
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADAPTIVE BACKTRACKING FOR FAST OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Backtracking line search is foundational in numerical optimization. The basic idea
is to adjust the step size of an algorithm by a constant factor until some chosen
criterion (e.g. Armijo, Descent Lemma) is satisfied. We propose a novel way to
adjust step sizes, replacing the constant factor used in regular backtracking with
one that takes into account the degree to which the chosen criterion is violated,
with no additional computational burden. This light-weight adjustment leads to
significantly faster optimization, which we confirm by performing a variety of
experiments on over fifteen real world datasets. For convex problems, we prove
adaptive backtracking requires no more adjustments to produce a feasible step size
than regular backtracking does. For nonconvex smooth problems, we prove adaptive
backtracking enjoys the same guarantees of regular backtracking. Furthermore, we
prove adaptive backtracking preserves the convergence rates of gradient descent
and its accelerated variant.

1 INTRODUCTION

We consider learning settings that can be posed as the unconstrained optimization problem

argmin
x∈Rd

F (x). (1)

Typically, algorithms solve (1) iteratively, refining the current iterate xk by taking a step αkdk:

xk + αkdk. (2)

Here, αk is the size of the step taken in the direction dk. Examples of iteration algorithms include
gradient descent (GD), Newton’s method, quasi-Newton methods (Moré & Sorensen, 1982; Nocedal
& Wright, 2006), Nesterov’s accelerated gradient method (AGD) (Nesterov, 1983), adaptive gradient
methods (Ruder, 2016) and their stochastic and coordinate-update variants (Boyd et al., 2011). To
find an appropriate step size, iterative algorithms typically call a line search (LS) subroutine, which
adopts some criterion and adjusts a tentative step size until this criterion is satisfied. For many popular
criteria, if the direction dk selected by the base algorithm is somewhat aligned with the gradient of F ,
then a feasible step size can be produced in a finite number of updates by successively reducing an
initial tentative step size until the criteria are satisfied. The standard practice for this process, known
as backtracking, is to multiply the tentative step size by a predefined constant factor to update it. We
propose a simple alternative to standard practice:

to adjust the step size by an online variable factor that depends on the line search criterion violation.

While in principle this idea can be applied to many criteria, this paper focuses on illustrating it in the
context of two line search criteria: the Armijo condition (Armijo, 1966), arguably the most popular
example of such criteria, and the descent lemma (Bertsekas, 1999, proposition A.24) in the context
of composite objectives (Beck & Teboulle, 2009). After motivating our choices of online adaptive
factors, we show that they enjoy the best theoretical guarantees one can hope for. Moreover, we prove
that adaptive backtracking preserves the convergence rates of GD and AGD. To conclude, we present
numerical experiments on several real-world problems confirming that using online adaptive factors
in line search subroutines can produce higher-quality step sizes and significantly reduce the total
number of function evaluations standard backtracking subroutines require.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Contributions. Our contributions can be summarized as follows.

• In Section 2, we propose a template for adaptive backtracking procedures with broad applicability.
• In Section 2.4, we apply the template to enforce the Armijo condition and, in Section 3, present

experiments on real-world problems showcasing that the adaptive subroutine outperforms regular
backtracking and improves the performance of standard baseline optimization algorithms.

• In Section 2.5, we apply the template on proximal-based algorithms to satisfy the descent lemma
and present more real-world problems in Section 3 illustrating that the adaptive subroutine improves
the performance of FISTA.

• For both subroutines, in Section 4 we prove that for convex problems, adaptive backtracking takes
no more function evaluations to terminate than regular backtracking in any single iteration. We also
give global theoretical guarantees for adaptive backtracking in nonconvex smooth problems, which
match those of regular backtracking. Furthermore, we show that adaptive backtracking preserves
the convergence rates of gradient descent and its accelerated variant. In particular, the proof of
accelerated convergence is based on a novel technical argument, to the best of our knowledge.

2 ADAPTIVE BACKTRACKING

2.1 LINE SEARCH: CRITERIA AND SEARCH PROCEDURES

Every line search subroutine can be decomposed into the criteria that it enforces and the procedure it
uses to return a feasible step size. We now briefly discuss each component and provide examples.

Criteria. The most popular of line search criteria is the Armijo condition (Armijo, 1966), which
requires that the objective function sufficiently decrease along consecutive iterates. Other popular
sets of criteria are the weak and strong Wolfe conditions (Wolfe, 1969), which comprise the Armijo
condition and an additional curvature condition that prevents excessively small step sizes and induces
step sizes for which the objective function decreases even more. In contrast, nonmonotone criteria
(Grippo et al., 1986; Zhang & Hager, 2004) only require that some aggregate metric of the objective
function values (e.g., an exponential moving average) decrease along consecutive iterates.

Search procedures. The second component of a line search subroutine is the procedure that finds
a step size satisfying the target criteria. For example, Wolfe line search is often implemented by
bracketing procedures based on polynomial interpolation (Nocedal & Wright, 2006, pp. 60–61).
In contrast, several criteria consisting in a single condition such as Armijo and nonmonotone, are
provably satisfied by sufficiently small step sizes. For them, the standard procedure to compute step
sizes fixes an initial tentative step size and then consecutively multiplies it by a constant ρ ∈ (0, 1)
until the criteria are satisfied. This procedure is generally known as backtracking line search (BLS).

2.2 ADAPTIVE BACKTRACKING

BLS often enforces an inequality that is affine in the step size. In this case, BLS can be reformulated
as computing v(αk), which is less than 1 when the line search criterion evaluated at the tentative step
size αk is violated, and then scaling αk by a factor until v(αk) is greater than 1. BLS (Algorithm 1)
employs a fixed factor ρ ∈ (0, 1). We propose a simple modification of this procedure:

to replace ρ with an adaptive factor ρ̂(v(αk)) chosen as a nontrivial function of the violation v(αk).

Algorithm 1 Backtracking Line Search

Input: α0>0, v : R+→ R, ρ ∈ (0, 1)
Output: αk

1: αk ← α0

2: while v(αk) < 1 do
3: αk ← ρ · αk

4: end while

Algorithm 2 Adaptive Backtracking Line Search

Input:α0> 0, v : R+→ R, ρ̂: R→ (0, 1)
Output: αk

1: αk ← α0

2: while v(αk) < 1 do
3: αk ← ρ̂(v(αk)) · αk

4: end while

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.3 RELATED WORK

Backtracking is a simple and effective alternative to exact line search subroutines , which helps to
explain why it remains a popular procedure to enforce various line search criteria (Beck & Teboulle,
2009; Nesterov, 2013; Vaswani et al., 2019b; Galli et al., 2023; Aujol et al., 2024). Notwithstanding,
there is no standard practice to select the adjustment factor ρ, but rather some rough guidelines
suggesting that the parameter ρ “is often chosen to be between 0.1 (which corresponds to a very
crude search) and 0.8 (which corresponds to a less crude search)” (Boyd & Vandenberghe, 2004,
p. 466) and that it “is usually chosen from 1/2 to 1/10, depending on the confidence we have on
the quality of the initial step size” (Bertsekas, 2016, p. 36). Indeed, we find that ρ varies somewhat
arbitrarily depending on empirical performance and the conditions enforced by backtracking. For
example, ρ = 0.8 is used in (Aujol et al., 2024) to enforce the descent lemma, while ρ = 0.5 is used
in (Vaswani et al., 2019b) to enforce the Armijo conditions. With that in mind, in our experimental
validation, we compare our proposed adaptive subroutine with regular backtracking for several values
of ρ. Our goal is to exhibit compelling evidence for a simple alternative to a classic method that
remains popular, rather than champion a particular line search subroutine. Accordingly, we do not
compare against subroutines that do not enforce similar line search criteria, such as (Fridovich-Keil
& Recht, 2020; Orseau & Hutter, 2023), nor subroutines that do not release code (de Oliveira &
Takahashi, 2021). Likewise, we leave recent twists on backtracking, such as (Truong & Nguyen,
2021; Calatroni & Chambolle, 2019; Rebegoldi & Calatroni, 2022), for future work, since these
methods could in principle also benefit from adaptive adjustments (see Section 5.)

2.4 CASE STUDY: ARMIJO CONDITION

The most popular criterion used in line search is the Armijo condition (Armijo, 1966), which is
specified by a hyperparameter c ∈ (0, 1) and requires sufficient decrease in the objective function:

F (xk + αkdk)− F (xk) ≤ c · αk⟨∇F (xk), dk⟩. (3)
For the Armijo condition, the direction dk is usually assumed to be a descent direction:
Assumption 1 (descent direction). The direction dk satisfies ⟨∇F (xk), dk⟩ < 0.

We define the violation of (3) as

v(αk) :=
F (xk + αkdk)− F (xk)
c · αk⟨∇F (xk), dk⟩

. (4a)

Under Assumption 1, (3) can be written as v(αk) ≥ 1. To account for the information conveyed by
(3) when violated, we choose the corresponding adaptive geometric factor ρ̂(v(αk)) as

ρ̂(v(αk)) := max
(
ϵ, ρ 1−c

1−c·v(αk)

)
, (4b)

where ϵ > 0 is a small factor that prevents occasional numerical errors in v(αk) from spreading to
ρ̂(v(αk)). Although (4b) is parameterized by ϵ and ρ, for each method we fix their values on all
experiments, effectively making Algorithm 2 parameter free. We use our adaptive BLS procedure
to find suitable step sizes for three standard base methods: gradient descent (GD), Nesterov’s
accelerated gradient descent (AGD) (Nesterov, 1983) and Adagrad (Duchi et al., 2011). The standard
implementations that we use for these algorithms are given in Appendix C. Incorporating line search
into GD and Adagrad is straightforward, but the case of AGD merits further comment.

Backtracking and AGD. Unlike GD, AGD is not necessarily a monotone method in the sense
that F (xk + αkdk) ≤ F (xk) need not hold. But AGD is a multistep method, one being a GD step,
for which line search can help to compute a step size or, equivalently, to estimate the Lipschitz
constant L. If the estimate of L satisfies (3) with c = 1/2 and is increasingly multiplied by a lower
bounded positive geometric factor, then AGD with line search enjoys essentially the same theoretical
guarantees of AGD tuned with constant parameters. We also consider AGD with memoryless line
search with fixed predetermined initial step sizes. Then, unless some variant such as Scheinberg et al.
(2014) is used, the theoretical guarantees are not necessarily preserved when AGD is combined with
memoryless line search. For some values of ρ, however, we find empirically that not only does the
resulting method converge, but it does so much faster than the monotone line search variant, which in
turn typically converges faster than AGD tuned with a pre-computed estimate L̄ (see Appendix D.1.)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.5 CASE STUDY: DESCENT LEMMA

A standard assumption in the analysis and design of several optimization algorithms is that gradients
are Lipschitz-smooth, which implies (Nesterov, 2018, Thm. 2.1.5.) that there is some L > 0 such that

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L
2 ∥y − x∥

2, ∀x, y. (5)

Inequality (5) is commonly known as the descent lemma (Bertsekas, 1999). In particular, it is
commonly assumed (5) holds for algorithms that solve problems with composite objective functions
F := f+ψ, where f is Lipschitz-smooth convex and ψ is continuous, possibly nonsmooth, convex. A
prototypical example of such an algorithm is FISTA (Beck & Teboulle, 2009), which is an extension
of Nesterov’s AGD to composite problems (for details see Appendix C.) FISTA assumes that it
produces points yk and pαk

(yk) satisfying (5) applied to F with x = yk and y = pαk
(yk), where pα

denotes the proximal operator (Parikh & Boyd, 2014) parameterized by α > 0 and defined by

pα(y) := argmin
x

{
ψ(x) +

1

2α

∥∥x− (y − α∇f(y))∥∥2}. (6)

In practice, α = 1/L is seldom known for a given f , and FISTA estimates it with some αk by checking

F (pαk
(yk)) ≤ f(yk) + ⟨∇f(yk), pαk

(yk)− yk⟩+ 1
2αk
∥pαk

(yk)− yk∥2 + ψ(pαk
(yk)). (7)

Since (7) holds for any αk ≤ 1/L, an estimate αk can be precomputed from analytical upper bounds
on L for particular cases of f , but these bounds tend to be overly conservative and can lead to poor
performance. A better alternative, adopted by FISTA and many methods (Nesterov, 2013; Scheinberg
et al., 2014), is to backtrack: reduce αk by some constant factor ρ < 1 until (7) holds.

We define the violation of Eq. (7) as

v(αk) :=
1

2αk
∥pαk

(yk)− yk∥2
/(

f(pαk
(yk))− f(yk)− ⟨∇f(yk), pαk

(yk)− yk⟩
)
, (8a)

and the corresponding adaptive factor as:

ρ̂(v(αk)) := ρv(αk). (8b)

In experiments below, we use (8b) to find suitable step sizes for FISTA, with a fixed ρ < 1 value.

3 EMPIRICAL PERFORMANCE

We present four experiments illustrating different ways and scenarios in which our adaptive backtrack-
ing line search (ABLS) subroutine (Algorithm 2) can outperform regular backtracking (Algorithm 1).

3.1 CONVEX OBJECTIVE: LOGISTIC REGRESSION + ARMIJO

First, we consider the logistic regression objective with L2 regularization, defined by

F (x) = − 1

n

n∑
i=1

(
yi log(σ(a

⊤
i x)) + (1− yi) log(1− σ(a⊤i x))

)
+
γ

2
∥x∥2, (9)

where σ(z) = 1/(1 + exp(−z)) is the sigmoid function, γ > 0 and (Ai, bi) ∈ Rd × {0, 1} are n ob-
servations from a given dataset. For each dataset, L̄ = λmax(A

⊤A)/(4n) provides an upper bound on
the true Lipschitz parameter of the first term in (9), with which we fix γ = L̄/(10n) and the step size
of gradient descent to 1/(L̄+ γ). In all experiments, the initial point x0 is the origin as is standard.

