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Abstract

Despite the success of fine-tuning pretrained001
language encoders like BERT for downstream002
natural language understanding (NLU) tasks,003
it is still poorly understood how neural net-004
works change after fine-tuning. In this work,005
we use centered kernel alignment (CKA), a006
method for comparing learned representations,007
to measure the similarity of representations in008
task-tuned models across layers. In experi-009
ments across twelve NLU tasks, we discover010
a consistent block diagonal structure in the011
similarity of representations within fine-tuned012
RoBERTa and ALBERT models, with strong013
similarity within clusters of earlier and later014
layers, but not between them. The similarity015
of later layer representations implies that later016
layers only marginally contribute to task per-017
formance, and we verify in experiments that018
the top few layers of fine-tuned Transformers019
can be discarded without hurting performance,020
even with no further tuning.021

1 Introduction022

Fine-tuning pretrained language encoders such as023

BERT (Devlin et al., 2019) and its successors (Liu024

et al., 2019b; Lan et al., 2020; Clark et al., 2020;025

He et al., 2020) has proven to be highly success-026

ful, attaining state-of-the-art performance on many027

language tasks, but how do these models internally028

represent task-specific knowledge?029

In this work, we study how learned representa-030

tions change through fine-tuning by studying the031

similarity of representations between layers of un-032

tuned and task-tuned models. We use centered033

kernel alignment (CKA; Kornblith et al., 2019)034

to measure representation similarity and conduct035

extensive experiments across three pretrained en-036

coders and twelve language understanding tasks.037

We discover a consistent, block diagonal struc-038

ture (Figure 1c,d) in the similarity of learned rep-039

resentations for almost all task-tuned RoBERTa040
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Figure 1: CKA similarity scores of CLS (classifier to-
ken) representations of ORIG (untuned ALBERT) and
FT (fine-tuned) models on RTE, across different layers
of the model. FT[1]–FT[2] compares two RTE models
with different random restarts. ORIG–ORIG and FT–
FT are symmetric by construction. Fine-tuned models
exhibit a block-diagonal structure in the representation
similarities. The same color scale is used in all plots.

and ALBERT models, where early layer represen- 041

tations and later layer representations form two 042

distinct clusters, with high intra-cluster and low 043

inter-cluster similarity. 044

Given the strong representation similarity of later 045

model layers, we hypothesize that many of the 046

later layers only marginally contribute to task per- 047

formance. We show in experiments that the later 048

layers of task-tuned RoBERTa and ALBERT can 049

indeed be discarded with minimal impact to perfor- 050

mance, even without any further fine-tuning. 051

2 Experimental Setup 052

Models For the majority of our experiments, we 053

consider three commonly used language-encoding 054

models: RoBERTa (Liu et al., 2019b), ALBERT 055

(Lan et al., 2020) and ELECTRA (Clark et al., 056

2020). Because of the large number of exper- 057

iments being performed, we use RoBERTaBASE, 058

ALBERTLARGEV2 and ELECTRABASE rather than 059

the largest available versions of these models. 060
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Tasks We use the tasks included in the GLUE061

