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ABSTRACT

Backtracking line search is foundational in numerical optimization. The basic idea
is to adjust the step size of an algorithm by a constant factor until some chosen
criterion (e.g. Armijo, Descent Lemma) is satisfied. We propose a novel way to
adjust step sizes, replacing the constant factor used in regular backtracking with
one that takes into account the degree to which the chosen criterion is violated,
with no additional computational burden. This light-weight adjustment leads to
significantly faster optimization, which we confirm by performing a variety of
experiments on over fifteen real world datasets. For convex problems, we prove
adaptive backtracking requires no more adjustments to produce a feasible step size
than regular backtracking does. For nonconvex smooth problems, we prove adaptive
backtracking enjoys the same guarantees of regular backtracking. Furthermore, we
prove adaptive backtracking preserves the convergence rates of gradient descent
and its accelerated variant.

1 INTRODUCTION

We consider learning settings that can be posed as the unconstrained optimization problem

argmin
x∈Rd

F (x). (1)

Typically, algorithms solve (1) iteratively, refining the current iterate xk by taking a step αkdk:

xk + αkdk. (2)

Here, αk is the size of the step taken in the direction dk. Examples of iteration algorithms include
gradient descent (GD), Newton’s method, quasi-Newton methods (Moré & Sorensen, 1982; Nocedal
& Wright, 2006), Nesterov’s accelerated gradient method (AGD) (Nesterov, 1983), adaptive gradient
methods (Ruder, 2016) and their stochastic and coordinate-update variants (Boyd et al., 2011). To
find an appropriate step size, iterative algorithms typically call a line search (LS) subroutine, which
adopts some criterion and adjusts a tentative step size until this criterion is satisfied. For many popular
criteria, if the direction dk selected by the base algorithm is somewhat aligned with the gradient of F ,
then a feasible step size can be produced in a finite number of updates by successively reducing an
initial tentative step size until the criteria are satisfied. The standard practice for this process, known
as backtracking, is to multiply the tentative step size by a predefined constant factor to update it. We
propose a simple alternative to standard practice:

to adjust the step size by an online variable factor that depends on the line search criterion violation.

While in principle this idea can be applied to many criteria, this paper focuses on illustrating it in the
context of two line search criteria: the Armijo condition (Armijo, 1966), arguably the most popular
example of such criteria, and the descent lemma (Bertsekas, 1999, proposition A.24) in the context
of composite objectives (Beck & Teboulle, 2009). After motivating our choices of online adaptive
factors, we show that they enjoy the best theoretical guarantees one can hope for. Moreover, we prove
that adaptive backtracking preserves the convergence rates of GD and AGD. To conclude, we present
numerical experiments on several real-world problems confirming that using online adaptive factors
in line search subroutines can produce higher-quality step sizes and significantly reduce the total
number of function evaluations standard backtracking subroutines require.
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Contributions. Our contributions can be summarized as follows.

• In Section 2, we propose a template for adaptive backtracking procedures with broad applicability.
• In Section 2.4, we apply the template to enforce the Armijo condition and, in Section 3, present

experiments on real-world problems showcasing that the adaptive subroutine outperforms regular
backtracking and improves the performance of standard baseline optimization algorithms.

• In Section 2.5, we apply the template on proximal-based algorithms to satisfy the descent lemma
and present more real-world problems in Section 3 illustrating that the adaptive subroutine improves
the performance of FISTA.

• For both subroutines, in Section 4 we prove that for convex problems, adaptive backtracking takes
no more function evaluations to terminate than regular backtracking in any single iteration. We also
give global theoretical guarantees for adaptive backtracking in nonconvex smooth problems, which
match those of regular backtracking. Furthermore, we show that adaptive backtracking preserves
the convergence rates of gradient descent and its accelerated variant. In particular, the proof of
accelerated convergence is based on a novel technical argument, to the best of our knowledge.

2 ADAPTIVE BACKTRACKING

2.1 LINE SEARCH: CRITERIA AND SEARCH PROCEDURES

Every line search subroutine can be decomposed into the criteria that it enforces and the procedure it
uses to return a feasible step size. We now briefly discuss each component and provide examples.

Criteria. The most popular of line search criteria is the Armijo condition (Armijo, 1966), which
requires that the objective function sufficiently decrease along consecutive iterates. Other popular
sets of criteria are the weak and strong Wolfe conditions (Wolfe, 1969), which comprise the Armijo
condition and an additional curvature condition that prevents excessively small step sizes and induces
step sizes for which the objective function decreases even more. In contrast, nonmonotone criteria
(Grippo et al., 1986; Zhang & Hager, 2004) only require that some aggregate metric of the objective
function values (e.g., an exponential moving average) decrease along consecutive iterates.

Search procedures. The second component of a line search subroutine is the procedure that finds
a step size satisfying the target criteria. For example, Wolfe line search is often implemented by
bracketing procedures based on polynomial interpolation (Nocedal & Wright, 2006, pp. 60–61).
In contrast, several criteria consisting in a single condition such as Armijo and nonmonotone, are
provably satisfied by sufficiently small step sizes. For them, the standard procedure to compute step
sizes fixes an initial tentative step size and then consecutively multiplies it by a constant ρ ∈ (0, 1)
until the criteria are satisfied. This procedure is generally known as backtracking line search (BLS).

2.2 ADAPTIVE BACKTRACKING

BLS often enforces an inequality that is affine in the step size. In this case, BLS can be reformulated
as computing v(αk), which is less than 1 when the line search criterion evaluated at the tentative step
size αk is violated, and then scaling αk by a factor until v(αk) is greater than 1. BLS (Algorithm 1)
employs a fixed factor ρ ∈ (0, 1). We propose a simple modification of this procedure:

to replace ρ with an adaptive factor ρ̂(v(αk)) chosen as a nontrivial function of the violation v(αk).

Algorithm 1 Backtracking Line Search

Input: α0>0, v : R+→ R, ρ ∈ (0, 1)
Output: αk

1: αk ← α0

2: while v(αk) < 1 do
3: αk ← ρ · αk

4: end while

Algorithm 2 Adaptive Backtracking Line Search

Input:α0> 0, v : R+→ R, ρ̂: R→ (0, 1)
Output: αk

1: αk ← α0

2: while v(αk) < 1 do
3: αk ← ρ̂(v(αk)) · αk

4: end while
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2.3 RELATED WORK

Backtracking is a simple and effective alternative to exact line search subroutines , which helps to
explain why it remains a popular procedure to enforce various line search criteria (Beck & Teboulle,
2009; Nesterov, 2013; Vaswani et al., 2019b; Galli et al., 2023; Aujol et al., 2024). Notwithstanding,
there is no standard practice to select the adjustment factor ρ, but rather some rough guidelines
suggesting that the parameter ρ “is often chosen to be between 0.1 (which corresponds to a very
crude search) and 0.8 (which corresponds to a less crude search)” (Boyd & Vandenberghe, 2004,
p. 466) and that it “is usually chosen from 1/2 to 1/10, depending on the confidence we have on
the quality of the initial step size” (Bertsekas, 2016, p. 36). Indeed, we find that ρ varies somewhat
arbitrarily depending on empirical performance and the conditions enforced by backtracking. For
example, ρ = 0.8 is used in (Aujol et al., 2024) to enforce the descent lemma, while ρ = 0.5 is used
in (Vaswani et al., 2019b) to enforce the Armijo conditions. With that in mind, in our experimental
validation, we compare our proposed adaptive subroutine with regular backtracking for several values
of ρ. Our goal is to exhibit compelling evidence for a simple alternative to a classic method that
remains popular, rather than champion a particular line search subroutine. Accordingly, we do not
compare against subroutines that do not enforce similar line search criteria, such as (Fridovich-Keil
& Recht, 2020; Orseau & Hutter, 2023), nor subroutines that do not release code (de Oliveira &
Takahashi, 2021). Likewise, we leave recent twists on backtracking, such as (Truong & Nguyen,
2021; Calatroni & Chambolle, 2019; Rebegoldi & Calatroni, 2022), for future work, since these
methods could in principle also benefit from adaptive adjustments (see Section 5.)

2.4 CASE STUDY: ARMIJO CONDITION

The most popular criterion used in line search is the Armijo condition (Armijo, 1966), which is
specified by a hyperparameter c ∈ (0, 1) and requires sufficient decrease in the objective function:

F (xk + αkdk)− F (xk) ≤ c · αk⟨∇F (xk), dk⟩. (3)
For the Armijo condition, the direction dk is usually assumed to be a descent direction:
Assumption 1 (descent direction). The direction dk satisfies ⟨∇F (xk), dk⟩ < 0.

We define the violation of (3) as

v(αk) :=
F (xk + αkdk)− F (xk)
c · αk⟨∇F (xk), dk⟩

. (4a)

Under Assumption 1, (3) can be written as v(αk) ≥ 1. To account for the information conveyed by
(3) when violated, we choose the corresponding adaptive geometric factor ρ̂(v(αk)) as

ρ̂(v(αk)) := max
(
ϵ, ρ 1−c

1−c·v(αk)

)
, (4b)

where ϵ > 0 is a small factor that prevents occasional numerical errors in v(αk) from spreading to
ρ̂(v(αk)). Although (4b) is parameterized by ϵ and ρ, for each method we fix their values on all
experiments, effectively making Algorithm 2 parameter free. We use our adaptive BLS procedure
to find suitable step sizes for three standard base methods: gradient descent (GD), Nesterov’s
accelerated gradient descent (AGD) (Nesterov, 1983) and Adagrad (Duchi et al., 2011). The standard
implementations that we use for these algorithms are given in Appendix C. Incorporating line search
into GD and Adagrad is straightforward, but the case of AGD merits further comment.

Backtracking and AGD. Unlike GD, AGD is not necessarily a monotone method in the sense
that F (xk + αkdk) ≤ F (xk) need not hold. But AGD is a multistep method, one being a GD step,
for which line search can help to compute a step size or, equivalently, to estimate the Lipschitz
constant L. If the estimate of L satisfies (3) with c = 1/2 and is increasingly multiplied by a lower
bounded positive geometric factor, then AGD with line search enjoys essentially the same theoretical
guarantees of AGD tuned with constant parameters. We also consider AGD with memoryless line
search with fixed predetermined initial step sizes. Then, unless some variant such as Scheinberg et al.
(2014) is used, the theoretical guarantees are not necessarily preserved when AGD is combined with
memoryless line search. For some values of ρ, however, we find empirically that not only does the
resulting method converge, but it does so much faster than the monotone line search variant, which in
turn typically converges faster than AGD tuned with a pre-computed estimate L̄ (see Appendix D.1.)
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2.5 CASE STUDY: DESCENT LEMMA

A standard assumption in the analysis and design of several optimization algorithms is that gradients
are Lipschitz-smooth, which implies (Nesterov, 2018, Thm. 2.1.5.) that there is some L > 0 such that

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L
2 ∥y − x∥

2, ∀x, y. (5)

Inequality (5) is commonly known as the descent lemma (Bertsekas, 1999). In particular, it is
commonly assumed (5) holds for algorithms that solve problems with composite objective functions
F := f+ψ, where f is Lipschitz-smooth convex and ψ is continuous, possibly nonsmooth, convex. A
prototypical example of such an algorithm is FISTA (Beck & Teboulle, 2009), which is an extension
of Nesterov’s AGD to composite problems (for details see Appendix C.) FISTA assumes that it
produces points yk and pαk

(yk) satisfying (5) applied to F with x = yk and y = pαk
(yk), where pα

denotes the proximal operator (Parikh & Boyd, 2014) parameterized by α > 0 and defined by

pα(y) := argmin
x

{
ψ(x) +

1

2α

∥∥x− (y − α∇f(y))∥∥2}. (6)

In practice, α = 1/L is seldom known for a given f , and FISTA estimates it with some αk by checking

F (pαk
(yk)) ≤ f(yk) + ⟨∇f(yk), pαk

(yk)− yk⟩+ 1
2αk
∥pαk

(yk)− yk∥2 + ψ(pαk
(yk)). (7)

Since (7) holds for any αk ≤ 1/L, an estimate αk can be precomputed from analytical upper bounds
on L for particular cases of f , but these bounds tend to be overly conservative and can lead to poor
performance. A better alternative, adopted by FISTA and many methods (Nesterov, 2013; Scheinberg
et al., 2014), is to backtrack: reduce αk by some constant factor ρ < 1 until (7) holds.

We define the violation of Eq. (7) as

v(αk) :=
1

2αk
∥pαk

(yk)− yk∥2
/(

f(pαk
(yk))− f(yk)− ⟨∇f(yk), pαk

(yk)− yk⟩
)
, (8a)

and the corresponding adaptive factor as:

ρ̂(v(αk)) := ρv(αk). (8b)

In experiments below, we use (8b) to find suitable step sizes for FISTA, with a fixed ρ < 1 value.

