the graph’s structure during filtration (see the descriptor step
in Figure 3). Algorithm 1 unifies the filtration and evolution steps.

With evolution on filtration sequences, we define the topological evolution rate of a graph as follows:

Definition 1 (Topological Evolution Rate (TopER)). Let f : V → R be a filtration function on graph
G and I = {ϵi}ni=1 be the threshold set. Let Gi = (Vi, Ei) be the induced filtration. Let xi = |Vi|
and yi = |Ei|. Let L(x) = a+ bx be the best fitting line to {(xi, yi)}ni=1. Then, we define theTopER
vector of G with respect to f as TE(G, f, I) = (a, b). We call a the pivot and b the growth of G.

In practice, line fitting may not always be a linear choice and requires multiple controls, which
we cannot report here due to space limitations. We discuss these choices and linear/polynomial fit
options in Appendix B. We also show visual samples of graph evolution rates in Appendix Figure 6.
Furthermore, we define and visualize the most fundamental evolution patterns in Appendix Figure 7.

On another note, while PH tracks the evolution of topological changes in the clique complexes of
subgraphs {Gi}, TopER captures the evolution within {Gi} by monitoring the distributions of nodes
and edges as well as connectivity changes in these subgraphs, guided by the hierarchy imposed by
the filtration function.

4.1 COMPUTATIONAL COMPLEXITY

The primary computational steps in TopER include constructing filtration graphs and performing
regression on node and edge counts, which incur the following costs.

Analyzing each node and edge across n filtration thresholds typically requires O(n× (|V|+ |E|))
operations, where V and E denote the numbers of vertices and edges, respectively. The regression
step involves fitting a line to the pairs (xi, yi) using the least squares method. The complexity of
calculating the necessary sums for this regression is O(n), and solving for the regression coefficients
(slope and intercept) from these sums involves a constant amount of additional computation.

5

Published as a conference paper at ICLR 2025

Thus, the overall complexity of TopER predominantly hinges on the graph filtration process, summing
up to O(n× (|V|+ |E|)) where |V| ≫ n. As we will show in the next section, the runtime costs of
TopER are notably low, demonstrating its practicality and efficiency for large-scale applications.

4.2 STABILITY RESULTS

This section states our theorems on the stability of TopER. In the following,Wp(., .) represents p-
Wasserstein distance, and PDk(X , f) represents kth persistence diagram of X with sublevel filtration
with respect to f . Similarly, ∥.∥p represents Lp-norm and dp(., .) represents lp-distance in Rm. We
fix a threshold set I = {ϵi}ni=1 for both functions to keep the exposition simple. Further, to keep the
setting general, we use the pairs {(β0(ϵi), β1(ϵi))}ni=1 in R2 to fit the least squares line y = a+ bx
defining TE(X) = (a,b).
Theorem 1. Let X be a compact metric space, and f, g : X → R be two filtration functions. Then,
for some C > 0,

∥TEf(X)− TEg(X)∥1 ≤ C · W1(PDk(X , f),PDk(X , g)).

By combining the above result with the stability result for sublevel filtrations, we obtain the stability
with respect to filtration functions as follows.
Corollary 1. Let X be a compact metric space, and f, g : X → R be two filtration functions. Then,
for some C > 0,

∥TEf(X)− TEg(X)∥1 ≤ C · ∥f − g∥1

By adapting the above results to the graph setting, when two metric graphs G1,G2 are close in
Gromov-Hausdorff sense, one can obtain a similar stability result for the filtrations of Gi induced by
the same filtration function. Due to space limitations, details and the proof of the theorem are given
in Appendix C.

5 EXPERIMENTS

We evaluate the performance of TopER in classification, clustering and visualization. Our Python
implementation is available at https://anonymous.4open.science/r/TopER-AA38.

5.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on nine benchmark datasets for graph classification. These are (i)
the molecule graphs of BZR, and COX2 (Mahé and Vert, 2009); (ii) the biological graphs of MUTAG
and PROTEINS (Kriege et al., 2012); and (iii) the social graphs of IMDB-Binary (IMDB-B), IMDB-
Multi (IMDB-M), REDDIT-Binary (REDDIT-B), and REDDIT-Multi-5K (REDDIT-5K) (Yanardag
and Vishwanathan, 2015). Finally, the OGBG-MOLHIV is a large molecular property prediction
dataset, part of open graph benchmark (OGB) datasets (Hu et al., 2020). Details are given in Table 1.

Table 1: Characteristics of the benchmark
graph classification datasets.

Datasets #Graphs |V| |E| Classes
BZR 405 35.75 38.36 2
COX2 467 41.22 43.45 2
MUTAG 188 17.93 19.79 2
PROTEINS 1113 39.06 72.82 2
IMDB-B 1000 19.77 96.53 2
IMDB-M 1500 13.00 65.94 3
REDDIT-B 2000 429.63 497.75 2
REDDIT-5K 4999 508.52 594.87 5
OGBG-MOLHIV 41127 243.4 2266.1 2

Hardware. We ran experiments on a single machine
with 12th Generation Intel Core i7-1270P vPro Pro-
cessor (E-cores up to 3.50 GHz, P-cores up to 4.80
GHz), and 32Gb of RAM (LPDDR5-6400MHz).

Model Setup and Metrics. We employ a rigorous
experimental setup to ensure a fair comparison and
the selection of the best graph classification model.
We begin by applying BatchNormalization to the
input features to maintain consistent scaling. We
employ a 90/10 train-test split, adopt the Stratifiedk-
Fold strategy, and present the average accuracy from
ten-fold cross-validation across all our models. We employ accuracy as the evaluation metric, a
widely utilized performance measure within graph classification tasks (Errica et al., 2020).

Filtration functions. In TopER, we use both node and edge filtrations during filtration (Definition 1).
Alongside with popularity, we apply degree, closeness, and degree centrality (Evans and Chen,

6

https://anonymous.4open.science/r/TopER-AA38

Published as a conference paper at ICLR 2025

Table 2: Graph Classification. Accuracy results on eight benchmark datasets using 10-fold CV. Baseline
results are sourced from the corresponding papers. The best performance is highlighted in bold blue, while
the second-best performance is underlined. The final column presents the average deviation of each model’s
performance from the best result across all datasets.