Result Summary. A succinct summary of our results contained in Table 1 and Appendix D is that

across datasets and step size initializations considered, adaptive backtracking is more robust than
regular backtracking and often leads to significant improvements with respect to base methods.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Backtracking Line Search (BLS) Adaptive BLS (ABLS)

ρ = 0.2 ρ = 0.3 ρ = 0.3
Method Dataset #f #∇f ET [s] #f #∇f ET [s] #f #∇f ET [s] gain

GD ADULT 148597.2 32582.0 1319.0 74258.5 18749.0 694.7 37296.0 13583.8 370.0 46.7%
G_SCALE 58488.5 18252.2 3050.4 65429.2 17111.5 3059.7 25917.2 11700.5 1607.0 47.3%
MNIST 148469.8 41726.2 10986.4 207786.8 46475.5 13474.8 52616.5 22385.8 4841.9 55.9%
MUSHROOMS 14170.5 6507.2 31.7 14800.8 6628.5 33.9 7611.0 3693.8 17.3 45.5%
PHISHING 33388.2 8059.8 63.0 34193.5 7938.5 62.4 16543.2 6434.5 26.4 57.6%
PROTEIN 28011.0 13260.5 4481.6 35733.2 14868.8 5282.0 27656.0 13207.2 4137.4 7.7%
WEB-1 6721.5 3139.0 9.0 6156.8 2972.8 8.4 6192.2 3024.8 7.9 (5.4%)*

ρ = 0.5 ρ = 0.6 ρ = 0.9
Method Dataset #f #∇f ET [s] #f #∇f ET [s] #f #∇f ET [s] gain
AGD ADULT 17288.8 2014.2 116.6 49331.2 3806.2 247.0 7999.0 2275.0 49.2 52.5%

G_SCALE 3580.2 592.5 114.9 18530.8 1964.0 512.9 2204.5 728.5 84.1 26.8%
MNIST 8934.2 1524.5 452.3 14365.8 1846.5 643.7 4943.2 1666.2 283.0 37.4%
MUSHROOMS 1100.5 372.2 1.7 1146.8 367.8 1.6 850.0 376.2 1.4 15.5%
PHISHING 6763.2 944.2 9.1 8344.2 944.8 8.6 3699.0 1058.0 4.0 53.6%
PROTEIN 2865.0 1232.2 396.3 3397.5 1272.5 346.5 2743.2 1257.0 291.6 15.8%
WEB-1 651.8 208.5 0.6 699.8 202.2 0.5 519.2 217.8 0.4 3.3%

ρ = 0.2 ρ = 0.3 ρ = 0.3
Method Dataset #f #∇f ET [s] #f #∇f ET [s] #f #∇f ET [s] gain
Adagrad ADULT 124102.0 20001.0 699.5 145159.8 19789.8 746.5 27179.0 8000.5 178.8 74.4%

G_SCALE 274023.2 33071.5 7396.5 361852.0 34933.8 9740.9 84201.0 17176.2 2425.4 67.2%
MNIST 86240.5 13843.8 3921.2 99021.8 14760.8 4377.2 12366.2 3521.8 679.5 82.7%
MUSHROOMS 7794.8 1967.8 9.0 7239.5 1693.0 9.3 3751.5 1446.0 6.0 33.2%
PHISHING 74737.5 15833.5 68.9 117564.0 20001.0 96.4 18053.0 6375.0 19.4 71.8%
PROTEIN 6103.0 809.2 420.6 4040.2 429.0 257.9 1845.8 446.5 164.4 36.2%
WEB-1 4384.2 1027.0 2.9 3857.8 745.2 2.5 1726.5 568.8 1.3 50.1%

Table 1: Logistic regression. #f and #∇f denote the number of function and gradient evaluations
and ET refers to elapsed time in seconds. The gain is given by 1− (ET of ABLS)/(ET of BLS) with
the best ET for BLS across ρ in each experiment, which is bolded. We ran each BLS experiment with
a grid of four ρ’s and present the best two in the table. The gain for GD on WEB-1 is colored orange
because although ABLS terminated before the best performing BLS variant, it required more function
and gradient evaluations. This anomaly can be attributed to the relatively small ET for this problem.

Datasets and methods. We take observations from seven datasets, whose details can be found
in Appendix D. We consider GD, AGD, and Adagrad, described in in Appendix C, with BLS for
ρ ∈ {0.2, 0.3, 0.5, 0.6} and our ABLS with a pre-set ρ.

Initialization. We set the starting point x0 as the origin and fix ϵ = 0.01 in (4b) on all experiments.
We also fix ρ, but change it according to the base method. For more details, see Appendix D.

Evaluation. We run all methods for long enough to produce solutions with designated precision,
then average various metrics over different initial step sizes. For more details, see Appendix D.

Remarks. Table 1 shows that ABLS significantly outperform BLS. For GD and Adagrad, ABLS
variants outperforms BLS for almost every combination of ρ and α0 by saving function evaluations
and returning better step sizes, which speed up convergence. Fig. 1 illustrates this point by showing
how the suboptimality gap evolves with time for the baseline GD, its ABLS variant and BLS variants
for two choices of initial step size. In particular, increasing the initial step size helps BLS in some
datasets but not in others. Fig. 2 shows a similar trend for the case of AGD. In general, ABLS is
more robust to the choice of initial step size and that is the main reason why the ABLS variant of
AGD outperforms its BLS counterparts. In Appendix D.2, Figs. 12 and 13 show the corresponding
step sizes. Initially, ABLS returns smaller GD step sizes than BLS, but this trend quickly reverses.
A plausible explanation is that BLS returns the largest step sizes that satisfy (3), within a factor of
ρ. If the step sizes are excessively large initially, they can lead to worse optimization paths (e.g.,
more zig-zagging). For AGD, the step sizes follow a similar trend initially, but then the adaptive step
size seems to converge while the regular step sizes not always do. This can be indicative of another
shortcoming of regular backtracking, namely that it can only return step sizes that are powers of ρ
times the initial step size, in contrast with adaptive backtracking.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000
time [s]

10 10

10 5

100

f(
x
t)
−
f ∗

gisette_scale

0 5000 10000 15000
time [s]

10 7

10 3

101 MNIST

0 2000 4000 6000
time [s]

10 10

10 4

101 protein

baseline (GD) reg (0.3, 1e2) reg (0.3, 1e4) ad (0.3, 1e4)

Figure 1: Baseline: GD with constant αk = 1/L̄; reg (ρ, β) and ad (ρ, β): GD with, respectively,
regular and adaptive memoryless BLS parameterized by ρ and α0 = β/L̄.

0 25 50 75
time [s]

10 10

10 5

100

f(
x
t)
−
f ∗

gisette_scale

0 100 200 300 400
time [s]

10 10

10 5

100 MNIST

0 1000 2000
time [s]

10 10

10 4

101 protein

baseline (AGD) reg (0.6, 1e1) reg (0.6, 1e2) ad (0.9, 1e2)

Figure 2: Baseline: AGD with constant αk = 1/L̄; reg (ρ, β) and ad (ρ, β): AGD with, respectively,
regular and adaptive memoryless BLS parameterized by ρ and α0 = β/L̄.

3.2 CONVEX OBJECTIVE: LINEAR INVERSE PROBLEMS + DESCENT LEMMA

The goal of a linear inverse problem is to recover the sparse signal x from a noisy measurement
model y = Ax+ ϵ, where A ∈ Rn×d and y ∈ Rn are known, and ϵ is unknown noise. The problem
of estimating x is typically posed as a Lasso objective (Santosa & Symes, 1986; Tibshirani, 1996)

F (x) =
1

2
∥Ax− y∥2 + λ∥x∥1.

Datasets. We take observations A from eight datasets, see Appendix E for details.

Methods. We consider FISTA (Beck & Teboulle, 2009) (Algorithm 6) and BLS variants. For BLS,
ρ = {1/2, 1/3, 1/5} and ρ = 1/1.1 ≈ .9 for ABLS, mirroring the choice for AGD above. All BLS
methods start with the same initial Lipschitz constant estimate increase it accordingly.

Initialization. For each dataset, we empirically find values of α0 = 1/L0 around which backtracking
becomes active, and then increase them successively (values reported on Appendix E.)

Results Summary. The ABLS variant of FISTA outperforms its BLS counterparts across all datasets
tested. Moreover, the best value of ρ for BLS changes from one dataset to the other. Since the
Lipschitz constant estimate is monotone, function evaluations vary little across methods and have
small impact on performance. Nevertheless, ABLS requires fewer function evaluations for all datasets.

3.3 NONCONVEX OBJECTIVE: ROSENBROCK + ARMIJO

We consider the classical nonconvex problem given by the Rosenbrock objective function F (u, v) =
100(u− v2)2 + (1− v)2. We use the origin as the initial point and 0.1 as the initial step size. Fig. 3
shows the optimization paths for BLS and ABLS memoryless variants of GD and AGD after 1000

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Backtracking Line Search (BLS) Adaptive BLS (ABLS)

ρ = 0.5 ρ = 0.3 ρ = 0.9
Method Dataset ∆#f #∇f ∆#f #∇f ∆#f #∇f gain
FISTA DIGITS 15.5 28282.25 10 34730.75 4.75 16756 40.8%

IRIS 10.75 726.25 7 816.5 4 710 2.2%
OLIVETTI 10 242709.5 6.25 246827.75 2 212930.75 12.3%
LFW∗ 26.25 49093.75 17 49014.5 2 45070.75 8.0%
SPEAR3 13.25 328328.75 9 506308.5 2 255417.5 22.2%
SPEAR10 44.75 18691 29.75 19992.75 8 15128 19.1%
SPARCO3 27.75 266.25 18.5 276.75 3.25 251 5.7%
WINE 48 529333.25 27.75 564293.75 8.5 472527 10.7%

Table 2: Linear inverse problem. #∇f and ∆#f denote the number of gradient and excess function
evaluations (total function evaluations minus two times total iterations). The gain is given by 1−
(#∇f of ABLS)/(#∇f of BLS) with the best ET for BLS across ρ in each dataset (bolded.) We run
each BLS experiment with three ρ’s and present the best two in the table. ABLS reached the desired
precision in all testpoints while the asterisk on LFW∗ indicates BLS did not in at least one testpoint.

iterations, using ρ = 0.3 and ρ = 0.9, respectively. We see that the ABLS variants achieve better
losses, requiring far fewer function evaluations and less time to do so.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

= 0.3, AD
= 0.3, reg

(a) GD

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

= 0.9, reg
= 0.9, AD

(b) AGD

Method #f loss ET [s]

GD+BLS 4992 7.30e-03 1.04e-1
GD+ABLS 2754 7.21e-12 9.98e-2
AGD+BLS 42263 9.25e-11 5.59e-1

AGD+ABLS 2991 4.01e-13 6.40e-2

(c)

Figure 3: Performance of GD and AGD regular (red) and adaptive (blue) BLS variants on Rosenbrock.
“loss” refers to the final loss after 1000 iterations.

3.4 NONCONVEX OBJECTIVE: MATRIX FACTORIZATION + ARMIJO

Lastly, we consider the nonconvex problem of matrix factorization, defined by the objective
F (U, V) = 1

2∥UV
⊤ − A∥2F , where A ∈ Rm×n, U ∈ Rm×r, V ∈ Rn×r and r < min{m,n}. We

take A from the MovieLens 100K dataset (Harper & Konstan, 2015) and consider three rank values
r ∈ {10, 20, 30} (see Appendix F for further details and full plots.)

For this experiment we replicate the initialization and evaluation methodologies of Section 3.1, except
we disconsider Adagrad, and pick different values for initial step sizes, {0.05, 0.5, 5, 50}, and ρ.
Namely, we let ρ ∈ {0.2, 0.3, 0.5, 0.6} for the BLS variants, but fix ρ = 0.3 and ρ = 0.9 for the
ABLS GD and AGD variants, respectively. Table 3 summarizes the results for ABLS and the top two
BLS variants. Once again, the best value of ρ for BLS is inconsistent: ρ = 0.3 for ranks 10 and 20
but ρ = 0.2 for rank 30. ABLS requires significantly fewer gradient and function evaluations than
the top BLS variant does, which leads to considerable gains in time to achieve the desired precision.

4 MOTIVATION AND THEORETICAL RESULTS

In this section, we motivate our choices of adaptive factors and characterize them theoretically.

The particular choices of adaptive factors were made with two goals in mind: generate more
aggressive backtracking factors to save function evaluations and guarantee reasonably large step
sizes to achieve fast convergence. To meet our first goal, ρ̂(v(αk)) ∈ (0, ρ) must hold. Indeed, if (3)
is violated, then v(αk) < 1 because dk is assumed a descent direction, where v is defined by (4a). So,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Backtracking Line Search Adaptive BLS (ABLS)

ρ = 0.2 ρ = 0.3 ρ = 0.3
Method Rank #f #∇f ET [s] #f #∇f ET [s] #f #∇f ET [s] gain

GD 10 39960.0 5683.5 1034.5 33531.8 4897.8 999.5 52075.8 1631.8 64.8 93.5%
20 127480.2 18734.5 1153.2 111322.0 16109.2 1010.9 377111.8 5133.0 170.9 83.1%
30 231170.5 35639.8 2035.5 394472.2 50001.0 4195.1 681952.0 14802.8 669.2 67.1%

ρ = 0.3 ρ = 0.5 ρ = 0.9
AGD 10 362029.7 21909.3 2377.0 44873.0 6198.3 379.4 22707.7 6663.7 172.0 54.7%

20 479432.0 35672.0 2987.9 491753.3 33523.3 3588.6 80720.3 24588.7 738.0 75.3%
30 357885.7 39234.3 2187.8 478084.3 42985.3 5157.0 95040.0 27454.0 855.1 60.9%

Table 3: Backtracking for matrix factorization. #f and #∇f denote the number of function
and gradient evaluations and ET refers to elapsed time in seconds. The gain is given by 1 −
(ET of ABLS)/(ET of BLS) with the best ET for BLS across ρ in each experiment, which is bolded.

1.00 0.00 0.28 0.50 1.00

(a) Reducing ρ can lead to greater step sizes.

/2 3.59 2 3 4

(b) Reducing ρ can lead to more step size adjustments.

Figure 4: Backtracking line search convex and nonconvex examples. The dashed negative slopes
represent the threshold to satisfy the Armijo condition and the shaded regions indicate feasible iterates.

if in addition ϵ ∈ (0, ρ) in (4b), then ρ̂(v(αk)) < ρ. To meet the second goal, the returned step size
must be non-trivially lower bounded. To this end, in Section 4.2 we show that if the objective function
is Lipschitz-smooth, then ABLS returns a step size on par with the greatest step size that is guaranteed
to satisfy (3). For now, we note that if (3) is violated, then 1 − c · v(αk) > 0, since c ∈ (0, 1) by
assumption. Thus, ρ̂(v(αk)) is bounded away from zero. Moreover, that same bound applies to BLS.
Similar conclusions can be reached if the BLS criterion is (7) and ρ̂ and v are chosen as (8b) and (8a).

4.1 THE SCOPE OF THEORETICAL GUARANTEES FOR A BACKTRACKING SUBROUTINE

There are limitations to the scope of the theoretical guarantees one can expect of a backtracking
subroutine and the extent to which two subroutines can be compared. We delineate these limits with
three simple examples that establish four facts:

1. The step size returned by backtracking is not monotone in ρ, even for convex problems.
2. For nonconvex problems, given step sizes α′ and α with α′ < α, α being feasible does not

imply α′ is too.
3. For nonconvex problems, decreasing ρ may increase the number of criteria evaluations

required to compute a feasible step size.
4. No line search procedure can be provably better than (regular) backtracking to enforce any

set of line search criteria that includes the Armijo condition or the descent lemma, for any
class of functions that includes quadratics.

For the sake of space, we defer the full description of the examples to Appendix B.1, but Figs. 4a
and 4b provide visual cues of the intuitions behind the first three facts. The fourth fact can be
demonstrated by considering a simple scalar quadratic objective and convenient choices of initial
step size or Lipschitz constant estimate and values of ρ.

Overall, the above facts indicate that even for a single backtracking call only somewhat modest
theoretical guarantees can be given. Moreover, different backtracking subroutines induce different
optimization paths, which further limits the extent to which subroutines can be compared theoretically.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.2 THEORETICAL RESULTS

In this subsection, we present theoretical results regarding regular and adaptive backtracking. Several
additional convergence results and full proofs can be found in Appendix B.

Convex problems. We show that only the first of the three facts above holds for convex problems,
which expands the extent to which two backtracking subroutines can be compared.
Proposition 1. Let F be convex differentiable. Given a point xk, a direction dk and a step size
αk > 0 satisfying (3) for some c, then xk, dk and α′

k also satisfy (3) for any α′
k ∈ (0, αk).

The following proposition refers to “compatible inputs.” By this we mean:
Definition 1 (Compatibility). The inputs to Algorithms 1 and 2 are said to be compatible if α0, c, v
coincide and the input ρ̂ to Algorithm 2 is parameterized by the same ρ that Algorithm 1 takes as input.
Proposition 2. Let F be convex differentiable. Fixing all other inputs, the number of function
evaluations that Algorithm 1 and Algorithm 2 take to return a feasible step size is nondecreasing in
the input ρ. Moreover, given compatible inputs with a descent direction and ϵ < ρ, Algorithm 2 takes
no more function evaluations to return a feasible step size than Algorithm 1 does.