3 EMPIRICAL PERFORMANCE

We present four experiments illustrating different ways and scenarios in which our adaptive backtrack-
ing line search (ABLS) subroutine (Algorithm 2) can outperform regular backtracking (Algorithm 1).

3.1 CONVEX OBJECTIVE: LOGISTIC REGRESSION + ARMIJO

First, we consider the logistic regression objective with L2 regularization, defined by

F (x) = − 1

n

n∑
i=1

(
yi log(σ(a

⊤
i x)) + (1− yi) log(1− σ(a⊤i x))

)
+
γ

2
∥x∥2, (9)

where σ(z) = 1/(1 + exp(−z)) is the sigmoid function, γ > 0 and (Ai, bi) ∈ Rd × {0, 1} are n ob-
servations from a given dataset. For each dataset, L̄ = λmax(A

⊤A)/(4n) provides an upper bound on
the true Lipschitz parameter of the first term in (9), with which we fix γ = L̄/(10n) and the step size
of gradient descent to 1/(L̄+ γ). In all experiments, the initial point x0 is the origin as is standard.

Result Summary. A succinct summary of our results contained in Table 1 and Appendix D is that

across datasets and step size initializations considered, adaptive backtracking is more robust than
regular backtracking and often leads to significant improvements with respect to base methods.
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Backtracking Line Search (BLS) Adaptive BLS (ABLS)

ρ = 0.2 ρ = 0.3 ρ = 0.3
Method Dataset #f #∇f ET [s] #f #∇f ET [s] #f #∇f ET [s] gain

GD ADULT 148597.2 32582.0 1319.0 74258.5 18749.0 694.7 37296.0 13583.8 370.0 46.7%
G_SCALE 58488.5 18252.2 3050.4 65429.2 17111.5 3059.7 25917.2 11700.5 1607.0 47.3%
MNIST 148469.8 41726.2 10986.4 207786.8 46475.5 13474.8 52616.5 22385.8 4841.9 55.9%
MUSHROOMS 14170.5 6507.2 31.7 14800.8 6628.5 33.9 7611.0 3693.8 17.3 45.5%
PHISHING 33388.2 8059.8 63.0 34193.5 7938.5 62.4 16543.2 6434.5 26.4 57.6%
PROTEIN 28011.0 13260.5 4481.6 35733.2 14868.8 5282.0 27656.0 13207.2 4137.4 7.7%
WEB-1 6721.5 3139.0 9.0 6156.8 2972.8 8.4 6192.2 3024.8 7.9 (5.4%)*

ρ = 0.5 ρ = 0.6 ρ = 0.9
Method Dataset #f #∇f ET [s] #f #∇f ET [s] #f #∇f ET [s] gain
AGD ADULT 17288.8 2014.2 116.6 49331.2 3806.2 247.0 7999.0 2275.0 49.2 52.5%

G_SCALE 3580.2 592.5 114.9 18530.8 1964.0 512.9 2204.5 728.5 84.1 26.8%
MNIST 8934.2 1524.5 452.3 14365.8 1846.5 643.7 4943.2 1666.2 283.0 37.4%
MUSHROOMS 1100.5 372.2 1.7 1146.8 367.8 1.6 850.0 376.2 1.4 15.5%
PHISHING 6763.2 944.2 9.1 8344.2 944.8 8.6 3699.0 1058.0 4.0 53.6%
PROTEIN 2865.0 1232.2 396.3 3397.5 1272.5 346.5 2743.2 1257.0 291.6 15.8%
WEB-1 651.8 208.5 0.6 699.8 202.2 0.5 519.2 217.8 0.4 3.3%

ρ = 0.2 ρ = 0.3 ρ = 0.3
Method Dataset #f #∇f ET [s] #f #∇f ET [s] #f #∇f ET [s] gain
Adagrad ADULT 124102.0 20001.0 699.5 145159.8 19789.8 746.5 27179.0 8000.5 178.8 74.4%

G_SCALE 274023.2 33071.5 7396.5 361852.0 34933.8 9740.9 84201.0 17176.2 2425.4 67.2%
MNIST 86240.5 13843.8 3921.2 99021.8 14760.8 4377.2 12366.2 3521.8 679.5 82.7%
MUSHROOMS 7794.8 1967.8 9.0 7239.5 1693.0 9.3 3751.5 1446.0 6.0 33.2%
PHISHING 74737.5 15833.5 68.9 117564.0 20001.0 96.4 18053.0 6375.0 19.4 71.8%
PROTEIN 6103.0 809.2 420.6 4040.2 429.0 257.9 1845.8 446.5 164.4 36.2%
WEB-1 4384.2 1027.0 2.9 3857.8 745.2 2.5 1726.5 568.8 1.3 50.1%

Table 1: Logistic regression. #f and #∇f denote the number of function and gradient evaluations
and ET refers to elapsed time in seconds. The gain is given by 1− (ET of ABLS)/(ET of BLS) with
the best ET for BLS across ρ in each experiment, which is bolded. We ran each BLS experiment with
a grid of four ρ’s and present the best two in the table. The gain for GD on WEB-1 is colored orange
because although ABLS terminated before the best performing BLS variant, it required more function
and gradient evaluations. This anomaly can be attributed to the relatively small ET for this problem.

Datasets and methods. We take observations from seven datasets, whose details can be found
in Appendix D. We consider GD, AGD, and Adagrad, described in in Appendix C, with BLS for
ρ ∈ {0.2, 0.3, 0.5, 0.6} and our ABLS with a pre-set ρ.

Initialization. We set the starting point x0 as the origin and fix ϵ = 0.01 in (4b) on all experiments.
We also fix ρ, but change it according to the base method. For more details, see Appendix D.

Evaluation. We run all methods for long enough to produce solutions with designated precision,
then average various metrics over different initial step sizes. For more details, see Appendix D.

Remarks. Table 1 shows that ABLS significantly outperform BLS. For GD and Adagrad, ABLS
variants outperforms BLS for almost every combination of ρ and α0 by saving function evaluations
and returning better step sizes, which speed up convergence. Fig. 1 illustrates this point by showing
how the suboptimality gap evolves with time for the baseline GD, its ABLS variant and BLS variants
for two choices of initial step size. In particular, increasing the initial step size helps BLS in some
datasets but not in others. Fig. 2 shows a similar trend for the case of AGD. In general, ABLS is
more robust to the choice of initial step size and that is the main reason why the ABLS variant of
AGD outperforms its BLS counterparts. In Appendix D.2, Figs. 12 and 13 show the corresponding
step sizes. Initially, ABLS returns smaller GD step sizes than BLS, but this trend quickly reverses.
A plausible explanation is that BLS returns the largest step sizes that satisfy (3), within a factor of
ρ. If the step sizes are excessively large initially, they can lead to worse optimization paths (e.g.,
more zig-zagging). For AGD, the step sizes follow a similar trend initially, but then the adaptive step
size seems to converge while the regular step sizes not always do. This can be indicative of another
shortcoming of regular backtracking, namely that it can only return step sizes that are powers of ρ
times the initial step size, in contrast with adaptive backtracking.
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Figure 1: Baseline: GD with constant αk = 1/L̄; reg (ρ, β) and ad (ρ, β): GD with, respectively,
regular and adaptive memoryless BLS parameterized by ρ and α0 = β/L̄.
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Figure 2: Baseline: AGD with constant αk = 1/L̄; reg (ρ, β) and ad (ρ, β): AGD with, respectively,
regular and adaptive memoryless BLS parameterized by ρ and α0 = β/L̄.

3.2 CONVEX OBJECTIVE: LINEAR INVERSE PROBLEMS + DESCENT LEMMA

The goal of a linear inverse problem is to recover the sparse signal x from a noisy measurement
model y = Ax+ ϵ, where A ∈ Rn×d and y ∈ Rn are known, and ϵ is unknown noise. The problem
of estimating x is typically posed as a Lasso objective (Santosa & Symes, 1986; Tibshirani, 1996)

F (x) =
1

2
∥Ax− y∥2 + λ∥x∥1.

Datasets. We take observations A from eight datasets, see Appendix E for details.

Methods. We consider FISTA (Beck & Teboulle, 2009) (Algorithm 6) and BLS variants. For BLS,
ρ = {1/2, 1/3, 1/5} and ρ = 1/1.1 ≈ .9 for ABLS, mirroring the choice for AGD above. All BLS
methods start with the same initial Lipschitz constant estimate increase it accordingly.

Initialization. For each dataset, we empirically find values of α0 = 1/L0 around which backtracking
becomes active, and then increase them successively (values reported on Appendix E.)

Results Summary. The ABLS variant of FISTA outperforms its BLS counterparts across all datasets
tested. Moreover, the best value of ρ for BLS changes from one dataset to the other. Since the
Lipschitz constant estimate is monotone, function evaluations vary little across methods and have
small impact on performance. Nevertheless, ABLS requires fewer function evaluations for all datasets.

3.3 NONCONVEX OBJECTIVE: ROSENBROCK + ARMIJO

We consider the classical nonconvex problem given by the Rosenbrock objective function F (u, v) =
100(u− v2)2 + (1− v)2. We use the origin as the initial point and 0.1 as the initial step size. Fig. 3
shows the optimization paths for BLS and ABLS memoryless variants of GD and AGD after 1000

6
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Backtracking Line Search (BLS) Adaptive BLS (ABLS)

ρ = 0.5 ρ = 0.3 ρ = 0.9
Method Dataset ∆#f #∇f ∆#f #∇f ∆#f #∇f gain
FISTA DIGITS 15.5 28282.25 10 34730.75 4.75 16756 40.8%

IRIS 10.75 726.25 7 816.5 4 710 2.2%
OLIVETTI 10 242709.5 6.25 246827.75 2 212930.75 12.3%
LFW∗ 26.25 49093.75 17 49014.5 2 45070.75 8.0%
SPEAR3 13.25 328328.75 9 506308.5 2 255417.5 22.2%
SPEAR10 44.75 18691 29.75 19992.75 8 15128 19.1%
SPARCO3 27.75 266.25 18.5 276.75 3.25 251 5.7%
WINE 48 529333.25 27.75 564293.75 8.5 472527 10.7%

Table 2: Linear inverse problem. #∇f and ∆#f denote the number of gradient and excess function
evaluations (total function evaluations minus two times total iterations). The gain is given by 1−
(#∇f of ABLS)/(#∇f of BLS) with the best ET for BLS across ρ in each dataset (bolded.) We run
each BLS experiment with three ρ’s and present the best two in the table. ABLS reached the desired
precision in all testpoints while the asterisk on LFW∗ indicates BLS did not in at least one testpoint.

iterations, using ρ = 0.3 and ρ = 0.9, respectively. We see that the ABLS variants achieve better
losses, requiring far fewer function evaluations and less time to do so.
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(b) AGD

Method #f loss ET [s]

GD+BLS 4992 7.30e-03 1.04e-1
GD+ABLS 2754 7.21e-12 9.98e-2
AGD+BLS 42263 9.25e-11 5.59e-1

AGD+ABLS 2991 4.01e-13 6.40e-2

(c)

Figure 3: Performance of GD and AGD regular (red) and adaptive (blue) BLS variants on Rosenbrock.
“loss” refers to the final loss after 1000 iterations.

3.4 NONCONVEX OBJECTIVE: MATRIX FACTORIZATION + ARMIJO

Lastly, we consider the nonconvex problem of matrix factorization, defined by the objective
F (U, V ) = 1

2∥UV
⊤ − A∥2F , where A ∈ Rm×n, U ∈ Rm×r, V ∈ Rn×r and r < min{m,n}. We

take A from the MovieLens 100K dataset (Harper & Konstan, 2015) and consider three rank values
r ∈ {10, 20, 30} (see Appendix F for further details and full plots.)

For this experiment we replicate the initialization and evaluation methodologies of Section 3.1, except
we disconsider Adagrad, and pick different values for initial step sizes, {0.05, 0.5, 5, 50}, and ρ.
Namely, we let ρ ∈ {0.2, 0.3, 0.5, 0.6} for the BLS variants, but fix ρ = 0.3 and ρ = 0.9 for the
ABLS GD and AGD variants, respectively. Table 3 summarizes the results for ABLS and the top two
BLS variants. Once again, the best value of ρ for BLS is inconsistent: ρ = 0.3 for ranks 10 and 20
but ρ = 0.2 for rank 30. ABLS requires significantly fewer gradient and function evaluations than
the top BLS variant does, which leads to considerable gains in time to achieve the desired precision.

4 MOTIVATION AND THEORETICAL RESULTS

In this section, we motivate our choices of adaptive factors and characterize them theoretically.