Model BZR COX2 MUTAG PROTEINS IMDB-B IMDB-M REDDIT-B REDDIT-5K Avg.↓
P-WL-C (Rieck et al., 2019) – – 90.51±1.34 75.27±0.38 – – – – 2.08
1-GIN (GFL) (Hofer et al., 2020) – – – 74.10±3.40 74.50±4.60 49.70±2.90 90.20±2.8 55.70±2.90 2.09
6 GNNs (Errica et al., 2020) – – 80.42±2.07 75.80±3.70 71.20±3.90 49.10±3.50 89.90±1.90 56.10±1.60 4.13
DMP (Bodnar et al., 2021) – – 84.00±8.60 75.30±3.30 73.80±4.50 50.90±2.50 86.20±6.80 51.90±2.10 4.20
FC-V (O’Bray et al., 2021) 85.61±0.59 81.01±0.88 87.31±0.66 74.54±0.48 73.84±0.36 46.80±0.37 89.41±0.24 52.36±0.37 4.01
SubMix (Yoo et al., 2022) 86.34±2.00 84.68±3.70 80.99±0.60 67.80±2.00 70.30±1.40 46.47±2.50 – – 6.15
G-Mix (Han et al., 2022) 84.15±2.30 83.83±2.10 81.96±0.60 66.28±1.10 69.40±1.10 46.40±2.70 – – 6.91
RGCL (Li et al., 2022) 84.54±1.67 79.31±0.68 87.66±1.01 75.03±0.43 71.85±0.84 49.31±0.42 90.34±0.58 56.38±0.40 3.56
AutoGCL (Yin et al., 2022) 86.27±0.71 79.31±0.70 88.64±1.08 75.80±0.36 72.32±0.93 50.60±0.80 88.58±1.49 56.75±0.18 3.08
FF-GCN (Paliotta et al., 2023) 89.00±5.00 78.00±8.00 71.00±4.00 62.00±1.00 63.00±8.00 – – – 11.53
WWLS (Fang et al., 2023) 88.02±0.61 81.58±0.91 88.30±1.23 75.35±0.74 75.08±0.31 51.61±0.62 – – 2.26
EPIC (Heo et al., 2024) 88.78±2.30 85.53±1.60 82.44±0.70 69.06±1.00 71.70±1.00 47.93±1.30 – – 4.67
EMP (Chen et al., 2024a) – – 88.79±0.63 72.78±0.54 74.44±0.45 48.01±0.42 91.03±0.22 54.41±0.32 2.97
MP-HSM (Loiseaux et al., 2024) – 77.10±3.00 85.60±5.30 74.60±2.10 74.80±2.50 47.90±3.20 – – 4.67
TopoGCL (Chen et al., 2024b) 87.17±0.83 81.45±0.55 90.09±0.93 77.30±0.89 74.67±0.32 52.81±0.31 90.40±0.53 – 1.76
PGOT (Qian et al., 2024) 87.32±3.90 82.98±5.21 92.63±2.58 73.21±2.59 62.90±3.05 51.33±1.76 – – 3.85
RePHINE (Immonen et al., 2024) – – – 71.25±1.60 69.40±3.78 – – – 5.86

TopER 90.13±4.14 82.01±4.59 90.99±6.64 74.58±3.92 73.20±3.43 50.00±4.02 92.70±2.38 56.51±2.22 1.60

2022) as node filtration functions and Forman- and Ollivier-Ricci functions (Lin et al., 2011) as
edge filtration functions. We also use atomic weight as a node function for molecular and biological
datasets (BZR, COX2, and MUTAG), and node attributes (PROTEINS). We utilized the t-test to
assess the statistical significance of each function and applied the Lasso method for regularization,
setting the cross-validation parameter to cv = 10. Functions were retained in the model only if they
achieved p-values less than 0.05 in the t-test and had non-zero coefficients in the Lasso model (James
et al., 2023). This approach ensures that the selected filtration functions contribute statistically
significant and regularized features to the model. Incorporating additional filtration functions can
enhance TopER’s ability to analyze graphs from diverse perspectives. However, as we will next
illustrate in Table 6, TopER demonstrates strong performance even in its most basic form using the
simple and scalable node degree function. This balance of performance and simplicity suits our
scalability philosophy; we avoid complex and costly schemes for learning dataset-specific activation
functions and homogenize the filtration step in all datasets.

Classifier. We utilize a Multilayer Perceptron (MLP) in our graph classification task. The hyperpa-
rameters are detailed in Appendix A.1.

100 500 1000 5000 10000 50000 100000
Node Count

0

10

20

30

40

50

60

To
ta

l T
im

e
(s

ec
on

ds
)

Figure 4: TopER run time for syn-
thetic power law graphs (Holme and Kim,
2002) with node degree filtration. The
mean node degree is 30, and 100 filtra-
tion steps are used.

Baselines. We compare our method with 19 state-of-the-
art and recent models in graph classification, including vari-
ants of graph neural networks: six GNNs including GCN,
DGCNN, Diffpool, ECC, GIN, GraphSAGE which are com-
pared in (Errica et al., 2020) (best results of these six GNNs
are given in the 6 GNNs row), FF-GCN (Paliotta et al.,
2023); topological methods: DMP (Bodnar et al., 2021),
FC-V (O’Bray et al., 2021), WWLS (Fang et al., 2023),
MP-HSM (Loiseaux et al., 2024) and EMP (Chen et al.,
2024a); GNNs enhanced with data augmentation methods:
SubMix (Yoo et al., 2022), G-Mix (Han et al., 2022), and
EPIC (Heo et al., 2024); GNNs enhanced with contrastive
learning methods: RGCL (Li et al., 2022), AutoGCL (Yin
et al., 2022), TopoGCL (Chen et al., 2024b) and prototype-
based methods: PGOT (Qian et al., 2024).

Runtime. TopER is highly scalable and can be applied to a 100K node graph in 2 minutes (see
Figure 4). Our small network experiments took about two days in a shared resource setting, whereas
the OGBG-MOLHIV experiments took 16.5 hours. One of the most demanding datasets, REDDIT-
5K, requires 34.6 hours to calculate all node and edge functions. The runtime of our methods is
dominated by the computation of node functions such as closeness and Riccis. Using approximate
values for centrality metrics instead could greatly decrease computation time (Brandes and Pich,
2007). Since this is not our current focus, we leave it as future work.

7

Published as a conference paper at ICLR 2025

5.2 GRAPH CLASSIFICATION RESULTS

Table 2 shows the accuracy results for the given models. We use the reported results in the corre-
sponding references for each model. “−" entries in the table mean the reference did not report any
result for that dataset. In (Errica et al., 2020), the authors compare the six most common GNNs on
the graph classification task (see the GNNs row). The last column summarizes each model’s overall
performance. We report the average of the differences between each model’s performance and the
best performance in the column across all datasets. If a model’s performance is missing for a dataset,
it is excluded from the average computation for the model.

Table 3: AUC results for OGBG-MOLHIV
dataset.

Model AUC
GIN-VN (Xu et al., 2018) 77.80±1.82

HGK-WL (Togninalli et al., 2019) 79.05±1.30

WWL (Borgwardt et al., 2020) 75.58±1.40

PNA (Corso et al., 2020) 79.05±1.32

DGN (Beaini et al., 2021) 79.70±0.97

GraphSNN (Wijesinghe and Wang, 2021) 79.72±1.83

GCN-GNorm (Cai et al., 2021) 78.83±1.00

Graphormer (Ying et al., 2021) 80.51±0.53
Cy2C-GCN (Choi et al., 2022) 78.02±0.60

GAWL (Nikolentzos and Vazirgiannis, 2023) 78.34±0.39

LLM-GIN (Zhong et al., 2024) 79.22±NA

GMoE-GIN (Wang et al., 2024) 76.90±0.90

TopER 80.21±0.15

Out of eight datasets, TopER achieves the best results
in two and ranks second in two other datasets. For
the remaining four datasets, TopER’s performance
is within 4% of the SOTA results. For overall per-
formance, TopER outperforms all other models with
an average deviation of 1.60% from the best perfor-
mances. The closest competitor is TopoGCL, which
has an average deviation of 1.76%.

