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ABSTRACT

Scientists and statisticians often seek to understand the complex relationships that connect two time-varying variables. Recent
work on sparse functional historical linear models confirms that they are promising as a tool for obtaining complex and inter-
pretable inferences, but several notable limitations exist. Most importantly, previous works have imposed sparsity on the historical
coefficient function, but have not allowed the sparsity, hence lag, to vary with time. We simplify the framework of sparse functional
historical linear models by using a rectangular coefficient structure along with Whittaker smoothing, then reduce the assumptions
of the previous frameworks by estimating the dynamic time lag from a hierarchical coefficient structure. We motivate our study
by aiming to extract the physical rainfall -runoff processes hidden within hydrological data. We show the promise and accuracy
of our method using eight simulation studies, further justified by two real sets of hydrological data.

1 | Introduction

In many complex systems, a causal variable is filtered into some
response of interest via complicated and unknown nonstationary
processes. Exactly how the causal impact spreads and changes
across time is of great interest to scientists and policy-makers in
various disciplines. If a method for learning this filtering func-
tion in a data-driven manner existed, one would be able to extract
useful knowledge about the mechanisms that generate variability
from various time series data sources.

More specifically, this research is motivated by the desire to learn
the data generating processes behind streamflow time series.
Observational units in hydrology called catchments, filter precip-
itation into streamflow (Figure 1). This process may sound sim-
ple; however, slightly different geologic, climatic, or topographic
features may produce vastly different filtering functions. Under-
standing the filtering function for a given catchment is vital for
various reasons. For example, knowing that a catchment filters
most rainfall slowly through subsurface and deep flow pathways
would indicate that the stream is vulnerable to long-term soil and
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FIGURE1 | A flow path diagram depicting how precipitation (red
downward arrows) gets partitioned into evapotranspiration (ET), over-
landflow (OF), shallow subsurface flow (SF), or deep groundwater flow
(GF), with arrow width depicting illustrative relative effect size.

deep rock contamination from human activities such as mining
(Kunz 2020). Furthermore, inferring the geological or climato-
logical factors that cause process variation can enable better pre-
dictions in regions where streamflow is not measured. Indeed,
accurately estimating the functions that filter precipitation into
streamflow can help hydrologists understand the physical pro-
cesses behind complex temporal hydrological data.

As indicated by Botter et al. (2010), for a given catchment, water
input and streamflow can be causally related via a historical filter-
ing function. This filtering function evolves through time due to
changes in antecedent water input, evapotranspiration, tempera-
ture, and landscape variables (Mindham et al. 2023). Evaporation
or transpiration can alter the effect sizes of the filtering func-
tion, since a catchment with high evaporation only has a small
portion of water available for filtering into streamflow. On the
other hand, the depth to which water flows or gets stored in/on
the ground dictates the length of time between a precipitation
event and a rise in streamflow (Jasechko et al. 2016; Somers and
McKenzie 2020). Overland flow (OF) is the fastest and shallowest
path that precipitation can follow, precipitation filtered into shal-
low subsurface flow (SF) travels down into the soil and towards
the stream at a slower pace, and deep groundwater flow (GF) trav-
elsdeeply into the ground and is the slowest responding flow path
(Figure 1).

Streamflow and rainfall time series at the Koksilah River (British
Columbia) and the Withlacoochee River (Florida), illuminate
the fact that the relationship between rainfall and streamflow
is indeed complex and highly nonstationary (Figure 2). At the
Koksilah River, very little winter rainfall is evaporated (days
1-50 and days 320-365), rather it quickly filters through the
catchment as streamflow. Conversely, in summer and early fall
(days 100-310), any rainfall that may occur does not result in
notable streamflow intensification. At the Withlacoochee River,
streamflow falls less rapidly during periods of little-to-no rainfall
compared with the Koksilah River (e.g., days 1-50). Evapora-
tion is likely to be high in this catchment; therefore, streamflow
may only increase in the event of a large rainfall event as seen
on day 50.

The statistical model that most closely follows the causal filter-
ing relation that we described in the preceding paragraphs comes
from Xun et al. (2022), who considered the historical functional
linear model,

(s, 1)x,(s) ds + €,() (1)

t
y[(t) = /
max(0,t—6)

Here, y,(¢) is the outcome of interest at time ¢ of replicate series
i, x;(s) is a temporal explanatory variable at the past time s for
the same replicate, and ¢,(¢) is the residual term. The bivariate
coefficient function f(s,t) represents the effect of the explana-
tory variable at past time s on the outcome at the current time ¢,
where max(0,7 — §) < s < t. To estimate f(s, t), Xun et al. (2022)
minimized an objective function containing three terms: (1) a
least-squares loss, (2) a nested group bridge penalty term which
reveals the constant lag &, after which A(s,7) is zero, and (3)
a smoothness penalty term. This builds upon many previous
methods including Malfait and Ramsay (2003) who originally
developed the functional historical linear model, and Harezlak
et al. (2007) who imposed a discrete difference penalty on the
coefficients similar to the P-spline framework (Eilers et al. 2015).
While both Malfait and Ramsay (2003) and Harezlak et al. (2007)
primarily focused on predictive capability, Xun et al. (2022) were
more interested in accurate parameter estimation. Parameter esti-
mation will also be the focus of this article.

The method introduced by Xun et al. (2022) is compelling,
although it has several notable downsides. First, it is overly com-
plex. Its original formulation is nonconvex, necessitating itera-
tive lasso-equivalent optimization steps until convergence. The
tent-like basis functions which parameterize f(s,t) add compu-
tational cost such that the number of basis functions is usu-
ally restricted (about 230 basis functions were used in previous
works). Second, the triangular finite element framework artifi-
cially imposes a constraint on the maximum time lag (i.e., the
domain of integration cannot be negative in Equation (1)). For
example, if one were to predict streamflow on day one for the
Withlacoochee River in Figure 2, only one value of rainfall (Omm)
could be used, leading to an inaccurate prediction of 1998s peak
streamflow. In our application, however, except for the very first
year, the model for streamflow on a day at the beginning of a
year has rainfall data available from the last days of the previ-
ous year (see Section 2). Third, the previous frameworks do not
allow for a time dependent time-lag parameter 6(¢). Although
it is common to assume an arbitrary fixed window of time for
which precipitation can affect streamflow, this is a severe limi-
tation of previous works (Janssen et al. 2021), so finding the true
underlying §(¢) is of interest to the hydrological community (Ten-
nant et al. 2020; Chiu and Bittler 1969). Other similar methods,
with similar issues, can be found in the distributed lag litera-
ture (Almon 1965; Pesando 1972; Rushworth et al. 2013; Asencio
et al. 2014; Gupta 1968; Liao et al. 2023).

This article has three major contributions. First, to the best of our
knowledge, this is the first attempt to estimate a time-dependent
time-lag parameter in historical functional linear models. Sec-
ond, we simplify and increase the flexibility of previous histor-
ical functional linear model methods by replacing the tent-like
basis functions with the tensor product Whittaker basis such
that higher resolution coefficient and time-lag functions can
be recovered. Finally, we successfully demonstrate that our
method can lead to novel research directions within hydrology by
accurately estimating the ground-truth filtering function f(s, 1)
and time-dependent time-lag parameter 5(z).
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FIGURE 2 | Left: The daily streamflow (blue) and rainfall (black) for the Koksilah River (top) and the Withlacoochee River (bottom) for the year
1998. Right: The average daily streamflow (blue) and rainfall (black) for the Koksilah River (top) and the Withlacoochee River (bottom) for 1979-2018.

2 | Historical Functional Linear Model With
Dynamic Sparsity (HFLM-DS)

Let y,(r) be the response at time r € [1,7] for replicate i €
1,...,n, and let x;(f) be the corresponding covariate. In our
application, y,(?) is streamflow for time 7 within year i, and x,(r)
is rainfall. We begin by considering the exact causal streamflow
relation, where V is the set of all (un)known and (un)measured
antecedent variables which alter the way in which rainfall is fil-
tered into streamflow. We then separate the true filtering function
h(s, V) into an identifiable component that is stable across years
due to consistent seasonal variations of antecedent conditions
(B(s, 1)) and an unidentifiable component that changes from year
to year (A/(s, V)):

y;(t) = / h(s,V)x;(t —s) ds
0

= /°° [ﬂ(S, 1)+ h'(s,V)]x,.(t —s)ds
0

= /wﬁ(s,t)x,-(t—s) ds+/wh'(s,V)x,-(t—s) ds
0 0

=/ B(s,D)x;(t — 5) ds + ¢,(1)
0

After separating terms, letting the unidentifiable part become the
autocorrelated error term ¢,(¢), and letting D — 1 be the maximum
possible lag, our functional historical linear model is given by

D-1

() = P(s,)x;(t —s5) ds + €;(1) 2)

0
and the discretized version (e.g., assuming daily measurements)
is visualized in Figure 3. One detail that distinguishes our
application from most applications in functional data analysis is
that in functional data, the replicates usually relate to indepen-
dent units observed over a common time domain (e.g., experi-
mental subjects). While, in a sense, each year can be treated as a
replicate, in reality, we have one data series for each of x and y

Exact filtering function model

Expand h into subcomponents

Distribute and separate terms

Unparamaterized term as error
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over many years. Daily observations on x and y at the end of one
year are followed by data on the first day of the next year. Due to
this, in Equation (2), contrary to previous works, r — s can be < 1
(i.e., outside the original range of ¢ € [1, T']. When this occurs, we
draw from the end of the previous replicate i — 1. An example of
this is illustrated in the final two lagged causes in Figure 3, where
¥;(2) is being predicted by the first two observations of replicate i
(x;(1) and x,(2)) as well as the last two observations of the previ-
ous replicate (x,_;(2) and x,_;(3)).