Nonconvex problems. For convex problems, we were able to compare the number of times regular
and adaptive backtracking must evaluate their criteria in order to return a single feasible step size.
But what really matters is the total number of criteria evaluations up to a given iteration. We bound
this number for general nonconvex problems, hinging on the following properties.1

Definition 2 (Smoothness). A function F is said to be Lipschitz-smooth if (5) holds for some L > 0.
Definition 3 (Gradient related). The directions dk are said to be gradient related if there are c1 > 0
and c2 > 0 such that ⟨∇F (xk),−dk⟩ ≥ c1∥∇F (xk)∥2 and ∥dk∥ ≤ c2∥∇F (xk)∥, for all k ≥ 0.
Assumption 2. We assume F is Lipschitz-smooth and dk are gradient related.

Gradient relatedness ensures that dk is not “too large” or “too small” with respect to ∇F (xk) and
that the angle between dk and∇F (xk) is not “too close” to being perpendicular (Bertsekas, 1999,
p. 41). Together with c1 and c2, the Lipschitz constant L and Armijo constant c define a step size
threshold ᾱ = 2c1(1− c)/Lc22 below which (3) holds. This quantity is central in the following result.
Informal Theorem (Armijo). Let F be Lipschitz-smooth and dk gradient related. Given compatible
inputs, if ϵ < ρ and v, ρ̂ are chosen as (4), then Algorithms 1 and 2 share the same bounds on the
total number of backtracking criteria evaluations up to any iteration. If αk is received as the initial
step size input at iteration k + 1 for all k ≥ 0, then they evaluate (3) at most ⌊logρ(ᾱ/α0)⌋+ 1 + k
times up to iteration k. If, on the other hand, α0 is received as the initial step size input at every
iteration, then they evaluate (3) at most k(⌊logρ(ᾱ/α0)⌋ + 1) times up to iteration k. Moreover,
Algorithms 1 and 2 always return a step size αk such that αk ≥ min(α0, ρᾱ).
Informal Theorem (Descent lemma). Let f be Lipschitz-smooth convex and let ψ be continuous
convex. Also, suppose v and ρ̂ are chosen as (8a) and (8b). If αk ∈ (0, 1/L), then (7) holds for all yk.
If Algorithms 1 and 2 receive αk as the initial step size input in iteration k+1, then they evaluate (7) at
most ⌊logρ(1/Lα0)⌋+1+k times up to iteration k. If, on the other hand, Algorithms 1 and 2 receive
α0 as the initial step size input in every iteration, then they evaluate (7) at most k(⌊logρ(1/Lα0)⌋+1)
times up to iteration k. Moreover, they return a feasible step size αk such that αk ≥ min {α0, ρ/L}.

5 FUTURE WORK: FURTHER APPLICATIONS, EXTENSIONS AND LIMITATIONS

Adaptive backtracking is a general idea that can be broadly applied in a variety of settings. Our goal in
this paper was to rigorously validate it in classical machine learning and optimization problems. This
section outlines several promising directions for future work and speculate about potential limitations.

5.1 FURTHER APPLICATIONS AND EXTENSIONS

Stochastic line search. In machine learning, models such as over-parameterized neural networks
are sufficiently expressive to interpolate immense datasets (Zhang et al., 2016; Ma et al., 2018).

1Instead of the usual condition that ∥∇F (x)−∇F (y)∥ ≤ L∥x−y∥ hold for all x, y, we adopt the equivalent
(Nesterov, 2018, Thm. 2.1.5.) condition (5) as the definition of Lipschitz-smoothness for the sake of convenience.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Interpolation provides theoretical foundation for the stochastic line search (SLS) proposed by Vaswani
et al. (2019b), which enforces the Armijo condition on the training mini-batches. In the same vein,
Galli et al. (2023) replaced the Armijo condition in SLS with a nonmonotone criterion and used
Polyak’s step size to devise an initial step size heuristic, obtaining the Polyak Nonmonotone Stochastic
(PoNoS) method. Below, we reproduce experiment 1 from (Galli et al., 2023) to demonstrate the
potential of applying ABLS in combination with stochastic line search in the interpolating regime.
Fig. 5 shows that combining ABLS with PoNoS leads to good test accuracy in fewer epochs (details
in Appendix A.) We defer fully developing this application to future work.

0 19 38 56 75
epoch

10 6

10 4

10 2

100

tra
in

 lo
ss

 (l
og

)

0 19 38 56 75
epoch

0.96

0.97

0.98

0.99

te
st

 a
cc

ur
ac

y

SLS
Adam
SPS

PoNoS
ABLS

Figure 5: MLP trained on MNIST with different algorithms.

Additional line search criteria. Adaptive backtracking may be useful to enforce other conditions
that are affine in the step size. A prominent candidate are the Goldstein conditions (Goldstein & Price,
1967), which comprise two inequalities that are affine in the step size. Nonmonotone line search
criteria (Grippo et al., 1986; Zhang & Hager, 2004) also offer several candidates.

Additional algorithms and increasing step sizes. In this paper, we experimented with increasing
step sizes through memoryless line search, where the initial step size is fixed for every iteration, but
other schemes are possible. For example, adaptive adjustments can also be used to increase step
sizes. In addition, adaptive backtracking can replace regular backtracking in line search methods
that increase the current step size and then use it as the initial step size, such as the two-way method
(Truong & Nguyen, 2021) and FISTA variants (Scheinberg et al., 2014; Calatroni & Chambolle,
2019; Rebegoldi & Calatroni, 2022). Also, it would be interesting to see how adaptive backtracking
works together with schemes that handle problems where the strong convexity constant is unknown,
namely restarting schemes Becker et al. (2011); O’Donoghue & Candès (2015); Aujol et al. (2024).
Finally, we note that the violation of a condition can also be used indirectly to adjust step sizes, for
example to pick the degree to which a fixed ρ is exponentiated, saving backtracking cycles.

5.2 LIMITATIONS

The weak and strong Wolfe conditions (Wolfe, 1969) are not affine in the step size and are not
satisfied by arbitrarily small step sizes. Hence, Wolfe conditions are not enforced by backtracking
(e.g., Nocedal & Wright (2006, pp. 60–61)) and it is unclear how to find analogous adaptive schemes.
In turn, quasi-Newton methods, which often must enforce Wolfe conditions to guarantee global
convergence, may not be suitable candidates for adaptive line search subroutines. In reality, the role
of line search for these methods is to guarantee they converge globally rather than finding the “right”
step size, since they work with unit step size locally. Hence, only few adjustments may be necessary.
The same applies to Newton’s method and the Barzilai–Borwein method (Barzilai & Borwein, 1988).

It is also unclear if adaptive adjustments can be useful for more general stochastic line search methods
that do not rely on the interpolation property (Cartis & Scheinberg, 2017; Paquette & Scheinberg,
2020). Instead, they resample function and gradient mini-batches in every loop, whether a sufficient
descent condition is violated or not. But the information conveyed by the violation for one sample need
not be relevant to satisfy the same condition with a different sample, which poses a potential limitation.

REFERENCES

L. Armijo. Minimization of functions having lipschitz continuous first partial derivatives. Pac. J.
Math., 16(1):1–3, 1966.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

J.-F. Aujol, L. Calatroni, C. Dossal, H. Labarrière, and A. Rondepierre. Parameter-free fista by
adaptive restart and backtracking. SIAM Journal on Optimization, 34(4):3259–3285, 2024.

J. Barzilai and J. Borwein. Two-point step size gradient methods. IMA J. Numer. Anal., 8(1):141–148,
1988.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

B. Becker and Kohavi R. Adult. UCI Machine Learning Repository, 1996.

S. R. Becker, E. J. Candès, and M. C. Grant. Templates for convex cone problems with applications
to sparse signal recovery. Mathematical Programming Computation, 3(2):165–218, 2011.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 3rd edition, 2016.

S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Foundations and Trends in Machine
learning, 3(1):1–122, 2011.

L. Calatroni and A. Chambolle. Backtracking strategies for accelerated descent methods with smooth
composite objectives. SIAM Journal on Optimization, 29(3):1772–1798, 2019.

C. Cartis and K. Scheinberg. Global convergence rate analysis of unconstrained optimization methods
based on probabilistic models. Math. Program., 169:337–375, 2017.

R. Caruana, T. Joachims, and L. Backstrom. Kdd-cup 2004: Results and analysis. SIGKDD
Explorations Newsletter, 6(2):95–108, 2004.

C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2(27):1–27, 2011.

Ivo Fagundes David de Oliveira and Ricardo Hiroshi Caldeira Takahashi. Efficient solvers for armijo’s
backtracking problem. 2021.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

S. Fridovich-Keil and B. Recht. Approximately exact line search. 2020.

L. Galli, H. Rauhut, and M. Schmidt. Dont be so monotone: Relaxing stochastic line search in over-
parameterized models. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
(eds.), Advances in Neural Information Processing Systems, volume 36, pp. 34752–34764. Curran
Associates, Inc., 2023.

A. Goldstein and J. Price. An effective algorithm for minimization. Numer. Math., 10:184–189, 1967.

Luigi Grippo, Francesco Lampariello, and Stefano Lucidi. A nonmonotone line search technique for
newton’s method. SIAM journal on Numerical Analysis, 23(4):707–716, 1986.

M.F. Harper and J.A. Konstan. The movielens datasets: History and context. ACM Transactions on
Interactive Intelligent Systems (TiiS), 5(4), 2015.

D.P. Kingma and J.L. Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations (ICML), 2015.

Y. LeCun, C. Cortes, and C.J.C. Burges. The MNIST database of handwritten digits. Proceedings of
the IEEE, 86(11):2278–2324, 1998.

N. Loizou, S. Vaswani, I. H. Laradji, and S. Lacoste-Julien. Stochastic polyak step-size for sgd: An
adaptive learning rate for fast convergence. In International Conference on Artificial Intelligence
and Statistics, pp. 1306–1314, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

D.A. Lorenz, M.E. Pfetsch, A.M. Tillmann, and C. Kruschel. SPEAR: Sparse exact and approximate
recovery. https://wwwopt.mathematik.tu-darmstadt.de/spear/, 2014.

S. Ma, R. Bassily, and M. Belkin. The power of interpolation: Understanding the effectiveness of sgd
in modern over-parametrized learning. In International Conference on Machine Learning (ICML),
2018.

J. J. Moré and D. C. Sorensen. Newton’s method. Technical report, Argonne National Lab., IL (USA),
1982.

Y. Nesterov. A method for unconstrained convex minimization problem with the rate of convergence
o(1/k2). Doklady AN SSSR, 269:543–547, 1983.

Y. Nesterov. Gradient methods for minimizing composite functions. Math. Program. Ser. B, 140:
125–161, 2013.

Y. Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

J. Nocedal and S. Wright. Numerical Optimization. Springer Science & Business Media, 2006.

L. Orseau and M. Hutter. Line search for convex minimization. 2023.

B. O’Donoghue and E. J. Candès. Adaptive restart for accelerated gradient schemes. Foundations of
computational mathematics, 15(3):715–732, 2015.

C. Paquette and K. Scheinberg. A stochastic line search method with expected complexity analysis.
SIAM Journal on Optimization, 30(1):349–376, 2020.

N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in Optimization, 1(3):127–239,
2014.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in python. JMLR, pp. 2825–2830, 2011.

J. Platt. Fast training of support vector machines using sequential minimal optimization. In Advances
in Kernel Methods - Support Vector Learning. MIT Press, January 1998.

S. Rebegoldi and L. Calatroni. Scaled, inexact, and adaptive generalized fista for strongly convex
optimization. SIAM Journal on Optimization, 32(3):2428–2459, 2022.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv:1609.04747, 2016.

F. Santosa and W.W. Symes. Linear inversion of band-limited reflection seismograms. SIAM Journal
on Scientific and Statistical Computing, 7(4):1307–1330, 1986.

K. Scheinberg, D. Goldfarb, and X. Bai. Fast first-order methods for composite convex optimization
with backtracking. Foundations of Computational Mathematics, 14:389–417, 2014.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society, 58(1):267–288, 1996.

T. T. Truong and T. H. Nguyen. Backtracking gradient descent method for general c1 functions, with
applications to deep learning. Appl. Math. Optm., 84:2557–2586, 2021.

E. van den Berg, G. Friedlander, M.P.and Hennenfent, F. Herrmann, R. Saab, and Ö. Yilmaz.
Sparco: a testing framework for sparse reconstruction. Technical Report Tech. Report TR-2007-20,
University of British Columbia, Vancouver, Dept. Computer Science, 2007.

S. Vaswani, A. Mishkin, I. Laradji, M. Schmidt, G. Gidel, and S. Lacoste-Julien. Painless stochastic
gradient: Interpolation, line-search, and convergence rates. In NeurIPS, 2019a.

Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon Lacoste-
Julien. Painless stochastic gradient: Interpolation, line-search, and convergence rates. Advances in
neural information processing systems, 32, 2019b.

12

https://wwwopt.mathematik.tu-darmstadt.de/spear/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

P. Wolfe. Convergence conditions for ascent methods. SIAM Review, 11(2):226–235, 1969.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv, 2016.

Hongchao Zhang and William W Hager. A nonmonotone line search technique and its application to
unconstrained optimization. SIAM journal on Optimization, 14(4):1043–1056, 2004.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A STOCHASTIC LINE SEARCH EXAMPLE

The results presented in Fig. 5 correspond to experiment 1 from (Galli et al., 2023) without any
modifications, and are run using the base code from the same paper, which can be found at:

https://github.com/leonardogalli91/PoNoS.

In this experiment, a multilayer perceptron (MLP) with a single layer, width 1000 and 535818
parameters is trained on the MNIST dataset (LeCun et al., 1998) until the training loss becomes less
than 10−6. This is the same stopping criterion adopted in (Galli et al., 2023). To train the MLP, the
following methods are used:

1. Adam: adaptive moment estimation method (Kingma & Ba, 2015).
2. SLS: stochastic line search (Vaswani et al., 2019a).
3. SPS: stochastic Polyak step size method (Loizou et al., 2021).
4. PoNoS: Polyak nonmonotone stochastic method (Galli et al., 2023).
5. ABLS: an adaptive backtracking variant of PoNoS, detailed below.

As Fig. 5 shows, only PoNoS and ABLS terminate within 75 epochs. PoNoS does so after 56 epochs
and 583 seconds, while ABLS finishes in 41 epochs and 464 seconds.

For all the above methods, we preserve the parameters recommended in (Galli et al., 2023) unaltered
from the source code. The ABLS method combines our adaptive backtracking procedure with a
simplified version of PoNoS. Namely, PoNoS generates initial step sizes with

ηk = ηk,0δ
l̄k+lk , (10)

where δ ∈ (0, 1) and lk is the amount of backtracks in iteration k − 1, which are accounted for in

l̄k = max{l̄k−1 + lk−1 − 1, 0}.

That is, previous backtracks are used to discount an initial step size given by

ηk,0 = min{η̃k,0, ηmax},

which in turn is based on the Polyak initial step size

η̃k,0 =
fik(wk)− f∗ik
cp∥∇fik(wk)∥2

, (11)

where cp ∈ (0, 1) is a hyperparameter, ik denotes the mini-batch sampled in iteration k, wk denotes
the MLP parameters in iteration k and f∗ik refers to the minimum of the mini-batch training loss:

fik =
1

|ik|
∑
j∈ik

fj .

