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Abstract: In this paper, we propose a novel grasp pipeline based on contact point
detection on the truncated signed distance function (TSDF) volume to achieve
closed-loop 7-degree-of-freedom (7-DoF) grasping on cluttered environments.
The key aspects of our method are that 1) the proposed pipeline exploits the TSDF
volume in terms of multi-view fusion, contact-point sampling and evaluation, and
collision checking, which provides reliable and collision-free 7-DoF gripper poses
with real-time performance; 2) the contact-based pose representation effectively
eliminates the ambiguity introduced by the normal-based methods, which pro-
vides a more precise and flexible solution. Extensive simulated and real-robot
experiments demonstrate that the proposed pipeline can select more antipodal and
stable grasp poses and outperforms normal-based baselines in terms of the grasp
success rate in both simulated and physical scenarios. Code and data are available
at https://github.com/caijunhao/vcpd
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1 Introduction

Figure 1: 6-DoF grasping based on left: sur-
face normal and vertex or right: contact points.

Vision-based grasping is one of the most basic but
important tasks in the robotics community. It is
regarded as an operation primitive, and benefits
a robot in handling more complicated manipula-
tion applications [1, 2, 3]. Although this prob-
lem has been widely researched, it remains chal-
lenging, especially when the robot is confronted
with general object grasping in cluttered environ-
ments [4, 5, 6, 7]. To deal with this problem,
most previous works have tried to evaluate the 6-
degree-of-freedom (6-DoF) pose (i.e., the position
and orientation) of the end-effector given the vi-
sual observation of the scene [8, 9, 7, 10, 11, 12], which provides more flexible solutions compared
with planar-based methods [13, 5, 14, 6]. However, most of the existing 6-DoF approaches suffer
from three main limitations in terms of the pose representation and visual observation: 1) The grip-
per pose relies heavily on the assumptions that the end-point position of the gripper is estimated
from a position located on the object surface (e.g., the red sphere on the left of Figure 1) and that
the approach direction is parallel to the corresponding surface normal (e.g., the blue line in Fig-
ure 1) [8, 10, 11, 15, 16, 17, 18]. However, the first assumption may introduce position shift since
most of the time the surface position is not exactly the same as the end-point position of the gripper
(e.g., the black sphere on the left of Figure 1), which may result in failure when we empirically
set the approach distance based on the surface position. Meanwhile, the second assumption may
lead to no solution being found when all of the contact surface pairs in the normal direction are not
parallel to each other. 2) Existing works mainly focus on estimating the gripper poses based on a
single observation of the scene such as an RGB-D image or a point cloud [10, 19, 11, 20], which is
visually insufficient, especially when tackling complex scenarios such as performing grasping in a
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Figure 2: Overview of the grasp pipeline. (a) visualizes the views where the vision sensor captures
the depth maps. (b) is the mesh generated from the TSDF volume. (c) visualizes the potential
contact pairs sampled by the proposed sampling and matching heuristics. Red dots stand for the
contact points generated by the Marching Cubes algorithm. The green dots denote matched contacts
retrieved from the intersections between the grasp vectors and the isosurface of the TSDF volume.
After the evaluation of grasp quality for each contact pair, the top 3‰ of high-quality pairs are
selected, and collision checking is performed by rotating the gripper in the grasp direction on the
TSDF volume, which are shown in (d) and (e), respectively. The final collision-free gripper pose
will be obtained, as shown in (f).

cluttered environment. 3) Due to the partial observation, directly conducting collision checking is
nontrivial. Although learning-based collision avoidance can be leveraged on the single-view data,
large amounts of training data are required and the performance might degenerate when performing
grasping on a different scene [10, 21, 22].