As with Xun et al. (2022), we assume without loss of generality
that the response and covariate have had their seasonal signals
removed such that they have mean zero for each day of the year.
Not only does the usage of rainfall and streamflow anomalies
remove the need for a functional intercept term but also removes
any potential periodic confounding effects present in both signals
(Moges et al. 2022).

Let ¢,(s,1), ..., ¢pk(s,1) denote a sequence of K known basis
functions. Given these basis functions and their corresponding

basis coefficientsb = [by, ..., by ]7, the coefficient function (s, 1)
can be denoted as

K
Bs.0) = buy(s.1).
k=1
Using this basis expansion, we may reformulate Equation (2) as

Dp-1 K
yi(1) = / Zbkd)k(s, Nx,(t — 5) ds + ¢,(t)
0 k=1

K
=)>0b

D-1
G (s, 0)x;(t — 5) ds + €,(t)

K
= Zbkzik(t) + €,
k=1
where
D-1
Zy (1) = D (s, 0)x;(t — 5) ds.

0

As stated in the introduction, one of our foremost goals is to infer
the dynamic time lag 6(¢) after which the cause has no discernible

The relationships between the response y and the cause x is shown for D = 4 and T = 3. Causal connections are shown for replicate i

effect on the response, that is,

6(t) = max{s} subject to f(s, 1) # 0. 3)
The accuracy in determining 6(¢) is directly related to the resolu-
tion of the basis functions that parameterize f(s, r), but increas-
ing the number of bases can be computationally prohibitive if
we continue the use of the tent-like basis functions utilized in
previous works (Xun et al. 2022). Under these circumstances,
using the Whittaker basis (or equivalently zero-degree P-splines)
is an appropriate solution as it is a fast exact interpolator with
few notable shortcomings (Eilers 2003; Whittaker 1922). In this
work, we parameterize the coefficient function f(s,t) with the
finest resolution possible (one basis function per (lag, day of the
year) pair) using tensor products of Whittaker basis functions
¢ (s, 1) = w,,(s) @ w,(t). If we have T observations in our time
domain [1,T],thenm e {0, ..., D—-1},2 € {1, ..., T},and k €
{1, ..., K},where, foraspecified k,m =k —1— ([k/D] — 1) x D
and ¢ = [k/D]. We note that m denotes where we are in lag space,
¢ denotes where we are in time space, and [x] denotes the ceil-
ing of x (x rounded up to nearest integer). Here w,,(s) and w, (1)
denote the Whittaker basis functions, which are equivalent to
zero-degree B-spline basis functions with a knot spacing of one

(Eilers 2003):
(s) !
w,(s) =
’ 0

Since the Whittaker basis either has a value of 1 or 0, the functions
take on the same values as their discretized/observed versions.
Due to this, in a slight abuse of notation, we continue to use func-
tional notation (i.e., f(s, ) or y;(t)) even when we are discussing
the computational/discrete values of these functions.

p<s<p+1

otherwise.

Suppose the maximum reasonable lagged influence between x;(7)
and y,;(7) for all 7 occurs at lag s = D — 1, then we must estimate
K = DT parameters {b, : k =1, ..., K}.In general, the amount
of available data is dense with few missing values but limited
in temporal extent (i.e., we can have T observations in [1,7]),
thus we expect that nT = N <« K, leaving us with an underde-
termined system. For example, in our real data study shown in
Section 3.1,n <40, T = 365, and D = 150. This implies that N <
40 - 365 = 14600 < K = 150 - 365 = 54750. This problem cannot
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be overcome without some assumptions about the structure of
the coefficient function f(s, #), or equivalently the coefficients b,
and we therefore stipulate three major assumptions. First, for
the same lag, the coefficients at consecutive time points should
have similar coefficient values (e.g., f(s, ) ~ f(s,t + 1)). Second,
for the same time point, coefficients at consecutive lags should
have similar values (e.g., f(s,?) ~ f(s + 1,1)). Finally, we expect
P(s, 1) to be fairly sparse. Before fitting a model, the extent of the
sparsity is unknown, although we expect the sparsity will be in
regions with larger lags (i.e., for each day there will exist a lag 6(r)
after which the predictor stops contributing to the response). As
with the coefficients themselves, we expect that §(¢) will smoothly
vary with day of the year. We limit the number of assumptions
so that our methods are flexible and widely applicable (Clark
et al. 2011), although we could have further assumed that the
coefficient function should be non-negative for our application
since additional precipitation cannot reduce streamflow. Instead
of adding this constraint, we keep our model flexible to allow an
additional evaluation of the scientific validity of our method.

With these three assumptions in mind, we now impose regu-
larization and sparsity constraints on the coefficients of f(s, 1).
With the first assumption, we regularize the squared differences
of the coefficient function at consecutive points in time. This
can be done with the horizontal first difference penalty matrix
(D), which was first applied to functional historical linear mod-
els in Harezlak et al. (2007) and further used by Xun et al. (2022).
We further add periodic boundary conditions to D, in a simi-
lar fashion as Garcia (2010), such that g(s, T) ~ f(s, 1). Likewise,
given the second assumption, we penalize the squared differences
between coefficients with the same time but with consecutive lag
values by introducing the vertical first difference penalty matrix
(D,,). We additionally consider a zero top boundary condition on
the vertical penalties since lags past D — 1 are assumed to have
zero influence. The structure of the coefficients and the penalties
are visualized in Figure 4. As an illustrative example, if we take
D=2,T =3,and K = 6, then Dy, D, and f(s, ) are given by:

-10 1 0 0 0 -11 0000
0 -1 0 1 0 0 0 0-110 0
DH_00—1010 DV:0000—11
0 0 0 -10 1 010000
1 00 0-10 000100
01 0 0 0 -1 000001
£0.1)
A1)
ps,1) = po.2
p(1,2)
p(0,3)
p(1L,3)

In statistics, sparsity is usually induced via the lasso penalty
(Tibshirani 1996), however, it does not have the oracle and
sign consistency properties, meaning it cannot distinguish
which coefficients should be exactly zero according to the
data-generating process. This was shown experimentally in the

VAN

T

Increasing Lag
ve.e.

Increasing Time

FIGURE 4 | The general structure of the discretized f(s, t) is shown
for D =2 and T' = 3, where s is lag and ¢ is time. The bidirectional lines
between nodes indicate that the nodes should have similar values. The
unidirectional lines indicate that there is periodic behavior with a period
of T + 1 (i.e., f(0,3) and (0, 1) are connected). The bottom row of nodes
represents the coefficients relating the current time’s cause to the current
time’s response while the next rows represent the coefficients for consec-
utive past lags. The top row shows the zero boundary conditions.

original lasso article (Tibshirani 1996), and it was shown theoret-
ically in Meinshausen and Yu (2009), Zhao and Yu (2006), Fan
and Li (2001), and Leng et al. (2006). The oracle and consistency
properties of bridge penalties are better than lasso, although they
still fail when the number of parameters exceeds the number
of observations and when there is extensive multicollinearity
(Huang et al. 2008). Both of these troublesome properties are
expected in problems surrounding our intended application. As
an alternative, Zhao and Yu (2006) suggests using the LO penalty,
although this poses a new problem of nonconvexity and NP-hard
computational complexity (Huo and Ni 2007). The LO-norm has
the oracle property and is selection consistent, meaning it will
select the correct features which are non-zero in the ground-truth
model with a probability converging to 1 under weaker condi-
tions compared with the lasso (Zhang and Zhang 2012; Staerk
et al. 2018). Generally, the LO-norm problem is O(2%), but due
to the strongly hierarchical nature of our model in which we
assume we know the ordering of how the coefficients should
be dropped to zero, optimizing the sparsity problem in our case
changes to O(K). Thus, for our application it is computationally
tractable and theoretically preferable for variable selection.

Most previous works that have developed historical functional
linear models have imposed sparsity in their model (Harezlak
et al. 2007; Malfait and Ramsay 2003; Xun et al. 2022), how-
ever, they all assume that the lag after which the explanatory
feature has no effect on the response is static in time. This
assumption is indeed too strong for many applications, especially
in Earth science. Instead, we impose sparsity with a more flex-
ible approach via nested group 2-norm thresholding such that
a dynamic time lag 6(r) can be reliably estimated. The nested
group framework allows us to place each coefficient in a series

5of 14

85U8017 SUOLIIOD BATE8.D 8|qed ! (dde aupy Aq peusenob a1e S9piLe YO ‘SN JO S3|nJ o} A%eIg1T8UlUO AB|1/ UO (SUONIPUOD-PpUR-SLUBYL0D A8 | 1M Afe1q 1 Ul |Uo//SdNL) SUORIPUCD Pue SWe 1 8y} 89S *[6202/80/2z] U0 Areiqi auliuo AS|IM eLIsnyeURIL00D AQ 8TO0L AUS/ZO0T OT/I0p/L0d A8 | Afeiq1jeuljuo//Sdny Wouy papeojumod ‘v ‘SZ0Z ‘XS60660T



of groups according to a hierarchical structure (Zhao et al. 2009).
Let Ay, Ay, ..., Ap 1, be a series of groups defined for each
time point# € {1, ..., T}. The group A, contains the indices of
the coefficients corresponding to f(s,?), ..., (D — 1,1). Notice
that the groups are nested such that A, ;, CAp ,, C ... C
Ay, meaning a specific group contains all coefficients with lags
greater or equal to its 5. Since A;, C A, forr e {1,...,s}, we
know that ||b, |15 <[lb, |15 In contrast to this, if we look at
two different times¢ # ¢, then A, N A, = §J. These properties of
our groups and their norms allow us to ensure that (1) coefficients
at later lags must be removed and set to zero before coefficients
at earlier lags when they represent the same time and (2) groups
of coefficients at different times are formed independently such
that the sparsity can remain dynamic and 6(¢) can be estimated
accurately. We further note that coefficients only act locally, so
if by = 0 (corresponding to $(0, 2), then the surrounding coeffi-
cients may not be zero (i.e., #(0,1) # 0 and (0, 3) # 0) unless the
time is the same and the lag is greater (4(1, 2) = 0). These groups
will be further discussed when our method and algorithm are
detailed in Section 2.2.