OGBG-MOLHIV results. To evaluate our model’s
performance on large datasets, we compare it with
recently published models on OGBG-MOLHIV
dataset, as shown in Table 3. The performances
of these models are listed in chronological order
based on their publication dates, with baseline per-
formances reported from (Choi et al., 2022; Ying
et al., 2021) or the respective model’s references. In Appendix A.2, we give further details for TopER
performance and contribution of each function on this dataset. TopER achieves the second-best result
on the MOLHIV dataset, while the top-performing model requires learning a significantly larger
model with 119.5 million parameters.

Table 4: Accuracy results for TopER vs. Persistent
Homology in graph classification tasks.

BZR COX2 PROTEINS IMDB-B IMDB-M RED-5K
PH 88.4±0.6 82.0±0.6 74.0±0.4 69.5±0.5 46.5±0.3 54.1±0.1

TopER 90.1±4.1 82.0±4.6 74.6±3.9 73.2±3.4 50.0±4.0 56.5±2.2

TopER vs. PH. TopER-based models are
more accurate than those based on Persis-
tent Homology. We present a comparison
across six datasets in Table 4. The PH re-
sults are obtained from (Cai, 2021), which
extensively examines PH methods in graph
classification tasks using four common fil-
tration functions (centrality, degree, fiedler_s, and Ricci), coupled with four popular vectorization
techniques. For each dataset, these methods yield 16 outcomes, and we bring in the top-performing
combination of filtration and vectorization for each dataset. The results show that TopER outperforms
PH in all benchmark datasets. For time comparison between PH and TopER, see Appendix A.5.

5.3 GRAPH CLUSTERING RESULTS

We employ cluster quality metrics to assess the embeddings of graphs sourced from all datasets in
Table 2. The embeddings are labeled with their respective dataset memberships, and we assume that
good embeddings will have graphs of the same dataset clustered together. We evaluate embeddings
based on three widely used clustering metrics: Silhouette (SILH), Calinski-Harabasz (CH), and
Davies-Bouldin (DB) (Gagolewski et al., 2021). Table 5 compares the clustering performance of

Table 5: Clustering Performances. Comparison of Spectral Zoo vs. TopER. The detailed results are
given in Appendix A.3.

Metric Method BZR COX2 MUTAG PROT. IMDB-B IMDB-M REDD-B REDD-5K

Silh ↑ Spec. Zoo 0.050 0.049 0.344 0.050 0.097 -0.024 0.108 -0.121
TopER 0.249 0.414 0.258 0.086 0.064 -0.032 0.196 -0.067

CH ↑ Spec. Zoo 3.51 6.13 120.73 38.77 85.24 30.98 269.94 119.81
TopER 42.58 26.00 72.52 151.64 60.52 11.77 446.12 1209.95

DB ↓ Spec. Zoo 7.25 6.07 0.95 4.55 2.78 10.73 2.20 25.74
TopER 1.93 2.29 0.88 1.54 2.19 6.87 1.32 2.78

8

Published as a conference paper at ICLR 2025

TopER and Spectral Zoo (Jin and Zafarani, 2020), which is, to our knowledge, the only model that
allows low-dimensional graph embeddings. Detailed results are provided in Appendix A.3. The
findings demonstrate that the embeddings generated by TopER outperform those created by Spectral
Zoo. This is evident from the superior cluster quality metrics observed for five out of eight datasets in
the case of Silhouette and CH, and for all eight datasets in the case of DB.

5.4 GRAPH VISUALIZATION

In the case of a single filtration function, TopER creates 2D graph embeddings (a, b) that can be
visualized with ease (see Figure 1). Traditional dimensionality reduction techniques such as PCA
can be used to visualize point cloud data, but accurately depicting graph data has historically been
a significant challenge (Giovannangeli et al., 2020). To our knowledge, the only model that allows
graph visualization is the GraphZoo (Jin and Zafarani, 2020).

TopER creates highly interpretable graph visualizations. To recall, the pair (a, b) represents the
coefficients of the best-fitting function L(x) = a + bx, where a is the pivot (y-intercept) and b is
growth (the slope). Specifically, the pivot a reflects graph connectivity, while b reflects the growth
rate of edges/nodes for the filtration function. In particular, a higher value of a corresponds to a
more interconnected graph. As we demonstrate in Figure 7, graph connectivity and community
structure can be analyzed using three types of pivot behavior. In the following, we illustrate how these
quantities can be employed to interpret our two-dimensional representations of the graph datasets.

120 100 80 60 40 20 0
pivot (a)

1.0

1.2

1.4

1.6

1.8

2.0

gr
ow

th
 (b

)

Class A
Class B

(a) PROTEINS

70 60 50 40 30 20 10 0
pivot (a)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

gr
ow

th
 (b

)

Class A
Class B

(b) BZR

Figure 5: TopER visualizations of the PROTEINS
dataset with Ollivier-Ricci edge filtration, and the BZR
dataset with degree centrality node filtration. Each point
corresponds to an individual graph.

In Figure 1b of the MUTAG dataset, class B has
a higher growth rate and smaller pivot than the
red class. This shows that the class is growing
faster than class A with respect to the closeness
function in the MUTAG dataset, i.e., the graph
has a low diameter. Similarly, in contrast, in the
PROTEINS dataset (Figure 5a), the growth rates
are similar for both classes (∼ 1.5 − 1.7), but
the pivot (initial graph size) is smaller in class
A. This implies that class A has fewer edges in
relation to the number of nodes. Such patterns,
as described in Appendix B.4, can reveal key
insights into graph topology. In a similar vein,
TopER visualizations can be used for anomaly
detection. For example, in Figure 1a, an outlier
PROTEINS graph alone has a positive pivot in the figure and appears as the rightmost data point.

More importantly, TopER homogenizes graph embeddings, allowing us to compare graphs across
datasets, which may open new paths in training graph foundation models. For example, Figure 1a
visualizes graphs of three datasets on the same panel where we see that Mutag and COX2 differ in
their pivot only. The similarity is not surprising; MUTAG and COX2 are datasets of molecular graphs
where nodes are atoms and edges are chemical bonds. As the molecules in both datasets have similar
types of atoms and bond configurations (e.g., ring structures), TopER captures these similarities,
leading to similar embeddings.

5.5 ABLATION STUDY

In an ablation study, we evaluate the individual performance of each function as well as their combined
effect on classification. As shown in Table 6, the common filtration functions we employ from TDA
exhibit strong individual performance. Moreover, when combined, they synergistically enhance
overall performance. This is not surprising, as different filtration functions—such as atomic weight
or Ricci curvature—generate distinct hierarchies and node-edge distributions, resulting in diverse
connectivity patterns throughout the filtration sequence. This diversity is analogous to viewing
an object from multiple angles. Hence, integrating these complementary perspectives improves
performance by offering a richer and more varied representation of the graph structure, allowing the
model to capture more intricate features.