The particular choices of adaptive factors were made with two goals in mind: generate more
aggressive backtracking factors to save function evaluations and guarantee reasonably large step
sizes to achieve fast convergence. To meet our first goal, ρ̂(v(αk)) ∈ (0, ρ) must hold. Indeed, if (3)
is violated, then v(αk) < 1 because dk is assumed a descent direction, where v is defined by (4a). So,
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Backtracking Line Search Adaptive BLS (ABLS)

ρ = 0.2 ρ = 0.3 ρ = 0.3
Method Rank #f #∇f ET [s] #f #∇f ET [s] #f #∇f ET [s] gain

GD 10 39960.0 5683.5 1034.5 33531.8 4897.8 999.5 52075.8 1631.8 64.8 93.5%
20 127480.2 18734.5 1153.2 111322.0 16109.2 1010.9 377111.8 5133.0 170.9 83.1%
30 231170.5 35639.8 2035.5 394472.2 50001.0 4195.1 681952.0 14802.8 669.2 67.1%

ρ = 0.3 ρ = 0.5 ρ = 0.9
AGD 10 362029.7 21909.3 2377.0 44873.0 6198.3 379.4 22707.7 6663.7 172.0 54.7%

20 479432.0 35672.0 2987.9 491753.3 33523.3 3588.6 80720.3 24588.7 738.0 75.3%
30 357885.7 39234.3 2187.8 478084.3 42985.3 5157.0 95040.0 27454.0 855.1 60.9%

Table 3: Backtracking for matrix factorization. #f and #∇f denote the number of function
and gradient evaluations and ET refers to elapsed time in seconds. The gain is given by 1 −
(ET of ABLS)/(ET of BLS) with the best ET for BLS across ρ in each experiment, which is bolded.

1.00 0.00 0.28 0.50 1.00

(a) Reducing ρ can lead to greater step sizes.

/2 3.59 2 3 4

(b) Reducing ρ can lead to more step size adjustments.

Figure 4: Backtracking line search convex and nonconvex examples. The dashed negative slopes
represent the threshold to satisfy the Armijo condition and the shaded regions indicate feasible iterates.

if in addition ϵ ∈ (0, ρ) in (4b), then ρ̂(v(αk)) < ρ. To meet the second goal, the returned step size
must be non-trivially lower bounded. To this end, in Section 4.2 we show that if the objective function
is Lipschitz-smooth, then ABLS returns a step size on par with the greatest step size that is guaranteed
to satisfy (3). For now, we note that if (3) is violated, then 1 − c · v(αk) > 0, since c ∈ (0, 1) by
assumption. Thus, ρ̂(v(αk)) is bounded away from zero. Moreover, that same bound applies to BLS.
Similar conclusions can be reached if the BLS criterion is (7) and ρ̂ and v are chosen as (8b) and (8a).

4.1 THE SCOPE OF THEORETICAL GUARANTEES FOR A BACKTRACKING SUBROUTINE

There are limitations to the scope of the theoretical guarantees one can expect of a backtracking
subroutine and the extent to which two subroutines can be compared. We delineate these limits with
three simple examples that establish four facts:

1. The step size returned by backtracking is not monotone in ρ, even for convex problems.
2. For nonconvex problems, given step sizes α′ and α with α′ < α, α being feasible does not

imply α′ is too.
3. For nonconvex problems, decreasing ρ may increase the number of criteria evaluations

required to compute a feasible step size.
4. No line search procedure can be provably better than (regular) backtracking to enforce any

set of line search criteria that includes the Armijo condition or the descent lemma, for any
class of functions that includes quadratics.

For the sake of space, we defer the full description of the examples to Appendix B.1, but Figs. 4a
and 4b provide visual cues of the intuitions behind the first three facts. The fourth fact can be
demonstrated by considering a simple scalar quadratic objective and convenient choices of initial
step size or Lipschitz constant estimate and values of ρ.

Overall, the above facts indicate that even for a single backtracking call only somewhat modest
theoretical guarantees can be given. Moreover, different backtracking subroutines induce different
optimization paths, which further limits the extent to which subroutines can be compared theoretically.
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4.2 THEORETICAL RESULTS

In this subsection, we present theoretical results regarding regular and adaptive backtracking. Several
additional convergence results and full proofs can be found in Appendix B.

Convex problems. We show that only the first of the three facts above holds for convex problems,
which expands the extent to which two backtracking subroutines can be compared.
Proposition 1. Let F be convex differentiable. Given a point xk, a direction dk and a step size
αk > 0 satisfying (3) for some c, then xk, dk and α′

k also satisfy (3) for any α′
k ∈ (0, αk).

The following proposition refers to “compatible inputs.” By this we mean:
Definition 1 (Compatibility). The inputs to Algorithms 1 and 2 are said to be compatible if α0, c, v
coincide and the input ρ̂ to Algorithm 2 is parameterized by the same ρ that Algorithm 1 takes as input.
Proposition 2. Let F be convex differentiable. Fixing all other inputs, the number of function
evaluations that Algorithm 1 and Algorithm 2 take to return a feasible step size is nondecreasing in
the input ρ. Moreover, given compatible inputs with a descent direction and ϵ < ρ, Algorithm 2 takes
no more function evaluations to return a feasible step size than Algorithm 1 does.

Nonconvex problems. For convex problems, we were able to compare the number of times regular
and adaptive backtracking must evaluate their criteria in order to return a single feasible step size.
But what really matters is the total number of criteria evaluations up to a given iteration. We bound
this number for general nonconvex problems, hinging on the following properties.1

Definition 2 (Smoothness). A function F is said to be Lipschitz-smooth if (5) holds for some L > 0.
Definition 3 (Gradient related). The directions dk are said to be gradient related if there are c1 > 0
and c2 > 0 such that ⟨∇F (xk),−dk⟩ ≥ c1∥∇F (xk)∥2 and ∥dk∥ ≤ c2∥∇F (xk)∥, for all k ≥ 0.
Assumption 2. We assume F is Lipschitz-smooth and dk are gradient related.

Gradient relatedness ensures that dk is not “too large” or “too small” with respect to ∇F (xk) and
that the angle between dk and∇F (xk) is not “too close” to being perpendicular (Bertsekas, 1999,
p. 41). Together with c1 and c2, the Lipschitz constant L and Armijo constant c define a step size
threshold ᾱ = 2c1(1− c)/Lc22 below which (3) holds. This quantity is central in the following result.
Informal Theorem (Armijo). Let F be Lipschitz-smooth and dk gradient related. Given compatible
inputs, if ϵ < ρ and v, ρ̂ are chosen as (4), then Algorithms 1 and 2 share the same bounds on the
total number of backtracking criteria evaluations up to any iteration. If αk is received as the initial
step size input at iteration k + 1 for all k ≥ 0, then they evaluate (3) at most ⌊logρ(ᾱ/α0)⌋+ 1 + k
times up to iteration k. If, on the other hand, α0 is received as the initial step size input at every
iteration, then they evaluate (3) at most k(⌊logρ(ᾱ/α0)⌋ + 1) times up to iteration k. Moreover,
Algorithms 1 and 2 always return a step size αk such that αk ≥ min(α0, ρᾱ).
Informal Theorem (Descent lemma). Let f be Lipschitz-smooth convex and let ψ be continuous
convex. Also, suppose v and ρ̂ are chosen as (8a) and (8b). If αk ∈ (0, 1/L), then (7) holds for all yk.
If Algorithms 1 and 2 receive αk as the initial step size input in iteration k+1, then they evaluate (7) at
most ⌊logρ(1/Lα0)⌋+1+k times up to iteration k. If, on the other hand, Algorithms 1 and 2 receive
α0 as the initial step size input in every iteration, then they evaluate (7) at most k(⌊logρ(1/Lα0)⌋+1)
times up to iteration k. Moreover, they return a feasible step size αk such that αk ≥ min {α0, ρ/L}.

5 FUTURE WORK: FURTHER APPLICATIONS, EXTENSIONS AND LIMITATIONS

Adaptive backtracking is a general idea that can be broadly applied in a variety of settings. Our goal in
this paper was to rigorously validate it in classical machine learning and optimization problems. This
section outlines several promising directions for future work and speculate about potential limitations.

5.1 FURTHER APPLICATIONS AND EXTENSIONS

Stochastic line search. In machine learning, models such as over-parameterized neural networks
are sufficiently expressive to interpolate immense datasets (Zhang et al., 2016; Ma et al., 2018).

1Instead of the usual condition that ∥∇F (x)−∇F (y)∥ ≤ L∥x−y∥ hold for all x, y, we adopt the equivalent
(Nesterov, 2018, Thm. 2.1.5.) condition (5) as the definition of Lipschitz-smoothness for the sake of convenience.
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Interpolation provides theoretical foundation for the stochastic line search (SLS) proposed by Vaswani
et al. (2019b), which enforces the Armijo condition on the training mini-batches. In the same vein,
Galli et al. (2023) replaced the Armijo condition in SLS with a nonmonotone criterion and used
Polyak’s step size to devise an initial step size heuristic, obtaining the Polyak Nonmonotone Stochastic
(PoNoS) method. Below, we reproduce experiment 1 from (Galli et al., 2023) to demonstrate the
potential of applying ABLS in combination with stochastic line search in the interpolating regime.
Fig. 5 shows that combining ABLS with PoNoS leads to good test accuracy in fewer epochs (details
in Appendix A.) We defer fully developing this application to future work.
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Figure 5: MLP trained on MNIST with different algorithms.

Additional line search criteria. Adaptive backtracking may be useful to enforce other conditions
that are affine in the step size. A prominent candidate are the Goldstein conditions (Goldstein & Price,
1967), which comprise two inequalities that are affine in the step size. Nonmonotone line search
criteria (Grippo et al., 1986; Zhang & Hager, 2004) also offer several candidates.

Additional algorithms and increasing step sizes. In this paper, we experimented with increasing
step sizes through memoryless line search, where the initial step size is fixed for every iteration, but
other schemes are possible. For example, adaptive adjustments can also be used to increase step
sizes. In addition, adaptive backtracking can replace regular backtracking in line search methods
that increase the current step size and then use it as the initial step size, such as the two-way method
(Truong & Nguyen, 2021) and FISTA variants (Scheinberg et al., 2014; Calatroni & Chambolle,
2019; Rebegoldi & Calatroni, 2022). Also, it would be interesting to see how adaptive backtracking
works together with schemes that handle problems where the strong convexity constant is unknown,
namely restarting schemes Becker et al. (2011); O’Donoghue & Candès (2015); Aujol et al. (2024).
Finally, we note that the violation of a condition can also be used indirectly to adjust step sizes, for
example to pick the degree to which a fixed ρ is exponentiated, saving backtracking cycles.

5.2 LIMITATIONS

The weak and strong Wolfe conditions (Wolfe, 1969) are not affine in the step size and are not
satisfied by arbitrarily small step sizes. Hence, Wolfe conditions are not enforced by backtracking
(e.g., Nocedal & Wright (2006, pp. 60–61)) and it is unclear how to find analogous adaptive schemes.
In turn, quasi-Newton methods, which often must enforce Wolfe conditions to guarantee global
convergence, may not be suitable candidates for adaptive line search subroutines. In reality, the role
of line search for these methods is to guarantee they converge globally rather than finding the “right”
step size, since they work with unit step size locally. Hence, only few adjustments may be necessary.
The same applies to Newton’s method and the Barzilai–Borwein method (Barzilai & Borwein, 1988).

It is also unclear if adaptive adjustments can be useful for more general stochastic line search methods
that do not rely on the interpolation property (Cartis & Scheinberg, 2017; Paquette & Scheinberg,
2020). Instead, they resample function and gradient mini-batches in every loop, whether a sufficient
descent condition is violated or not. But the information conveyed by the violation for one sample need
not be relevant to satisfy the same condition with a different sample, which poses a potential limitation.
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A STOCHASTIC LINE SEARCH EXAMPLE

The results presented in Fig. 5 correspond to experiment 1 from (Galli et al., 2023) without any
modifications, and are run using the base code from the same paper, which can be found at:

https://github.com/leonardogalli91/PoNoS.

In this experiment, a multilayer perceptron (MLP) with a single layer, width 1000 and 535818
parameters is trained on the MNIST dataset (LeCun et al., 1998) until the training loss becomes less
than 10−6. This is the same stopping criterion adopted in (Galli et al., 2023). To train the MLP, the
following methods are used:

1. Adam: adaptive moment estimation method (Kingma & Ba, 2015).
2. SLS: stochastic line search (Vaswani et al., 2019a).
3. SPS: stochastic Polyak step size method (Loizou et al., 2021).
4. PoNoS: Polyak nonmonotone stochastic method (Galli et al., 2023).
5. ABLS: an adaptive backtracking variant of PoNoS, detailed below.

As Fig. 5 shows, only PoNoS and ABLS terminate within 75 epochs. PoNoS does so after 56 epochs
and 583 seconds, while ABLS finishes in 41 epochs and 464 seconds.