21 | Autocorrelated Errors

As we illustrated in the derivation at the beginning of this
section, our model is somewhat misspecified due to replacing
unmeasured dynamic components with the day of the year ¢
(Granger and Newbold 1974). While 7 serves as a good proxy
for these dynamic antecedent conditions, it is imperfect due to
climatic variations across various years (Wu et al. 2024). This
imperfection, as well as inherent day-to-day autocorrelation in
streamflow and possible systematic measurement errors (Horner
etal. 2018; Sorooshian and Dracup 1980; Schoups and Vrugt 2010;
Kim et al. 2023), can lead to strongly autocorrelated errors (Sun
et al. 2021; Thursby 1987). For example, suppose that for a given
catchment, May is a dry month across most years, but for a par-
ticular year, it is extremely wet. Our model will likely choose
B(s, 1) to be fairly small in May to fit the data across most years,
however, for the particularly wet May, our model will systemat-
ically underpredict streamflow (i.e., autocorrelated errors) since
streamflow has persistent magnitudes and our B(s, 1) is too low
for May in that particular year. If we ignore this property of the
errors, we violate the assumptions of linear regression (indepen-
dent errors). Naturally, one could consider previous lags of the
response to improve predictive capabilities and reduce autocorre-
lation, as is done in the classical time series framework ARIMAX
(Box et al. 2015), however, prioritizing forecasting accuracy leads
to several issues. First, previous streamflow does not cause future
streamflow, thus incorporating it into the model leads us fur-
ther from the true data-generating processes thereby instigating
incorrect causal effect estimates (Dafoe 2018; Barnett et al. 2017;
Runge 2021; Achen 2000). Furthermore, while data for precipita-
tion is globally available and accurate, other data such as stream-
flow or evaporation is usually inaccurate or unavailable. Since
hydrologists often require a model that is easily transferable to
all ungauged or data-limited regions (Janssen and Ameli 2021),
explicit use of previous streamflow values must be excluded from
the model.

The most common way to account for autocorrelated errors while
not explicitly using lagged response values in the model, has

been the Cochrane-Orcutt or Prais-Winsten correction method
(Cochrane and Orcutt 1949; Prais and Winsten 1954). Unfor-
tunately, both Cochrane-Orcutt and Prais-Winsten corrections
failed to outperform our method without autocorrelation correc-
tion for parameter estimation in our initial simulation studies.
It is unclear exactly why these methods failed, but we have sev-
eral suspicions. First, we noticed that artificially reducing the
smoothness penalty term found from our validation set led to
better results, but there was no consistent reduction we could
apply to produce optimal results. Second, we noticed that if we
only consider a few lags (i.e., D < 5), the corrective methods
far outperformed default regression, however if D > 100, default
regression far outperformed the corrective methods. Reviewing
the causes of these and other issues could be an interesting direc-
tion for future work (Dagenais 1994; Sims 1972; McGuirk and
Spanos 2009; Mizon 1995; Dafoe 2018; Thursby 1987).

Instead, we found that using an autoregressive distributed lag
model followed by deconvolution achieved better results in the
presence of autocorrelated errors. This method is comprehen-
sively explained in Kirchner (2022) but also appears in many ear-
lier works (Baltagi and Baltagi 2011; Pagano and Hartley 1981;
Tsay 1985; Young 2002; Wilkins 2018). As a simple illustration,
consider the equations

Vi=0 Y, +box, +bx, 1 +byx,_5 +¢ 4)

and
Ve = ﬂO,txt + ﬁl,rxr—l +uy, (5)

where the ¢, is a white noise process from N(0,0?) and u(t) =
ayu,_; + ¢, is an AR(1) process. The two models are equivalent:
we can subtract from (5) its lagged self-multiplied by a; to obtain

Ve =0y + Box + By — ayBo,_1)Xiq — g By X5 + €

We can therefore readily estimate the parameters of (4) for the
simpler case of independent errors, then use deconvolution to
obtain the g coefficients of interest in (5) from the modified b coef-
ficients (see Kirchner (2022) for further details). The above sim-
ple example is easily applied to our more complex methodology
and implemented in the algorithm below. Fortunately, this also
reduces the computational cost compared with the Prais-Winsten
procedure due to only requiring a single model fit, with a diag-
nostic test of no autocorrelation, followed by a simple decon-
volution, instead of two model fits. Note that all autocorrelated
error correction approaches implicitly assume the common fac-
tor restriction implying that the response does not cause the
lagged explanatory variables (McGuirk and Spanos 2009; Cook
and Webb 2021), a safe assumption for our application.

To summarize, our problem setting incurs autocorrelated errors
(which violates one of the core assumptions of linear regression)
due to slight model misspecification and the inherent properties
of our problem setting. The more traditional methods for auto-
correlation correction from Cochrane-Orcutt and Prais-Winsten
work poorly in our setting for reasons that should be explored in
future work. In the end, we use the deconvolution method sug-
gested by Kirchner (2022), as it removes the autocorrelation, how-
ever, from our extensive testing, it does not significantly improve
parameter estimation capabilities.
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2.2 | Algorithm

Let the discretized response Y be defined as a column vector
of length N — (D —1). We then define the sparse matrix Z €
RN-(D-DXK wwhich has D non-zero entries in each row corre-
sponding to the valid entries of f(s, ) given the current time of
y;(t) and the Whittaker basis. Using the Whittaker basis saves sig-
nificant computational effort when computing the design matrix
Z. Instead of needing to evaluate N K integrals, no integration is
needed as each entry of Z is either 0 or equal to the data point
itself. Quantitatively, given similar amounts of data/parameters
(about 10000 data points and about 50000 parameters), in MAT-
LAB using the code and triangular basis functions of Xun
et al. (2022), computing Z takes about 10 min while in R with
‘Whittaker basis functions, it takes less than half a second. This is
the case even while R is known to be slower compared with MAT-
LAB according to the latest benchmarks done by the Julia team
(Bezanson et al. 2017). Here, b is the vector of b, Vk €1, ..., K.
For example, suppose n =2, D =2, T = 3,and K = 6, then

b
o) L7 52) 2142 22 S b‘
e) 2 BT 2 BT 2 2 5(3) 2163) N
Y=[n)|  Z=[20(1) 205(1) 2sbB Dt st Lk’ b= N
o) 2 T L2 5 5(2) 234(D) 2o Bae b“
JE) 2 BT 2B BT 2 25 (3) 226(3) N
6

Our method first estimates a smooth coefficient function via:

mbinllY —Zb||; + w, || Dydll5 + w,|| Dy bl (6)

and the group 2-norms are computed using this initial coefficient
function estimation (see the end of Section 2). Then, to optimize
for our time-varying maximum lag parameter 6(¢), a sequence of
models are fit using coefficients with corresponding group norms
greater than a sequence of ¢ values in

minl|Y - ZbII} + w, [ Dbl + w0, Dy b st.b, =0 when [iby I3 <g.

Once the optimal ¢ is chosen (selected via a user’s choice of meth-
ods), to account for autocorrelated errors, previous response val-
ues are added as covariates and modified coefficients are com-
puted. Finally, the coefficients are deconvolved back into their
intended form. A detailed description of our algorithm is pro-
vided in Algorithm 1.

3 | Hydrology Data Application

We apply our methodology to data from two diverse catchments
to show its versatility for hydrology. For the real data experiments,
the relationship between actual rainfall and streamflow is mod-
eled. The simulation study also uses real rainfall data, to mimic
actual patterns in the time series, but streamflow is simulated
according to known coefficient functions with known lag struc-
tures, so we can assess estimation performance.

The first catchment we explore is the Koksilah River which is
located in Cowichan, British Columbia, Canada. The area of this

ALGORITHM1 |

Require: One response time series Y = [y;,1,y5] and one
explanatory time series X = [x,,1, x5, splitinto training and
validation sets (and test set if needed).

1: Optimize b on the training set given a set of hyperparame-
ter pairs (wy,, w, ), and find the optimal hyperparameters such
that some objective function (i.e., R?) is maximized on a val-
idation set.

2: Find optimal b using the optimal weights w,, and w, and the
least squares criterion in Equation (6).

3: Compute the group norms ||bA“ ||§ for all (s, 1).

4: Find optimal sparsity threshold g to obtain 6(¢).

5: Given ¢ and using Step 1, reoptimize the smoothing weights,
wy, and w,,, and refit the model by computing b using all data
and y,_;1y,_. as additional covariates.

6: Deconvolve the optimized coefficients to obtain f(s, 7).