9

Published as a conference paper at ICLR 2025

Table 6: Ablation Study. Individual and altogether performances of filtration functions with TopER.

Datasets Degree-cent. Popularity Closeness Degree F. Ricci O. Ricci Atom weight TopER

BZR 82.22±2.13 82.20±3.42 81.48±1.99 82.73±2.12 80.75±1.73 80.99±1.48 82.23±2.12 90.13±4.14
COX2 75.38±3.96 69.21±8.19 67.90±7.96 73.88±5.02 70.46±7.28 73.03±4.21 69.82±8.27 82.01±4.59
MUTAG 76.61±7.87 77.66±6.12 80.88±4.79 74.97±6.40 80.85±9.25 82.46±7.84 73.45±8.01 90.99±6.64
PROTEINS 67.66±3.16 70.71±4.41 69.01±4.24 69.01±3.48 72.96±3.47 71.25±2.66 73.59±3.33 74.58±3.92
IMDB-B 73.00±4.49 71.90±3.48 72.60±4.20 73.10±4.18 69.80±2.44 66.40±3.35 - 73.20±3.43
IMDB-M 48.47±3.90 47.87±3.07 48.33±3.49 47.93±2.88 48.13±4.11 43.60±3.17 - 50.00±4.02
REDDIT-B 76.70±3.69 79.35±3.46 78.10±3.23 79.55±2.20 72.35±2.91 68.20±2.28 - 92.70±2.38
REDDIT-5K 42.85±1.74 50.87±2.63 50.03±1.49 47.01±1.89 50.27±1.92 45.81±2.08 - 56.51±2.22

We further present two ablation studies. In Appendix A.4, we present the effect of number of
thresholds on the performance of TopER. In Appendix A.6, the effect of the number of filtration
functions used on TopER’s performance.

6 CONCLUSION

We have introduced a novel graph embedding method, TopER, leveraging Persistent Homology from
Topological Data Analysis. TopER demonstrates strong performance in graph classification tasks,
rivaling SOTA models. Furthermore, it naturally generates effective 2D visualizations of graph
datasets, facilitating the identification of clusters and outliers. For future research, one promising
direction is to extend TopER to temporal graph learning tasks, enabling the capture of dynamic graph
trajectories that reflect evolving user behaviors over time. Another avenue worth exploring is the
integration of TopER embeddings into graph foundation models, where the homogenization of graph
structures could enhance the learning of transferable representations across different domains.

REFERENCES

Akcora, C. G., Kantarcioglu, M., Gel, Y., and Coskunuzer, B. (2022). Reduction algorithms for
persistence diagrams of networks: CoralTDA and Prunit. In NeurIPS.

Aktas, M. E., Akbas, E., and El Fatmaoui, A. (2019). Persistence homology of networks: methods
and applications. Applied Network Science, 4(1):1–28.

Beaini, D., Passaro, S., Létourneau, V., Hamilton, W., Corso, G., and Liò, P. (2021). Directional
graph networks. In ICML, pages 748–758. PMLR.

Belkin, M. and Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for embedding and
clustering. NeurIPS, 14.

Bodnar, C., Cangea, C., and Liò, P. (2021). Deep graph mapper: Seeing graphs through the neural
lens. Frontiers in big Data, 4:680535.

Borgwardt, K. et al. (2020). Graph kernels: State-of-the-art and future challenges. Foundations and
Trends® in Machine Learning, 13(5-6):531–712.

Brandes, U. and Pich, C. (2007). Centrality estimation in large networks. International Journal of
Bifurcation and Chaos, 17(07):2303–2318.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2014). Spectral networks and locally connected
networks on graphs. In ICLR.

Cai, C. (2021). Sanity check for persistence diagrams. In ICLR Workshop on Geometrical and
Topological Representation Learning.

Cai, H., Zheng, V. W., and Chang, K. C.-C. (2018). A comprehensive survey of graph embedding:
Problems, techniques, and applications. IEEE transactions on knowledge and data engineering,
30(9):1616–1637.

Cai, T., Luo, S., Xu, K., He, D., Liu, T.-y., and Wang, L. (2021). Graphnorm: A principled approach
to accelerating graph neural network training. In ICML, pages 1204–1215. PMLR.

10

Published as a conference paper at ICLR 2025

Chen, Y. et al. (2024a). Emp: Effective multidimensional persistence for graph representation
learning. In Learning on Graphs Conference, pages 24–1. PMLR.

Chen, Y., Frias, J., and Gel, Y. R. (2024b). Topogcl: Topological graph contrastive learning. In AAAI,
volume 38, pages 11453–11461.

Chernov, N., Huang, Q., and Ma, H. (2012). Does the best-fitting curve always exist? International
Scholarly Research Notices, 2012.

Choi, Y. Y., Park, S. W., Woo, Y., and Choi, U. J. (2022). Cycle to clique (cy2c) graph neural network:
A sight to see beyond neighborhood aggregation. In The Eleventh International Conference on
Learning Representations.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković, P. (2020). Principal neighbourhood
aggregation for graph nets. NeurIPS, 33:13260–13271.

Coskunuzer, B. and Akçora, C. G. (2024). Topological methods in machine learning: A tutorial for
practitioners. arXiv preprint arXiv:2409.02901.

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional neural networks on graphs
with fast localized spectral filtering. In NeurIPS, pages 3844–3852.

Demir, A., Coskunuzer, B., Gel, Y., Segovia-Dominguez, I., Chen, Y., and Kiziltan, B. (2022). Todd:
Topological compound fingerprinting in computer-aided drug discovery. NeurIPS, 35:27978–
27993.

Dłotko, P. and Gurnari, D. (2023). Euler characteristic curves and profiles: a stable shape invariant
for big data problems. GigaScience, 12:giad094.

Dong, X., Thanou, D., Rabbat, M., and Frossard, P. (2019). Learning graphs from data: A signal
representation perspective. IEEE Signal Processing Magazine, 36(3):44–63.

Duan, Y., Chen, N., Shen, S., Zhang, P., Qu, Y., and Yu, S. (2022). Fdsa-stg: Fully dynamic self-
attention spatio-temporal graph networks for intelligent traffic flow prediction. IEEE Transactions
on Vehicular Technology, 71(9):9250–9260.

Errica, F., Podda, M., Bacciu, D., and Micheli, A. (2020). A fair comparison of graph neural networks
for graph classification. In ICLR.

Evans, T. S. and Chen, B. (2022). Linking the network centrality measures closeness and degree.
Communications physics, 5(1).

Fang, Z., Huang, J., Su, X., and Kasai, H. (2023). Wasserstein graph distance based on l1–
approximated tree edit distance between weisfeiler–lehman subtrees. In AAAI, volume 37, pages
7539–7549.

Gagolewski, M., Bartoszuk, M., and Cena, A. (2021). Are cluster validity measures (in) valid?
Information Sciences, 581:620–636.

Gao, X. et al. (2019). Optimized skeleton-based action recognition via sparsified graph regression. In
Proceedings of the 27th ACM International Conference on Multimedia, pages 601–610.