benchmark (Wang et al., 2018) excluding the data-062

poor WNLI, namely: CoLA (Warstadt et al., 2019),063

MNLI (Williams et al., 2018), MRPC (Dolan and064

Brockett, 2005), QNLI (Rajpurkar et al., 2016),065

QQP,1 RTE (Dagan et al., 2005), SST-2 (Socher066

et al., 2013), and STS-B (Cer et al., 2017). We in-067

clude four additional tasks to cover a more diverse068

set of task formats and difficulties: BoolQ (Clark069

et al., 2019) and Yelp Review Polarity (Zhang et al.,070

2015) classification tasks, and HellaSwag (Zellers071

et al., 2019) and CosmosQA (Huang et al., 2019)072

multiple-choice tasks.073

Optimization The representations learned over074

the course of training and similarity of representa-075

tions may be sensitive to the number of steps used076

in training. To control for this, and to avoid task-077

specific hyperparameter tuning, we fine-tune on078

each task for up to 10,000 steps. We use the Adam079

(Kingma and Ba, 2014) optimizer with batch size080

of 4, a learning rate of 1e-5, and 1,000 warmup081

optimization steps.082

We use the jiant (Phang et al., 2020) library,083

built on Transformers (Wolf et al., 2020) and Py-084

Torch (Paszke et al., 2019), to run our experiments.085

3 Representation Similarity with CKA086

To analyze how learned representations change087

via fine-tuning, we use centered kernel alignment088

(CKA; Kornblith et al., 2019) to measure represen-089

tation similarity. CKA is invariant to both orthog-090

onal transformation and isotropic scaling of the091

compared representations, making it ideal for mea-092

suring the similarity of neural network representa-093

tions, and has applied to BERT-type models in prior094

work (Wu et al., 2020; Sridhar and Sarah, 2020).095

Given two sets of representations X ∈ RN×d1 and096

Y ∈ RN×d1 where N is the number of examples097

and d1, d2 the hidden dimensions, CKA computes098

a similarity score between 0 and 1, where a higher099

score indicates greater similarity. Further details100

on CKA are provided in Appendix A.101

Using CKA, we can compare the similarity of102

representations between different layers of the103

same model or even different models. For our anal-104

ysis, we use the representations of the CLS token,105

i.e. the token whose final layer representation is106

1https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

fed to the task output head.2 We compute CKA 107

over the validation examples of each task. 108

To provide intuition for CKA scores, we first 109

show in Figure 1 an example of the comparison 110

formats using ALBERT fine-tuned on RTE. 111

ORIG–ORIG The top left plot shows the sim- 112

ilarity of representations across the layers of the 113

untuned ALBERT model on RTE inputs. Adjacent 114

layers have high similarity scores, only gradually 115

decreasing as more distant layers are compared. 116

FT–ORIG We show layers of the task-tuned 117

model on the Y-axis and untuned model on the 118

X-axis. The CLS representations of the later layers 119

in the task-tuned model appear highly dissimilar 120

to any of the untuned model: In other words, the 121

representations differ starkly from those used for 122

ALBERT’s masked language modeling (MLM) and 123

sentence order prediction (SOP) pretraining. This 124

coheres with prior work showing that representa- 125

tions of later layers are most likely to change during 126

fine-tuning (Kovaleva et al., 2019; Wu et al., 2020). 127

FT–FT Next, we compare layers within a sin- 128

gle fine-tuned model. We observe a block-diagonal 129

structure in the representation similarities—two dis- 130

tinct clusters of earlier (approx. first 10) and later 131

(approx. last 14) layers that have high inter-cluster 132

but low intra-cluster similarity. When considered 133

together with FT-ORIG, we can infer that the ear- 134

lier layer representations resemble those used for 135

pretraining, whereas the later layers encode a rep- 136

resentation suitable for tackling the task. The high 137

internal similarity between the top few layers and 138

the sharp block diagonal structure of the similarity 139

matrix imply that the representations starkly differ. 140

FT[1]–FT[2] Finally, we compare fine-tuned 141

ALBERT models across two random restarts. We 142

observe a similar block diagonal structure. In par- 143

ticular, the similarity of the CLS representations in 144

the later layers indicates that CKA is able recover 145

the similarity of representations for tackling the 146

same task across random restarts. 147

3.1 Results 148

We extend our CKA analysis to all twelve tasks 149

and all three pretrained models, showing the FT-FT 150

results in Figure 2. We observe that the block diag- 151

onal structure of representation similarity identified 152

2RoBERTa uses a <s> token instead, but for brevity and
consistency, we will refer to it as CLS as well.
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Figure 2: Representation similarity between layers for task-tuned models (FT–FT). RoBERTa and ALBERT task
models exhibit a ‘block diagonal‘ structure in the representation similarity of CLS tokens across nearly all tasks.