7: return f(s,t) and 6(t)

catchment is 236 km?* with an average elevation of 461 meters.
About 11% of precipitation falls as snow and it is an extremely
wet catchment with an aridity index (fraction of potential evap-
otranspiration over precipitation) of just 0.37. The second catch-
ment we explore is the Withlachoochee River which is located
in Dade City, Florida, United States. The area of the catchment
is 650 km?, and it is low lying with an average elevation of only
42 meters above sea level. It does not experience any snow and it
is a fairly dry catchment with an aridity index of 1.07. To obtain
rainfall for both these areas, we use EMDNA (Tang et al. 2021),
a high-quality climate dataset that has complete daily precipita-
tion and temperature values for 1979-2018 at 10 km grid squares
across North America. From this data, daily rainfall values are
generated for the Koksilah and Withlacoochee rivers by averag-
ing precipitation and temperature values across the catchments,
then using a temperature threshold of 0°C, we compute daily
rainfall (Figure 2). Leap days are removed, leaving us with 365 x
40 = 14, 600 observations. We decided that the maximum rea-
sonable lag should be D =150 days. Indeed, regardless of the
catchment location, all precipitation in rain-dominated catch-
ments should drain, become captured by deep groundwater sys-
tems, or be evaporated from the catchment within 150 days (5
months) (Jasechko et al. 2016; Tennant et al. 2020), leaving a
total of 365 x 150 = 54,750 parameters to be estimated to con-
struct f(s,?) (Equation (6)). The choice of maximum lag also
alters the total number of available observations since to predict
the response we require the previous 150 days of explanatory data.
Therefore, the final number of observations is 14,451.

Hyperparameters w,, and w, are optimized with Bayesian opti-
mization using the GPfit R package (MacDonald et al. 2015).
We start by evaluating 30 uniformly random initial hyperparam-
eter sets on the validation set and fitting a Gaussian process to
said points. The following three steps are then repeated 35 times
to further optimize hyperparamters: (1) we choose the next point
based on the Gaussian process model by maximizing the expected
increase in validation set R?, (2) we evaluate the new point, and
(3) we refit the Gaussian process model with all points that have
thus far been evaluated. After experimenting on several catch-
ments, we noticed that the optimal w), is often much larger than
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the optimal w,,, thus we set our search range as ¢! for w), and
el=>1l for w,.

Choosing the optimal threshold ¢ is often the most difficult step
in Algorithm 1. We do not specifically define how this should be
done in the methods section as we leave it up to the user and
their goals, although we will give some guidance in the context
of our hydrological application. Minimizing errors on the valida-
tion set seemed to give high test set R? scores, however, the final
coefficient function indicated too little sparsity. The phenomena
was also found in Rushworth et al. (2013) who observed optimiz-
ing the AIC leads to too little smoothness, pushing the authors to
use the AIC-optimal smoothness parameter as a lower bound and
artificially increasing this value. In all experiments below, we find
the “knee-point” as outlined in Satopaa et al. (2011) to choose ¢
since it gave consistently strong results (see Supplement).

We let ¢ = 2 for all experiments, meaning in step 5 of Algorithm 1,
we add the previous two values of the response as addi-
tional covariates in an AR(2) distributed lag model. This is a
conservative decision since we will also be able to accurately
model AR(1) errors (Schmidt 1971). All experiments were run in
R version 4.2.1.

3.1 | Applications to Real Streamflow

Daily streamflow data from the Koksilah River and the With-
lachoochee River were gathered from the Environment Canada
HYDAT database and from CAMELS (Addor et al. 2017), respec-
tively. The average daily streamflow for both rivers is visualized
in Figure 2. To improve predictive performance and remove pat-
terns and non-Gaussianity from the residual plots, we transform
streamflow yvia y,,,, = log(y + 1). The estimates of our hyperpa-
rameters w, and w, are obtained after splitting the data with 80%
of the data for training and 20% of the data for validation. The
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Lag (Days)
3
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10 - L | Foo10
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final estimates of f(s, t), 6(t), and the whole dataset R? are then
obtained by training on all available data. To quantify the overall
confidence, certainty, and predictive performance of our model,
we evaluate our model on a test set. To compute test set R? val-
ues, we split the data with 60% for training, 20% for optimizing
the hyperparameters w), and w,,, and 20% for testing.

The estimates f(s, t) for the Koksilah River after training on the
entire dataset are shown in Figure 5a. In the final model, the
autocorrelated errors were modeled via an AR(2) process with
fitted coefficients (0.704, 0.122), showing substantial autocorre-
lation. In winter, rainfall frequency and magnitude peaks after
a rapid ramp up from September to October to November (days
260-320) (Figure 2), therefore, by December (day 335), the soil
in the catchment is fully saturated and groundwater is fully con-
nected. When this happens, any additional rain either imme-
diately transmits to flood waters heading towards the stream
or the additional rainfall quickly pushes the water already in
the soil towards the stream. Furthermore, this behavior can be
seen in Figure 2, where December, January, and February (days
330-70) streamflow correlates strongly with rain falling the pre-
vious day. Therefore, observing a §(¢) of around 3 days from days
350-60 empirically confirms and supports existing expert knowl-
edge. Two distinct peaks of maximum lag appear in summer and
fall in Figure 5a. The peak in summer at around day 190, with
a 6(r) of about 18 days, displays long term recession behavior
in the catchment. Starting in March, this catchment appears to
enter a drying phase where evapotranspiration and runoff exceed
water input (Figure 2). During the drying phase (see Supple-
ment), rainfall further back in the past begins to make a relatively
larger impact on current streamflow, since the relative amount of
antecedent dryness is a significant driver for streamflow produc-
tion. During August (around day 230), the soil is completely dry
and temperatures are high, therefore most rainfall contributes to
soil wetness and evaporation instead of streamflow. Starting in
mid-September (day 260), the Koksilah River catchment enters

0.007
60 1 0.006
50 7 0.005
’(.IJ\ 40 -
2 0.004
a
(o))
30 Lol
ki 0.003
20 L 0.002
10 L 0.001
[ . . L1 0.000
100 200 300
Day of the year

(b)

FIGURE5 | The estimated function j(s, r) for each lag s and time ¢ for the Koksilah River located in British Columbia (left) and Withlachoochee
River, located in Florida (right) from the whole data period (1979-2018). (a) Koksilah River and (b) Withlachoochee River.
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a rapid wetting phase as rainfall quickly becomes more frequent
(see Supplement). Rainfall occurring up to around 40 days in the
past begins to have a significant impact on streamflow, since dur-
ing this time if the previous days were dry any additional pre-
cipitation will contribute to soil wetness, but if previous days
were wet, additional precipitation will contribute to streamflow.
The wetting phase ends in December (about day 350) when the
soil becomes fully saturated regardless of the between-year varia-
tions of precipitation in the wettest month, November. On the test
set, R? = 0.82 (in the transformed space), indicating that we can
have a high level of confidence in estimates of (s, ) and 6(¢) in
Figure 5a. Clearly, the Koksilah River shows substantial nonsta-
tionarity in both the magnitude of the impulse response (A(s, 1))
and the maximum lag (6(7)), thus our methodological contribu-
tions allow hydrologists to draw unprecedented and important
inferences about this catchment.

For the second catchment, the Withlachoochee River in Florida,
the R? was 0.55 on the test dataset (in the transformed space),
indicating that we can have a moderate level of confidence in the
coefficients plotted in Figure 5b. In the final model, the auto-
correlated errors were modeled via an AR(2) process with fit-
ted coefficients (1.389, —0.408), showing extreme autocorrela-
tion. Although the Withlachoochee River results presented in
Figure 5b look very different compared with the results from the
Koksilah River (Figure 5a), they can be interpreted in a similar
fashion. We first note that this catchment may not experience
overland flow where rainfall bypasses the storage and strongly
affects streamflow in a short period of time. This is reasonable
since this is a dry catchment with an aridity index of greater than
one, meaning that the potential for evaporation is greater than
total precipitation. Starting in April (days 100-175), the catch-
ment enters a dry phase. By this time of the year, the catchment
has experienced about 6 months of relatively dry weather and
temperatures have begun to rise, therefore in May, most rainfall
evaporates or contributes to soil moisture instead of travelling
as streamflow. During this dry period, both f(s,7) and 6(¢) are
near zero indicating very little streamflow response. By mid to
late June (about day 180), a consistent amount of rainfall usu-
ally falls, outpacing evaporation (Figure 2), thus the catchment
soils become wet enough to produce streamflow. During this wet-
ting period, streamflow responds slowly to water input (5(¢)) rises
to over 60 days), with strong and persistent recession behavior
(fairly constant f(s,) across lags). As the catchment becomes
more saturated, in the fall and early winter (day 275-365), we
begin to see the largest magnitudes of f(s,t) and the response
times 6(f) decrease from 60 to 30 days, indicating a wet phase.
From the beginning of the calendar year until day 100, rainfall
falls below evaporation and streamflow, leading to decreasing
impulse response magnitudes (decreasing f(s, t)) and larger lags
becoming significant again (6(¢) rises to almost 50) (see Supple-
ment Figure S1 for further comparisons).

Both real-world studies lead to interesting and meaningful results
with good R? scores on the test set. In both cases, wetting,
wet, drying, and dry periods could be delineated. Furthermore,
even although the positivity of the coefficient function was not
imposed as a constraint for our models, in both cases, the model
correctly identified that there is a strong positive relationship
between rainfall and streamflow at all times and all lags. Thisis a
further indication that our method is reliable and can correctly

identify dominant processes. We also note that the estimated
6(t) for each catchment varies smoothly with day of the year as
expected. The test set R? results for both catchments are sim-
ilar to those seen from neural networks which are more com-
plex and less interpretable (Hoedt et al. 2021; Anderson and
Radi¢ 2022; Kratzert et al. 2018). Importantly, both catchments
show the importance of considering a time-varying maximum lag
6(t), which was our primary methodological contribution. With-
out inferring the changes in these lags over the year, learning how
to divide the year into wet, drying, dry, and wetting periods for
each catchment would have been substantially more difficult.