Giovannangeli, L., Bourqui, R., Giot, R., and Auber, D. (2020). Toward automatic comparison of
visualization techniques: Application to graph visualization. Visual Informatics, 4(2):86–98.

Goyal, P. and Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A
survey. Knowledge-Based Systems, 151:78–94.

Günnemann, S. (2022). Graph neural networks: Adversarial robustness. In Graph Neural Networks:
Foundations, Frontiers, and Applications, pages 149–176. Springer.

Hamilton, W. L. (2020). Graph representation learning. Synthesis Lectures on Artifical Intelligence
and Machine Learning, 14(3):1–159.

11

Published as a conference paper at ICLR 2025

Han, X., Jiang, Z., Liu, N., and Hu, X. (2022). G-mixup: Graph data augmentation for graph
classification. In ICML, pages 8230–8248. PMLR.

Hensel, F., Moor, M., and Rieck, B. (2021). A survey of topological machine learning methods.
Frontiers in Artificial Intelligence, 4:52.

Heo, J., Lee, S., Ahn, S., and Kim, D. (2024). Epic: Graph augmentation with edit path interpolation
via learnable cost. In Proceedings of the 2024 International Joint Conference on Artificial
Intelligence (IJCAI).

Hiraoka, Y., Imoto, Y., Lacombe, T., Meehan, K., and Yachimura, T. (2024). Topological node2vec:
Enhanced graph embedding via persistent homology. Journal of Machine Learning Research,
25(134):1–26.

Hofer, C., Graf, F., Rieck, B., Niethammer, M., and Kwitt, R. (2020). Graph filtration learning. In
International Conference on Machine Learning, pages 4314–4323. PMLR.

Hofer, C. D., Kwitt, R., and Niethammer, M. (2019). Learning representations of persistence barcodes.
JMLR, 20(126):1–45.

Holme, P. and Kim, B. J. (2002). Growing scale-free networks with tunable clustering. Physical
review E, 65(2):026107.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., and Leskovec, J. (2020).
Open graph benchmark: Datasets for machine learning on graphs. NeurIPS, 33:22118–22133.
https://ogb.stanford.edu/.

Immonen, J., Souza, A., and Garg, V. (2024). Going beyond persistent homology using persistent
homology. Advances in Neural Information Processing Systems, 36.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to statistical learning,
volume 112. Springer.

James, G., Witten, D., Hastie, T., Tibshirani, R., and Taylor, J. (2023). An introduction to statistical
learning. Springer.

Jin, S. and Zafarani, R. (2020). The spectral zoo of networks: Embedding and visualizing networks
with spectral moments. In KDD, pages 1426–1434.

Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph convolutional networks.
ICLR.

Kriege, N. et al. (2012). Subgraph matching kernels for attributed graphs. In ICML, pages 291–298.

Leskovec, J., Backstrom, L., Kumar, R., and Tomkins, A. (2008). Microscopic evolution of social
networks. In KDD, pages 462–470.

Li, S., Wang, X., Zhang, A., Wu, Y., He, X., and Chua, T.-S. (2022). Let invariant rationale discovery
inspire graph contrastive learning. In ICML, pages 13052–13065. PMLR.

Lin, Y., Lu, L., and Yau, S.-T. (2011). Ricci curvature of graphs. Tohoku Mathematical Journal,
Second Series, 63(4):605–627.

Loiseaux, D., Scoccola, L., Carrière, M., Botnan, M. B., and Oudot, S. (2024). Stable vectorization
of multiparameter persistent homology using signed barcodes as measures. Advances in Neural
Information Processing Systems, 36.

Mahé, P. and Vert, J.-P. (2009). Graph kernels based on tree patterns for molecules. Machine learning,
75(1):3–35.

Mavromatis, C. and Karypis, G. (2020). Graph infoclust: Leveraging cluster-level node information
for unsupervised graph representation learning. arXiv preprint arXiv:2009.06946.

Newman, M. E. (2003). The structure and function of complex networks. SIAM review, 45(2):167–
256.

12

https://ogb.stanford.edu/

Published as a conference paper at ICLR 2025

Nikolentzos, G. and Vazirgiannis, M. (2023). Graph alignment kernels using weisfeiler and leman
hierarchies. In International Conference on Artificial Intelligence and Statistics, pages 2019–2034.
PMLR.

O’Bray, L. et al. (2021). Filtration curves for graph representation. In KDD, pages 1267–1275.

Otter, N., Porter, M. A., Tillmann, U., Grindrod, P., and Harrington, H. A. (2017). A roadmap for the
computation of persistent homology. EPJ Data Science, 6:1–38.

Paliotta, D., Alain, M., Máté, B., and Fleuret, F. (2023). Graph neural networks go forward-forward.
In NeurIPS 2023 Workshop: New Frontiers in Graph Learning.

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deepwalk: Online learning of social representations.
In KDD, pages 701–710.

Qian, C., Tang, H., Liang, H., and Liu, Y. (2024). Reimagining graph classification from a prototype
view with optimal transport: Algorithm and theorem. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 2444–2454.

Rieck, B., Bock, C., and Borgwardt, K. (2019). A persistent weisfeiler-lehman procedure for graph
classification. In International Conference on Machine Learning, pages 5448–5458. PMLR.

Skraba, P. and Turner, K. (2020). Wasserstein stability for persistence diagrams. arXiv:2006.16824.

Togninalli, M., Ghisu, E., Llinares-López, F., Rieck, B., and Borgwardt, K. (2019). Wasserstein
weisfeiler-lehman graph kernels. In NeurIPS, pages 6439–6449.

Tsitsulin, A., Palowitch, J., Perozzi, B., and Müller, E. (2023). Graph clustering with graph neural
networks. Journal of Machine Learning Research, 24(127):1–21.

Wang, D., Cui, P., and Zhu, W. (2016). Structural deep network embedding. In KDD, pages
1225–1234.

Wang, H. et al. (2024). Graph mixture of experts: Learning on large-scale graphs with explicit
diversity modeling. NeurIPS, 36.

Wijesinghe, A. and Wang, Q. (2021). A new perspective on" how graph neural networks go beyond
weisfeiler-lehman?". In International Conference on Learning Representations.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018). How powerful are graph neural networks?
ICLR.

Xu, M. (2021). Understanding graph embedding methods and their applications. SIAM Review,
63(4):825–853.

Yanardag, P. and Vishwanathan, S. (2015). Deep graph kernels. In KDD, pages 1365–1374.

Yin, Y., Wang, Q., Huang, S., Xiong, H., and Zhang, X. (2022). Autogcl: Automated graph contrastive
learning via learnable view generators. In AAAI, volume 36, pages 8892–8900.

Ying, C. et al. (2021). Do transformers really perform badly for graph representation? NeurIPS,
34:28877–28888.

Yoo, J., Shim, S., and Kang, U. (2022). Model-agnostic augmentation for accurate graph classification.
In Proceedings of the ACM Web Conference 2022, pages 1281–1291.

You, J., Liu, B., Ying, Z., Pande, V., and Leskovec, J. (2018). Graph convolutional policy network for
goal-directed molecular graph generation. NeurIPS, 31.