Instead, we simply use (11) as the initial step size, with cp = 1/2, the same value proposed in (Galli
et al., 2023). Then, we apply ABLS to enforce

fik(wk − ηk∇fik(wk)) ≤ Ck − cηk∥∇fik∥2, c ∈ (0, 1), (12)

where Ck denotes an exponential moving average of losses given by

Ck = max{C̃k, fik(wk)}, C̃k =
ξQkCk−1 + fik(wk)

Qk+1
, Qk+1 = ξQk + 1

with ξ ∈ (0, 1). The inequality (12) is a stochastic variant enforced by PoNoS of the deterministic
criterion proposed by Zhang & Hager (2004). This inequality can be seen as a generalization of the
Armijo condition with the current loss replaced with an average. As such, it preserves the structure of
(3), which allows us to seamlessly apply (4b), with ρ = 0.9 and ϵ = 0.5.

14

https://github.com/leonardogalli91/PoNoS

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B EXAMPLES, THEOREMS AND PROOFS

In this section, we present the examples mentioned in Section 4, prove the results stated therein and
provide further convergence results.

B.1 EXAMPLES

We start with the examples mentioned in Section 4.1. Together, they establish four facts:

1. The step size returned by backtracking is not monotone in ρ, even for convex problems.
2. For nonconvex problems, given step sizes α′ and α with α′ < α, α being feasible does not

imply α′ is too.
3. For nonconvex problems, decreasing ρ may increase the number of criteria evaluations

required to compute a feasible step size.
4. No line search procedure can be provably better to enforce any set of line search criteria that

includes the Armijo condition or the descent lemma, for any class of functions that includes
quadratics.

Example 1 (Fact 1). Let F be defined by F (x) = x2 and fix xk = −1, dk = −F ′(xk) = −2xk = 2.
Then, the Armijo condition with c = 1/4 is satisfied if and only if

(−1 + 2αk)
2 ≤ 1− αk.

To find the critical step size values for which this inequality is satisfied, we simply solve a second-order
equation, which gives the positive value of α∗

k = 0.75 with corresponding iterate xk + α∗
kdk = 0.5.

Thus, if the initial tentative step size is αk = 1, which produces the tentative iterate is 1, then the
Armijo condition is not satisfied and the step size must be adjusted. If ρ = 0.75, then the adjusted step
size 0.75 produces the tentative iterate 0.5 and the Armijo condition is satisfied, therefore the step size
requires no further adjustments. On the other hand, if ρ = 0.8, then the adjusted step size 0.8 produces
the tentative iterate 0.6 and the Armijo condition is not satisfied. Adjusting the step size once more
produces a step size of 0.64 < α∗

k and an corresponding iterate xk + αkdk = −1 + 0.64 · 2 = 0.28,
satisfying the Armijo condition. Therefore, increasing ρ = 0.75 to ρ = 0.8 decreases the step size
that backtracking returns.
Example 2 (Facts 2 and 3). Let F be defined by F (x) = cosx − ax, where a = 1

5π , and also fix
xk = π

2 and

dk = −F ′(xk) = sinxk + a = 1 + a.

Given the above choices, the Armijo condition parameterized by c = 1
2π is satisfied if and only if

cos
(π
2
+ (1 + a)αk

)
− a
(π
2
+ (1 + a)αk

)
≤ cos

(π
2

)
− aπ

2
− (1 + a)2

αk

2π
,

or, equivalently, if and only if

cos
(π
2
+ (1 + a)αk

)
≤ a(1 + a)αk − (1 + a)2

αk

2π
.

If the initial tentative step size is picked as 7π
2(1+a) , then (1 + a)αk = 7π

2 , so that

cos
(π
2
+ 7

π

2

)
= 1 ≥ −1.16 ≈ 7/10− 7

5π + 1

20π
.

That is, the Armijo condition is not satisfied, therefore the step size must be adjusted. If ρ = 5
7 , then

the step size is adjusted to 5π
2(1+a) , so that (1+a)αk = 5π

2 and the Armijo condition is satisfied, since

cos
(π
2
+ (1 + a)αk

)
= cos(3π) = −1 ≤ −0.83 ≈ 1

2
− 5

5π + 1

20π
.

On the other hand, if ρ = 3
7 , then (1 + a)αk = 3π

2 and the Armijo condition is not satisfied, since

cos
(π
2
+ (1 + a)αk

)
= 1 ≥ −0.5 ≈ 3/10− 3

5π + 1

20π
.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Adjusting the step size once more by ρ = 3
7 produces the step size 9π

14(1+a) and, in turn, the iterate
xk + αkdk = π

2 + 9π
14 = 8π

7 ≈ 3.59, which is feasible since

cos
(8π

7

)
≈ −1.13 ≤ −0.21 ≈ 9

70
− 9

5π + 1

140π
.

In this example, the step size 3π
2(1+a) is not feasible although it is smaller than 5π

2(1+a) , which is
feasible. More generally, this establishes that feasibility is not monotone in the step size for nonconvex
functions. Moreover, by reducing ρ = 5

7 to ρ = 3
7 , backtracking must adjust the initial step size one

additional time. Therefore, reducing ρ might increase the number of criteria evaluations to return a
feasible step size.
Example 3 (Fact 4). Let F be defined by F (x) = x2/2. If xk ̸= 0 and dk is a descent direction, then
by definition ⟨∇F (xk), dk⟩ = dkxk < 0 and it must be that dk = −c1xk for some c1 > 0. Hence,
given some c ∈ (0, 1), (3) holds if and only if

1

2
(1− αkc1)

2x2k = F (xk+1) ≤ F (xk) + cαk⟨∇F (xk), dk⟩ =
1

2
x2k − cαkc1x

2
k.

Therefore, (3) holds if and only if

c1(2(1− c)− c1αk)αkx
2
k = (1− 2cc1αk − (1− c1αk)

2)x2k ≥ 0,

or, equivalently, αk ≤ 2(1 − c)/c1, since x2k > 0. Now, suppose that α0 = 4(1 − c)/c1 > 0 and
ρ = 1/2. Then, after testing (3) exactly once, backtracking returns the step size αk = 2(1− c)/c1,
the greatest value that is guaranteed to satisfy (3). Thus, in this example, backtracking is optimal in
the sense that it tests (3) only once to return the greatest feasible step size possible. Therefore, no
other line search procedure can be provably better than backtracking to enforce any set of line search
criteria that includes the Armijo condition for any class of functions that includes quadratics.

Next, we show an analogous result for the descent lemma. Keeping F (x) = x2/2, for any x ̸= y, (5)
holds with an estimate Lk of the Lipschitz constant if and only if

x2

2
= F (y) ≤ F (y) + ⟨∇f(y), x− y⟩+ Lk

2
∥x− y∥2 =

Lk − 1

2
(y2 − 2xy) +

Lk

2
x2,

which is equivalent to Lk ≥ 1. Hence, if L0 ∈ (0, 1) and ρ = L0, then backtracking returns the
optimal estimate L0/ρ = 1 after testing (5) exactly once (requiring two function evaluations), no
matter what x ̸= y are. Hence, in this example, backtracking is optimal in the sense that it tests (5)
only once to return the tightest Lipschitz constant estimate possible. Therefore, no other line search
procedure can be provably better than backtracking to enforce any set of line search criteria that
includes the descent lemma for any class of functions that includes quadratics.

As a side note, we look into what adaptive backtracking would do. For this problem, (8a) becomes

v(αk) =
1

2αk
∥pαk

(yk)− yk∥2

f(pαk
(yk))− f(yk)− ⟨∇f(yk), pαk

(yk)− yk⟩
= Lk.

Therefore, after one function evaluation, adaptive backtracking returns ρv(αk)αk = ρ, which matches
the theoretical lower bound of backtracking and corresponds to the Lipschitz constant estimate 1/ρ.

B.2 CONVEX PROBLEMS

In this subsection, we present and proof the results for convex problems stated in Section 4.
Proposition 3. Let F be convex differentiable. Given a point xk, a direction dk and a step size
αk > 0 satisfying (3) for some c, then xk, dk and α′

k also satisfy (3) for any α′
k ∈ (0, αk).

Proof. Let β := α′
k/αk ∈ (0, 1). Then, expressing xk+α′

kdk as β(xk+αkdk)+(1−β)xk, we obtain

F (xk + α′
kdk) = F (β(xk + αkdk) + (1− β)xk) ≤ βF (xk + αkdk) + (1− β)F (xk)

≤ β(F (xk) + cαk⟨∇F (xk), dk⟩) + (1− β)F (xk)
= cα′

k⟨∇F (xk), dk⟩+ F (xk),

where the first and second follow from F being convex and xk, dk and αk satisfying (3), respectively.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proposition 4. Let F be convex differentiable. Fixing all other inputs, the number of backtracking
criteria evaluations that Algorithm 1 takes to return a feasible step size is nondecreasing in the input ρ.

Proof. Consider the inputs α0, c and v to Algorithm 1 fixed. Then, let 0 < ρ1 < ρ2 < 1 and let N1

and N2 denote the number of adjustments Algorithm 1 takes to compute a feasible step size when
it receives respectively ρ1 and ρ2 as inputs. If ρNi

i α0 is a feasible step size and N ′
i > Ni for some

i ∈ {1, 2}, then so is ρN
′
i

i α0, in view of the fact that ρNi
i < ρ

N ′
i

i and of Proposition 3. Moreover,
Algorithm 1 must test if the step size ρNi

i is feasible before testing the step size ρN
′
1

1 and therefore
cannot return ρN

′
1

1 α0. Inductively, we conclude that N1 and N2 are the least nonnegative integers
such that ρNi

i are feasible. Now, since ρN2
2 is feasible, if N1 > N2, then so is ρN2

1 < ρN2
2 , in view of

the assumption that ρ1 < ρ2 and of Proposition 3. That is, N1 is not the least nonnegative integer
such that ρN1

1 is feasible, a contradiction. Moreover, each adjustment requires evaluating the objective
function once, so the total number of function evaluations Algorithm 1 takes to return a feasible
step size is Ni + 2. Therefore, if Algorithm 1 receives ρ1 as input, then it takes no more function
evaluations to return a feasible step size than if receives ρ2 as input.

Definition 4. The inputs to Algorithms 1 and 2 are said to be compatible if α0, c, v coincide and the
input ρ̂ to Algorithm 2 is parameterized by the same ρ that Algorithm 1 takes as input.

Proposition 5. Let F be convex differentiable. Given compatible inputs with a descent direction
dk and ϵ < ρ, Algorithm 2 takes no more function evaluations to return a feasible step size than
Algorithm 1 does.

Proof. Suppose Algorithms 1 and 2 receive compatible inputs. If (3) is violated for some tentative
step size αk, then v(αk) < 1 which together with c ∈ (−0, 1) imply 1− c · v(αk) > 1− c > 0. In
turn, ρ̂(v(αk)) < ρ because ϵ < ρ, by assumption. The result follows by repeating the arguments
used to prove Proposition 4 above.

B.3 NONCONVEX PROBLEMS

B.3.1 ARMIJO CONDITION

Proposition 6 (Armijo feasibility for C2 functions). Let F be twice continuously differentiable.
Given a base point xk, a descent direction dk, an initial step size α0 and a constant c ∈ (0, 1) for the
Armijo condition (3), there is some ᾱ = ᾱ(xk, dk, c) ≤ α0 such that xk + αkdk satisfies (3) for all
αk ∈ (0, ᾱ).

Proof. Assuming F twice continuously differentiable, then by Taylor’s theorem (Nocedal & Wright,
2006, p. 14), there exists some t = t(xk, dk, αk) ∈ (0, 1) such that

F (xk + αkdk) = F (xk) + αk⟨∇F (xk), dk⟩+ α2
k
1
2 ⟨dk,∇

2F (xk + tαkdk)dk⟩. (13)

Moreover, the eigenvalues of ∇2F are continuous and the line segment {xk + αkdk : αk ∈ [0, α0]}
is compact, therefore there is some λ > 0 such that for all αk ∈ (0, α0) and t ∈ (0, 1)∣∣d⊤k∇2F (xk + tαkdk)dk

∣∣ ≤ λ∥dk∥2. (14)

So, let ᾱ = ᾱ(xk, dk, c) := 2(1− c)⟨∇F (xk),−dk⟩/(λ∥dk∥2) > 0, which is positive since dk is a
descent direction, by assumption. Combining (13) with (14), it follows that if αk ∈ (0, ᾱ), then (3)
holds.

For the sake of convenience, we now restate some definition from Section 4.

Definition 5 (Smoothness). A function F is said to be Lipschitz-smooth if (5) holds for some L > 0.

Definition 6 (Gradient related). The directions dk are said to be gradient related if there are c1 > 0
and c2 > 0 such that ⟨∇F (xk),−dk⟩ ≥ c1∥∇F (xk)∥2 and ∥dk∥ ≤ c2∥∇F (xk)∥, for all k ≥ 0.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Given a Lipschitz-smooth function F , we are particularly interested in applying the Descent Lemma
(5) with x = xk and y = xk + αkdk, which gives

F (xk + αkdk) ≤ F (xk) + αk⟨∇F (xk), dk⟩+ α2
k

L

2
∥dk∥2. (15)

Proposition 7 (Armijo feasibility for Lipschitz-smooth functions). Let F be Lipschitz-smooth. Given
a base point xk, a descent direction dk, an initial step size α0 and a constant c ∈ (0, 1) for the Armijo
condition (3), there is some ᾱ = ᾱ(xk, dk, c) ≤ α0 such that (3) holds for all αk ∈ (0, ᾱ). If, in
addition, dk are gradient related, then (3) holds for all αk ∈ (0, 2(1−c)c1

Lc22
], independent of xk and dk.

Proof. To guarantee (3) holds, we impose that the right-hand side of (15) is less than the right-hand
side of (3):

F (xk) + αk⟨∇F (xk), dk⟩+ α2
k

L

2
∥dk∥2 ≤ F (xk) + cαk⟨∇F (xk), dk⟩.

In turn, simplifying the above inequality, it follows that if

αk ≤
2(1− c)⟨∇F (xk),−dk⟩

L∥dk∥2
, (16)

then (3) holds, where we note that (16) is positive, since dk is assumed a descent direction.

Now, suppose that ⟨∇F (xk),−dk⟩ ≥ c1∥∇F (xk)∥2 and ∥dk∥ ≤ c2∥∇F (xk)∥ for some c1 > 0
and c2 > 0. Then, for all αk such that αk ≤ 2(1− c)c1/Lc22, we have that

αk ≤
2(1− c)

L

c1∥∇F (xk)∥2

c22∥∇F (xk)∥2
≤ 2(1− c)⟨∇F (xk),−dk⟩

L∥dk∥2
.

That is, (16) holds. Therefore, (3) also holds.

Proposition 8. Let F be Lipschitz-smooth, ϵ < ρ and assume v, ρ̂ are given by (4). Also, suppose dk
are gradient related. If Algorithms 1 and 2 receive αk as the initial step size input at iteration k + 1
for all k ≥ 0, then they evaluate (3) at most ⌊logρ(ᾱ/α0)⌋ + 1 + k times up to iteration k, where
ᾱ := 2(1− c)c1/Lc22. If, on the other hand, Algorithms 1 and 2 receive α0 as the initial step size
input at every iteration, then they evaluate (3) at most k(⌊logρ(ᾱ/α0)⌋+ 1) times up to iteration k.