For all the above methods, we preserve the parameters recommended in (Galli et al., 2023) unaltered
from the source code. The ABLS method combines our adaptive backtracking procedure with a
simplified version of PoNoS. Namely, PoNoS generates initial step sizes with

ηk = ηk,0δ
l̄k+lk , (10)

where δ ∈ (0, 1) and lk is the amount of backtracks in iteration k − 1, which are accounted for in

l̄k = max{l̄k−1 + lk−1 − 1, 0}.

That is, previous backtracks are used to discount an initial step size given by

ηk,0 = min{η̃k,0, ηmax},

which in turn is based on the Polyak initial step size

η̃k,0 =
fik(wk)− f∗ik
cp∥∇fik(wk)∥2

, (11)

where cp ∈ (0, 1) is a hyperparameter, ik denotes the mini-batch sampled in iteration k, wk denotes
the MLP parameters in iteration k and f∗ik refers to the minimum of the mini-batch training loss:

fik =
1

|ik|
∑
j∈ik

fj .

Instead, we simply use (11) as the initial step size, with cp = 1/2, the same value proposed in (Galli
et al., 2023). Then, we apply ABLS to enforce

fik(wk − ηk∇fik(wk)) ≤ Ck − cηk∥∇fik∥2, c ∈ (0, 1), (12)

where Ck denotes an exponential moving average of losses given by

Ck = max{C̃k, fik(wk)}, C̃k =
ξQkCk−1 + fik(wk)

Qk+1
, Qk+1 = ξQk + 1

with ξ ∈ (0, 1). The inequality (12) is a stochastic variant enforced by PoNoS of the deterministic
criterion proposed by Zhang & Hager (2004). This inequality can be seen as a generalization of the
Armijo condition with the current loss replaced with an average. As such, it preserves the structure of
(3), which allows us to seamlessly apply (4b), with ρ = 0.9 and ϵ = 0.5.

14
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B EXAMPLES, THEOREMS AND PROOFS

In this section, we present the examples mentioned in Section 4, prove the results stated therein and
provide further convergence results.

B.1 EXAMPLES

We start with the examples mentioned in Section 4.1. Together, they establish four facts:

1. The step size returned by backtracking is not monotone in ρ, even for convex problems.
2. For nonconvex problems, given step sizes α′ and α with α′ < α, α being feasible does not

imply α′ is too.
3. For nonconvex problems, decreasing ρ may increase the number of criteria evaluations

required to compute a feasible step size.
4. No line search procedure can be provably better to enforce any set of line search criteria that

includes the Armijo condition or the descent lemma, for any class of functions that includes
quadratics.

Example 1 (Fact 1). Let F be defined by F (x) = x2 and fix xk = −1, dk = −F ′(xk) = −2xk = 2.
Then, the Armijo condition with c = 1/4 is satisfied if and only if

(−1 + 2αk)
2 ≤ 1− αk.

To find the critical step size values for which this inequality is satisfied, we simply solve a second-order
equation, which gives the positive value of α∗

k = 0.75 with corresponding iterate xk + α∗
kdk = 0.5.

Thus, if the initial tentative step size is αk = 1, which produces the tentative iterate is 1, then the
Armijo condition is not satisfied and the step size must be adjusted. If ρ = 0.75, then the adjusted step
size 0.75 produces the tentative iterate 0.5 and the Armijo condition is satisfied, therefore the step size
requires no further adjustments. On the other hand, if ρ = 0.8, then the adjusted step size 0.8 produces
the tentative iterate 0.6 and the Armijo condition is not satisfied. Adjusting the step size once more
produces a step size of 0.64 < α∗

k and an corresponding iterate xk + αkdk = −1 + 0.64 · 2 = 0.28,
satisfying the Armijo condition. Therefore, increasing ρ = 0.75 to ρ = 0.8 decreases the step size
that backtracking returns.
Example 2 (Facts 2 and 3). Let F be defined by F (x) = cosx − ax, where a = 1

5π , and also fix
xk = π

2 and

dk = −F ′(xk) = sinxk + a = 1 + a.

Given the above choices, the Armijo condition parameterized by c = 1
2π is satisfied if and only if

cos
(π
2
+ (1 + a)αk

)
− a
(π
2
+ (1 + a)αk

)
≤ cos

(π
2

)
− aπ

2
− (1 + a)2

αk

2π
,

or, equivalently, if and only if

cos
(π
2
+ (1 + a)αk

)
≤ a(1 + a)αk − (1 + a)2

αk

2π
.

If the initial tentative step size is picked as 7π
2(1+a) , then (1 + a)αk = 7π

2 , so that

cos
(π
2
+ 7

π

2

)
= 1 ≥ −1.16 ≈ 7/10− 7

5π + 1

20π
.

That is, the Armijo condition is not satisfied, therefore the step size must be adjusted. If ρ = 5
7 , then

the step size is adjusted to 5π
2(1+a) , so that (1+a)αk = 5π

2 and the Armijo condition is satisfied, since

cos
(π
2
+ (1 + a)αk

)
= cos(3π) = −1 ≤ −0.83 ≈ 1

2
− 5

5π + 1

20π
.

On the other hand, if ρ = 3
7 , then (1 + a)αk = 3π

2 and the Armijo condition is not satisfied, since

cos
(π
2
+ (1 + a)αk

)
= 1 ≥ −0.5 ≈ 3/10− 3

5π + 1

20π
.
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Adjusting the step size once more by ρ = 3
7 produces the step size 9π

14(1+a) and, in turn, the iterate
xk + αkdk = π

2 + 9π
14 = 8π

7 ≈ 3.59, which is feasible since

cos
(8π

7

)
≈ −1.13 ≤ −0.21 ≈ 9

70
− 9

5π + 1

140π
.

In this example, the step size 3π
2(1+a) is not feasible although it is smaller than 5π

2(1+a) , which is
feasible. More generally, this establishes that feasibility is not monotone in the step size for nonconvex
functions. Moreover, by reducing ρ = 5

7 to ρ = 3
7 , backtracking must adjust the initial step size one

additional time. Therefore, reducing ρ might increase the number of criteria evaluations to return a
feasible step size.
Example 3 (Fact 4). Let F be defined by F (x) = x2/2. If xk ̸= 0 and dk is a descent direction, then
by definition ⟨∇F (xk), dk⟩ = dkxk < 0 and it must be that dk = −c1xk for some c1 > 0. Hence,
given some c ∈ (0, 1), (3) holds if and only if

1

2
(1− αkc1)

2x2k = F (xk+1) ≤ F (xk) + cαk⟨∇F (xk), dk⟩ =
1

2
x2k − cαkc1x

2
k.

Therefore, (3) holds if and only if

c1(2(1− c)− c1αk)αkx
2
k = (1− 2cc1αk − (1− c1αk)

2)x2k ≥ 0,

or, equivalently, αk ≤ 2(1 − c)/c1, since x2k > 0. Now, suppose that α0 = 4(1 − c)/c1 > 0 and
ρ = 1/2. Then, after testing (3) exactly once, backtracking returns the step size αk = 2(1− c)/c1,
the greatest value that is guaranteed to satisfy (3). Thus, in this example, backtracking is optimal in
the sense that it tests (3) only once to return the greatest feasible step size possible. Therefore, no
other line search procedure can be provably better than backtracking to enforce any set of line search
criteria that includes the Armijo condition for any class of functions that includes quadratics.

Next, we show an analogous result for the descent lemma. Keeping F (x) = x2/2, for any x ̸= y, (5)
holds with an estimate Lk of the Lipschitz constant if and only if

x2

2
= F (y) ≤ F (y) + ⟨∇f(y), x− y⟩+ Lk

2
∥x− y∥2 =

Lk − 1

2
(y2 − 2xy) +

Lk

2
x2,

which is equivalent to Lk ≥ 1. Hence, if L0 ∈ (0, 1) and ρ = L0, then backtracking returns the
optimal estimate L0/ρ = 1 after testing (5) exactly once (requiring two function evaluations), no
matter what x ̸= y are. Hence, in this example, backtracking is optimal in the sense that it tests (5)
only once to return the tightest Lipschitz constant estimate possible. Therefore, no other line search
procedure can be provably better than backtracking to enforce any set of line search criteria that
includes the descent lemma for any class of functions that includes quadratics.

As a side note, we look into what adaptive backtracking would do. For this problem, (8a) becomes

v(αk) =
1

2αk
∥pαk

(yk)− yk∥2

f(pαk
(yk))− f(yk)− ⟨∇f(yk), pαk

(yk)− yk⟩
= Lk.

Therefore, after one function evaluation, adaptive backtracking returns ρv(αk)αk = ρ, which matches
the theoretical lower bound of backtracking and corresponds to the Lipschitz constant estimate 1/ρ.

B.2 CONVEX PROBLEMS

In this subsection, we present and proof the results for convex problems stated in Section 4.
Proposition 3. Let F be convex differentiable. Given a point xk, a direction dk and a step size
αk > 0 satisfying (3) for some c, then xk, dk and α′

k also satisfy (3) for any α′
k ∈ (0, αk).

Proof. Let β := α′
k/αk ∈ (0, 1). Then, expressing xk+α′

kdk as β(xk+αkdk)+(1−β)xk, we obtain

F (xk + α′
kdk) = F (β(xk + αkdk) + (1− β)xk) ≤ βF (xk + αkdk) + (1− β)F (xk)

≤ β(F (xk) + cαk⟨∇F (xk), dk⟩) + (1− β)F (xk)
= cα′

k⟨∇F (xk), dk⟩+ F (xk),

where the first and second follow from F being convex and xk, dk and αk satisfying (3), respectively.
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Proposition 4. Let F be convex differentiable. Fixing all other inputs, the number of backtracking
criteria evaluations that Algorithm 1 takes to return a feasible step size is nondecreasing in the input ρ.

Proof. Consider the inputs α0, c and v to Algorithm 1 fixed. Then, let 0 < ρ1 < ρ2 < 1 and let N1

and N2 denote the number of adjustments Algorithm 1 takes to compute a feasible step size when
it receives respectively ρ1 and ρ2 as inputs. If ρNi

i α0 is a feasible step size and N ′
i > Ni for some

i ∈ {1, 2}, then so is ρN
′
i

i α0, in view of the fact that ρNi
i < ρ

N ′
i

i and of Proposition 3. Moreover,
Algorithm 1 must test if the step size ρNi

i is feasible before testing the step size ρN
′
1

1 and therefore
cannot return ρN

′
1

1 α0. Inductively, we conclude that N1 and N2 are the least nonnegative integers
such that ρNi

i are feasible. Now, since ρN2
2 is feasible, if N1 > N2, then so is ρN2

1 < ρN2
2 , in view of

the assumption that ρ1 < ρ2 and of Proposition 3. That is, N1 is not the least nonnegative integer
such that ρN1

1 is feasible, a contradiction. Moreover, each adjustment requires evaluating the objective
function once, so the total number of function evaluations Algorithm 1 takes to return a feasible
step size is Ni + 2. Therefore, if Algorithm 1 receives ρ1 as input, then it takes no more function
evaluations to return a feasible step size than if receives ρ2 as input.

Definition 4. The inputs to Algorithms 1 and 2 are said to be compatible if α0, c, v coincide and the
input ρ̂ to Algorithm 2 is parameterized by the same ρ that Algorithm 1 takes as input.

Proposition 5. Let F be convex differentiable. Given compatible inputs with a descent direction
dk and ϵ < ρ, Algorithm 2 takes no more function evaluations to return a feasible step size than
Algorithm 1 does.

Proof. Suppose Algorithms 1 and 2 receive compatible inputs. If (3) is violated for some tentative
step size αk, then v(αk) < 1 which together with c ∈ (−0, 1) imply 1− c · v(αk) > 1− c > 0. In
turn, ρ̂(v(αk)) < ρ because ϵ < ρ, by assumption. The result follows by repeating the arguments
used to prove Proposition 4 above.

B.3 NONCONVEX PROBLEMS

B.3.1 ARMIJO CONDITION

Proposition 6 (Armijo feasibility for C2 functions). Let F be twice continuously differentiable.
Given a base point xk, a descent direction dk, an initial step size α0 and a constant c ∈ (0, 1) for the
Armijo condition (3), there is some ᾱ = ᾱ(xk, dk, c) ≤ α0 such that xk + αkdk satisfies (3) for all
αk ∈ (0, ᾱ).

Proof. Assuming F twice continuously differentiable, then by Taylor’s theorem (Nocedal & Wright,
2006, p. 14), there exists some t = t(xk, dk, αk) ∈ (0, 1) such that

F (xk + αkdk) = F (xk) + αk⟨∇F (xk), dk⟩+ α2
k
1
2 ⟨dk,∇

2F (xk + tαkdk)dk⟩. (13)

Moreover, the eigenvalues of ∇2F are continuous and the line segment {xk + αkdk : αk ∈ [0, α0]}
is compact, therefore there is some λ > 0 such that for all αk ∈ (0, α0) and t ∈ (0, 1)∣∣d⊤k∇2F (xk + tαkdk)dk

∣∣ ≤ λ∥dk∥2. (14)

So, let ᾱ = ᾱ(xk, dk, c) := 2(1− c)⟨∇F (xk),−dk⟩/(λ∥dk∥2) > 0, which is positive since dk is a
descent direction, by assumption. Combining (13) with (14), it follows that if αk ∈ (0, ᾱ), then (3)
holds.