Zhao, Q., Ye, Z., Chen, C., and Wang, Y. (2020). Persistence enhanced graph neural network. In
International Conference on Artificial Intelligence and Statistics, pages 2896–2906. PMLR.

Zhong, Z., Zhou, K., and Mottin, D. (2024). Benchmarking large language models for molecule
prediction tasks. arXiv:2403.05075.

13

Published as a conference paper at ICLR 2025

A FURTHER EXPERIMENTAL DETAILS

A.1 HYPERPARAMETERS

Our proposed MLP algorithm is constructed with a single hidden layer. The output layer’s activation
function is set to log softmax, and the loss function we used is Negative Log Likelihood Loss. The
learning rate is chosen between 0.01 and 0.001. Subsequently, we investigate the impact of the
number of neurons in the hidden layer, considering values from the set {16, 64, 128}, the optimizer
is set to be Adam, and the number of epochs is 500. To prevent large weights and overfitting, we
apply L2 regularization coefficients of 1e-3, 1e-4. The activation function for the hidden layer varies
between relu, gelu, and elu. Lastly, we consider the cases of adding or not a batch normalization layer
to the output of the hidden layer and set dropout values to be 0.0 or 0.5. In Table 7, we provide the
details for each dataset. The last column shows the number of TopER features used for each dataset
after the feature selection step.

Table 7: Employed hyperparameters for each dataset.

Dataset Neurons Dropout Batch Norm. Decay Learning rate Activation TopER Dim.
BZR 64 0.5 True 1e-4 0.001 gelu 26
COX2 128 0 True 1e-4 0.01 relu 26
MUTAG 16 0.5 False 1e-3 0.01 gelu 20
PROTEINS 64 0.5 True 1e-3 0.01 elu 26
IMDB-B 128 0 False 1e-3 0.001 relu 20
IMDB-M 16 0 False 1e-3 0.01 elu 20
REDDIT-B 64 0.5 False 1e-3 0.01 relu 24
REDDIT-5K 128 0 False 1e-3 0.01 elu 14

A.2 OGBG-MOLHIV RESULTS

For OGBG-MOLHIV dataset, we further evaluated the improvements of TopER with addition of new
filtration functions. Table 8 provides the performance of each TopER−i, where i represents number
of filtration functions used in the model, i.e., TopER-i uses {(a1, b1, . . . , ai, bi)} as graph embedding
where (ai, bi) is the pivot and growth for function fi. We used XGBoost to rank the importance of
filtration functions first, and the functions are added iteratively with this ranking. We fixed maximum
tree depth = 3, learning rates = 0.035, subsample ratios = 0.95, the number of estimators = 1000,
and the regularization parameter lambda = 45, where the objective function is rank:pairwise, with
log loss as the evaluation metric. The seed is set to be 16.

Table 8: Results for OGBG-MOLHIV of each TopER−i.

Method Added Function Filtration Valid. AUC Test AUC
TopER-1 degree-centrality sublevel 72.76±0.23 74.44±0.20

TopER-2 atomic weight sublevel 71.89±0.12 74.25±0.16

TopER-3 Ollivier Ricci sublevel 70.11±0.28 76.79±0.24

TopER-4 Forman Ricci superlevel 71.76±0.18 78.15±0.15

TopER-5 degree superlevel 71.79±0.35 79.26±0.14

TopER-6 popularity superlevel 72.27±0.29 79.88±0.24

TopER-7 closeness sublevel 71.30±0.18 80.21±0.15

A.3 CLUSTERING PERFORMANCES

In Table 9, we showcase our clustering performance across eight benchmark graph classification
datasets using three widely adopted clustering metrics: Silhouette, Calinski-Harabasz, and Davies-
Bouldin. These metrics serve as evaluative measures for assessing the efficacy of clustering algorithms
in partitioning datasets into meaningful clusters. They gauge the degree of similarity or dissimilarity
within and between clusters, offering insights into the quality of clustering outcomes. For precise
definitions of Silhouette, Calinski-Harabasz, and Davies-Bouldin metrics, as well as additional details
on clustering measures, refer to Gagolewski et al. (2021).

14

Published as a conference paper at ICLR 2025

Table 9: The clustering performances of Spectral Embeddings and TopER with different metrics. Best
performances are given in blue.

Silhouette Scores (↑)
Method BZR COX2 MUTAG PROT. IMDB-B IMDB-M REDD-B REDD-5K
Spec Zoo 0.050 0.049 0.344 0.050 0.097 -0.024 0.108 -0.121

degree -0.108 0.414 0.258 0.048 0.030 -0.032 0.049 -0.169
popularity 0.249 -0.015 0.134 -0.000 0.008 -0.159 0.196 -0.173
closeness 0.019 0.036 0.036 0.086 nan nan 0.087 -0.185
degree 0.084 0.030 0.017 0.065 0.056 -0.075 0.034 -0.067

Calinski-Harabasz scores (↑)
Method BZR COX2 MUTAG PROT. IMDB-B IMDB-M REDD-B REDD-5K
Spec Zoo 3.51 6.13 120.73 38.77 85.24 30.98 269.94 119.81

degree 0.42 1.06 11.29 130.07 60.52 3.92 97.85 1209.95
popularity 13.85 26.00 36.13 77.22 12.89 11.77 446.12 619.37
closeness 42.58 1.02 40.04 73.51 10.17 0.30 188.10 689.27
F.Ricci 4.92 0.48 11.82 151.64 11.68 1.03 92.14 454.34

Davies-Bouldin scores (↓)
Method BZR COX2 MUTAG PROT. IMDB-B IMDB-M REDD-B REDD-5K
Spec Zoo 7.25 6.07 0.95 4.55 2.78 10.73 2.20 25.74

degree 9.84 2.29 0.88 1.95 4.92 46.46 2.32 3.27
popularity 4.16 37.87 1.62 2.11 25.25 6.87 1.32 3.46
closeness 1.93 26.44 1.41 2.25 4.99 37.51 1.95 3.09
F.Ricci 4.19 7.20 1.27 1.54 2.19 10.35 1.83 5.41

A.4 NUMBER OF THRESHOLDS

In our experiments, we utilized a large number of thresholds to capture finer-grained information, as
the model is computationally efficient and the additional cost of increasing the number of thresholds
is minimal. Furthermore, in Table 10, we evaluated the model’s performance with fewer thresholds
and observed that it remains robust and highly effective even in such scenarios.

Table 10: The accuracy results of TopER with different number of thresholds.

Thresholds PROTEINS REDDIT-B REDDIT-5K
10 72.78±4.04 90.55±1.96 55.99±1.97

20 74.31±3.23 91.20±1.66 55.91±2.14

50 74.76±4.55 92.05±1.96 55.39±2.10

100 73.85±3.67 92.85±1.18 55.51±2.61

200 75.47±3.06 93.15±2.10 56.51±2.04

500 74.58±3.92 92.70±2.38 56.51±3.22

A.5 TIME EXPERIMENTS FOR TOPER VS. PH

To compare the time efficiency and performance of TopER and persistent homology (PH), we con-
ducted experiments using the same filtration function, the sublevel degree filtration. For PH, we
applied Betti vectorization. Our results, summarized below, show that TopER is significantly faster
than PH. Although both methods use the same filtration function, a key distinction lies in their embed-
dings: TopER generates 2D embeddings, whereas PH produces a vector with dimensionality equal
to the number of thresholds in the filtration. Despite the considerable difference in dimensionality,
TopER’s performance with 2D embeddings remains comparable to that of PH.