To resolve the limitations of current 6-DoF grasping methods, we propose a novel grasp pose detec-
tion method based on detecting contact point pairs in the truncated signed distance function (TSDF)
volume to estimate both the 6-D pose and the width of the gripper, which we denote as 7-DoF
grasping. Figure 2 illustrates the proposed pipeline. Our approach is closely related to the method
proposed by Cai et al. in [12], while we circumvent the normal-based assumption and turn to detect-
ing contact point pairs of the parallel-jaw gripper. The TSDF volume, a discretized representation of
the scene where each voxel denotes a signed distance from current position to the closest object sur-
face, allows multi-view fusion and provides more comprehensive shape information of objects that
are essential for sampling and matching the contact point pairs. A contact point quality evaluation
network is also proposed to predict the grasp quality of contact points in a pair-wise manner. Based
on the evaluation results and the TSDF volume, post-processing operations, including volumetric
collision checking and pose clustering, can be conducted efficiently to determine the approach vec-
tor [20] and width of the gripper alongside the contact point pair.

This novel grasping pipeline has three key characteristics: 1) The contact-based formulation, which
directly provides the position of the grasp center and the grasp direction, can avoid the assumptions
required by the normal-based methods [23, 24, 12]. 2) Instead of treating 3-D points of a single-
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view point cloud as grasp contact candidates, this pipeline allows us to sample potential contacts
from a TSDF volume, which provides more comprehensive scene observation and facilitates reliable
sampling and matching of the contact point pairs. 3) Based on the TSDF volume and contact point
evaluation network, collision-free poses with high grasp qualities can be obtained iteratively, guiding
the robot to approach the target pose. Due to the eye-in-hand configuration, the vision sensor can
capture different observations of the scene and thus enrich the information of the TSDF volume on
the fly instead of multiple viewpoints being manually set beforehand [8, 23, 24, 25]. Therefore, the
entire grasp pipeline can be executed in a closed-loop manner.

In summary, our main contributions are the following:

• A novel grasp pose estimation method based on contact point detection and evaluation on the
TSDF volume.

• The contact point detection module can be integrated into the volumetric grasp pipeline, which
allows collision-free 7-DoF closed-loop grasping.

• Extensive simulation and physical experiments demonstrate the superiority of the proposed
contact-based method in terms of grasp success rate, antipodal score, and collision-free rate com-
pared with normal-based ones [8, 23, 12].

2 Related Work

Pose representation. Many previous works have focused on resolving the grasping problem in a
planar manner, which determines the gripper pose by estimating the position and the grasp angle
of the gripper in the vertical direction [13, 26, 5, 14, 6]. However, this formulation inevitably
restricts the ways objects could be grasped. In contrast, recent works have mainly favored the use of
stereo data such as a point cloud or a depth map to predict 6-DoF gripper poses, which can provide
more versatile solutions when handling complex scenarios [27, 7, 8, 11, 10, 23, 12, 17, 16, 18, 15].
Many of them use the surface normals of the objects as a prior of the approach direction when
synthesizing grasp samples during data collection. Although this approach performs well in most
cases, the performance might degenerate when there are no antipodal contact points constrained by
surface normals. In addition, an ambiguity issue is also introduced by the normal-based methods,
and researchers have resorted to performing angle discretization to eliminate the problem [12, 11].

Methods based on evaluating contact points have also been proposed [25, 20]. The contact-based
methods directly regard the points of a point cloud as contact candidates and turn to estimating
the grasp qualities of potential contact pairs. This formulation effectively circumvents the normal
assumption, and directly obtains the end-point position of the gripper. However, existing contact-
based methods attempt to find graspable contact pairs only on a partial view of the scene, which
might be ill-posed since an antipodal contact point pair commonly exists on two opposite sides of
an object, and only a single view of the scene might not include sufficient information.

Scene observation. Early works in vision-based grasping paid more attention to extracting shared
graspable features for all objects from RGB images [13, 4, 26, 28]. Because of the explicit 3-D
information of the scene and smaller gap for sim-to-real transfer, recent works have preferred to use
depth maps or point cloud to conduct pose estimation [8, 14, 5, 17, 16, 6, 18]. However, these kinds
of scene representations only reflect off the surface of the object, while an informative observation
should naturally indicate both the geometric shape of each object and the spatial relationships be-
tween objects and the free space. Therefore, methods based on SDF volume have been proposed
in which multiple views of depth map can be fused into a persistent 3D data structure, providing a
more comprehensive representation of the scene that explicitly indicates both the occupied and free
space [23, 24, 12].