For the sake of convenience, we now restate some definition from Section 4.

Definition 5 (Smoothness). A function F is said to be Lipschitz-smooth if (5) holds for some L > 0.

Definition 6 (Gradient related). The directions dk are said to be gradient related if there are c1 > 0
and c2 > 0 such that ⟨∇F (xk),−dk⟩ ≥ c1∥∇F (xk)∥2 and ∥dk∥ ≤ c2∥∇F (xk)∥, for all k ≥ 0.
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Given a Lipschitz-smooth function F , we are particularly interested in applying the Descent Lemma
(5) with x = xk and y = xk + αkdk, which gives

F (xk + αkdk) ≤ F (xk) + αk⟨∇F (xk), dk⟩+ α2
k

L

2
∥dk∥2. (15)

Proposition 7 (Armijo feasibility for Lipschitz-smooth functions). Let F be Lipschitz-smooth. Given
a base point xk, a descent direction dk, an initial step size α0 and a constant c ∈ (0, 1) for the Armijo
condition (3), there is some ᾱ = ᾱ(xk, dk, c) ≤ α0 such that (3) holds for all αk ∈ (0, ᾱ). If, in
addition, dk are gradient related, then (3) holds for all αk ∈ (0, 2(1−c)c1

Lc22
], independent of xk and dk.

Proof. To guarantee (3) holds, we impose that the right-hand side of (15) is less than the right-hand
side of (3):

F (xk) + αk⟨∇F (xk), dk⟩+ α2
k

L

2
∥dk∥2 ≤ F (xk) + cαk⟨∇F (xk), dk⟩.

In turn, simplifying the above inequality, it follows that if

αk ≤
2(1− c)⟨∇F (xk),−dk⟩

L∥dk∥2
, (16)

then (3) holds, where we note that (16) is positive, since dk is assumed a descent direction.

Now, suppose that ⟨∇F (xk),−dk⟩ ≥ c1∥∇F (xk)∥2 and ∥dk∥ ≤ c2∥∇F (xk)∥ for some c1 > 0
and c2 > 0. Then, for all αk such that αk ≤ 2(1− c)c1/Lc22, we have that

αk ≤
2(1− c)

L

c1∥∇F (xk)∥2

c22∥∇F (xk)∥2
≤ 2(1− c)⟨∇F (xk),−dk⟩

L∥dk∥2
.

That is, (16) holds. Therefore, (3) also holds.

Proposition 8. Let F be Lipschitz-smooth, ϵ < ρ and assume v, ρ̂ are given by (4). Also, suppose dk
are gradient related. If Algorithms 1 and 2 receive αk as the initial step size input at iteration k + 1
for all k ≥ 0, then they evaluate (3) at most ⌊logρ(ᾱ/α0)⌋ + 1 + k times up to iteration k, where
ᾱ := 2(1− c)c1/Lc22. If, on the other hand, Algorithms 1 and 2 receive α0 as the initial step size
input at every iteration, then they evaluate (3) at most k(⌊logρ(ᾱ/α0)⌋+ 1) times up to iteration k.

Proof. Suppose that Algorithm 2 evaluates (3) and it does not hold for a given tentative step size αk.
Then,

F (xk + αkdk)− F (xk) > cαk⟨∇F (xk), dk⟩.

Dividing both sides above by cαk⟨∇F (xk), dk⟩ < 0 gives v(αk) < 1. In turn, since c ∈ (0, 1), it
follows that 1− c > 1− cv(αk) > 0 and (1− c)/(1− c · v(αk)) < 1. Plugging this inequality into
(4b), we obtain

ρ̂(αk) = max(ϵ, ρ(1− c)/(1− c · v(αk)) < ρ,

since by assumption ϵ < ρ. Therefore, if (3) does not hold for a given tentative step size, then
Algorithms 1 and 2 multiply it by a factor of at most ρ to adjust it.

Moreover, by Proposition 7, (3) is satisfied for all αk ∈ (0, ᾱ), independently of xk and dk.

Hence, if Algorithms 1 and 2 use α0 as the initial step size for the first iteration and αk at iteration k+1
for k ≥ 0, then at most ⌊logρ(ᾱ/α0)⌋+1 adjustments are necessary until a step size that is uniformly
feasible is found. Each adjustment entails evaluating (3) once. In addition, (3) must be evaluated once
every iteration. Therefore, (3) is evaluated at most ⌊logρ(ᾱ/α0)⌋+ 1 + k times up to iteration k.

Now, suppose Algorithms 1 and 2 use α0 as the initial step size in every iteration. Then, at most
⌊logρ(ᾱ/α0)⌋+ 1 adjustments are necessary in every iteration until a feasible step size is found. As
before, each adjustment entails evaluating (3) once, in addition to the first evaluation. Therefore, (3)
is evaluated at most k(⌊logρ(ᾱ/α0)⌋+ 1) times up to iteration k.
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Proposition 9 (step size lower bounds). Let F be Lipschitz-smooth. Also, suppose dk are gradient
related. Given appropriate inputs, Algorithm 2 with the choices specified by (4) and Algorithm 1
return a step size αk such that

αk ≥ min

{
α0, ρ

2(1− c)c1
Lc22

}
> 0.

Proof. Since dk is a descent direction, dividing both sides of (15) by ⟨∇F (xk),−dk⟩ > 0 yields

−cv(αk) = −
F (xk + αkdk)− F (xk)

αk⟨∇F (xk), dk⟩
≤ −1− αkL∥dk∥2

2⟨∇F (xk), dk⟩
.

Hence, if ρ̂ is chosen as (4b) and (3) does not hold, then step sizes αk returned by Algorithm 2 satisfy

ρ̂(v(αk))αk ≥ ρ
1− c

1− cv(αk)
αk ≥ ρ

2(1− c)⟨∇F (xk),−dk⟩
L∥dk∥2

≥ ρ2(1− c)c1
Lc22

> 0.

Moreover, by Proposition 7, the greatest step size for which (3) is guaranteed to hold is 2(1 −
c)c1/Lc

2
2. If α0 ≥ 2(1− c)c1/Lc22, then Algorithm 1 returns a step size at least within a ρ factor of

2(1− c)c1/Lc22.

B.3.2 DESCENT LEMMA

First, note the proximal operator pαk
given by (6) is well-defined. Indeed, given a continuous convex

function g, a point yk and some αk > 0, the map x 7→ g(x) + (1/2αk) ∥x− (y − αk∇f(y))∥2 is
continuous strongly convex and therefore admits a unique minimum.
Proposition 10 (Lipschitz step size feasibility). Let f be Lipschitz-smooth convex and let g be
continuous convex. Also, suppose v and ρ̂ are chosen as (8a) and (8b). If αk ∈ (0, 1/L), then (7)
holds for all yk. If Algorithms 1 and 2 receive αk as the initial step size input in iteration k + 1,
then they evaluate (7) at most ⌊logρ(1/Lα0)⌋+ 1 + k times up to iteration k. If, on the other hand,
Algorithms 1 and 2 receive α0 as the initial step size input in every iteration, then they evaluate (7) at
most k(⌊logρ(1/Lα0)⌋+ 1) times up to iteration k.

Proof. Given any yk, if αk ∈ (0, 1/L), then applying (5) with x = pαk
(yk) and y = yk, we get

f(pαk
(yk)) ≤ f(yk) + ⟨∇f(yk), pαk

(yk)− yk⟩+ (L/2)∥pαk
(yk)− yk∥2

≤ f(yk) + ⟨∇f(yk), pαk
(yk)− yk⟩+ (1/2αk)∥pαk

(yk)− yk∥2.
Adding ψ(pαk

(yk)) to both sides, we recover (7). Thus, if αk ∈ (0, ᾱ), then (7) holds for all yk.

Given an initial step size αk and the points yk and pαk
(yk), Algorithm 1 checks if (7) holds. If it

does hold, then Algorithm 1 returns αk, otherwise Algorithm 1 adjusts αk by ρ, recomputes pαk
(yk),

checks if (7) and repeats. Since (7) is guaranteed to hold for αk ∈ (0, 1/L), given an initial step
size α0, Algorithm 1 computes a feasible step size after adjusting αk at most ⌊logρ(1/Lα0)⌋ + 1
times. Each time Algorithm 1 adjusts αk, Algorithm 1 evaluates (7). In addition, Algorithm 1
evaluates Eq. (7) once every time it is called to check if the initial step size is feasible. Hence, if
Algorithm 1 receives αk as the initial step size input at iteration k+1, then it evaluates Eq. (7) at most
⌊logρ(1/Lα0)⌋+ 1 + k times up to iteration k. On the other hand, if Algorithm 1 receives the same
α0 as initial step size input at every iteration, then it might have to adjust αk up to ⌊logρ(1/Lα0)⌋+1
in every iteration, therefore Algorithm 1 evaluates (7) at most k(⌊logρ(1/Lα0)⌋ + 1) times up to
iteration k.

Now, consider Algorithm 2, with v and ρ̂ chosen as (8a) and (8b). Given an initial step size αk and
the points yk and pαk

(yk), Algorithm 2 checks if (7) holds. Suppose (7) does not hold. Then, moving
the terms f(pαk

(yk)) and ⟨∇f(yk), pαk
(yk)− yk⟩ to the left-hand side and cancelling ψ(pαk

(yk))
on both sides, we obtain

f(pαk
(yk))− f(yk)− ⟨∇f(yk), pαk

(yk)− yk⟩ > (1/2αk)∥pαk
(yk)− yk∥2. (17)

Since ∥ · ∥ ≥ 0, the left-hand side must be positive. So, dividing both sides by the left-hand side and
using (8a), it follows that v(αk) < 1. Hence, Algorithm 2 adjusts αk to ρ̂(αk)αk < ραk. That is, the
factor by which Algorithm 2 adjusts αk is smaller than the factor by which Algorithm 1 adjusts αk.
Therefore, Algorithm 2 evaluates Eq. (7) at most as many times as (1) does.
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Proposition 11. Let f be Lipschitz-smooth convex and let g be continuous convex. Also, suppose v
and ρ̂ are chosen as (8a) and (8b). If Algorithms 1 and 2 receive an initial step size α0 > 0, then they
return a feasible step size αk such that αk ≥ min {α0, ρ/L}.

Proof. By Proposition 10, every step size αk ∈ (0, 1/L) is feasible. Hence, if α0 is not feasible, then
since Algorithm 1 adjusts step sizes by ρ, it must return a feasible step size within a ρ factor of 1/L.

Now, consider Algorithm 2, with v and ρ̂ chosen as (8a) and (8b). Algorithm 2 only adjusts αk when
(7) does not hold, so suppose that is the case. Applying (5) with y = yk and xk = pαk

(yk) yields

f(pαk
(yk))− f(xk)− ⟨∇f(yk), pαk

(yk)− yk⟩ ≤ (L/2)∥pαk
(yk)− yk∥2.

Dividing both sides by (L/ρ)(f(pαk
(yk)) − f(xk) − ⟨∇f(yk), pαk

(yk) − yk⟩), which is positive
by (17), we obtain

ρ

L
≤ ρ

1
2∥pαk

(yk)− yk∥2

f(pαk
(yk))− f(xk)− ⟨∇f(yk), pαk

(yk)− yk⟩
= ρv(αk)αk,

where the identity follows from (8a). Hence, Algorithm 2 adjusts αk to ρ̂(v(αk))αk ≥ ρ/L.

B.4 CONVERGENCE RESULTS

B.4.1 A GENERAL CONVERGENCE RESULT FOR ADAPTIVE BACKTRACKING

Under mild conditions, we now show that limk→+∞ ∥∇f(xk)∥2 = 0 for iterates xk in the form (2)
with gradient related dk and step sizes generated by adaptive backtracking. We emphasize that the
following results make no further assumptions on how the descent directions are generated and that
(Nocedal & Wright, 2006, p. 40):

For line search methods of the general form (2), the limit limk→+∞ ∥∇f(xk)∥2 = 0 is the strongest
global convergence result that can be obtained: We cannot guarantee that the method converges to a
minimizer, but only that it is attracted by stationary points. Only by making additional requirements
on the search direction dk—by introducing negative curvature information from the Hessian∇2f(xk),
for example—can we strengthen these results to include convergence to a local minimum

Proposition 12. Let f be bounded below and Lipschitz-smooth on an open set containing the level
set {x : f(x) ≤ f(x0)}, where x0 is the initial point of iterates (2) where dk are gradient related
and αk are generated by adaptive backtracking (Algorithm 2) with some α0 > 0 and using ρ̂ and v
given by (4). Then, limk→+∞ ∥∇f(xk)∥2 = 0.