A.6 COMBINING FILTRATION FUNCTIONS

To assess the impact of embedding dimensions, we conducted new experiments evaluating the
performance of the TopER model by progressively adding each filtration function step by step.

15

Published as a conference paper at ICLR 2025

Table 11: Comparison of TopER-1 and PH in terms of time and accuracy across different datasets.

TopER-1 PH
Dataset Time Accuracy Time Accuracy # Thresholds
BZR 3.13 s 82.73 ± 2.12 5.99 s 83.70 ± 3.51 4
IMDB-B 16.52 s 73.10 ± 4.18 319.95 s 71.00 ± 4.07 65
REDDIT-B 11 min 40.60 s 79.55 ± 2.20 152 min 53.37 s 84.50 ± 2.51 501

This analysis provides insights into how the inclusion of additional filtration functions influences
the model’s performance. In Table 12, TopER-n model represents the TopER utilizing n-filtration
functions (2n features). In Table 13 we give the corresponding filtration function and filtration type
for TopER-n models for each dataset.

Table 12: Performance improvements achieved by integrating filtration functions into the TopER
model. Here, TopER-n denotes the TopER model with n filtration functions.

Dataset TopER-1 TopER-2 TopER-3 TopER-4

BZR 82.48±1.98 84.70±2.84 85.66±5.00 86.68±3.81
COX2 78.81±1.94 79.26±4.86 79.04±7.49 80.30±3.91
MUTAG 86.14±6.38 88.33±3.88 86.75±4.78 88.30±4.63
PROTEINS 74.03±2.71 74.67±2.73 75.21±3.39 75.65±3.87
IMDB-B 73.00±4.40 74.20±4.26 74.50±3.50 74.70±3.95
IMDB-M 48.73±4.33 49.80±2.94 49.73±4.18 49.87±4.00
REDDIT-B 81.95±2.74 90.45±2.55 91.05±2.62 91.50±2.01
REDDIT-5K 50.21±1.41 54.11±2.43 56.19±2.40 56.33±2.74

Table 13: The filtration functions used in TopER-n models in Table 12.

Dataset TopER-1 TopER-2 TopER-3 TopER-4
BZR atomic sub atomic super popularity super degree super
COX2 closeness super degree cent sub atomic super closeness sub
MUTAG O. Ricci sub F. Ricci super degree sub popularity super
PROTEINS atomic sub closeness sub O. Ricci super degree sub
IMDB-B popularity super popularity sub degree cent sub degree cent super
IMDB-M popularity sub F. Ricci super closeness super popularity super
REDDIT-B O. Ricci super closeness super degree super popularity super
REDDIT-5K closeness sub F. Ricci super closeness super popularity super

B MORE ON TOPER

B.1 REFINING THE POINT SET

While we have described the main steps of TopER in Section 4, due to the repetitions of the points
in A = {(xi, yi)} ⊂ R2, there are some choices to be made before defining the set A (i.e., X and
Y) to get the best fitting function L : X → Y . The main reason is that the set {(xi, yi)}Ni=1 can
contain repetitions of x-values (xi = xi+1), repetitions of y-values (yi = yi+1) or repetitions of both
((xi, yi) = (xi+1, yi+1)) depending on the filtration function, the threshold set I, and the graph G.

For the filtrations induced by node filtration functions, the number of edges can not change unless the
number of nodes changes, i.e., xi = xi+1 ⇒ yi = yi+1. Hence, with this elimination, we still allow
keeping y-values the same while x-values are increasing. This means there can be horizontal jumps
inAu. In this paper, to eliminate all horizontal jumps for filtrations with node functions, we eliminate
all repetitions of y-values from Au. AIn particular, we remove all the points with the same ŷ-value
and add a point with a mean of x-values. In other words, if yi = yi+1 = · · · = yi+k = ŷ, we define
x̂ = mean{xi, xi+1, . . . , xi+k}. Then, we replace (k+1) points {(xi, ŷ), (xi+1, ŷ), . . . , (xi+k, ŷ)}
with one point (x̂, ŷ) in Au. This process eliminates all repetitions and horizontal jumps in A, and
we define our best-fitting line on this refined set.

16

Published as a conference paper at ICLR 2025

B.2 TOPER WITH ALTERNATIVE QUANTITIES

While we use the most general quantities for a graph—the count of vertices and edges—in our
algorithm, depending on the problem, there might be other induced quantities (xi, yi) for a given
subgraph Gi which can give better vectors. To keep the line-fitting approach meaningful in our model,
as long as the sequences {xi} and {yi} are monotone like our node-edge counts above, for a given
dataset in a domain (e.g., biochemistry, finance), one can use other domain-related quantities induced
by substructure Gi as (xi, yi) pair to obtain a TopER vector.

B.3 LINEAR OR HIGHER ORDER FITTING

In our experiments, we observe that linear fitting captures the growth information for node-edge pair
{(xi, yi)} well (See Figure 6), and quadratic fit and linear fit stays very close to each other. However,
if one decides to use other quantities as described above and loses the monotonicity of the sequences
{xi} and {yi}, trying higher order fits (e.g., y = ax2 + bx+ c) can be more meaningful. In Table 14,
we present the average of the coefficients of quadratic terms when we use quadratic fit for the datasets,
i.e. if we fit y = a+ bx+ cx2 polynomial, we observe that quadratic term cx2 is mostly negligible,
and the tends to be a linear fit.

0 5 10 15 20 25 30 35
number of nodes

0

5

10

15

20

25

30

35

nu
m

be
r o

f e
dg

es

BZR graph 34

1200

lll 1000

a,

800
a,

I.... 600
a,

E
400

200

0

0

REDDIT-BINARY graph 419

200 400 600 800

number of nodes
0 100 200 300 400 500

number of nodes

0

200

400

600

800

nu
m

be
r o

f e
dg

es

PROTEINS graph 245

Figure 6: Linear Fit. TopER summarizes the growth behavior in the graph induced by filtration with a linear
fit.

Table 14: Average of x2 coefficient across datasets for quadratic fitting.

Dataset BZR COX2 MUTAG REDDIT-5k

Average of x2 Coefficient 4.71× 10−5 6.61× 10−4 1.16× 10−2 1.78× 10−5

B.4 INTERPRETING TOPER

Our approach involves accurately modeling the evolution of a graph throughout the filtration process.
One can easily identify clusters for each class and outliers in the other datasets given in Figure 1a and
make inferences about the different clusters and outliers. Furthermore, when the pivot af is positive
or negative, it can be interpreted as graph density behavior in the filtration sequence (See Figure 7).