3.2 | Benchmark Against Previous
Hydrological Inference Methods

In recent years, hydrologists and statisticians have developed sev-
eral methods that are specifically made for understanding the
temporal dynamics of rainfall-runoff relationships (Schrunner
et al. 2025; Kirchner 2022). Each method parameterizes their
models differently, therefore the correctness of their inferences
about the ground-truth filtering function is difficult to com-
pare; however, we can compare their ability to fit and predict
streamflow.

In this subsection, we benchmark our model (HFLM-DS) against
the most recent hydrological inference methods by comparing
their predictive performances on the test sets of our two catch-
ments. To the best of our knowledge, there are currently two
primary methods that aim to infer the filtering function between
rainfall and streamflow. The first method, developed by Kirch-
ner (2022), extends the popular unit hydrograph model by allow-
ing users to develop a series of unit hydrograph models that
change with precipitation intensity and antecedent conditions
(Kirchner 2024). This method is similar to the method devel-
oped in this article; however, instead of using day of the year
to automatically group data, the user must prespecify how to
break the full time series into groups based on antecedent con-
ditions and rainfall intensity. In particular, to implement ensem-
ble rainfall-runoff analysis (ERRA) models, we follow the mod-
eling advice of Gao et al. (2025) by using the previous 5 days
of precipitation as an indication of antecedent wetness while
using 4 thresholds of precipitation intensity. The second method
(Schrunner et al. 2025), called Gaussian sliding window regres-
sion (GSWR), uses a series of Gaussian kernels to infer the timing
and magnitudes of the different flow paths as shown in Figure 1
(i.e., overland flow, shallow subsurface flow, and groundwater
flow). We follow the implementation details described in Schrun-
ner et al. (2025) during our experiment.

From the results summarized in Table 1, it is clear that HFLM-DS
(average R? = 0.74) represents an important improvement over
ERRA (average R? = 0.64) since it is more interpretable (due
to its ability to infer the dynamics of the largest important lag)
while having significantly better predictive performance. Fur-
thermore, HFLM-DS (average R? = 0.74) vastly improves over
GSWR (average R* = 0.55) in terms of the ability of each model
to represent the complexities in streamflow data. This difference
in predictive capability is likely due to the ability of HFLM-DS to
change its filtering function with time (day of the year), whereas
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TABLE1 | Summary of the test set R? values (on raw observed
streamflow) across three different methods (columns) and two different
catchments (rows). The best result in each row is bolded.

HFLM-DS
Location GSWR ERRA (ours)
Koksilah river 0.70 0.78 0.81
Withlacoochee river 0.39 0.50 0.67

GSWR assumes that the rainfall-runoff relationship is stationary
in time.

4 | Simulation Studies

The aim of our simulation study is to quantify and understand our
ability to estimate f(s, t) and 6(¢) in various noisy environments.

41 | Evaluation Criteria

Xun et al. (2022) compared methods by computing the root mean
squared error of §, the percent bias of §, and the mean integrated
squared error of (s, t). The percent bias of 6 does not fully capture
the accuracy of § estimates when § varies over time, and the other
metrics, such as the root integrated squared error, are less inter-
pretable compared with R?, thus we introduce three evaluation
criteria for our simulation studies. The first criterion, R2(8, §),
aims to evaluate the accuracy in estimating the true coefficient
function in an interpretable fashion:

R(p.H=1- [ [ 1BGs, 0 - ﬁ(i’ NY? ds dt o
[ [ {BGs.0) = B)? ds di

The second criterion, §(¢)-bias, is the average of 5(r) across time
minus the average of §(¢r) across time. Our third criterion,
8(t)-correlation evaluates how well we can estimate the
inter-period variability in §(¢) across time. This metric is simply
calculated as the correlation between the ground-truth 6(7)
and the estimated §(s). While biases could cancel over time,
and strong correlation does not imply that 5(r) has the correct
scale, together these evaluation metrics account for each other’s
shortcomings while independently providing information about
the accuracy in which we are estimating the scale and temporal
dynamics of (7). Ideally, -R? and &(¢)-correlation are close to
one, while 6(¢)-bias is close to zero.

4.2 | Simulation Scenarios

In this section, we run eight simulation studies that aim to quan-
tify our method’s ability to estimate f(s, t) and 6(¢) in noisy envi-
ronments. We use the same real rainfall data used in the previous
section to form the covariate matrix Z, then we define eight sce-
narios with different values for f(s, 1), 6(¢), noise levels, and noise
autocorrelation coefficients, such that known ground-truth val-
ues for the response y,(7) can be simulated. Streamflow is notori-
ously difficult to predict. Depending on the location of the catch-
ment and its dynamics, even when using powerful black-box

methods such as long short-term memory (LSTM) neural net-
works (Hochreiter and Schmidhuber 1997), combined with more
predictor variables, the test set R? can range all the way from
zero to one (Ayzel and Heistermann 2021; Hoedt et al. 2021;
Kratzert et al. 2018). In future scenarios for which our method
may be applied, we hypothesize that inferences from models with
R? < 0.4 will be difficult. Furthermore, from previous works we
know that interpretable models with R? > 0.8 will be rare in
hydrology. Thus, we simulate the response vector with additional
noise such that if we calculate the true response y,,.(f) from
the ground-truth f(s, 1) we would produce R*(y, y,,,.) = 0.8 or
R3(Y, Yo yue) = 0.4, where

f {y(l) - Ytrue(t)}2 dt

[y =yy2ar ®

Rz(yv ytrue) =1-

¥(t)is the simulated data after adding noise to y. .. (¢), and yis the
average of y(t) over . Furthermore, we specify two possible lev-
els of autocorrelation for our simulated noise. From our results in
the previous section, we know that the noise can be highly auto-
correlated, thus we specify medium AR(0.6,0.1) and high AR(1.5,
—0.52) autocorrelation scenarios.

The eight scenarios emulate the patterns obtained in the real
hydrology study in Section 3.1. The estimated f(s, ) values from
Figure 5a and 5b for the two catchments, along with their respec-
tive rainfall values, allow us to simulate two sets of noiseless
ground-truth response time series. With two noise levels and two
autocorrelation levels for the additive error, there are a total of
eight simulation scenarios. For each scenario, we repeat data gen-
eration 100 times such that stable results and uncertainty levels
can be obtained. Each simulation iteration takes less than 10 min
on an Intel i9-9980HK 2.4 GHz processor with 32 GB of RAM, so
our methods are computationally feasible for any modern hard-
ware setup.

4.3 | Simulation Results

Table 2 shows that the introduced method is quite promising and
robust. We consistently observe that regardless of location, the
data with less noise allowed for more accurate and stable infer-
ences of f(s, t) and 6(f). We also consistently observed that higher
autocorrelation leads to poorer 6(f)-corr results. The average
results displayed in Table 2 as well as the individual simulation
runs consistently resulted in negative §(¢)-biases, revealing sys-
tematic errors. This indicates that on average 6(¢) > 5(r), meaning
that the estimated coefficient function is often too sparse and the
chosen ¢ should decrease, suggesting that our method for choos-
ing the threshold g is not optimal. Although our chosen sparsity
levels are too large due to wrongfully removing some small but
non-zero coefficients, we note that the biases seen in Table 2 are
relatively small compared with the magnitudes of §(f) shown in
Figure 5a and 5b, thus we believe our results are satisfactory (see
Figure S3 for a visualization).

For the Koksilah River, R2(f, /) was consistently above 0.9 for
the high noise scenarios and above 0.96 for the low noise sce-
narios. The high noise scenarios also gave consistently worse
estimates of §(¢), with higher autocorrelation also having an
impact.
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TABLE2 | Summary of the simulation study results.

Location R2(y, ¥ 10e) AR(2) coefs R2(B, B) 5(t)-bias 8(t)-corr

Koksilah river 0.4 0.6,0.1 0.926 (0.016) —2.699 (1.806) 0.772 (0.126)
Koksilah river 0.8 0.6,0.1 0.971 (0.005) —1.773 (0.769) 0.925 (0.043)
Koksilah river 0.4 1.5, —0.52 0.904 (0.030) —4.133 (2.60) 0.534 (0.280)
Koksilah river 0.8 1.5, —0.52 0.961 (0.009) —2.42 (0.944) 0.850 (0.145)
Withlacoochee river 0.4 0.6,0.1 0.927 (0.014) —2.773 (1.684) 0.943 (0.039)
Withlacoochee river 0.8 0.6,0.1 0.968 (0.005) —2.391 (0.571) 0.992 (0.003)
Withlacoochee river 0.4 1.5, —0.52 0.888 (0.037) —4.912 (4.155) 0.848 (0.097)
Withlacoochee river 0.8 1.5, —0.52 0.934 (0.015) —3.736 (1.045) 0.982 (0.009)

Note: The average (standard deviation) across the 100 replications is shown for each of the evaluation criteria defined in Section 4.1.

For the Withlachoochee River, the estimates for f(s, 7) are consis-
tently accurate with R? ranging from 0.888 to 0.927 in the high
noise scenario and from 0.934 to 0.968 in the low noise scenario.
For both noise scenarios, the bias was about —4 days for the high
correlation scenarios days while it was about —2.5 days for the
low correlation scenarios. Considering 6(¢) can range from 2 to
over 60 (Figure 5b), these bias results are quite promising. Fur-
thermore, our method could recover 6(7) with a correlation above
0.98 in both low noise scenarios. The 6(¢) correlation was slightly
lower for the high noise low autocorrelation scenario (0.943)
and much lower for the high noise high autocorrelation scenario
(0.848).