Proof. Under the above assumptions, we have that αk ≥ min{α0, ρα}, where α = 2(1−c)c1/(Lc22),
by Proposition 9. Moreover, we have that ⟨∇f(xk), dk⟩ ≤ −c1∥∇f(xk)∥2, because dk are gradient
related. Hence, since adaptive backtracking enforces the Armijo condition, (3), it follows that

f(xk+1)− f(xk) ≤ −αkc∥∇f(xk)∥2 ≤ −cmin{α0, ρ2(1− c)c1/(Lc22)}∥∇f(xk)∥2.

Telescoping the above difference, we get

f(xk+1)− f(x0) =
k∑

t=1

(f(xt+1)− f(xt)) ≤ −cmin
{
α0, ρ

2(1− c)c1
Lc22

} k∑
t=1

∥∇f(xt)∥2.

Rearranging the above inequality and using the assumption that f is lower bounded, we obtain

cmin
{
α0, ρ

2(1− c)c1
Lc22

} k∑
t=1

∥∇f(xt)∥2 ≤ f(x0)− f(xk+1) < +∞.

That is, ∥∇f(xk)∥2 are square-summable. Therefore, it follows that

lim
k→+∞

∥∇f(xk)∥2 = 0.
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B.4.2 CONVERGENCE RESULTS FOR GRADIENT DESCENT

We show that the standard convergence results for gradient descent are preserved if step sizes are
generated by adaptive backtracking. We address smooth and then smooth strongly convex objectives.
Proposition 13. Let f be convex, Lipschitz-smooth and suppose∇f(x∗) = 0 for some x∗. If the step
sizes αk of gradient descent (Algorithm 3) are chosen by adaptive backtracking (Algorithm 2) using
ρ̂ and v given by (4) with c ∈ [1/2, 1) and α0 > 0, then αk ≥ min{α0, ρα}, where α = 2(1− c)/L,
and

f(xk)− f(x∗) ≤
∥x0 − x∗∥2

2min{α0, ρα}k
.

Proof. Under the above assumptions, all iterates of gradient descent satisfy the Armijo condition, (3).
Moreover, since f is convex, we have that

f(xk) ≤ f(x∗) + ⟨∇f(xk), xk − x∗⟩.
Hence, combining the above inequality with (3), it follows that

f(xk+1) ≤ f(xk)− cαk∥∇f(xk)∥2 ≤ f(x∗) + ⟨∇f(xk), xk − x∗⟩ − cαk∥∇f(xk)∥2.
In turn, since c ≥ 1/2, rearranging the above inequality and completing a square, we get

f(xk+1)− f(x∗) ≤
1

2αk
(2αk⟨∇f(xk), xk − x∗⟩ − α2

k∥∇f(xk)∥2)

=
1

2αk
(2αk⟨∇f(xk), xk − x∗⟩ − α2

k∥∇f(xk)∥2 ± ∥xk − x∗∥2)

=
1

2αk
(∥xk − αk∇f(xk)− x∗∥2 − ∥xk − x∗∥2)

=
1

2αk
(∥xk − x∗∥2 − ∥xk+1 − x∗∥2).

Now, since gradient descent sets dk = −∇f(xk), then dk are gradient related with c1 = c2 = 1.
Moreover, since f is Lipschitz-smooth, then αk ≥ min{α0, ρα}, where α = 2(1 − c)/L, by
Proposition 9. Plugging this lower bound into the above inequality, it follows that

f(xk+1)− f(x∗) ≤
1

2min{α0, ρα}
(∥xk − x∗∥2 − ∥xk+1 − x∗∥2).

Telescoping the above, we get
k∑

t=1

(f(xt+1)− f(x∗)) ≤
1

2min{α0, ρα}

k∑
t=1

(∥xt − x∗∥2 − ∥xt+1 − x∗∥2)

≤ ∥x0 − x
∗∥2 − ∥xk+1 − x∗∥2

2min{α0, ρα}

≤ ∥x0 − x∗∥2

2min{α0, ρα}
.

Since ∇f(x∗) = 0 and f is convex, we have that f(xk+1) − f(x∗) ≥ 0. Moreover, f(xk) are
decreasing because the Armijo condition holds in every iteration. Therefore

f(xk+1)− f(x∗) ≤
∥x0 − x∗∥2

2min{α0, ρα}k
.

Next, we show that adaptive backtracking also preserves the convergence rate of gradient descent on
strongly convex objectives, which we define below.
Definition 7 (Strong convexity). A continuously differentiable function f is said to be strongly convex
if there exists some m > 0 such that for every x and y

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ m

2
∥y − x∥2. (18)
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Proposition 14. Let f be Lipschitz-smooth and strongly convex. If the step sizes αk of gradient
descent (Algorithm 3) are chosen by adaptive backtracking (Algorithm 2) using ρ̂ and v given by (4)
with c ∈ [1/2, 1) and α0 ∈ (0, 1/m), then

f(xk)− f(x∗) ≤ (1−mmin{α0, ρα})k
L+m

2
∥x0 − x∗∥2.

In particular, if c = 1/2 and α0 > ρ/L, then

f(xk)− f(x∗) ≤ (1− ρq)kL+m

2
∥x0 − x∗∥2,

where q = m/L is the reciprocal of the condition number of f .

Proof. Let L and m denote the Lipschitz-smoothness and strong convexity constants of f . The
assumption that f is strongly convex implies the existence of a unique global minimizer x∗ for f . We
then use x∗ to define a Lyapunov function V , given by

V (xk) = f(xk)− f(x∗) +
m

2
∥xk − x∗∥2,

which is positive for xk ̸= x∗. To prove the result, we show that (1+δk)V (xk+1)−V (xk) ≤ 0, where

δk =
1

Qk − 1
, Qk =

Lk

m
and Lk =

1

αk
.

And we note that the assumption that αk ≤ α0 < 1/m implies Lk > m, thus δk are well-defined.

By assumption, the iterates of gradient descent satisfy (3) with c ∈ [1/2, 1), hence

f(xk+1)− f(xk) ≤ −cαk∥∇f(xk)∥2 ≤ −
αk

2
∥∇f(xk)∥2.

Moreover, by strong convexity, we have that

f(xk)− f(x∗) ≤ ⟨∇f(xk), xk − x∗⟩ −
m

2
∥xk − x∗∥2.

Next, expanding quadratic terms, it follows that

(1 + δk)∥xk+1 − x∗∥2 − ∥xk − x∗∥2 =(1 + δk)(α
2
k∥∇f(xt)∥2 − 2αk⟨∇f(xk), xk − x∗⟩)

+ δk∥xk − x∗∥2.
Now, from the definition of δk, we obtain

(1 + δk)(1−mαk) =
Qk

Qk − 1

Qk − 1

Qk
= 1 and (1 + δk)mαk =

Qk

Qk − 1

1

Qk
= δk.

Then, we put everything together to get

(1 + δk)V (xk+1)− Vk(xk) ≤− (1 + δk)(1−mαk)
αk

2
∥∇f(xk)∥2

− (δk − (1 + δk)mαk)⟨∇f(xk), xk − x∗⟩

≤ − αk

2
∥∇f(xk)∥2.

Applying the above inequality inductively, it follows that

V (xk+1) ≤ V (x0)

k∏
t=1

1

1 + δt
.

Moreover, applying (5) with y = x0 and x = x∗, and noticing that∇f(x∗) = 0, we obtain

V (x0) = f(x0)− f(x∗) +
m

2
∥x0 − x∗∥2 ≤

L+m

2
∥x0 − x∗∥2.

Furthermore, under the above assumptions, we have that αk ≥ min{α0, ρα}, where α = 2(1− c)/L,
which implies that

1 + δk =
Qk

Qk − 1
=

1

1−mαk
≥ 1

1−mmin{α0, ρα}
.
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Finally, we put everything together and obtain

f(xk)− f(x∗) ≤ V (xk+1) ≤
L+m

2
∥x0 − x∗∥2

k∏
t=1

1

1 + δt

≤(1−mmin{α0, ρα})k
L+m

2
∥x0 − x∗∥2.

B.4.3 A CONVERGENCE RESULT FOR ACCELERATED GRADIENT DESCENT

To establish that adaptive backtracking preserves the convergence rate of accelerated gradient descent,
we employ a Lyapunov argument based on the function Vk defined by

Vt(xk, yk) = f(yk)− f(x∗) +
m

2
∥zt − x∗∥2, (19)

where the point zt = zt(xk, yk) is defined as

zt = xk +
√
Qt−1(xk − yk), (20)

and the estimated condition number Qt and estimated Lipschitz constant are given by

Qt =

{
L0/m, t < 0,

Lt/m, t ≥ 0,
and Lt =

1

αt
. (21)

Note that the index t of zt follows that of Vt but is independent of the indices of xk and yk, which
allows us to split the Lyapunov analysis in two auxiliary lemmas. First, we show that for a fixed index
k + 1, the Lyapunov function Vk+1 decreases along consecutive AGD iterates at an accelerated rate.
Second, we bound by how much Vk+1 can increase with respect to Vk for the same AGD iterate.
Lemma 1. Let f be Lipschitz-smooth and strongly convex. If the Lipschitz constant estimates Lk of
accelerated gradient descent (Algorithm 4) are generated by adaptive backtracking (Algorithm 2)
using ρ̂ and v given by (4) with c ∈ [1/2, 1) and L0 > m, then for k ≥ 0

(1 + δk+1)Vk+1(yk+1, xk+1)− Vk+1(yk, xk) ≤ 0,

where δk+1 = 1/(
√
Qk − 1).

Proof. We start by splitting (1 + δk+1)(f(yk+1)− f(x∗)) into three further differences:

(1 + δk+1)(f(yk+1)− f(x∗))− (f(yk)− f(x∗)
=(1 + δk+1)(f(yk+1)− f(xk)) + δk+1(f(xk)− f(x∗)) + (f(xk)− f(yk)).

Since c ∈ [1/2, 1), then adaptive backtracking generates Lk such that

(1 + δk+1)(f(yk+1)− f(xk)) ≤ − (1 + δk+1)
1

2Lk
∥∇f(xk)∥2. (22)

Moreover, applying (18) with x = xk and y = x∗ and using that f is convex, we get

δk+1(f(xk)− f(x∗)) ≤ δk+1 ⟨∇f(xk), xk − x∗⟩ − δk+1
m

2
∥xk − x∗∥2, (23)

f(xk)− f(yk) ≤ ⟨∇f(xk), xk − yk⟩ . (24)

Next, we express the difference zk+1 − x∗ as

zk+1 − x∗ = xk+1 +
√
Qk(xk+1 − yk+1)− x∗

= yk+1 + βk(yk+1 − yk) +
√
Qkβk(yk+1 − yk)− x∗

= − 1

Lk
(1 + βk(1 +

√
Qk))∇f(xk) + βk(1 +

√
Qk)(xk − yk) + xk − x∗

= − 1

Lk

√
Qk∇f(xk) + (

√
Qk − 1)(xk − yk) + xk − x∗,
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where we used the identities

1 + βk(1 +
√
Qk) =

√
Qt and βk(1 +

√
Qk) =

√
Qk − 1.

In the same vein, when expanding the 2-norm term ∥zk+1 − x∗∥2 below, we use the following
identities after colons to simplify the coefficients of terms before colons:

∥∇f(xk)∥2 : (Qk/L
2
k)(m/2) = 1/2Lk,

⟨∇f(xk), xk − yk⟩ : m(1 + δk+1)
√
Qk(

√
Qk − 1)/Lk = 1,

⟨∇f(xk), xk − x∗⟩ : m(1 + δk+1)
√
Qk/Lk = δk,

∥xk − yk∥2 : (1 + δk+1)(
√
Qk − 1)2 =

√
Qk(

√
Qk − 1),

⟨xk − yk, xk − x∗⟩ : (1 + δk+1)(
√
Qk − 1) =

√
Qk.

As a result, the 2-norm difference in (1 + δk+1)Vk+1(yk+1, xk+1)− Vk+1(yk, xk) becomes

(1 + δk+1)
m

2
∥zk+1 − x∗∥2 −

m

2
∥xk − x∗ +

√
Qk(xk − yk)∥2

=
1 + δk+1

2Lk
∥∇f(xk)∥2 − ⟨∇f(xk), xk − yk⟩ − δk ⟨∇f(xk), xk − x∗⟩

m

2

√
Qk(

√
Qk − 1)∥xk − yk∥2 +

m

2
(2
√
Qk⟨xk − yk, xk − x∗⟩+ (1 + δk+1)∥xk − x∗∥2)

− m

2
(Qk∥xk − yk∥2 + 2

√
Qk⟨xk − yk, xk − x∗⟩+ ∥xk − x∗∥2)

=
1 + δk+1

2Lk
∥∇f(xk)∥2 − ⟨∇f(xk), xk − yk⟩ − δk ⟨∇f(xk), xk − x∗⟩

− m

2

√
Qk∥xk − yk∥2 + δk

m

2
∥xk − x∗∥2. (25)

Finally, combining (22) to (25) and then canceling several terms, we obtain

(1 + δk+1)Vk+1(yk+1, xk+1)− Vk+1(yk, xk) ≤ −
m

2

√
Qk∥xk − yk∥2 ≤ 0.