Proof. Suppose that Algorithm 2 evaluates (3) and it does not hold for a given tentative step size αk.
Then,

F (xk + αkdk)− F (xk) > cαk⟨∇F (xk), dk⟩.

Dividing both sides above by cαk⟨∇F (xk), dk⟩ < 0 gives v(αk) < 1. In turn, since c ∈ (0, 1), it
follows that 1− c > 1− cv(αk) > 0 and (1− c)/(1− c · v(αk)) < 1. Plugging this inequality into
(4b), we obtain

ρ̂(αk) = max(ϵ, ρ(1− c)/(1− c · v(αk)) < ρ,

since by assumption ϵ < ρ. Therefore, if (3) does not hold for a given tentative step size, then
Algorithms 1 and 2 multiply it by a factor of at most ρ to adjust it.

Moreover, by Proposition 7, (3) is satisfied for all αk ∈ (0, ᾱ), independently of xk and dk.

Hence, if Algorithms 1 and 2 use α0 as the initial step size for the first iteration and αk at iteration k+1
for k ≥ 0, then at most ⌊logρ(ᾱ/α0)⌋+1 adjustments are necessary until a step size that is uniformly
feasible is found. Each adjustment entails evaluating (3) once. In addition, (3) must be evaluated once
every iteration. Therefore, (3) is evaluated at most ⌊logρ(ᾱ/α0)⌋+ 1 + k times up to iteration k.

Now, suppose Algorithms 1 and 2 use α0 as the initial step size in every iteration. Then, at most
⌊logρ(ᾱ/α0)⌋+ 1 adjustments are necessary in every iteration until a feasible step size is found. As
before, each adjustment entails evaluating (3) once, in addition to the first evaluation. Therefore, (3)
is evaluated at most k(⌊logρ(ᾱ/α0)⌋+ 1) times up to iteration k.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Proposition 9 (step size lower bounds). Let F be Lipschitz-smooth. Also, suppose dk are gradient
related. Given appropriate inputs, Algorithm 2 with the choices specified by (4) and Algorithm 1
return a step size αk such that

αk ≥ min

{
α0, ρ

2(1− c)c1
Lc22

}
> 0.

Proof. Since dk is a descent direction, dividing both sides of (15) by ⟨∇F (xk),−dk⟩ > 0 yields

−cv(αk) = −
F (xk + αkdk)− F (xk)

αk⟨∇F (xk), dk⟩
≤ −1− αkL∥dk∥2

2⟨∇F (xk), dk⟩
.

Hence, if ρ̂ is chosen as (4b) and (3) does not hold, then step sizes αk returned by Algorithm 2 satisfy

ρ̂(v(αk))αk ≥ ρ
1− c

1− cv(αk)
αk ≥ ρ

2(1− c)⟨∇F (xk),−dk⟩
L∥dk∥2

≥ ρ2(1− c)c1
Lc22

> 0.

Moreover, by Proposition 7, the greatest step size for which (3) is guaranteed to hold is 2(1 −
c)c1/Lc

2
2. If α0 ≥ 2(1− c)c1/Lc22, then Algorithm 1 returns a step size at least within a ρ factor of

2(1− c)c1/Lc22.

B.3.2 DESCENT LEMMA

First, note the proximal operator pαk
given by (6) is well-defined. Indeed, given a continuous convex

function g, a point yk and some αk > 0, the map x 7→ g(x) + (1/2αk) ∥x− (y − αk∇f(y))∥2 is
continuous strongly convex and therefore admits a unique minimum.
Proposition 10 (Lipschitz step size feasibility). Let f be Lipschitz-smooth convex and let g be
continuous convex. Also, suppose v and ρ̂ are chosen as (8a) and (8b). If αk ∈ (0, 1/L), then (7)
holds for all yk. If Algorithms 1 and 2 receive αk as the initial step size input in iteration k + 1,
then they evaluate (7) at most ⌊logρ(1/Lα0)⌋+ 1 + k times up to iteration k. If, on the other hand,
Algorithms 1 and 2 receive α0 as the initial step size input in every iteration, then they evaluate (7) at
most k(⌊logρ(1/Lα0)⌋+ 1) times up to iteration k.

Proof. Given any yk, if αk ∈ (0, 1/L), then applying (5) with x = pαk
(yk) and y = yk, we get

f(pαk
(yk)) ≤ f(yk) + ⟨∇f(yk), pαk

(yk)− yk⟩+ (L/2)∥pαk
(yk)− yk∥2

≤ f(yk) + ⟨∇f(yk), pαk
(yk)− yk⟩+ (1/2αk)∥pαk

(yk)− yk∥2.
Adding ψ(pαk

(yk)) to both sides, we recover (7). Thus, if αk ∈ (0, ᾱ), then (7) holds for all yk.

Given an initial step size αk and the points yk and pαk
(yk), Algorithm 1 checks if (7) holds. If it

does hold, then Algorithm 1 returns αk, otherwise Algorithm 1 adjusts αk by ρ, recomputes pαk
(yk),

checks if (7) and repeats. Since (7) is guaranteed to hold for αk ∈ (0, 1/L), given an initial step
size α0, Algorithm 1 computes a feasible step size after adjusting αk at most ⌊logρ(1/Lα0)⌋ + 1
times. Each time Algorithm 1 adjusts αk, Algorithm 1 evaluates (7). In addition, Algorithm 1
evaluates Eq. (7) once every time it is called to check if the initial step size is feasible. Hence, if
Algorithm 1 receives αk as the initial step size input at iteration k+1, then it evaluates Eq. (7) at most
⌊logρ(1/Lα0)⌋+ 1 + k times up to iteration k. On the other hand, if Algorithm 1 receives the same
α0 as initial step size input at every iteration, then it might have to adjust αk up to ⌊logρ(1/Lα0)⌋+1
in every iteration, therefore Algorithm 1 evaluates (7) at most k(⌊logρ(1/Lα0)⌋ + 1) times up to
iteration k.

Now, consider Algorithm 2, with v and ρ̂ chosen as (8a) and (8b). Given an initial step size αk and
the points yk and pαk

(yk), Algorithm 2 checks if (7) holds. Suppose (7) does not hold. Then, moving
the terms f(pαk

(yk)) and ⟨∇f(yk), pαk
(yk)− yk⟩ to the left-hand side and cancelling ψ(pαk

(yk))
on both sides, we obtain

f(pαk
(yk))− f(yk)− ⟨∇f(yk), pαk

(yk)− yk⟩ > (1/2αk)∥pαk
(yk)− yk∥2. (17)

Since ∥ · ∥ ≥ 0, the left-hand side must be positive. So, dividing both sides by the left-hand side and
using (8a), it follows that v(αk) < 1. Hence, Algorithm 2 adjusts αk to ρ̂(αk)αk < ραk. That is, the
factor by which Algorithm 2 adjusts αk is smaller than the factor by which Algorithm 1 adjusts αk.
Therefore, Algorithm 2 evaluates Eq. (7) at most as many times as (1) does.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proposition 11. Let f be Lipschitz-smooth convex and let g be continuous convex. Also, suppose v
and ρ̂ are chosen as (8a) and (8b). If Algorithms 1 and 2 receive an initial step size α0 > 0, then they
return a feasible step size αk such that αk ≥ min {α0, ρ/L}.

Proof. By Proposition 10, every step size αk ∈ (0, 1/L) is feasible. Hence, if α0 is not feasible, then
since Algorithm 1 adjusts step sizes by ρ, it must return a feasible step size within a ρ factor of 1/L.

Now, consider Algorithm 2, with v and ρ̂ chosen as (8a) and (8b). Algorithm 2 only adjusts αk when
(7) does not hold, so suppose that is the case. Applying (5) with y = yk and xk = pαk

(yk) yields

f(pαk
(yk))− f(xk)− ⟨∇f(yk), pαk

(yk)− yk⟩ ≤ (L/2)∥pαk
(yk)− yk∥2.

Dividing both sides by (L/ρ)(f(pαk
(yk)) − f(xk) − ⟨∇f(yk), pαk

(yk) − yk⟩), which is positive
by (17), we obtain

ρ

L
≤ ρ

1
2∥pαk

(yk)− yk∥2

f(pαk
(yk))− f(xk)− ⟨∇f(yk), pαk

(yk)− yk⟩
= ρv(αk)αk,

where the identity follows from (8a). Hence, Algorithm 2 adjusts αk to ρ̂(v(αk))αk ≥ ρ/L.

B.4 CONVERGENCE RESULTS

B.4.1 A GENERAL CONVERGENCE RESULT FOR ADAPTIVE BACKTRACKING

Under mild conditions, we now show that limk→+∞ ∥∇f(xk)∥2 = 0 for iterates xk in the form (2)
with gradient related dk and step sizes generated by adaptive backtracking. We emphasize that the
following results make no further assumptions on how the descent directions are generated and that
(Nocedal & Wright, 2006, p. 40):

For line search methods of the general form (2), the limit limk→+∞ ∥∇f(xk)∥2 = 0 is the strongest
global convergence result that can be obtained: We cannot guarantee that the method converges to a
minimizer, but only that it is attracted by stationary points. Only by making additional requirements
on the search direction dk—by introducing negative curvature information from the Hessian∇2f(xk),
for example—can we strengthen these results to include convergence to a local minimum

Proposition 12. Let f be bounded below and Lipschitz-smooth on an open set containing the level
set {x : f(x) ≤ f(x0)}, where x0 is the initial point of iterates (2) where dk are gradient related
and αk are generated by adaptive backtracking (Algorithm 2) with some α0 > 0 and using ρ̂ and v
given by (4). Then, limk→+∞ ∥∇f(xk)∥2 = 0.

Proof. Under the above assumptions, we have that αk ≥ min{α0, ρα}, where α = 2(1−c)c1/(Lc22),
by Proposition 9. Moreover, we have that ⟨∇f(xk), dk⟩ ≤ −c1∥∇f(xk)∥2, because dk are gradient
related. Hence, since adaptive backtracking enforces the Armijo condition, (3), it follows that

f(xk+1)− f(xk) ≤ −αkc∥∇f(xk)∥2 ≤ −cmin{α0, ρ2(1− c)c1/(Lc22)}∥∇f(xk)∥2.

Telescoping the above difference, we get

f(xk+1)− f(x0) =
k∑

t=1

(f(xt+1)− f(xt)) ≤ −cmin
{
α0, ρ

2(1− c)c1
Lc22

} k∑
t=1

∥∇f(xt)∥2.

Rearranging the above inequality and using the assumption that f is lower bounded, we obtain

cmin
{
α0, ρ

2(1− c)c1
Lc22

} k∑
t=1

∥∇f(xt)∥2 ≤ f(x0)− f(xk+1) < +∞.

That is, ∥∇f(xk)∥2 are square-summable. Therefore, it follows that

lim
k→+∞

∥∇f(xk)∥2 = 0.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B.4.2 CONVERGENCE RESULTS FOR GRADIENT DESCENT

We show that the standard convergence results for gradient descent are preserved if step sizes are
generated by adaptive backtracking. We address smooth and then smooth strongly convex objectives.
Proposition 13. Let f be convex, Lipschitz-smooth and suppose∇f(x∗) = 0 for some x∗. If the step
sizes αk of gradient descent (Algorithm 3) are chosen by adaptive backtracking (Algorithm 2) using
ρ̂ and v given by (4) with c ∈ [1/2, 1) and α0 > 0, then αk ≥ min{α0, ρα}, where α = 2(1− c)/L,
and

f(xk)− f(x∗) ≤
∥x0 − x∗∥2

2min{α0, ρα}k
.

Proof. Under the above assumptions, all iterates of gradient descent satisfy the Armijo condition, (3).
Moreover, since f is convex, we have that

f(xk) ≤ f(x∗) + ⟨∇f(xk), xk − x∗⟩.
Hence, combining the above inequality with (3), it follows that

f(xk+1) ≤ f(xk)− cαk∥∇f(xk)∥2 ≤ f(x∗) + ⟨∇f(xk), xk − x∗⟩ − cαk∥∇f(xk)∥2.
In turn, since c ≥ 1/2, rearranging the above inequality and completing a square, we get

f(xk+1)− f(x∗) ≤
1

2αk
(2αk⟨∇f(xk), xk − x∗⟩ − α2

k∥∇f(xk)∥2)

=
1

2αk
(2αk⟨∇f(xk), xk − x∗⟩ − α2

k∥∇f(xk)∥2 ± ∥xk − x∗∥2)

=
1

2αk
(∥xk − αk∇f(xk)− x∗∥2 − ∥xk − x∗∥2)

=
1

2αk
(∥xk − x∗∥2 − ∥xk+1 − x∗∥2).

Now, since gradient descent sets dk = −∇f(xk), then dk are gradient related with c1 = c2 = 1.
Moreover, since f is Lipschitz-smooth, then αk ≥ min{α0, ρα}, where α = 2(1 − c)/L, by
Proposition 9. Plugging this lower bound into the above inequality, it follows that

f(xk+1)− f(x∗) ≤
1

2min{α0, ρα}
(∥xk − x∗∥2 − ∥xk+1 − x∗∥2).

Telescoping the above, we get
k∑

t=1

(f(xt+1)− f(x∗)) ≤
1

2min{α0, ρα}

k∑
t=1

(∥xt − x∗∥2 − ∥xt+1 − x∗∥2)

≤ ∥x0 − x
∗∥2 − ∥xk+1 − x∗∥2

2min{α0, ρα}

≤ ∥x0 − x∗∥2

2min{α0, ρα}
.

Since ∇f(x∗) = 0 and f is convex, we have that f(xk+1) − f(x∗) ≥ 0. Moreover, f(xk) are
decreasing because the Armijo condition holds in every iteration. Therefore

f(xk+1)− f(x∗) ≤
∥x0 − x∗∥2

2min{α0, ρα}k
.

Next, we show that adaptive backtracking also preserves the convergence rate of gradient descent on
strongly convex objectives, which we define below.
Definition 7 (Strong convexity). A continuously differentiable function f is said to be strongly convex
if there exists some m > 0 such that for every x and y

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ m

2
∥y − x∥2. (18)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Proposition 14. Let f be Lipschitz-smooth and strongly convex. If the step sizes αk of gradient
descent (Algorithm 3) are chosen by adaptive backtracking (Algorithm 2) using ρ̂ and v given by (4)
with c ∈ [1/2, 1) and α0 ∈ (0, 1/m), then

f(xk)− f(x∗) ≤ (1−mmin{α0, ρα})k
L+m

2
∥x0 − x∗∥2.

In particular, if c = 1/2 and α0 > ρ/L, then

f(xk)− f(x∗) ≤ (1− ρq)kL+m

2
∥x0 − x∗∥2,

where q = m/L is the reciprocal of the condition number of f .

Proof. Let L and m denote the Lipschitz-smoothness and strong convexity constants of f . The
assumption that f is strongly convex implies the existence of a unique global minimizer x∗ for f . We
then use x∗ to define a Lyapunov function V , given by

V (xk) = f(xk)− f(x∗) +
m

2
∥xk − x∗∥2,

which is positive for xk ̸= x∗. To prove the result, we show that (1+δk)V (xk+1)−V (xk) ≤ 0, where

δk =
1

Qk − 1
, Qk =

Lk

m
and Lk =

1

αk
.

And we note that the assumption that αk ≤ α0 < 1/m implies Lk > m, thus δk are well-defined.

By assumption, the iterates of gradient descent satisfy (3) with c ∈ [1/2, 1), hence

f(xk+1)− f(xk) ≤ −cαk∥∇f(xk)∥2 ≤ −
αk

2
∥∇f(xk)∥2.