5 | Discussion and Conclusions

In this work, we build off the iterations of the functional historical
linear model introduced by Malfait and Ramsay (2003), Harezlak
et al. (2007), Rushworth et al. (2013), and Xun et al. (2022). We
greatly simplify their formulations while allowing for dynamic
sparsity and high resolution estimates of the coefficient func-
tion using the Whittaker basis. In Section 2, we illustrate our
algorithm with several diagrams and introduce the three minor
assumptions we make to reduce the highly overparameterized
problem to one that is tractable. We only assume horizontal
smoothness, vertical smoothness, and that sparsity is concen-
trated at larger lags to keep our methods flexible and applicable
to various applications outside of our main hydrologically cen-
tered goal. Throughout the work, we are strongly driven by the
goal of accurately estimating rainfall - runoff relationships. After
gathering rainfall and streamflow data from Vancouver Island
and Florida, we estimated the coefficient functions that filter
rainfall into streamflow at both locations and compared our con-
clusions with expert knowledge. We found that the functions
have an interesting hydrological interpretation where catchments
go through four distinct phases: (1) wetting, (2) wet, (3) drying,
and (4) dry. Because the Koksilah River (Vancouver Island) has
high seasonal variability in temperature and rainfall, the four
phases can be distinctly parsed. On the other hand, we found that
the Withlachoochee River (Florida) is an extremely dry catch-
ment, therefore it never enters the wet phase, but all other phases
can be inferred. Indeed, none of these inferences could have
been made without the methodological improvements pertain-
ing to the dynamic sparsity. Finally, in an extensive simulation
study, we found that our simple methodology can successfully

recover the ground-truth coefficient function f(s, t) as well as the
dynamic time lag §(¢) with high accuracy. Although the accuracy
for which we can recover the coefficient function and time-lag
clearly depends on the level of noise and autocorrelation, we
found that even when the R? is less than or equal to 0.4 and the
errors are extremely autocorrelated, accurate conclusions can be
made from our inferences.

Several shortcomings of our methods and experiments can be
identified. First, although our algorithm can potentially include
multiple features, these additional features may not follow
our sparsity and smoothness assumptions. For example, if we
included snowfall as a predictor of streamflow in a snow-rich
catchment, we may expect snowfall to take days or weeks or
even months to melt and begin to contribute to streamflow. This
would contradict our sparsity assumption since very low and
very high lags would be expected to have zero coefficients. Sec-
ond, we assume throughout the work that the behavior of the
catchment does not change across different years. Although our
method does not capture year-to-year relationship variability, it
can be used to extract multiple coefficient functions before and
after some known change. For example, one could estimate the
rainfall -runoff relationship before and after a large change in
land use or before and after a period of severe climate change.
Focusing now on the limitations of our experiments, we note
that our experiments are only limited to a specific application
in hydrology, although we hypothesize that our methods can
work well in other domains. Furthermore, our simulation study
is limited since we provided ground-truths that we know can be
reached from the algorithm. This limitation points back to the
second methodological limitation since our method may only
be able to recover certain types of smoothly varying coefficient
functions.

In future work, one could solve one or more of the above short-
comings. Perhaps the flexibility of our methods could also be
improved by adding adaptive smoothness in a similar fashion
as the adaptive lasso, since different days or lags could have
different smoothness (Zou 2006; Centofanti et al. 2022; Yang
and Hong 2017; Martinez and Carroll 2010; Ballout et al. 2023).
Adding time-varying AR terms to the autoregressive distributed
lag model or accounting for heterscedasticity may also improve
the extraction of filtering functions (Kim et al. 2023; Rao 2004).
Furthermore, although for our purposes we adequately quantify
our certainty about the estimated coefficients through a test set

11 of 14

85U8017 SUOLIIOD BATE8.D 8|qed ! (dde aupy Aq peusenob a1e S9piLe YO ‘SN JO S3|nJ o} A%eIg1T8UlUO AB|1/ UO (SUONIPUOD-PpUR-SLUBYL0D A8 | 1M Afe1q 1 Ul |Uo//SdNL) SUORIPUCD Pue SWe 1 8y} 89S *[6202/80/2z] U0 Areiqi auliuo AS|IM eLIsnyeURIL00D AQ 8TO0L AUS/ZO0T OT/I0p/L0d A8 | Afeiq1jeuljuo//Sdny Wouy papeojumod ‘v ‘SZ0Z ‘XS60660T



evaluation, this could be extended by creating confidence inter-
vals (Chatterjee and Lahiri 2011; Lahiri 1999; Paparoditis and
Politis 2003). Specifically, we suggest using the block residual
bootstrap as described in Asencio et al. (2014) or Paparoditis and
Politis (2003). Extending our method to be appropriate for spatial
analysis could also be interesting. With smooth spatial attribu-
tion, one could understand how impactful a specific grid cell of
a cause is on the response. Furthermore, with sparsity, one could
delineate the spatial area that is impactful on the response. Our
current work takes the perspective of penalized least squares and
sparsity thresholding, but another interesting perspective lead-
ing to different methods could come from a causal inference
and conditional independence framework (Laumann et al. 2023).
Better methods for choosing our hyperparameters could also be
explored (Bach 2008; Hall et al. 2009; Chatterjee and Lahiri 2011).

We hope our method can serve as a reliable tool for learning from
time series data across multiple areas of science or serve as an
inspiration for further methodological development. This area of
research is certainly rich with potential scientific discoveries.

Acknowledgments

The supplementary document contains some additional simulation
results. The computing codes for replicating the application studies can be
downloaded at https://github.com/HydroML/HFLM-DS. This research
was funded by the Collaborative Research Team Project of Canadian Sta-
tistical Sciences Institute (CANSSI) awarded to Ali A. Ameli, William
J. Welch, and Jiguo Cao. Joseph Janssen was supported by Natural Sci-
ences and Engineering Research Council of Canada (NSERC) PhD Schol-
arship. Asad Haris was supported by postdoctoral funding from UBC’s
Data Science Institute. Jiguo Cao’s and William J. Welch’s research was
partially supported by NSERC Discovery grants (RGPIN-2018-06008 and
RGPIN-2019-05019, respectively). Stefan Schrunner gratefully acknowl-
edges financial support from the Norwegian University of Life Sciences
(project number 1211130114) for an international stay at the University
of British Columbia, Canada.

Data Availability Statement

The data that support the findings of this study are available in
HFLM-DS at https://github.com/HydroML/HFLM-DS. These data were
derived from the following resources available in the public domain: -
CAMELS, https://ral.ucar.edu/solutions/products/camels - HYDAT,
https://www.canada.ca/en/environment-climate-change/services/
water-overview/quantity/monitoring/survey/data- products-services/
national-archive-hydat.html - EMDNA, https://essd.copernicus.org/
articles/13/3337/2021/.

References

Achen, C. H. 2000. “Why Lagged Dependent Variables Can Suppress the
Explanatory Power of Other Independent Variables.” In Annual Meeting
of the Political Methodology Section of the American Political Science Asso-
ciation, vol. 20, 7-2000. UCLA.

Addor, N., A. J. Newman, N. Mizukami, and M. P. Clark. 2017.
“The Camels Data Set: Catchment Attributes and Meteorology for
Large-Sample Studies.” Hydrology and Earth System Sciences 21, no. 10:
5293-5313.

Almon, S. 1965. “The Distributed Lag Between Capital Appropriations
and Expenditures.” Econometrica: Journal of the Econometric Society 33:
178-196.

Anderson, S., and V. Radi¢. 2022. “Evaluation and Interpretation
of Convolutional Long Short-Term Memory Networks for Regional

Hydrological Modelling.” Hydrology and Earth System Sciences 26, no. 3:
795-825.

Asencio, M., G. Hooker, and H. O. Gao. 2014. “Functional convolution
models.” Statistical Modelling 14, no. 4: 315-335.

Ayzel, G., and M. Heistermann. 2021. “The Effect of Calibration Data
Length on the Performance of a Conceptual Hydrological Model Versus
Lstm and Gru: A Case Study for Six Basins From the Camels Dataset.”
Computers & Geosciences 149: 104708.

Bach, F. R. 2008. “Bolasso: Model Consistent Lasso Estimation Through
the Bootstrap.” In Proceedings of the 25th International Conference on
Machine Learning, 33-40. ACM Digital Library.

Ballout, N., L. Etievant, and V. Viallon. 2023. “On the Use of
Cross-Validation for the Calibration of the Adaptive Lasso.” Biometrical
Journal 65, no. 5: 2200047.

Baltagi, B. H., and B. H. Baltagi. 2011. “Distributed Lags and Dynamic
Models.” in Econometrics, 4th ed., 131-147. Springer.

Barnett, A. G., D. Stephen, C. Huang, and M. Wolkewitz. 2017. “Time
Series Models of Environmental Exposures: Good Predictions or Good
Understanding.” Environmental Research 154: 222-225.

Bezanson, J., A. Edelman, S. Karpinski, and V. B. Shah. 2017. “Julia: A
Fresh Approach to Numerical Computing.” SIAM Review 59, no. 1: 65-98.

Botter, G., E. Bertuzzo, and A. Rinaldo. 2010. “Transport in the Hydro-
logic Response: Travel Time Distributions, Soil Moisture Dynamics, and
the Old Water Paradox.” Water Resources Research 46, no. 3: 1-18.

Box, G. E., G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. 2015. Time Series
Analysis: Forecasting and Control. John Wiley & Sons.

Centofanti, F., A. Lepore, A. Menafoglio, B. Palumbo, and
S. Vantini. 2022. “Adaptive Smoothing Spline Estimator for the
Function-on-Function Linear Regression Model.” Computational
Statistics 38: 1-26.

Chatterjee, A., and S. N. Lahiri. 2011. “Bootstrapping Lasso Estima-
tors.” Journal of the American Statistical Association 106, no. 494:
608-625.