Lemma 2. Let f be Lipschitz-smooth strongly convex. Given initial points x0 = y0, if the estimates
Lk of the Lipschitz constant in accelerated gradient descent (Algorithm 4) are generated monotoni-
cally by adaptive backtracking (Algorithm 2 with Lk serving as the initial estimate for Lk+1) using ρ̂
and v given by (4) with c ∈ [1/2, 1) and L0 > m, then for k ≥ 0

Vk+1(yk, xk) ≤
Q2

k

Q2
k−1

Vk(yk, xk).

Proof. We argue by induction. If x0 and y0 match, then

z1(y0, x0) = x0 +Q0(x0 − y0) = x0 = x0 +Q−1(x0 − y0) = z0(y0, x0).

Moreover, Q−1 = Q0, by definition. Therefore, we have that

V1(y0, x0) = f(y0)− f(x∗) +
m

2
∥z1(y0, x0)− x∗∥2

=
Q2

0

Q2
−1

(f(y0)− f(x∗) +
m

2
∥z0(y0, x0)− x∗∥2)

=
Q2

0

Q2
−1

V0(y0, x0),

which establishes the base case. To prove the inductive step, we divide the analysis in two cases, each
representing a possible sign of ⟨xk − yk, xk − x∗⟩. For each case, we bound

∥xk − x∗ +
√
Qkxk − yk∥2 − ∥zk − x∗∥2

= 2(
√
Qk −

√
Qk−1)⟨xk − x∗, xk − yk⟩+ (Qk −Qk−1)∥xk − yk∥2. (26)
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In turn, bounds on (26) translate into bounds on Vk+1(yk, xk)− Vk(yk, xk), since

Vk+1(yk, xk)− Vk(yk, xk) =
m

2
(∥xk − x∗ +

√
Qk(xk − yk)∥2 − ∥zk − x∗∥2). (27)

Then, to prove the inductive step, we express bounds on (27) in terms of Vk+1 and Vk.

First, suppose ⟨xk − yk, xk − x∗⟩ ≥ 0. Also assuming Lk ≥ Lk−1, then
√
Qk−1/

√
Qk ≤ 1, so that

√
Qk −

√
Qk−1 ≤

Qk√
Qk
−
√
Qk−1

√
Qk−1√
Qk

=
Qk −Qk−1√

Qk
.

Hence, applying the above inequality to (26) and then adding a nonnegative ∥xk − x∗∥2 term to it,
we get

∥xk − x∗ +
√
Qk(xk − yk)∥2 − ∥zk − x∗∥2

≤ 2
Qk −Qk−1√

Qk
⟨xk − x∗, xk − yk⟩+ (Qk −Qk−1)∥xk − yk∥2 +

Qk −Qk−1

Qk
∥xk − x∗∥2

=
Qk −Qk−1

Qk
∥xk − x∗ +

√
Qk(xk − yk)∥2. (28)

Plugging (28) back into (27) yields

Vk+1(yk, xk)− Vk(yk, xk) ≤
Qk −Qk−1

Qk

m

2
∥xk − x∗ +

√
Qk(xk − yk)∥2

≤ Qk −Qk−1

Qk
Vk+1(yk, xk), (29)

where the last inequality follows from the definition of Vk, as f(yk)− f(x∗) ≥ 0 implies

Vk+1(yk, xk) ≥
m

2
∥xk − x∗ +

√
Qk(xk − yk)∥2. (30)

Thus, rearranging terms in (29) and then multiplying both sides by Qk/Qk−1, we obtain

Vk+1(yk, xk) ≤
Qk

Qk−1
Vk(yk, xk) ≤

Q2
k

Q2
k−1

Vk(yk, xk),

where the second inequality holds because Qk/Qk−1 ≥ 1.

Now, suppose ⟨xk − yk, xk − x∗⟩ < 0. As in the previous case, we start by bounding the gap (26).
But given the negative sign of ⟨xk − yk, xk − x∗⟩ term, we bound the ∥xk − yk∥2 term instead. To
this end, we first invoke the assumption that ⟨xk − yk, xk − x∗⟩ < 0 to establish that

∥yk − x∗∥2 = ∥xk − x∗ − (xk − yk)∥2

= ∥xk − x∗∥2 − 2⟨xk − x∗, xk − yk⟩+ ∥xk − yk∥2

≥ ∥xk − x∗∥2. (31)

To use the above inequality on (26), first we rewrite it more conveniently as

∥xk − x∗ +
√
Qkxk − yk∥2 − ∥zk − x∗∥2

=2

√
Qk −

√
Qk−1√

Qk
⟨xk − x∗,

√
Qk(xk − yk)⟩+

√
Qk(

√
Qk −

√
Qk−1)∥xk − yk∥2

+
√
Qk−1(

√
Qk −

√
Qk−1)∥xk − yk∥2 ±

√
Qk −

√
Qk−1√

Qk
∥xk − x∗∥2

=

√
Qk −

√
Qk−1√

Qk
∥xk − x∗ +

√
Qk(xk − yk)∥2 +

√
Qk−1(

√
Qk −

√
Qk−1)∥xk − yk∥2

−
√
Qk −

√
Qk−1√

Qk
∥xk − x∗∥2. (32)
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Next, we use the following elementary inequality, which is a consequence of ∥a/c+ bc∥2 ≥ 0:

∥a− b∥2 = ∥a∥2 − 2⟨a, b⟩+ ∥b∥2 ≤ (1 + 1/c2)∥a∥2 + (1 + c2)∥b∥2.

Namely, we apply the above inequality with a = zk − x∗, b = xk − x∗ and c2 =
√
Qk−1/

√
Qk to

bound the ∥xk − yk∥2 term on (32) and obtain√
Qk−1(

√
Qk −

√
Qk−1)∥xk − yk∥2

=
√
Qk−1(

√
Qk −

√
Qk−1)∥xk − yk ± (xk − x∗)/

√
Qk−1∥2

=

√
Qk −

√
Qk−1√

Qk−1

∥zk − x∗ − (xk − x∗)∥2

≤
√
Qk −

√
Qk−1√

Qk−1

(
1 +

√
Qk√
Qk−1

)
∥zk − x∗∥2 +

√
Qk −

√
Qk−1√

Qk−1

(
1 +

√
Qk−1√
Qk

)
∥xk − x∗∥2

=
Qk −Qk−1

Qk−1
∥zk − x∗∥2 +

√
Qk −

√
Qk−1√

Qk

√
Qk +

√
Qk−1√

Qk−1

∥xk − x∗∥2. (33)

Plugging (33) back into (32) and then using (31), we get

∥xk − x∗ +
√
Qk(xk − yk)∥2 − ∥zk − x∗∥2

≤
√
Qk −

√
Qk−1√

Qk
∥xk − x∗ +

√
Qk(xk − yk)∥2 +

Qk −Qk−1

Qk−1
∥zk − x∗∥2

+

√
Qk −

√
Qk−1√

Qk

(√Qk +
√
Qk−1√

Qk−1

− 1
)
∥xk − x∗∥2

≤
√
Qk −

√
Qk−1√

Qk
∥xk − x∗ +

√
Qk(xk − yk)∥2 +

Qk −Qk−1

Qk−1
∥zk − x∗∥2

+

√
Qk −

√
Qk−1√

Qk−1

∥yk − x∗∥2. (34)

In turn, plugging (34) back into (27) and then using the assumptions that m ≥ m and m ≤ m yields

Vk+1(yk, xk)− Vk(yk, xk)

≤ m

2

√
Qk −

√
Qk−1√

Qk
∥xk − x∗ +

√
Qk(xk − yk)∥2 +

m

2

Qk −Qk−1

Qk−1
∥zk − x∗∥2

+
m

2

√
Qk −

√
Qk−1√

Qk−1

∥yk − x∗∥2

≤
√
Qk −

√
Qk−1√

Qk

m

2
∥xk − x∗ +

√
Qk(xk − yk)∥2 +

Qk −Qk−1

Qk−1

m

2
∥zk − x∗∥2

+

√
Qk −

√
Qk−1√

Qk−1

m

2
∥yk − x∗∥2. (35)

Now, as in (30), the fact that f(yk)− f(x∗) ≥ 0 implies

Vk(yk, xk) = f(yk)− f(x∗) +
m

2
∥zk − x∗∥2 ≥

m

2
∥zk − x∗∥2. (36)

In the same vein, applying (18) with x = x∗ and y = yk to the definition of Vk, we obtain

Vk(yk, xk) = f(yk)− f(x∗) +
m

2
∥zk − x∗∥2 ≥

m

2
∥yk − x∗∥2. (37)

Plugging in (30), (36) and (37) back into (35), and then moving all V acc
k+1(yk, xk) terms to the left-

hand side and all Vk(yk, xk) to the right-hand side, we obtain√
Qk−1√
Qk

Vk+1(yk, xk) ≤
( Qk

Qk−1
+

√
Qk −

√
Qk−1√

Qk−1

)
Vk(yk, xk) (38)
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Multiplying both sides of (38) by
√
Qk/

√
Qk−1, and then using the fact that

√
Qk ≥

√
Qk−1 yields

Vk+1(yk, xk) ≤
√
Qk√
Qk−1

( Qk

Qk−1
+

√
Qk −

√
Qk−1√

Qk−1

)
Vk(yk, xk) ≤

Q2
k

Q2
k−1

Vk(yk, xk),

where the last inequality above holds because Qk ≥ Qk−1 implies the following equivalences hold:

Qk

Qk−1
+

√
Qk −

√
Qk−1√

Qk−1

≤
Q

3/2
k

Q
3/2
k−1

⇐⇒
√
Qk−1Qk +Qk−1(

√
Qk −

√
Qk−1) ≤ Q3/2

k ,

⇐⇒ Qk−1(
√
Qk −

√
Qk−1) ≤ Qk(

√
Qk −

√
Qk−1).

Therefore, both when ⟨xk − x∗, xk − yk⟩ ≥ 0 and when ⟨xk − x∗, xk − yk⟩ < 0, the inequality

Vk+1(yk, xk) ≤
Q2

k

Q2
k−1

Vk(yk, xk)

holds generically for all yk, xk, proving the lemma.

Proposition 15. Let f be Lipschitz-smooth strongly convex. Given initial points x0 = y0, if the
estimates Lk of the Lipschitz constant in accelerated gradient descent (Algorithm 4) are generated
monotonically by adaptive backtracking (Algorithm 2 with Lk serving as the initial estimate for
Lk+1) using ρ̂ and v given by (4) with c ∈ [1/2, 1) and L0 > m, then for k ≥ 0

f(yk+1)− f(x∗) ≤

(√
Q−

√
2(1− c)ρ√
Q

)k
Q2

4(1− c)2ρ2
L+m

2
∥x0 − x∗∥2.

Proof. Combining Lemmas 1 and 2, we have that for every k ≥ 0

Vk+1(yk+1, xk+1) ≤
1

1 + δk
Vk+1(yk, xk) ≤

1

1 + δk

Q2
k

Q2
k−1

Vk(yk, xk).

Moreover, from Proposition 9 and the assumption that L0 > m, it follows that

Lk ≤ max{L0, L/(2(1− c)ρ)} ≤ max{m,L/(2(1− c)ρ)}

and, in turn, we obtain

1

1 + δk
≤
√
Qk − 1√
Qk

≤
√
Q−

√
2(1− c)ρ√
Q

where Q =
L

m
. (39)

Furthermore, assuming y0 = x0, we have that

V0(y0, x0) = f(y0)− f(x∗) +
m

2
∥z0 − x∗∥2 ≤

L+m

2
∥x0 − x∗∥2.

Arguing inductively, all but Q2
k and Q2

−1 = Q2
0 cancel and, since L0 > m, we get

f(yk+1)− f(x∗) ≤ Vk+1(yk+1, xk+1)

≤

(√
Q−

√
2(1− c)ρ√
Q

)k
L2
k

L2
0

V0(y0, x0)

≤

(√
Q−

√
2(1− c)ρ√
Q

)k
Q2

4(1− c)2ρ2
L+m

2
∥x0 − x∗∥2.
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C METHODS

In this section, we briefly state standard implementations of the base methods that we use in the paper.
For the sake of simplicity, we only state a single iteration of the corresponding method.

Algorithms 3 and 4 summarize gradient descent and Nesterov’s accelerated gradient descent in the
formulation with constant momentum coefficient (Nesterov, 2018, 2.2.22). Algorithm 5 summarizes
Adagrad (Duchi et al., 2011).