Moreover, by strong convexity, we have that

f(xk)− f(x∗) ≤ ⟨∇f(xk), xk − x∗⟩ −
m

2
∥xk − x∗∥2.

Next, expanding quadratic terms, it follows that

(1 + δk)∥xk+1 − x∗∥2 − ∥xk − x∗∥2 =(1 + δk)(α
2
k∥∇f(xt)∥2 − 2αk⟨∇f(xk), xk − x∗⟩)

+ δk∥xk − x∗∥2.
Now, from the definition of δk, we obtain

(1 + δk)(1−mαk) =
Qk

Qk − 1

Qk − 1

Qk
= 1 and (1 + δk)mαk =

Qk

Qk − 1

1

Qk
= δk.

Then, we put everything together to get

(1 + δk)V (xk+1)− Vk(xk) ≤− (1 + δk)(1−mαk)
αk

2
∥∇f(xk)∥2

− (δk − (1 + δk)mαk)⟨∇f(xk), xk − x∗⟩

≤ − αk

2
∥∇f(xk)∥2.

Applying the above inequality inductively, it follows that

V (xk+1) ≤ V (x0)

k∏
t=1

1

1 + δt
.

Moreover, applying (5) with y = x0 and x = x∗, and noticing that∇f(x∗) = 0, we obtain

V (x0) = f(x0)− f(x∗) +
m

2
∥x0 − x∗∥2 ≤

L+m

2
∥x0 − x∗∥2.

Furthermore, under the above assumptions, we have that αk ≥ min{α0, ρα}, where α = 2(1− c)/L,
which implies that

1 + δk =
Qk

Qk − 1
=

1

1−mαk
≥ 1

1−mmin{α0, ρα}
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Finally, we put everything together and obtain

f(xk)− f(x∗) ≤ V (xk+1) ≤
L+m

2
∥x0 − x∗∥2

k∏
t=1

1

1 + δt

≤(1−mmin{α0, ρα})k
L+m

2
∥x0 − x∗∥2.

B.4.3 A CONVERGENCE RESULT FOR ACCELERATED GRADIENT DESCENT

To establish that adaptive backtracking preserves the convergence rate of accelerated gradient descent,
we employ a Lyapunov argument based on the function Vk defined by

Vt(xk, yk) = f(yk)− f(x∗) +
m

2
∥zt − x∗∥2, (19)

where the point zt = zt(xk, yk) is defined as

zt = xk +
√
Qt−1(xk − yk), (20)

and the estimated condition number Qt and estimated Lipschitz constant are given by

Qt =

{
L0/m, t < 0,

Lt/m, t ≥ 0,
and Lt =

1

αt
. (21)

Note that the index t of zt follows that of Vt but is independent of the indices of xk and yk, which
allows us to split the Lyapunov analysis in two auxiliary lemmas. First, we show that for a fixed index
k + 1, the Lyapunov function Vk+1 decreases along consecutive AGD iterates at an accelerated rate.
Second, we bound by how much Vk+1 can increase with respect to Vk for the same AGD iterate.
Lemma 1. Let f be Lipschitz-smooth and strongly convex. If the Lipschitz constant estimates Lk of
accelerated gradient descent (Algorithm 4) are generated by adaptive backtracking (Algorithm 2)
using ρ̂ and v given by (4) with c ∈ [1/2, 1) and L0 > m, then for k ≥ 0

(1 + δk+1)Vk+1(yk+1, xk+1)− Vk+1(yk, xk) ≤ 0,

where δk+1 = 1/(
√
Qk − 1).

Proof. We start by splitting (1 + δk+1)(f(yk+1)− f(x∗)) into three further differences:

(1 + δk+1)(f(yk+1)− f(x∗))− (f(yk)− f(x∗)
=(1 + δk+1)(f(yk+1)− f(xk)) + δk+1(f(xk)− f(x∗)) + (f(xk)− f(yk)).

Since c ∈ [1/2, 1), then adaptive backtracking generates Lk such that

(1 + δk+1)(f(yk+1)− f(xk)) ≤ − (1 + δk+1)
1

2Lk
∥∇f(xk)∥2. (22)

Moreover, applying (18) with x = xk and y = x∗ and using that f is convex, we get

δk+1(f(xk)− f(x∗)) ≤ δk+1 ⟨∇f(xk), xk − x∗⟩ − δk+1
m

2
∥xk − x∗∥2, (23)

f(xk)− f(yk) ≤ ⟨∇f(xk), xk − yk⟩ . (24)

Next, we express the difference zk+1 − x∗ as

zk+1 − x∗ = xk+1 +
√
Qk(xk+1 − yk+1)− x∗

= yk+1 + βk(yk+1 − yk) +
√
Qkβk(yk+1 − yk)− x∗

= − 1

Lk
(1 + βk(1 +

√
Qk))∇f(xk) + βk(1 +

√
Qk)(xk − yk) + xk − x∗

= − 1

Lk

√
Qk∇f(xk) + (

√
Qk − 1)(xk − yk) + xk − x∗,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

where we used the identities

1 + βk(1 +
√
Qk) =

√
Qt and βk(1 +

√
Qk) =

√
Qk − 1.

In the same vein, when expanding the 2-norm term ∥zk+1 − x∗∥2 below, we use the following
identities after colons to simplify the coefficients of terms before colons:

∥∇f(xk)∥2 : (Qk/L
2
k)(m/2) = 1/2Lk,

⟨∇f(xk), xk − yk⟩ : m(1 + δk+1)
√
Qk(

√
Qk − 1)/Lk = 1,

⟨∇f(xk), xk − x∗⟩ : m(1 + δk+1)
√
Qk/Lk = δk,

∥xk − yk∥2 : (1 + δk+1)(
√
Qk − 1)2 =

√
Qk(

√
Qk − 1),

⟨xk − yk, xk − x∗⟩ : (1 + δk+1)(
√
Qk − 1) =

√
Qk.

As a result, the 2-norm difference in (1 + δk+1)Vk+1(yk+1, xk+1)− Vk+1(yk, xk) becomes

(1 + δk+1)
m

2
∥zk+1 − x∗∥2 −

m

2
∥xk − x∗ +

√
Qk(xk − yk)∥2

=
1 + δk+1

2Lk
∥∇f(xk)∥2 − ⟨∇f(xk), xk − yk⟩ − δk ⟨∇f(xk), xk − x∗⟩

m

2

√
Qk(

√
Qk − 1)∥xk − yk∥2 +

m

2
(2
√
Qk⟨xk − yk, xk − x∗⟩+ (1 + δk+1)∥xk − x∗∥2)

− m

2
(Qk∥xk − yk∥2 + 2

√
Qk⟨xk − yk, xk − x∗⟩+ ∥xk − x∗∥2)

=
1 + δk+1

2Lk
∥∇f(xk)∥2 − ⟨∇f(xk), xk − yk⟩ − δk ⟨∇f(xk), xk − x∗⟩

− m

2

√
Qk∥xk − yk∥2 + δk

m

2
∥xk − x∗∥2. (25)

Finally, combining (22) to (25) and then canceling several terms, we obtain

(1 + δk+1)Vk+1(yk+1, xk+1)− Vk+1(yk, xk) ≤ −
m

2

√
Qk∥xk − yk∥2 ≤ 0.

Lemma 2. Let f be Lipschitz-smooth strongly convex. Given initial points x0 = y0, if the estimates
Lk of the Lipschitz constant in accelerated gradient descent (Algorithm 4) are generated monotoni-
cally by adaptive backtracking (Algorithm 2 with Lk serving as the initial estimate for Lk+1) using ρ̂
and v given by (4) with c ∈ [1/2, 1) and L0 > m, then for k ≥ 0

Vk+1(yk, xk) ≤
Q2

k

Q2
k−1

Vk(yk, xk).

Proof. We argue by induction. If x0 and y0 match, then

z1(y0, x0) = x0 +Q0(x0 − y0) = x0 = x0 +Q−1(x0 − y0) = z0(y0, x0).

Moreover, Q−1 = Q0, by definition. Therefore, we have that

V1(y0, x0) = f(y0)− f(x∗) +
m

2
∥z1(y0, x0)− x∗∥2

=
Q2

0

Q2
−1

(f(y0)− f(x∗) +
m

2
∥z0(y0, x0)− x∗∥2)

=
Q2

0

Q2
−1

V0(y0, x0),

which establishes the base case. To prove the inductive step, we divide the analysis in two cases, each
representing a possible sign of ⟨xk − yk, xk − x∗⟩. For each case, we bound

∥xk − x∗ +
√
Qkxk − yk∥2 − ∥zk − x∗∥2

= 2(
√
Qk −

√
Qk−1)⟨xk − x∗, xk − yk⟩+ (Qk −Qk−1)∥xk − yk∥2. (26)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

In turn, bounds on (26) translate into bounds on Vk+1(yk, xk)− Vk(yk, xk), since

Vk+1(yk, xk)− Vk(yk, xk) =
m

2
(∥xk − x∗ +

√
Qk(xk − yk)∥2 − ∥zk − x∗∥2). (27)

Then, to prove the inductive step, we express bounds on (27) in terms of Vk+1 and Vk.

First, suppose ⟨xk − yk, xk − x∗⟩ ≥ 0. Also assuming Lk ≥ Lk−1, then
√
Qk−1/

√
Qk ≤ 1, so that

√
Qk −

√
Qk−1 ≤

Qk√
Qk
−
√
Qk−1

√
Qk−1√
Qk

=
Qk −Qk−1√

Qk
.

Hence, applying the above inequality to (26) and then adding a nonnegative ∥xk − x∗∥2 term to it,
we get

∥xk − x∗ +
√
Qk(xk − yk)∥2 − ∥zk − x∗∥2

≤ 2
Qk −Qk−1√

Qk
⟨xk − x∗, xk − yk⟩+ (Qk −Qk−1)∥xk − yk∥2 +

Qk −Qk−1

Qk
∥xk − x∗∥2

=
Qk −Qk−1

Qk
∥xk − x∗ +

√
Qk(xk − yk)∥2. (28)

Plugging (28) back into (27) yields

Vk+1(yk, xk)− Vk(yk, xk) ≤
Qk −Qk−1

Qk

m

2
∥xk − x∗ +

√
Qk(xk − yk)∥2

≤ Qk −Qk−1

Qk
Vk+1(yk, xk), (29)

where the last inequality follows from the definition of Vk, as f(yk)− f(x∗) ≥ 0 implies

Vk+1(yk, xk) ≥
m

2
∥xk − x∗ +

√
Qk(xk − yk)∥2. (30)

Thus, rearranging terms in (29) and then multiplying both sides by Qk/Qk−1, we obtain

Vk+1(yk, xk) ≤
Qk

Qk−1
Vk(yk, xk) ≤

Q2
k

Q2
k−1

Vk(yk, xk),

where the second inequality holds because Qk/Qk−1 ≥ 1.

Now, suppose ⟨xk − yk, xk − x∗⟩ < 0. As in the previous case, we start by bounding the gap (26).
But given the negative sign of ⟨xk − yk, xk − x∗⟩ term, we bound the ∥xk − yk∥2 term instead. To
this end, we first invoke the assumption that ⟨xk − yk, xk − x∗⟩ < 0 to establish that

∥yk − x∗∥2 = ∥xk − x∗ − (xk − yk)∥2

= ∥xk − x∗∥2 − 2⟨xk − x∗, xk − yk⟩+ ∥xk − yk∥2

≥ ∥xk − x∗∥2. (31)

To use the above inequality on (26), first we rewrite it more conveniently as

∥xk − x∗ +
√
Qkxk − yk∥2 − ∥zk − x∗∥2

=2

√
Qk −

√
Qk−1√

Qk
⟨xk − x∗,

√
Qk(xk − yk)⟩+

√
Qk(

√
Qk −

√
Qk−1)∥xk − yk∥2

+
√
Qk−1(

√
Qk −

√
Qk−1)∥xk − yk∥2 ±

√
Qk −

√
Qk−1√

Qk
∥xk − x∗∥2

=

√
Qk −

√
Qk−1√

Qk
∥xk − x∗ +

√
Qk(xk − yk)∥2 +

√
Qk−1(

√
Qk −

√
Qk−1)∥xk − yk∥2

−
√
Qk −

√
Qk−1√

Qk
∥xk − x∗∥2. (32)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Next, we use the following elementary inequality, which is a consequence of ∥a/c+ bc∥2 ≥ 0:

∥a− b∥2 = ∥a∥2 − 2⟨a, b⟩+ ∥b∥2 ≤ (1 + 1/c2)∥a∥2 + (1 + c2)∥b∥2.

Namely, we apply the above inequality with a = zk − x∗, b = xk − x∗ and c2 =
√
Qk−1/

√
Qk to

bound the ∥xk − yk∥2 term on (32) and obtain√
Qk−1(

√
Qk −

√
Qk−1)∥xk − yk∥2

=
√
Qk−1(

√
Qk −

√
Qk−1)∥xk − yk ± (xk − x∗)/

√
Qk−1∥2

=

√
Qk −

√
Qk−1√

Qk−1

∥zk − x∗ − (xk − x∗)∥2

≤
√
Qk −

√
Qk−1√

Qk−1

(
1 +

√
Qk√
Qk−1

)
∥zk − x∗∥2 +

√
Qk −

√
Qk−1√

Qk−1

(
1 +

√
Qk−1√
Qk

)
∥xk − x∗∥2

=
Qk −Qk−1

Qk−1
∥zk − x∗∥2 +

√
Qk −

√
Qk−1√

Qk

√
Qk +

√
Qk−1√

Qk−1

∥xk − x∗∥2. (33)

Plugging (33) back into (32) and then using (31), we get

∥xk − x∗ +
√
Qk(xk − yk)∥2 − ∥zk − x∗∥2

≤
√
Qk −

√
Qk−1√

Qk
∥xk − x∗ +

√
Qk(xk − yk)∥2 +

Qk −Qk−1

Qk−1
∥zk − x∗∥2

+

√
Qk −

√
Qk−1√

Qk

(√Qk +
√
Qk−1√

Qk−1

− 1
)
∥xk − x∗∥2

≤
√
Qk −

√
Qk−1√

Qk
∥xk − x∗ +

√
Qk(xk − yk)∥2 +

Qk −Qk−1

Qk−1
∥zk − x∗∥2

+

√
Qk −

√
Qk−1√

Qk−1

∥yk − x∗∥2. (34)

In turn, plugging (34) back into (27) and then using the assumptions that m ≥ m and m ≤ m yields

Vk+1(yk, xk)− Vk(yk, xk)

≤ m

2

√
Qk −

√
Qk−1√

Qk
∥xk − x∗ +

√
Qk(xk − yk)∥2 +

m

2

Qk −Qk−1

Qk−1
∥zk − x∗∥2

+
m

2

√
Qk −

√
Qk−1√

Qk−1

∥yk − x∗∥2

≤
√
Qk −

√
Qk−1√

Qk

m

2
∥xk − x∗ +

√
Qk(xk − yk)∥2 +

Qk −Qk−1

Qk−1

m

2
∥zk − x∗∥2

+

√
Qk −

√
Qk−1√

Qk−1

m

2
∥yk − x∗∥2. (35)

Now, as in (30), the fact that f(yk)− f(x∗) ≥ 0 implies

Vk(yk, xk) = f(yk)− f(x∗) +
m

2
∥zk − x∗∥2 ≥

m

2
∥zk − x∗∥2. (36)

In the same vein, applying (18) with x = x∗ and y = yk to the definition of Vk, we obtain

Vk(yk, xk) = f(yk)− f(x∗) +
m

2
∥zk − x∗∥2 ≥

m

2
∥yk − x∗∥2. (37)

Plugging in (30), (36) and (37) back into (35), and then moving all V acc
k+1(yk, xk) terms to the left-

hand side and all Vk(yk, xk) to the right-hand side, we obtain√
Qk−1√
Qk

Vk+1(yk, xk) ≤
(Qk

Qk−1
+

√
Qk −

√
Qk−1√

Qk−1

)
Vk(yk, xk) (38)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Multiplying both sides of (38) by
√
Qk/

√
Qk−1, and then using the fact that

√
Qk ≥

√
Qk−1 yields

Vk+1(yk, xk) ≤
√
Qk√
Qk−1

(Qk

Qk−1
+

√
Qk −

√
Qk−1√

Qk−1

)
Vk(yk, xk) ≤

Q2
k

Q2
k−1

Vk(yk, xk),

where the last inequality above holds because Qk ≥ Qk−1 implies the following equivalences hold:

Qk

Qk−1
+

√
Qk −

√
Qk−1√

Qk−1

≤
Q

3/2
k

Q
3/2
k−1

⇐⇒
√
Qk−1Qk +Qk−1(

√
Qk −

√
Qk−1) ≤ Q3/2

k ,

⇐⇒ Qk−1(
√
Qk −

√
Qk−1) ≤ Qk(

√
Qk −

√
Qk−1).