Chiu, C.-L., and R. P. Bittler. 1969. “Linear Time-Varying Model of
Rainfall-Runoff Relation.” Water Resources Research 5, no. 2: 426-437.

Clark, M. P, D. Kavetski, and F. Fenicia. 2011. “Pursuing the Method
of Multiple Working Hypotheses for Hydrological Modeling.” Water
Resources Research 47, no. 9: 1-16.

Cochrane, D., and G. H. Orcutt. 1949. “Application of Least Squares
Regression to Relationships Containing Auto-Correlated Error Terms.”
Journal of the American Statistical Association 44, no. 245: 32-61.
https://doi.org/10.1080/01621459.1949.10483290.

Cook, S.J.,and C. Webb. 2021. “Lagged Outcomes, Lagged Predictors, and
Lagged Errors: A Clarification on Common Factors.” Political Analysis 29,
no. 4: 561-569.

Dafoe, A. 2018. “Nonparametric Identification of Causal Effects Under
Temporal Dependence.” Sociological Methods & Research 47, no. 2:
136-168.

Dagenais, M. G. 1994. “Parameter Estimation in Regression Models With
Errors in the Variables and Autocorrelated Disturbances.” Journal of
Econometrics 64, no. 1-2: 145-163.

Eilers, P. H. 2003. “A Perfect Smoother.” Analytical Chemistry 75, no. 14:
3631-3636. https://doi.org/10.1021/ac034173t.

Eilers, P. H., B. D. Marx, and M. Durban. 2015. “Twenty Years of
p-Splines.” SORT: Statistics and Operations Research Transactions 39, no.
2:149-186.

Fan, J., and R. Li. 2001. “Variable Selection via Nonconcave Penalized
Likelihood and Its Oracle Properties.” Journal of the American Statistical
Association 96, no. 456: 1348-1360.

12 of 14

Environmetrics, 2025

85U8017 SUOLIIOD BATE8.D 8|qed ! (dde aupy Aq peusenob a1e S9piLe YO ‘SN JO S3|nJ o} A%eIg1T8UlUO AB|1/ UO (SUONIPUOD-PpUR-SLUBYL0D A8 | 1M Afe1q 1 Ul |Uo//SdNL) SUORIPUCD Pue SWe 1 8y} 89S *[6202/80/2z] U0 Areiqi auliuo AS|IM eLIsnyeURIL00D AQ 8TO0L AUS/ZO0T OT/I0p/L0d A8 | Afeiq1jeuljuo//Sdny Wouy papeojumod ‘v ‘SZ0Z ‘XS60660T


https://github.com/HydroML/HFLM-DS
https://github.com/HydroML/HFLM-DS
https://github.com/HydroML/HFLM-DS
https://github.com/HydroML/HFLM-DS
https://ral.ucar.edu/solutions/products/camels
https://ral.ucar.edu/solutions/products/camels
https://www.canada.ca/en/environment-climate-change/services/water-overview/quantity/monitoring/survey/data-products-services/national-archive-hydat.html
https://www.canada.ca/en/environment-climate-change/services/water-overview/quantity/monitoring/survey/data-products-services/national-archive-hydat.html
https://www.canada.ca/en/environment-climate-change/services/water-overview/quantity/monitoring/survey/data-products-services/national-archive-hydat.html
https://www.canada.ca/en/environment-climate-change/services/water-overview/quantity/monitoring/survey/data-products-services/national-archive-hydat.html
https://essd.copernicus.org/articles/13/3337/2021/
https://essd.copernicus.org/articles/13/3337/2021/
https://essd.copernicus.org/articles/13/3337/2021/
https://doi.org/10.1080/01621459.1949.10483290
https://doi.org/10.1080/01621459.1949.10483290
https://doi.org/10.1021/ac034173t
https://doi.org/10.1021/ac034173t

Gao, H., Q. Ju, D. Zhang, Z. Wang, Z. Hao, and J. W. Kirchner. 2025.
“Quantifying Dynamic Linkages Between Precipitation, Groundwater
Recharge, and Streamflow Using Ensemble Rainfall-Runoff Analysis.”
Water Resources Research 61, no. 1: e2024WR037821.

Garcia, D. 2010. “Robust Smoothing of Gridded Data in One and Higher
Dimensions With Missing Values.” Computational Statistics & Data Anal-
ysis 54, no. 4: 1167-1178.

Granger, C. W,, and P. Newbold. 1974. “Spurious Regressions in Econo-
metrics.” Journal of Econometrics 2, no. 2: 111-120.

Gupta, Y. 1968. “An Efficient Method of Estimating a Distributed Lag
Model. Technical Report.”

Hall, P, E. R. Lee, and B. U. Park. 2009. “Bootstrap-Based Penalty
Choice for the Lasso, Achieving Oracle Performance.” Statistica Sinica
19: 449-471.

Harezlak, J., B. A. Coull, N. M. Laird, S. R. Magari, and D. C. Christiani.
2007. “Penalized Solutions to Functional Regression Problems.” Compu-
tational Statistics & Data Analysis 51, no. 10: 4911-4925.

Hochreiter, S., and J. Schmidhuber. 1997. “Long Short-Term Memory.”
Neural Computation 9, no. 8: 1735-1780.

Hoedt, P.-J., F. Kratzert, D. Klotz, et al. 2021. “Mc-Lstm: Mass-Conserving
LSTM.” In International Conference on Machine Learning, 4275-4286.
PMLR.

Horner, I., B. Renard, J. Le Coz, F. Branger, H. McMillan, and G. Pierrefeu.
2018. “Impact of Stage Measurement Errors on Streamflow Uncertainty.”
Water Resources Research 54, no. 3: 1952-1976.

Huang, J., J. L. Horowitz, and S. Ma. 2008. “Asymptotic Properties
of Bridge Estimators in Sparse High-Dimensional Regression Models.”
Annals of Statistics 36, no. 2: 587-613.

Huo, X., and X. Ni. 2007. “When Do Stepwise Algorithms Meet Subset
Selection Criteria?” Annals of Statistics 35: 870-887.

Janssen, J., and A. A. Ameli. 2021. “A Hydrologic Functional Approach
for Improving Large-Sample Hydrology Performance in Poorly Gauged
Regions.” Water Resources Research 57, no. 9: €2021WR030263.

Janssen, J., V. Radi¢, and A. Ameli. 2021. “Assessment of Future Risks of
Seasonal Municipal Water Shortages Across North America.” Frontiers in
Earth Science 9: 730631.

Jasechko, S., J. W. Kirchner, J. M. Welker, and J. J. McDonnell. 2016. “Sub-
stantial Proportion of Global Streamflow Less Than Three Months Old.”
Nature Geoscience 9, no. 2: 126-129.

Kim, M., H. H. Bauser, K. Beven, and P. A. Troch. 2023. “Time-Variability
of Flow Recession Dynamics: Application of Machine Learning and
Learning From the Machine.” Water Resources Research 59, no. 5:
€2022WR032690.

Kirchner, J. W. 2022. “Impulse Response Functions for Nonlinear, Non-
stationary, and Heterogeneous Systems, Estimated by Deconvolution and
Demixing of Noisy Time Series.” Sensors 22, no. 9: 3291.

Kirchner, J. W. 2024. “Characterizing Nonlinear, Nonstationary, and Het-
erogeneous Hydrologic Behavior Using Ensemble Rainfall-Runoff Anal-
ysis (Erra): Proof of Concept.” Hydrology and Earth System Sciences Dis-
cussions 2024: 1-42.

Kratzert, F., D. Klotz, C. Brenner, K. Schulz, and M. Herrnegger.
2018. “Rainfall-Runoff Modelling Using Long Short-Term Memory
(Lstm) Networks.” Hydrology and Earth System Sciences 22, no. 11:
6005-6022.

Kunz, N. C. 2020. “Towards a Broadened View of Water Security in Min-
ing Regions.” Water Security 11: 100079.

Lahiri, S. N. 1999. “Theoretical Comparisons of Block Bootstrap Meth-
ods.” Annals of Statistics 27, no. 1: 386-404. https://doi.org/10.1214/aos/
1018031117.

Laumann, F., J. von Kiigelgen, J. Park, B. Scholkopf, and M. Barahona.
2023. “Kernel-Based Independence Tests for Causal Structure Learning
on Functional Data.” Entropy 25, no. 12: 1597.

Leng, C., Y. Lin, and G. Wahba. 2006. “A Note on the Lasso and Related
Procedures in Model Selection.” Statistica Sinica 16: 1273-1284.

Liao, Z., M. Qian, I. M. Kronish, and Y. K. Cheung. 2023. “Analysis of
n-Of-1 Trials Using Bayesian Distributed Lag Model With Autocorrelated
Errors.” Statistics in Medicine 42: 2044-2060.

MacDonald, B., P. Ranjan, and H. Chipman. 2015. “Gpfit: An R Package
for Fitting a Gaussian Process Model to Deterministic Simulator Out-
puts.” Journal of Statistical Software 64: 1-23.

Malfait, N., and J. O. Ramsay. 2003. “The Historical Functional Linear
Model.” Canadian Journal of Statistics 31, no. 2: 115-128.

Martinez, J. G., and R. J. Carroll. 2010. “Oracle Is Not Optimal: Adapting
the Adaptive Lasso.” Biostatistics 11, no. 1: 1-27.

McGuirk, A., and A. Spanos. 2009. “Revisiting Error-Autocorrelation
Correction: Common Factor Restrictions and Granger Non-Causality.”
Oxford Bulletin of Economics and Statistics 71, no. 2: 273-294.