C PROOFS OF STABILITY THEOREMS

In this part, we prove the stability results for our TopER.
Lemma 1. Skraba and Turner (2020) Let X be a compact metric space, and f, g : X → R be two
filtration functions. Then, for any p ≥ 1, we haveWp(PDk(X , f),PDk(X , g)) ≤ ∥f − g∥p

The next lemma is on the stability of Betti curves by Dłotko and Gurnari (2023) [Proposition 1].
Lemma 2. Dłotko and Gurnari (2023) Let βk(X) is the kth Betti function obtained from the
persistence module PMk(X).

∥βk(X)− βk(Y)∥1 ≤ 2W1(PDk(X),PDk(Y))

Now, we are ready to prove our stability result.

17

Published as a conference paper at ICLR 2025

Figure 7: Pivot Behavior. A graph can exhibit three distinct pivot behaviors. Positive pivot graphs display a
cluster of vertices that are closely interconnected and appear early in the filtration process. On the other hand,
negative pivot graphs feature loosely connected nodes where the edges enter the filtration at a later stage. Graphs
with zero pivot are usually quasi-complete graphs.

Theorem 2. Let X be a compact metric space, and f, g : X → R be two filtration functions. Then,
for some C > 0,

∥TEf(X)− TEg(X)∥1 ≤ C · W1(PDk(X , f),PDk(X , g))

Proof. We will utilize the stability theorems from topological data analysis given above.

First, we employ the stability of Betti curves by Lemma 2.
∥βk(X)− βk(Y)∥1 ≤ 2W1(PDk(X),PDk(Y)) (1)

Hence to obtain TEf(X) = (af ,bf), we fit least squares line y = af + bfx to the set of N points
in R2, i.e., Zf = {(βf

0 (ϵi), β
f
1 (ϵi))}Ni=1. Similarly, we obtain TEg(X) = (ag,bg) by fitting least

squares line to Zg = {(βg
0 (ϵi), β

g
1 (ϵi))}Ni=1. By Equation (1), we have

DH(Zf ,Zg) ≤ 4W1(PDk(X),PDk(Y)) (2)

where DH(Zf ,Zg) represent Hausdorff distance between the point clouds Zf and Zg in R2.

Now, by the stability of least squares fit with respect to Hausdorff distance (Chernov et al. (2012)
[Theorem 3.1]), we have

∥TEf(X)− TEg(X)∥1 ≤ C ·DH(Zf ,Zg) (3)

Hence, when we combine Equations (2) and (3), we have
∥TEf(X)− TEg(X)∥1 ≤ C · W1(PDk(X),PDk(Y))

The proof follows.

By combining the above result with Lemma 1, we obtain the following corollary.
Corollary 2. Let X be a compact metric space, and f, g : X → R be two filtration functions. Then,
for some C > 0,

∥TEf(X)− TEg(X)∥1 ≤ C · ∥f − g∥1

Proof. By Lemma 1, we have
W1(PDk(X , f),PDk(X , g)) ≤ ∥f − g∥1 (4)

By Theorem 2, we have
∥TEf(X)− TEg(X)∥1 ≤ C · W1(PDk(X , f),PDk(X , g)) (5)

By combining Equations (4) and (5), we conclude

∥TEf(X)− TEg(X)∥1 ≤ Ĉ · ∥f − g∥1
The proof follows.

18

Published as a conference paper at ICLR 2025

D FILTRATION FUNCTIONS

In this section we will write the definitions of filtration functions we considered, except atomic weight
and popularity (which is defined in the main text). Let us consider a graph G = (V,E).
- The degree of a node u refers to the number of edges incident to u (Evans and Chen, 2022). More
specifically, it is the size of the neighborhood of u, which is the set of nodes that are directly connected
to u by edges. The formal expression for the degree of node u is given by:

deg(u) = |N (u)|

where:

• N (u) is the neighborhood of node u, which is the set of all nodes adjacent to u,

• |N(u)| denotes the cardinality (size) of the set N(u), which corresponds to the number of
nodes directly connected to u by edges.

- The closeness (Evans and Chen, 2022) function of a node u is defined as:

Closeness(u) =
∑

v∈V\{u}

1

d(u, v)
,

where:

• V is the set of all nodes in the graph,

• d(u, v) is the shortest-path distance between nodes u and v,

• V \ {u} denotes the set of all nodes in V except u.

- The degree centrality of a node u is defined as the ratio of the degree of node u to the total number
of nodes in the network, excluding the node itself (Evans and Chen, 2022). The formal expression
for degree centrality is given by:

Degree Centrality(u) =
deg(u)

|V | − 1

where:

• deg(u) is the degree of node u,

• |V| − 1 represents the total possible connections a node can have, excluding itself.

-The Forman-Ricci curvature (Lin et al., 2011) for an edge (u, v) is defined as:

FRicci(u, v) = 4− (deg(u) + deg(v)) + |N (u) ∩N (v)|,

where:

• deg(u) and deg(v) are the degrees of nodes u and v,

• N (u) and N (v) are the sets of neighbors of u and v,

• |N (u) ∩N (v)| is the size of the intersection of the neighbors of u and v.

- The α-weighted Ollivier Ricci (Lin et al., 2011) curvature between two nodes x and y is defined as:

κα(x, y) = 1−
W1(µ

α
x , µ

α
y)

d(x, y)
,

where:

• W1(µ
α
x , µ

α
y) is the Wasserstein-1 distance between the α-weighted neighborhood distribu-

tions µα
x and µα

y ,

• d(x, y) is the shortest-path distance between nodes x and y.

19

Published as a conference paper at ICLR 2025

- The α-weighted neighborhood distribution µα
x(z) for node x is given by:

µα
x(z) =


α if z = y,

(1− α) 1
deg(x) if z ∈ N (x),

0 otherwise,

where:

• deg(x) is the degree of node x,
• N (x) is the set of neighbors of x,
• α ∈ [0, 1] is a parameter balancing the focus on the direct edge to y versus the uniform

distribution over x’s neighbors.

Substituting µα
x and µα

y into the curvature formula, we have:

κα(x, y) = 1−
infπ∈Π(µα

x ,µα
y)

∑
u∈N(x)

∑
v∈N(y) π(u, v)d(u, v)

d(x, y)
,

where Π(µα
x , µ

α
y) is the set of all joint probability distributions with marginals µα

x and µα
y , and d(u, v)

is the distance between nodes u and v.

20

	Introduction
	Related Work
	Background
	Persistent Homology for Graphs

	TopER: Topological Evolution Rate
	Computational Complexity
	Stability Results

	Experiments
	Experimental Setup
	Graph Classification Results
	Graph Clustering Results
	Graph Visualization
	Ablation Study

	Conclusion
	Further Experimental Details
	Hyperparameters
	OGBG-MOLHIV Results
	Clustering Performances
	Number of Thresholds
	Time Experiments for TopER vs. PH
	Combining Filtration Functions

	More on TopER
	Refining the point set
	TopER with Alternative Quantities
	Linear or Higher Order Fitting
	Interpreting TopER

	Proofs of Stability Theorems
	Filtration Functions