Therefore, both when ⟨xk − x∗, xk − yk⟩ ≥ 0 and when ⟨xk − x∗, xk − yk⟩ < 0, the inequality

Vk+1(yk, xk) ≤
Q2

k

Q2
k−1

Vk(yk, xk)

holds generically for all yk, xk, proving the lemma.

Proposition 15. Let f be Lipschitz-smooth strongly convex. Given initial points x0 = y0, if the
estimates Lk of the Lipschitz constant in accelerated gradient descent (Algorithm 4) are generated
monotonically by adaptive backtracking (Algorithm 2 with Lk serving as the initial estimate for
Lk+1) using ρ̂ and v given by (4) with c ∈ [1/2, 1) and L0 > m, then for k ≥ 0

f(yk+1)− f(x∗) ≤

(√
Q−

√
2(1− c)ρ√
Q

)k
Q2

4(1− c)2ρ2
L+m

2
∥x0 − x∗∥2.

Proof. Combining Lemmas 1 and 2, we have that for every k ≥ 0

Vk+1(yk+1, xk+1) ≤
1

1 + δk
Vk+1(yk, xk) ≤

1

1 + δk

Q2
k

Q2
k−1

Vk(yk, xk).

Moreover, from Proposition 9 and the assumption that L0 > m, it follows that

Lk ≤ max{L0, L/(2(1− c)ρ)} ≤ max{m,L/(2(1− c)ρ)}

and, in turn, we obtain

1

1 + δk
≤
√
Qk − 1√
Qk

≤
√
Q−

√
2(1− c)ρ√
Q

where Q =
L

m
. (39)

Furthermore, assuming y0 = x0, we have that

V0(y0, x0) = f(y0)− f(x∗) +
m

2
∥z0 − x∗∥2 ≤

L+m

2
∥x0 − x∗∥2.

Arguing inductively, all but Q2
k and Q2

−1 = Q2
0 cancel and, since L0 > m, we get

f(yk+1)− f(x∗) ≤ Vk+1(yk+1, xk+1)

≤

(√
Q−

√
2(1− c)ρ√
Q

)k
L2
k

L2
0

V0(y0, x0)

≤

(√
Q−

√
2(1− c)ρ√
Q

)k
Q2

4(1− c)2ρ2
L+m

2
∥x0 − x∗∥2.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

C METHODS

In this section, we briefly state standard implementations of the base methods that we use in the paper.
For the sake of simplicity, we only state a single iteration of the corresponding method.

Algorithms 3 and 4 summarize gradient descent and Nesterov’s accelerated gradient descent in the
formulation with constant momentum coefficient (Nesterov, 2018, 2.2.22). Algorithm 5 summarizes
Adagrad (Duchi et al., 2011).

To state the last base method that we consider in this paper, we must introduce an auxiliary operator.
Given a convex Lipschitz-smooth function f with Lipschitz constant L and a continuous convex
function, the proximal operator pL is defined by

pL(y) := argmin
x

{
g(x) +

L

2

∥∥∥∥x− (y − 1

L
∇f(x)

)∥∥∥∥2
}
. (40)

With the above definition, we can state Algorithm 6, which summarizes FISTA (Beck & Teboulle,
2009).

Algorithm 3 Gradient Descent.
Input: xk,∇f(xk), αk > 0
Output: xk+1

1: xk+1 ← xk − αk∇f(xk)

Algorithm 4 Nesterov’s accelerated gradient descent (Nesterov, 2018, 2.2.22).
Input: xk, yk,∇f(xk), Lk > m > 0
Output: xk+1, yk+1

1: yk+1 ← xk − (1/Lk)∇f(xk)
2: βk ←

√
Lk−

√
m√

Lk+
√
m

3: xk+1 ← (1 + βk)yk+1 − βkyk

Algorithm 5 Adagrad (Duchi et al., 2011). Superscript i means the i-th entry of
the vector.
Input: xk,∇f(xk), yk, xkαk > 0
Output: xk+1, sk+1

1: sik+1 = yk, x
i
k + (∇f(xk)i)2

2: xik+1 ← xik −
αk√
sik+1

∇f(xik)

Algorithm 6 FISTA (Beck & Teboulle, 2009).

Input: xk, xk−1, yk, tk,∇f(xk)
Output: xk+1, yk+1, tk+1

1: xk+1 ← pL(yk)

2: tk+1 ←
1+
√

1+4t2k
2

3: yk+1 ← xk + tk−1
tk+1

(xk − xk−1)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

D LOGISTIC REGRESSION EXPERIMENTS

In this section, we provide further details of the logistic regression experiments and present full plots
of all runs.

Table 4: Details of datasets and method precisions used in the logistic regression problem.

dataset datapoints dimensions AGD GD GD (monotone) Adagrad
a9a 32561 123 10−9 10−6 10−5 10−6

gisette_scale 6000 5000 10−9 10−9 10−5 10−9

MNIST 60000 784 10−9 10−6 10−3 10−9

mushrooms 8124 112 10−9 10−9 10−5 10−9

phishing 11055 68 10−9 10−9 10−6 10−6

protein 102025 75 10−9 10−9 10−5 10−9

web-1 2477 300 10−9 10−9 10−8 10−9

Dataset details. We take observation from seven datasets: A9A, GISETTE_SCALE (G_SCALE),
MUSHROOMS, PHISHING and WEB-1 from LIBSVM (Chang & Lin, 2011), PROTEIN from KDD Cup
2004 (Caruana et al., 2004) and MNIST (LeCun et al., 1998) The dataset A9A is a preprocessed version
of the ADULT dataset (Becker & R, 1996), while WEB-1 is subsample of the WEB dataset (Platt, 1998).

Initialization details. For Lipschitz-smooth problems, a step size of 1/L̄ is guaranteed to satisfy the
Armijo condition (with c = 1/2) if L̄ ≥ L. Accordingly, we consider four choices of initial step sizes,
α = {101, 102, 103, 104}/L̄, which capture the transition from initial step sizes that do not require
adjustments to satisfy the Armijo condition to step sizes that do. In practice, L is unknown and the
transition would occur as one attempted an arbitrary initial step size and adjusted it correspondingly
until the line search was activated. Hence, using L̄ to anchor the choice of initial step sizes is merely
an educated guess of the transition values that would be found in practice. We adopt the standard
choice c = 10−4 (Nocedal & Wright, 2006, p. 62) in (3) for BLS used with GD and Adagrad but,
motivated by both theory and practice, we choose c = 1/2 in the case of AGD. Also, we use the
regularization parameter γ as the strong convexity parameter input for AGD.

Evaluation details. We run all base method and their variants for long enough to produce solutions
with designated precision; Then, we account for the number of gradient and function evaluations and
elapsed time each variant takes to produce that solution. Finally, for each BLS variant we average those
numbers over the four initial step sizes that we considered. All methods compute exactly one gradient
per iteration. To account for elapsed time, we record wall clock time after every iteration. Although
somewhat imprecise, elapsed time reflects the relative computational cost of gradient and function
evaluations and, especially in larger problems, is a reasonable metric to compare performance.

Additional comments. We make the following additional remarks and observations:

• We considered two ways to initialize the step size for line search at each iteration: (1) using the
step size from the previous iteration and (2) using the same fixed step size at every iteration. We
refer to the corresponding line search subroutines as monotone and memoryless. The monotone
variants are robust to every choice of ρ while some values of ρ may turn the memoryless variants of
AGD unstable or unacceptably slow. When the memoryless variants work, however, they generally
work much better than the corresponding monotone variants and the baseline methods.

• Monotone backtracking is not as appealing as memoryless backtracking because although both vari-
ants take fewer iterations than the baseline method does to reach a given precision, the savings in iter-
ations generated by the monotone variants are not enough to outweigh the additional computational
cost of function evaluations that the same variants accrue. Therefore, we only report results for the
memoryless variant in the main text and defer results for the monotone variant to Appendix D.1.

• The initial step sizes greatly impact performance. For some starting step sizes, vanilla backtracking
is better suited for finding the optimal solution than our adaptive method. However, we find that
there tends to be more variance in the performance of vanilla backtracking.

• When L̄ is a good estimate of the true Lipschitz constant, the computational cost of function eval-
uations may outweigh the savings in gradient evaluation and even memoryless backtracking might

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

not improve on the baseline method. This is the case for the COVTYPE dataset from LIBSVM
(Chang & Lin, 2011), as shown by Fig. 17b, in Appendix D.2.

• The corresponding stable values of ρ for the adaptive counterpart of AGD lie in the upper interval
(0.7, 1) and usually greater values of ρ make the adaptive variant more stable but also more com-
putationally expensive. AGD with regular memoryless backtracking fails to consistently converge
for values of ρ outside the interval (0.3, 0.5). In fact, on COVTYPE, for at least one of the initial
step sizes, AGD with regular memoryless backtracking line search fails to converge. On the other
hand, as shown in Fig. 17b in Appendix D.2, the adaptive variant converges for ρ = 0.9 and even
for ρ = 0.7, the more unstable end of feasible ρ values.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

D.1 MONOTONE BACKTRACKING LINE SEARCH

0 50000
1e1

10 6

10 3

100

f(
x
t)
−
f ∗

0 50000
1e2

0 50000
1e3

0 50000
1e4

GD ρ= 0.5 ρ= 0.7 ρ= 0.9 ρ= 0.95 AD

(a) ADULT.

0 50000
1e1

10 6

10 3

100

f(
x
t)
−
f ∗

0 50000
1e2

0 50000
1e3

0 50000
1e4

GD ρ= 0.5 ρ= 0.7 ρ= 0.9 ρ= 0.95 AD

(b) GISETTE_SCALE.

0 50000
1e1

10 4

10 1

101

f(
x
t)
−
f ∗

0 50000
1e2

0 50000
1e3

0 50000
1e4

GD ρ= 0.5 ρ= 0.7 ρ= 0.9 ρ= 0.95 AD

(c) MNIST.

0 10000
1e1

10 6

10 2

101

f(
x
t)
−
f ∗

0 10000
1e2

0 10000
1e3

0 10000
1e4

GD ρ= 0.5 ρ= 0.7 ρ= 0.9 ρ= 0.95 AD

(d) MUSHROOMS.

Figure 6: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for GD, GD with standard backtracking line search using
ρ ∈ {0.5, 0.7, 0.9, 0.95} and GD with adaptive memoryless backtracking line search using ρ = 0.9.
The light gray horizontal dashed line shows the precision used to compute performance for each
dataset.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

0 20000
1e1

10 7

10 3

100

f(
x
t)
−
f ∗

0 20000
1e2

0 20000
1e3

0 20000
1e4

GD ρ= 0.5 ρ= 0.7 ρ= 0.9 ρ= 0.95 AD

(a) PHISHING.

0 20000
1e1

10 6

10 2

101

f(
x
t)
−
f ∗

0 20000
1e2

0 20000
1e3

0 20000
1e4

GD ρ= 0.5 ρ= 0.7 ρ= 0.9 ρ= 0.95 AD

(b) PROTEIN.

0 10000
1e1

10 9

10 4

100

f(
x
t)
−
f ∗

0 10000
1e2

0 10000
1e3

0 10000
1e4

GD ρ= 0.5 ρ= 0.7 ρ= 0.9 ρ= 0.95 AD

(c) WEB-1.

Figure 7: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for GD, GD with standard backtracking line search using
ρ ∈ {0.5, 0.7, 0.9, 0.95} and GD with adaptive memoryless backtracking line search using ρ = 0.9.
The light gray horizontal dashed line shows the precision used to compute performance for each
dataset.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

0 5082
1e1

10 10

10 5

100

f(
x
t)
−
f ∗

0 5082
1e2

0 5082
1e3

0 5082
1e4

AGD ρ= 0.5 ρ= 0.7 ρ= 0.9 ρ= 0.95 AD

(a) ADULT.

0 2574
1e1

10 10

10 5

100

f(
x
t)
−
f ∗

0 2574
1e2

0 2574
1e3

0 2574
1e4

AGD ρ= 0.5 ρ= 0.7 ρ= 0.9 ρ= 0.95 AD

(b) GISETTE_SCALE.

0 8750
1e1

10 10

10 5

100

f(
x
t)
−
f ∗

0 8750
1e2

0 8750
1e3

0 8750
1e4

AGD ρ= 0.5 ρ= 0.7 ρ= 0.9 ρ= 0.95 AD

(c) MNIST.

0 3000
1e1

10 10

10 4

101

f(
x
t)
−
f ∗

0 3000
1e2

0 3000
1e3

0 3000
1e4

AGD ρ= 0.5 ρ= 0.7 ρ= 0.9 ρ= 0.95 AD

(d) MUSHROOMS.

Figure 8: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for AGD, AGD with standard backtracking line search
using ρ ∈ {0.5, 0.7, 0.9, 0.95} and AGD with adaptive memoryless backtracking line search using
ρ = 0.9. The light gray horizontal dashed line shows the precision used to compute performance for
each dataset.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

0 3232
1e1

10 10

10 5

100

f(
x
t)
−
f ∗

0 3232
1e2

0 3232
1e3

0 3232
1e4

AGD ρ= 0.5 ρ= 0.7 ρ= 0.9 ρ= 0.95 AD

(a) PHISHING.

0 11840
1e1

10 10

10 4

101

f(
x
t)
−
f ∗

0 11840
1e2

0 11840
1e3

0 11840
1e4

AGD ρ= 0.5 ρ= 0.7 ρ= 0.9 ρ= 0.95 AD

(b) PROTEIN.

0 1617
1e1

10 10

10 5

100

f(
x
t)
−
f ∗

0 1617
1e2

0 1617
1e3

0 1617
1e4

AGD ρ= 0.5 ρ= 0.7 ρ= 0.9 ρ= 0.95 AD

(c) WEB-1.

Figure 9: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for AGD, AGD with standard backtracking line search
using ρ ∈ {0.5, 0.7, 0.9, 0.95} and AGD with adaptive memoryless backtracking line search using
ρ = 0.9. The light gray horizontal dashed line shows the precision used to compute performance for
each dataset.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

0 50000
1e1

10 7

10 4

10 1

f(
x
t)
−
f ∗

0 50000
1e2

0 50000
1e3

0 50000
1e4

Adagrad ρ= 0.5 ρ= 0.7 ρ= 0.9 ρ= 0.95 AD

(a) ADULT.