in Section 3 appears in almost every RoBERTa and153

ALBERT model, sharply delineating the earlier and154

later clusters of representations. In fact, RoBERTa155

often has even more distinct clusters than ALBERT.156

We hypothesize that since ALBERT shares param-157

eters across layers, it is more difficult for repre-158

sentations to sharply change across a single layer,159

whereas RoBERTa, which has no parameter shar-160

ing, has no such constraint.161

The significant similarity of the later layers sug-162

gests that many of the later layers may not con-163

tribute much to the task. Given residual con-164

nections between Transformer layers, later layers165

could learn a ‘no-op’ or only slightly adjust the166

output representation if the task can be adequately167

‘solved’ at an earlier layer. If this is true, we should168

be able to feed an intermediate representation from169

later layers to the output head with no further fine-170

tuning and retain most of the task performance. We171

investigate this hypothesis in Section 4.172

In contrast, we do not see the same pattern in173

the ELECTRA models. The representations of the174

later layers are generally highly dissimilar even up175

to the penultimate layer in many tasks. A few tasks176

do exhibit a minor block diagonal structure, such177

as STS-B, Yelp Polarity and SST-2, but it is far less178

apparent compared to the other two models. ELEC-179

TRA has a very different pretraining task from the180

other two models (replaced token detection), which181

may explain this difference.182

We see complementary results for FT–ORIG183

and FT[1]–FT[2] in Figure 4 and Figure 5. For184

RoBERTa and ALBERT, while the earlier layers of185

the task models have similar CLS representations186

to the untuned models, the later layers are largely187

dissimilar to any layer in the base model.188

4 Truncating Fine-tuned Models 189

To test our hypothesis that the later layers of tuned 190

task-models only marginally contribute to task per- 191

formance, we propose a simple experiment where 192

we feed the representations from an intermediate 193

layer directly to the task output head, effectively 194

discarding the later layers. We refer to these as 195

truncated models. We test three different config- 196

urations: (a) UNTUNED , where we feed interme- 197

diate representations from a fine-tuned model to 198

the tuned task output head without any further fine- 199

tuning, (b) TUNED , where we fine-tune only the 200

output head, and (c) TUNEDORIG , where we use 201

representations from the base model (not fine-tuned 202

on the task), but we fine-tune the output head. Per- 203

formance of the UNTUNED trunated models indi- 204

cates the extent to which an intermediate represen- 205

tation can be directly substituted for the final layer’s 206

representation; the TUNED and TUNEDORIG mod- 207

els provide an upper-bound of performance using 208

the CLS representation of a given layer of a fine- 209

tuned and non-fine-tuned encoder respectively. 210

Our results are shown in Figure 3. For RoBERTa 211

and ALBERT, we find that the UNTUNED truncated 212

models perform comparably to the Tuned truncated 213

and full fine-tuned models3 at the later layers. For 214

instance, the top 4 layers of the RoBERTa for Yelp 215

Polarity model can be discarded with no further 216

tuning and minimal impact to performance (95.5 217

vs 96.1). On the other hand, TUNEDORIG mod- 218

els perform very poorly compared to the TUNED 219

models across all layers, showing that task-tuned in- 220

termediate representations are crucial for good per- 221

3An UNTUNED model using the final layer representation
is equivalent to a regular fine-tuned model.
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Figure 3: Model Truncation Experiments: Task performance (Y-axis) when feeding representation from an in-
termediate layer (X-axis) directly to the task output head, equivalent to discarding the top layers of the model.
UNTUNED (green), uses a task-tuned encoder, but no further fine-tuning of the task-tuned output head. TUNED
(blue), involves further fine-tuning the output head on the intermediate representation. TUNEDORIG (yellow) uses
the pretrained encoder, but the output head is fine-tuned. For RoBERTa and ALBERT, the top few layers bcan e
discarded for many tasks in either TUNED or UNTUNED configurations without hurting performance. The majority
class baseline is shown with a red dotted line.