To state the last base method that we consider in this paper, we must introduce an auxiliary operator.
Given a convex Lipschitz-smooth function f with Lipschitz constant L and a continuous convex
function, the proximal operator pL is defined by

pL(y) := argmin
x

{
g(x) +

L

2

∥∥∥∥x− (y − 1

L
∇f(x)

)∥∥∥∥2
}
. (40)

With the above definition, we can state Algorithm 6, which summarizes FISTA (Beck & Teboulle,
2009).

Algorithm 3 Gradient Descent.
Input: xk,∇f(xk), αk > 0
Output: xk+1

1: xk+1 ← xk − αk∇f(xk)

Algorithm 4 Nesterov’s accelerated gradient descent (Nesterov, 2018, 2.2.22).
Input: xk, yk,∇f(xk), Lk > m > 0
Output: xk+1, yk+1

1: yk+1 ← xk − (1/Lk)∇f(xk)
2: βk ←

√
Lk−

√
m√

Lk+
√
m

3: xk+1 ← (1 + βk)yk+1 − βkyk

Algorithm 5 Adagrad (Duchi et al., 2011). Superscript i means the i-th entry of
the vector.
Input: xk,∇f(xk), yk, xkαk > 0
Output: xk+1, sk+1

1: sik+1 = yk, x
i
k + (∇f(xk)i)2

2: xik+1 ← xik −
αk√
sik+1

∇f(xik)

Algorithm 6 FISTA (Beck & Teboulle, 2009).

Input: xk, xk−1, yk, tk,∇f(xk)
Output: xk+1, yk+1, tk+1

1: xk+1 ← pL(yk)

2: tk+1 ←
1+
√

1+4t2k
2

3: yk+1 ← xk + tk−1
tk+1

(xk − xk−1)
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D LOGISTIC REGRESSION EXPERIMENTS

In this section, we provide further details of the logistic regression experiments and present full plots
of all runs.

Table 4: Details of datasets and method precisions used in the logistic regression problem.

dataset datapoints dimensions AGD GD GD (monotone) Adagrad
a9a 32561 123 10−9 10−6 10−5 10−6

gisette_scale 6000 5000 10−9 10−9 10−5 10−9

MNIST 60000 784 10−9 10−6 10−3 10−9

mushrooms 8124 112 10−9 10−9 10−5 10−9

phishing 11055 68 10−9 10−9 10−6 10−6

protein 102025 75 10−9 10−9 10−5 10−9

web-1 2477 300 10−9 10−9 10−8 10−9

Dataset details. We take observation from seven datasets: A9A, GISETTE_SCALE (G_SCALE),
MUSHROOMS, PHISHING and WEB-1 from LIBSVM (Chang & Lin, 2011), PROTEIN from KDD Cup
2004 (Caruana et al., 2004) and MNIST (LeCun et al., 1998) The dataset A9A is a preprocessed version
of the ADULT dataset (Becker & R, 1996), while WEB-1 is subsample of the WEB dataset (Platt, 1998).

Initialization details. For Lipschitz-smooth problems, a step size of 1/L̄ is guaranteed to satisfy the
Armijo condition (with c = 1/2) if L̄ ≥ L. Accordingly, we consider four choices of initial step sizes,
α = {101, 102, 103, 104}/L̄, which capture the transition from initial step sizes that do not require
adjustments to satisfy the Armijo condition to step sizes that do. In practice, L is unknown and the
transition would occur as one attempted an arbitrary initial step size and adjusted it correspondingly
until the line search was activated. Hence, using L̄ to anchor the choice of initial step sizes is merely
an educated guess of the transition values that would be found in practice. We adopt the standard
choice c = 10−4 (Nocedal & Wright, 2006, p. 62) in (3) for BLS used with GD and Adagrad but,
motivated by both theory and practice, we choose c = 1/2 in the case of AGD. Also, we use the
regularization parameter γ as the strong convexity parameter input for AGD.

Evaluation details. We run all base method and their variants for long enough to produce solutions
with designated precision; Then, we account for the number of gradient and function evaluations and
elapsed time each variant takes to produce that solution. Finally, for each BLS variant we average those
numbers over the four initial step sizes that we considered. All methods compute exactly one gradient
per iteration. To account for elapsed time, we record wall clock time after every iteration. Although
somewhat imprecise, elapsed time reflects the relative computational cost of gradient and function
evaluations and, especially in larger problems, is a reasonable metric to compare performance.

Additional comments. We make the following additional remarks and observations:

• We considered two ways to initialize the step size for line search at each iteration: (1) using the
step size from the previous iteration and (2) using the same fixed step size at every iteration. We
refer to the corresponding line search subroutines as monotone and memoryless. The monotone
variants are robust to every choice of ρ while some values of ρ may turn the memoryless variants of
AGD unstable or unacceptably slow. When the memoryless variants work, however, they generally
work much better than the corresponding monotone variants and the baseline methods.

• Monotone backtracking is not as appealing as memoryless backtracking because although both vari-
ants take fewer iterations than the baseline method does to reach a given precision, the savings in iter-
ations generated by the monotone variants are not enough to outweigh the additional computational
cost of function evaluations that the same variants accrue. Therefore, we only report results for the
memoryless variant in the main text and defer results for the monotone variant to Appendix D.1.

• The initial step sizes greatly impact performance. For some starting step sizes, vanilla backtracking
is better suited for finding the optimal solution than our adaptive method. However, we find that
there tends to be more variance in the performance of vanilla backtracking.

• When L̄ is a good estimate of the true Lipschitz constant, the computational cost of function eval-
uations may outweigh the savings in gradient evaluation and even memoryless backtracking might
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not improve on the baseline method. This is the case for the COVTYPE dataset from LIBSVM
(Chang & Lin, 2011), as shown by Fig. 17b, in Appendix D.2.

• The corresponding stable values of ρ for the adaptive counterpart of AGD lie in the upper interval
(0.7, 1) and usually greater values of ρ make the adaptive variant more stable but also more com-
putationally expensive. AGD with regular memoryless backtracking fails to consistently converge
for values of ρ outside the interval (0.3, 0.5). In fact, on COVTYPE, for at least one of the initial
step sizes, AGD with regular memoryless backtracking line search fails to converge. On the other
hand, as shown in Fig. 17b in Appendix D.2, the adaptive variant converges for ρ = 0.9 and even
for ρ = 0.7, the more unstable end of feasible ρ values.
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D.1 MONOTONE BACKTRACKING LINE SEARCH
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Figure 6: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for GD, GD with standard backtracking line search using
ρ ∈ {0.5, 0.7, 0.9, 0.95} and GD with adaptive memoryless backtracking line search using ρ = 0.9.
The light gray horizontal dashed line shows the precision used to compute performance for each
dataset.
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(b) PROTEIN.
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(c) WEB-1.

Figure 7: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for GD, GD with standard backtracking line search using
ρ ∈ {0.5, 0.7, 0.9, 0.95} and GD with adaptive memoryless backtracking line search using ρ = 0.9.
The light gray horizontal dashed line shows the precision used to compute performance for each
dataset.
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(d) MUSHROOMS.

Figure 8: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for AGD, AGD with standard backtracking line search
using ρ ∈ {0.5, 0.7, 0.9, 0.95} and AGD with adaptive memoryless backtracking line search using
ρ = 0.9. The light gray horizontal dashed line shows the precision used to compute performance for
each dataset.
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Figure 9: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for AGD, AGD with standard backtracking line search
using ρ ∈ {0.5, 0.7, 0.9, 0.95} and AGD with adaptive memoryless backtracking line search using
ρ = 0.9. The light gray horizontal dashed line shows the precision used to compute performance for
each dataset.
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Figure 10: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for Adagrad, Adagrad with standard backtracking line
search using ρ ∈ {0.5, 0.7, 0.9, 0.95} and Adagrad with adaptive memoryless backtracking line
search using ρ = 0.9. The light gray horizontal dashed line shows the precision used to compute
performance for each dataset.
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Figure 11: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for Adagrad, Adagrad with standard backtracking line
search using ρ ∈ {0.5, 0.7, 0.9, 0.95} and Adagrad with adaptive memoryless backtracking line
search using ρ = 0.9. The light gray horizontal dashed line shows the precision used to compute
performance for each dataset.
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D.2 MEMORYLESS BACKTRACKING LINE SEARCH
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Figure 12: Step sizes for experiments shown in Fig. 1. Baseline: GD with constant αk = 1/L̄; reg
(ρ, β) and ad (ρ, β): GD with, respectively, regular and adaptive memoryless BLS parameterized by
ρ and α0 = β/L̄. The thick black dashed line denotes 1/L̄, where L̄ = λmax(A

⊤A)/4n.
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Figure 13: Step sizes for experiments shown in Fig. 2. Baseline: AGD with constant αk = 1/L̄; reg
(ρ, β) and ad (ρ, β): AGD with, respectively, regular and adaptive memoryless BLS parameterized by
ρ and α0 = β/L̄. The thick black dashed line denotes 1/L̄, where L̄ = λmax(A

⊤A)/4n.
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Figure 14: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for GD, GD with standard memoryless backtracking line
search using ρ ∈ {0.2, 0.3, 0.5, 0.6} and GD with adaptive memoryless backtracking line search us-
ing ρ = 0.3. The light gray horizontal dashed line shows the precision used to compute performance
for each dataset.
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Figure 15: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for GD, GD with standard memoryless backtracking line
search using ρ ∈ {0.2, 0.3, 0.5, 0.6} and GD with adaptive memoryless backtracking line search us-
ing ρ = 0.3. The light gray horizontal dashed line shows the precision used to compute performance
for each dataset.
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Figure 16: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for GD, GD with standard memoryless backtracking line
search using ρ ∈ {0.2, 0.3, 0.5, 0.6} and GD with adaptive memoryless backtracking line search us-
ing ρ = 0.3. The light gray horizontal dashed line shows the precision used to compute performance
for each dataset.
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Figure 17: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for AGD, AGD with standard memoryless backtrack-
ing line search using ρ ∈ {0.2, 0.3, 0.5, 0.6} and AGD with adaptive memoryless backtracking line
search using ρ = 0.9. The light gray horizontal dashed line shows the precision used to compute
performance for all methods, 10−9.
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Figure 18: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for AGD, AGD with standard memoryless backtrack-
ing line search using ρ ∈ {0.2, 0.3, 0.5, 0.6} and AGD with adaptive memoryless backtracking line
search using ρ = 0.9. The light gray horizontal dashed line shows the precision used to compute
performance for all methods, 10−9.
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Figure 19: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for Adagrad, Adagrad with standard memoryless back-
tracking line search using ρ ∈ {0.2, 0.3, 0.5, 0.6} and Adagrad with adaptive memoryless backtrack-
ing line search using ρ = 0.3. The light gray horizontal dashed line shows the precision used to
compute performance for each dataset.
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Figure 20: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for Adagrad, Adagrad with standard memoryless back-
tracking line search using ρ ∈ {0.2, 0.3, 0.5, 0.6} and Adagrad with adaptive memoryless backtrack-
ing line search using ρ = 0.3. The light gray horizontal dashed line shows the precision used to
compute performance for each dataset.
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E LINEAR INVERSE PROBLEMS

Dataset details. We consider A observations from eight datasets: IRIS, DIGITS, WINE,
OLIVETTI_FACES and LFW_PAIRS from scikit-learn (Pedregosa et al., 2011), SPEAR3 and SPEAR10
(Lorenz et al., 2014) and SPARCO (van den Berg et al., 2007). For multi-class datasets, the first two
are considered. The number of datapoints and dimensions of each dataset can be found on Table 5,

Table 5: Details of FISTA experiments.

dataset datapoints dimensions λ L0

digits 360 64 10−1 1, 101, 102, 103

iris 100 4 10−2 10−1, 1, 101, 102

lfw_pairs 2200 5828 1 10−3, 10−2, 10−1, 1
olivetti_faces 20 4096 10−2 1, 101, 102, 103

Spear3 512 1024 10−1 10−3, 10−2, 10−1, 1
Spear10 512 1024 10−2 10−3, 10−2, 10−1, 1
Sparco3 1024 2048 10−2 10−3, 10−2, 10−1, 1
wine 130 13 10−2 1, 101, 102, 103
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Figure 21
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Figure 22
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F MATRIX FACTORIZATION EXPERIMENTS

We sample A from the file “u.data”, part of the MovieLens 100K dataset (grouplens.org/
datasets/movielens/100k/). Moreover, we choose the precision representing a reduction to
10−12 in the suboptimality gap, which corresponds to a lower bound of 10−5 as the initial objective
values typically hover around 107.
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Figure 23: Matrix factorization and three values of rank: suboptimality gap for gradient descent,
gradient descent with standard backtracking line search using ρ ∈ {0.2, 0.3, 0.5, 0.6} and gradient
descent with adaptive backtracking line search using ρ = 0.3. The light gray horizontal dashed line
shows the precision used to compute performance for all methods, 10−5.
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