0 50000
1e1

10 10

10 3

103

f(
x
t)
−
f ∗

0 50000
1e2

0 50000
1e3

0 50000
1e4

Adagrad ρ= 0.5 ρ= 0.7 ρ= 0.9 ρ= 0.95 AD

(b) GISETTE_SCALE.

0 50000
1e1

10 10

10 4

101

f(
x
t)
−
f ∗

0 50000
1e2

0 50000
1e3

0 50000
1e4

Adagrad ρ= 0.5 ρ= 0.7 ρ= 0.9 ρ= 0.95 AD

(c) MNIST.

0 20000
1e1

10 10

10 5

10 1

f(
x
t)
−
f ∗

0 20000
1e2

0 20000
1e3

0 20000
1e4

Adagrad ρ= 0.5 ρ= 0.7 ρ= 0.9 ρ= 0.95 AD

(d) MUSHROOMS.

Figure 10: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for Adagrad, Adagrad with standard backtracking line
search using ρ ∈ {0.5, 0.7, 0.9, 0.95} and Adagrad with adaptive memoryless backtracking line
search using ρ = 0.9. The light gray horizontal dashed line shows the precision used to compute
performance for each dataset.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

0 20000
1e1

10 7

10 4

10 1

f(
x
t)
−
f ∗

0 20000
1e2

0 20000
1e3

0 20000
1e4

Adagrad ρ= 0.5 ρ= 0.7 ρ= 0.9 ρ= 0.95 AD

(a) PHISHING.

0 5000
1e1

10 10

10 3

103

f(
x
t)
−
f ∗

0 5000
1e2

0 5000
1e3

0 5000
1e4

Adagrad ρ= 0.5 ρ= 0.7 ρ= 0.9 ρ= 0.95 AD

(b) PROTEIN.

0 3000
1e1

10 10

10 5

100

f(
x
t)
−
f ∗

0 3000
1e2

0 3000
1e3

0 3000
1e4

Adagrad ρ= 0.5 ρ= 0.7 ρ= 0.9 ρ= 0.95 AD

(c) WEB-1.

Figure 11: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for Adagrad, Adagrad with standard backtracking line
search using ρ ∈ {0.5, 0.7, 0.9, 0.95} and Adagrad with adaptive memoryless backtracking line
search using ρ = 0.9. The light gray horizontal dashed line shows the precision used to compute
performance for each dataset.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

D.2 MEMORYLESS BACKTRACKING LINE SEARCH

0 500 1000
time [s]

10 3

10 2

10 1

100

101
f(
x
t)
−
f ∗

gisette_scale

0 1000 2000 3000
time [s]

10 1

100

101

102

103
MNIST

0 1000 2000 3000
time [s]

10 7

10 6

10 5

10 4

10 3
protein

reg (0.3, 1e2) reg (0.3, 1e4) ad (0.3, 1e4) 1/L

Figure 12: Step sizes for experiments shown in Fig. 1. Baseline: GD with constant αk = 1/L̄; reg
(ρ, β) and ad (ρ, β): GD with, respectively, regular and adaptive memoryless BLS parameterized by
ρ and α0 = β/L̄. The thick black dashed line denotes 1/L̄, where L̄ = λmax(A

⊤A)/4n.

0 200 400 600
time [s]

10 3

10 2

10 1

f(
x
t)
−
f ∗

gisette_scale

0 500 1000 1500
time [s]

10 1

100

101
MNIST

0 250 500 750 1000
time [s]

10 6

10 5

protein

reg (0.6, 1e1) reg (0.6, 1e2) ad (0.9, 1e2) 1/L

Figure 13: Step sizes for experiments shown in Fig. 2. Baseline: AGD with constant αk = 1/L̄; reg
(ρ, β) and ad (ρ, β): AGD with, respectively, regular and adaptive memoryless BLS parameterized by
ρ and α0 = β/L̄. The thick black dashed line denotes 1/L̄, where L̄ = λmax(A

⊤A)/4n.

0 50000
1e1

10 7

10 3

100

f(
x
t)
−
f ∗

0 50000
1e2

0 50000
1e3

0 50000
1e4

GD ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(a) ADULT.

Figure 14: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for GD, GD with standard memoryless backtracking line
search using ρ ∈ {0.2, 0.3, 0.5, 0.6} and GD with adaptive memoryless backtracking line search us-
ing ρ = 0.3. The light gray horizontal dashed line shows the precision used to compute performance
for each dataset.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

0 50000
1e1

10 10

10 5

100

f(
x
t)
−
f ∗

0 50000
1e2

0 50000
1e3

0 50000
1e4

GD ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(a) GISETTE_SCALE.

0 50000
1e1

10 7

10 3

101

f(
x
t)
−
f ∗

0 50000
1e2

0 50000
1e3

0 50000
1e4

GD ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(b) MNIST.

0 10000
1e1

10 10

10 4

101

f(
x
t)
−
f ∗

0 10000
1e2

0 10000
1e3

0 10000
1e4

GD ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(c) MUSHROOMS.

Figure 15: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for GD, GD with standard memoryless backtracking line
search using ρ ∈ {0.2, 0.3, 0.5, 0.6} and GD with adaptive memoryless backtracking line search us-
ing ρ = 0.3. The light gray horizontal dashed line shows the precision used to compute performance
for each dataset.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

0 20000
1e1

10 10

10 5

100

f(
x
t)
−
f ∗

0 20000
1e2

0 20000
1e3

0 20000
1e4

GD ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(a) PHISHING.

0 20000
1e1

10 10

10 4

101

f(
x
t)
−
f ∗

0 20000
1e2

0 20000
1e3

0 20000
1e4

GD ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(b) PROTEIN.

0 10000
1e1

10 10

10 5

100

f(
x
t)
−
f ∗

0 10000
1e2

0 10000
1e3

0 10000
1e4

GD ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(c) WEB-1.

Figure 16: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for GD, GD with standard memoryless backtracking line
search using ρ ∈ {0.2, 0.3, 0.5, 0.6} and GD with adaptive memoryless backtracking line search us-
ing ρ = 0.3. The light gray horizontal dashed line shows the precision used to compute performance
for each dataset.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

0 6000
1e1

10 10

10 5

100

f(
x
t)
−
f ∗

0 6000
1e2

0 6000
1e3

0 6000
1e4

AGD ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(a) ADULT.

0 30000
1e1

10 9

10 3

102

f(
x
t)
−
f ∗

0 30000
1e2

0 30000
1e3

0 30000
1e4

AGD ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(b) COVTYPE.

0 4632
1e1

10 10

10 5

100

f(
x
t)
−
f ∗

0 4632
1e2

0 4632
1e3

0 4632
1e4

AGD ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(c) GISETTE_SCALE.

0 8436
1e1

10 10

10 5

100

f(
x
t)
−
f ∗

0 8436
1e2

0 8436
1e3

0 8436
1e4

AGD ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(d) MNIST.

Figure 17: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for AGD, AGD with standard memoryless backtrack-
ing line search using ρ ∈ {0.2, 0.3, 0.5, 0.6} and AGD with adaptive memoryless backtracking line
search using ρ = 0.9. The light gray horizontal dashed line shows the precision used to compute
performance for all methods, 10−9.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

0 3000
1e1

10 10

10 4

101

f(
x
t)
−
f ∗

0 3000
1e2

0 3000
1e3

0 3000
1e4

AGD ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(a) MUSHROOMS.

0 3079
1e1

10 10

10 5

100

f(
x
t)
−
f ∗

0 3079
1e2

0 3079
1e3

0 3079
1e4

AGD ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(b) PHISHING.

0 12856
1e1

10 10

10 4

101

f(
x
t)
−
f ∗

0 12856
1e2

0 12856
1e3

0 12856
1e4

AGD ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(c) PROTEIN.

0 1617
1e1

10 10

10 5

100

f(
x
t)
−
f ∗

0 1617
1e2

0 1617
1e3

0 1617
1e4

AGD ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(d) WEB-1.

Figure 18: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for AGD, AGD with standard memoryless backtrack-
ing line search using ρ ∈ {0.2, 0.3, 0.5, 0.6} and AGD with adaptive memoryless backtracking line
search using ρ = 0.9. The light gray horizontal dashed line shows the precision used to compute
performance for all methods, 10−9.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

0 20000
1e1

10 7

10 4

10 1

f(
x
t)
−
f ∗

0 20000
1e2

0 20000
1e3

0 20000
1e4

Adagrad ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(a) ADULT.

0 50000
1e1

10 10

10 3

103

f(
x
t)
−
f ∗

0 50000
1e2

0 50000
1e3

0 50000
1e4

Adagrad ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(b) GISETTE_SCALE.

0 20000
1e1

10 10

10 4

101

f(
x
t)
−
f ∗

0 20000
1e2

0 20000
1e3

0 20000
1e4

Adagrad ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(c) MNIST.

0 20000
1e1

10 10

10 5

10 1

f(
x
t)
−
f ∗

0 20000
1e2

0 20000
1e3

0 20000
1e4

Adagrad ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(d) MUSHROOMS.

Figure 19: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for Adagrad, Adagrad with standard memoryless back-
tracking line search using ρ ∈ {0.2, 0.3, 0.5, 0.6} and Adagrad with adaptive memoryless backtrack-
ing line search using ρ = 0.3. The light gray horizontal dashed line shows the precision used to
compute performance for each dataset.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

0 20000
1e1

10 7

10 4

10 1

f(
x
t)
−
f ∗

0 20000
1e2

0 20000
1e3

0 20000
1e4

Adagrad ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(a) PHISHING.

0 5000
1e1

10 10

10 3

103

f(
x
t)
−
f ∗

0 5000
1e2

0 5000
1e3

0 5000
1e4

Adagrad ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(b) PROTEIN.

0 3000
1e1

10 10

10 5

100

f(
x
t)
−
f ∗

0 3000
1e2

0 3000
1e3

0 3000
1e4

Adagrad ρ= 0.2 ρ= 0.3 ρ= 0.5 ρ= 0.6 AD

(c) WEB-1.

Figure 20: Logistic regression on four different datasets and four initial step sizes α0 =
{101, 102, 103, 104}/L̄: suboptimality gap for Adagrad, Adagrad with standard memoryless back-
tracking line search using ρ ∈ {0.2, 0.3, 0.5, 0.6} and Adagrad with adaptive memoryless backtrack-
ing line search using ρ = 0.3. The light gray horizontal dashed line shows the precision used to
compute performance for each dataset.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

E LINEAR INVERSE PROBLEMS

Dataset details. We consider A observations from eight datasets: IRIS, DIGITS, WINE,
OLIVETTI_FACES and LFW_PAIRS from scikit-learn (Pedregosa et al., 2011), SPEAR3 and SPEAR10
(Lorenz et al., 2014) and SPARCO (van den Berg et al., 2007). For multi-class datasets, the first two
are considered. The number of datapoints and dimensions of each dataset can be found on Table 5,

Table 5: Details of FISTA experiments.

dataset datapoints dimensions λ L0

digits 360 64 10−1 1, 101, 102, 103

iris 100 4 10−2 10−1, 1, 101, 102

lfw_pairs 2200 5828 1 10−3, 10−2, 10−1, 1
olivetti_faces 20 4096 10−2 1, 101, 102, 103

Spear3 512 1024 10−1 10−3, 10−2, 10−1, 1
Spear10 512 1024 10−2 10−3, 10−2, 10−1, 1
Sparco3 1024 2048 10−2 10−3, 10−2, 10−1, 1
wine 130 13 10−2 1, 101, 102, 103

0 15000300004500060000
1

10 12

10 9

10 6

10 3

100

103

106

0 15000300004500060000
2

0 15000300004500060000
5

0 15000300004500060000
10

= 0.5 = 0.3 = 0.2 AD

(a) SYNTHETIC.

0 125000250000375000500000
1

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

101

0 125000250000375000500000
2

0 125000250000375000500000
5

0 125000250000375000500000
10

= 0.5 = 0.3 = 0.2 AD

(b) OLIVETTI_FACES.

Figure 21

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

0 1250 2500 3750 5000
1

10 14

10 11

10 8

10 5

10 2

101

0 1250 2500 3750 5000
2

0 1250 2500 3750 5000
5

0 1250 2500 3750 5000
10

= 0.5 = 0.3 = 0.2 AD

(a) IRIS.

0 125000250000375000500000
1

10 12

10 9

10 6

10 3

100

103

106

0 125000250000375000500000
2

0 125000250000375000500000
5

0 125000250000375000500000
10

= 0.5 = 0.3 = 0.2 AD

(b) WINE.

0 12500250003750050000
1

10 11

10 9

10 7

10 5

10 3

10 1

101

0 12500250003750050000
2

0 12500250003750050000
5

0 12500250003750050000
10

= 0.5 = 0.3 = 0.2 AD

(c) DIGITS.

Figure 22

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

F MATRIX FACTORIZATION EXPERIMENTS

We sample A from the file “u.data”, part of the MovieLens 100K dataset (grouplens.org/
datasets/movielens/100k/). Moreover, we choose the precision representing a reduction to
10−12 in the suboptimality gap, which corresponds to a lower bound of 10−5 as the initial objective
values typically hover around 107.

0 10000
5e-02

10 5

101

107
f(
x
t)
−
f ∗

0 10000
5e-01

0 10000
5e0

0 10000
5e1

GD 0.2 0.3 0.5 0.6 ADLS

(a) Rank 10.

0 30000
5e-02

10 5

101

107

f(
x
t)
−
f ∗

0 30000
5e-01

0 30000
5e0

0 30000
5e1

GD 0.2 0.3 0.5 0.6 ADLS

(b) Rank 20.

0 50000
5e-02

10 5

101

107

f(
x
t)
−
f ∗

0 50000
5e-01

0 50000
5e0

0 50000
5e1

GD 0.2 0.3 0.5 0.6 ADLS

(c) Rank 30.

Figure 23: Matrix factorization and three values of rank: suboptimality gap for gradient descent,
gradient descent with standard backtracking line search using ρ ∈ {0.2, 0.3, 0.5, 0.6} and gradient
descent with adaptive backtracking line search using ρ = 0.3. The light gray horizontal dashed line
shows the precision used to compute performance for all methods, 10−5.

46

grouplens.org/datasets/movielens/100k/
grouplens.org/datasets/movielens/100k/

	Introduction
	Adaptive backtracking
	Line search: criteria and search procedures
	Adaptive backtracking
	Related Work
	Case study: Armijo condition
	Case study: descent lemma

	Empirical performance
	Convex objective: logistic regression + Armijo
	Convex objective: linear inverse problems + descent Lemma
	Nonconvex objective: Rosenbrock + Armijo
	Nonconvex objective: matrix factorization + Armijo

	Motivation and theoretical results
	The scope of theoretical guarantees for a backtracking subroutine
	Theoretical results

	Future work: further applications, extensions and limitations
	Further applications and extensions
	Limitations

	Stochastic line search example
	Examples, theorems and proofs
	Examples
	Convex problems
	Nonconvex problems
	Armijo condition
	Descent Lemma

	Convergence results
	A general convergence result for adaptive backtracking
	Convergence results for gradient descent
	A convergence result for accelerated gradient descent

	Methods
	Logistic Regression Experiments
	Monotone Backtracking Line Search
	Memoryless Backtracking Line Search

	Linear inverse problems
	Matrix Factorization Experiments