Meinshausen, N., and B. Yu. 2009. “Lasso-Type Recovery of Sparse Rep-
resentations for High-Dimensional Data.” Annals of Statistics 37, no. 1:
246-270.

Mindham, D., K. Beven, and N. Chappell. 2023. “Rainfall-Streamflow
Response Times for Diverse Upland UK Micro-Basins: Quantifying
Hydrographs to Identify the Nonlinearity of Storm Response.” Hydrology
Research 54, no. 2: 233-244.

Mizon, G. E. 1995. “A Simple Message for Autocorrelation Correctors:
Don’t.” Journal of Econometrics 69, no. 1: 267-288.

Moges, E., B. L. Ruddell, L. Zhang, J. M. Driscoll, and L. G. Larsen. 2022.
“Strength and Memory of Precipitation’s Control Over Streamflow Across
the Conterminous United States.” Water Resources Research 58, no. 3:
€2021WRO030186.

Pagano, M., and M. J. Hartley. 1981. “On Fitting Distributed Lag Mod-
els Subject to Polynomial Restrictions.” Journal of Econometrics 16, no. 2:
171-198.

Paparoditis, E., and D. N. Politis. 2003. “Residual-Based Block Bootstrap
for Unit Root Testing.” Econometrica 71, no. 3: 813-855.

Pesando, J. E. 1972. “Seasonal Variability in Distributed Lag Models.”
Journal of the American Statistical Association 67, no. 338: 311-312.

Prais, S.J., and C. B. Winsten. 1954. “Trend Estimators and Serial Correla-
tion. Technical Report, Cowles Commission Discussion Paper Chicago.”

Rao, S. S. 2004. “On Multiple Regression Models With Nonstationary Cor-
related Errors.” Biometrika 91, no. 3: 645-659.

Runge, J. 2021. “Necessary and Sufficient Graphical Conditions for
Optimal Adjustment Sets in Causal Graphical Models With Hidden
Variables.” Advances in Neural Information Processing Systems 34:
15762-15773.

Rushworth, A. M., A. W. Bowman, M. J. Brewer, and S. J. Langan. 2013.
“Distributed Lag Models for Hydrological Data.” Biometrics 69, no. 2:
537-544.

Satopaa, V., J. Albrecht, D. Irwin, and B. Raghavan. 2011. “Finding a
Kneedle in a Haystack: Detecting Knee Points in System Behavior.” In
Proceedings of the 2011 31st International Conference on Distributed Com-
puting Systems Workshops, 166—171. IEEE.

Schmidt, P. 1971. “Estimation of a Distributed Lag Model With Second
Order Autoregressive Disturbances: A Monte Carlo Experiment.” Inter-
national Economic Review 12: 372-380.

Schoups, G., and J. A. Vrugt. 2010. “A Formal Likelihood Function
for Parameter and Predictive Inference of Hydrologic Models With

13 of 14

85U8017 SUOLIIOD BATE8.D 8|qed ! (dde aupy Aq peusenob a1e S9piLe YO ‘SN JO S3|nJ o} A%eIg1T8UlUO AB|1/ UO (SUONIPUOD-PpUR-SLUBYL0D A8 | 1M Afe1q 1 Ul |Uo//SdNL) SUORIPUCD Pue SWe 1 8y} 89S *[6202/80/2z] U0 Areiqi auliuo AS|IM eLIsnyeURIL00D AQ 8TO0L AUS/ZO0T OT/I0p/L0d A8 | Afeiq1jeuljuo//Sdny Wouy papeojumod ‘v ‘SZ0Z ‘XS60660T


https://doi.org/10.1214/aos/1018031117
https://doi.org/10.1214/aos/1018031117
https://doi.org/10.1214/aos/1018031117

Correlated, Heteroscedastic, and Non-Gaussian Errors.” Water Resources
Research 46, no. 10: 1-17.

Schrunner, S., P. Pishrobat, J. Janssen, et al. 2025. “A Gaussian Sliding
Windows Regression Model for Hydrological Inference.” Journal of the
Royal Statistical Society Series C: Applied Statistics: qlaf009.

Sims, C. A. 1972. “The Role of Approximate Prior Restrictions in Dis-
tributed Lag Estimation.” Journal of the American Statistical Association
67:169-175.

Somers, L. D., and J. M. McKenzie. 2020. “A Review of Groundwater in
High Mountain Environments.” Wiley Interdisciplinary Reviews: Water 7,
no. 6: e1475.

Sorooshian, S., and J. A. Dracup. 1980. “Stochastic Parameter Esti-
mation Procedures for Hydrologie Rainfall-Runoff Models: Correlated
and Heteroscedastic Error Cases.” Water Resources Research 16, no. 2:
430-442.

Staerk, C., M. Kateri, and L. Ntzoufras. 2018. “Adaptive Subspace Methods
for High-Dimensional Variable Selection. PhD thesis, Universitétsbiblio-
thek der RWTH Aachen.”

Sun, F.-K., C. Lang, and D. Boning. 2021. “Adjusting for Autocorrelated
Errors in Neural Networks for Time Series.” Advances in Neural Informa-
tion Processing Systems 34: 29806-29819.

Tang, G., M. P. Clark, S. M. Papalexiou, et al. 2021. “Emdna: An Ensemble
Meteorological Dataset for North America.” Earth System Science Data
13, no. 7: 3337-3362.

Tennant, C., L. Larsen, D. Bellugi, E. Moges, L. Zhang, and H. Ma. 2020.
“The Utility of Information Flow in Formulating Discharge Forecast
Models: A Case Study From an Arid Snow-Dominated Catchment.” Water
Resources Research 56, no. 8: e2019WR024908.

Thursby, J. G. 1987. “Ols or Gls in the Presence of Specification Error?: An
Expected Loss Approach.” Journal of Econometrics 35, no. 2—3: 359-374.

Tibshirani, R. 1996. “Regression Shrinkage and Selection via the Lasso.”
Journal of the Royal Statistical Society: Series B: Methodological 58, no. 1:
267-288.

Tsay, R. S. 1985. “Model Identification in Dynamic Regression (Dis-
tributed Lag) Models.” Journal of Business & Economic Statistics 3:
228-237.

Whittaker, E. T. 1922. “On a New Method of Graduation.” Proceedings of
the Edinburgh Mathematical Society 41: 63-75.

Wilkins, A. S. 2018. “To Lag or Not to Lag?: Re-Evaluating the Use of
Lagged Dependent Variables in Regression Analysis.” Political Science
Research and Methods 6, no. 2: 393-411.

Wu, J., P. An, C. Zhao, et al. 2024. “Effects of Multi-Year Droughts on the
Precipitation-Runoff Relationship: An Integrated Analysis of Meteorolog-
ical, Hydrological, and Compound Droughts.” Journal of Hydrology 634:
131064.

Xun, X., T. Guan, and J. Cao. 2022. “Sparse Estimation of Historical Func-
tional Linear Models With a Nested Group Bridge Approach.” Canadian
Journal of Statistics 50, no. 4: 1254-1269.

Yang, L., and Y. Hong. 2017. “Adaptive Penalized Splines for Data
Smoothing.” Computational Statistics & Data Analysis 108: 70-83.

Young, P. C. 2002. “Advances in Real-Time Flood Forecasting.”
Philosophical Transactions of the Royal Society of London, Series
A: Mathematical, Physical and Engineering Sciences 360, no. 1796:
1433-1450.

Zhang, C.-H., and T. Zhang. 2012. “A General Theory of Concave Regu-
larization for High-Dimensional Sparse Estimation Problems.” Statistical
Science 27, no. 4: 576-593.

Zhao, P., G. Rocha, and B. Yu. 2009. “The Composite Absolute Penal-
ties Family for Grouped and Hierarchical Variable Selection.” Annals of
Statistics 37, no. 6A: 3468-3497.

Zhao, P., and B. Yu. 2006. “On Model Selection Consistency of Lasso.”
Journal of Machine Learning Research 7: 2541-2563.

Zou, H. 2006. “The Adaptive Lasso and Its Oracle Properties.” Journal of
the American Statistical Association 101, no. 476: 1418-1429.

Supporting Information

Additional supporting information can be found online in the Supporting
Information section. Data S1. Supporting Information.

14 of 14

Environmetrics, 2025

85U8017 SUOLIIOD BATE8.D 8|qed ! (dde aupy Aq peusenob a1e S9piLe YO ‘SN JO S3|nJ o} A%eIg1T8UlUO AB|1/ UO (SUONIPUOD-PpUR-SLUBYL0D A8 | 1M Afe1q 1 Ul |Uo//SdNL) SUORIPUCD Pue SWe 1 8y} 89S *[6202/80/2z] U0 Areiqi auliuo AS|IM eLIsnyeURIL00D AQ 8TO0L AUS/ZO0T OT/I0p/L0d A8 | Afeiq1jeuljuo//Sdny Wouy papeojumod ‘v ‘SZ0Z ‘XS60660T



	Learning From Limited Temporal Data: Dynamically Sparse Historical Functional Linear Models With Applications to Earth Science
	ABSTRACT
	1 | Introduction
	2 | Historical Functional Linear Model With Dynamic Sparsity (HFLM-DS)
	2.1 | Autocorrelated Errors
	2.2 | Algorithm

	3 | Hydrology Data Application
	3.1 | Applications to Real Streamflow
	3.2 | Benchmark Against Previous Hydrological Inference Methods

	4 | Simulation Studies
	4.1 | Evaluation Criteria
	4.2 | Simulation Scenarios
	4.3 | Simulation Results


	5 | Discussion and Conclusions
	Acknowledgments
	Data Availability Statement
	References
	Supporting Information