formance, even when fine-tuning the output head.222

For ALBERT, which shares parameters between223

layers, a larger fraction of layers can be discarded224

with minimal impact to performance for both UN-225

TUNED and TUNED truncated models.226

On the other hand, we do not find a similar pat-227

tern in ELECTRA models. The UNTUNED trun-228

cated models perform extremely poorly when dis-229

carding almost any number of layers, and even230

the TUNED truncated models quickly drop in per-231

formance with even one or two layers discarded.232

These results are consistent with our CKA analyses233

that showed that the learned and task-tuned repre-234

sentations for ELECTRA do not share the same235

structure as those of RoBERTa and ALBERT. We236

speculate that this differences stems from the dif-237

ferent pretraining objectives—replaced token de-238

tection is a binary prediction problem, whereas239

masked language modeling involves predicting a240

distribution over a large number of tokens—leading241

to differences in learned representations that prop-242

agate even to fine-tuned models. We leave further243

investigation these differences to future work.244

5 Related Work245

While CKA (Kornblith et al., 2019) was initially246

proposed as an interpretability method for com-247

puter vision models, it has more recently seen ap-248

plication to NLP models. Wu et al. (2020) ap-249

plied CKA to pretrained Transformers models such250

as BERT and GPT-2, focusing on cross-model251

comparison—our analysis builds on their findings,252

with greater focus on layer-wise comparisons and 253

implications for fine-tuning. Sridhar and Sarah 254

(2020) use CKA to measure the impact of a pro- 255

posed model architecture change on the learned 256

representations. Voita et al. (2019) and Merchant 257

et al. (2020) apply similar representation similarity 258

analyses to Transformers, with the latter also inves- 259

tigating freezing and dropping layers from models. 260

More broadly, significant work has been done on 261

better understanding and interpreting the capabil- 262

ities of BERT-type models—Rogers et al. (2020) 263

offers a thorough survey of this line of work. Of 264

particular relevance to our work: Work on model 265

probing (Tenney et al., 2019b; Liu et al., 2019a; 266

Tenney et al., 2019a) has studied the extent to syn- 267

tactic and semantic features are represented at dif- 268

ferent layers of BERT-type models. 269

6 Conclusion 270

We show a consistent pattern to the structure of 271

representation similarity in task-tuned RoBERTa 272

and ALBERT models, with strong representation 273

similarity within clusters of earlier and later lay- 274

ers, but not between them. We further show that 275

the later layers of task-tuned RoBERTa and AL- 276

BERT models can often be discarded without hurt- 277

ing task performance, verifying that the later layers 278

of these models truly have similar representations. 279

However, we find that ELECTRA models exhibit 280

starkly different properties from the other two mod- 281

els, which prompts further investigation into how 282

and why these models differ. 283
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A Centered Kernel Alignment488

Given two sets of representations X ∈ RN×d and489

Y ∈ RN×d where N is the number of examples490

and d the hidden dimension (for instance the CLS491

vector representations of a set of examples from492

two different layers of the same model), CKA com-493

putes a similarity score between 0 and 1. :494

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)

with495

HSIC(K,L) =
1

(n− 1)2
tr(KHLH)

and H = In − 1
b11

T K = XXT , L = Y Y T496

when using a linear kernel. We refer the reader to497

the original work (Kornblith et al., 2019) for more498

details and properties of CKA.499

B Additional Results500

Figure 4 shows the FT–ORIG plots for all tasks501

and models.502

Figure 5 shows the FT[1]–FT[2] plots for all503

tasks and models.504

Figure 6 computes representation similarity be-505

tween models.506
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Figure 4: CKA representation similarity for FT–ORIG. Task-tuned layers are on the Y-axis, untuned layers in the
X-axis. CLS representations of the top few layers RoBERTa and ALBERT models are highly dissimilar to those
of the pretrained model at any layer.
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Figure 5: CKA representation similarity for FT[1]–FT[2]. RoBERTa and ALBERT task models exhibit a ‘block
diagonal‘ structure to representation similarity of CLS tokens, indicating in particular that the representations of
the top few layers are highly similar. Plots for tasks that do not use the CLS token are dimmed.
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Figure 6: CKA representation similarity comparing CLS representations cross models. The upper right blocks
indicate the representations in the earlier and the later layers are similar even across models.
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