3 Method

3.1 Problem Definition

In this work, we consider the clutter removal task where a robot tries to pick any object out from
the workspace one by one when all the objects are stacked together. All the objects are unseen by
the model, and we can only observe the scene through a vision sensor attached to an end-effector.
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Figure 3: Pose repre-
sentation of the gripper.

Suppose at time step t, we capture t frames of depth maps It = {I1, ..., It}
with corresponding poses from the base to camera bT ct = {bT c1 , ..., bT ct }
and the camera intrinsic matrix K. The TSDF volume can be computed
by TSDF fusion [29], which is formulated as Vt = ftsdf (It, bT ct ,K).
Our goal is to estimate the optimal contact pair (p∗t , p

′∗
t ) and its corre-

sponding grasp vector g∗t and approach vector a∗t [20] from Vt. The pose
and width of the gripper can be further computed from the quadri-tuple
(p∗t , p

′∗
t , g

∗
t , a
∗
t ), denoted as

bT
g
t
∗

= [bR
g∗
t |e∗t ],

bR
g
t
∗

= [g∗t × a∗t , g∗t , a∗t ],
e∗t = (p∗t + p′∗t )/2,

(1)

where bR
g∗
t denotes the rotation from the base to gripper frame, and e∗t

is the end-point position of the gripper. The distance of two contact points can also determine the
width of the gripper, which is computed as ||p∗t − p′∗t ||2. An example of the gripper pose is shown
in Figure 3.

To achieve this objective, a comprehensive volumetric-based grasp pipeline, including contact pair
sampling and matching, grasp quality evaluation for contact pairs, and approach vector selection
by collision checking, is proposed to perform the closed-loop grasping. An overview of the grasp
pipeline is shown in Figure 2.

3.2 Contact Pair Sampling

Marching 

Cubes

MLP

Marching 

Cubes

MLP

Figure 4: Illustration of contact point detection.
Red dots and purple arrows are vertices and their
surface normals respectively, as extracted by the
Marching Cubes algorithm. Green dashed lines
are the extrusion of the surface normals, and their
intersections with the object are marked as green
dots.

For simplicity, a schematic illustration of con-
tact point detection in 2-D space is shown in
Figure 4. Given the current TSDF volume Vt,
we execute the Marching Cubes algorithm [30]
to retrieve the isosurface of the scene, which is
represented as a mesh set including the surface
vertices Pt = {p1,t, ..., pN,t} and their corre-
sponding vertex normals Gt = {g1,t, ..., gN,t}.
The sampled vertices are considered as the po-
tential contact points between one side of the
fingertips and the objects, which are repre-
sented by the red dots in Figure 4. Moreover,
the set of vertex normals determines the grasp
direction of the gripper. We implement these
settings based on the antipodal grasp rule [31],
which says that to achieve a stable grasp, the
grasp direction of a parallel-jaw gripper should
be parallel to the surface normals of the con-
tact points. With the above heuristic, we can
further extrude all the grasp vectors in the in-
verse direction to obtain another set of contact
pointsP ′t = {p′1,t, ..., p′N,t} by finding the zero-
value voxels in the TSDF volume. We neglect
the samples that cannot find their matched con-
tact points in the inverse grasp direction or whose distances to their matched points are greater than
the gripper width. For simplicity, we consistently use the symbol N as the final number of sampled
contact pairs in the subsequent sections.

Compared with existing works, our detection pipeline leads to 3 benefits: 1) The contact point
pairs are sampled from a more comprehensive visual representation, which is more reliable than
those sampled from a single point cloud. 2) The spatial information provided by the TSDF volume
significantly simplifies the process of finding the matched contact points. 3) By making use of the
surface normals, the sampled contact pairs are more prone to being antipodal, which is essential for
stable grasping. Details about how to generate contact pairs in the TSDF volume will be illustrated
in the appendix.
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3.3 Contact Point Network

Based on a 3-D fully convolutional network (FCN) and multi-layer perceptron (MLP), we next
propose a contact-point network (CPN) fθ to evaluate the grasp quality pairwisely for all the contact
pairs, which is also shown in Figure 4. We follow the network architecture proposed by [12] except
that the last layer is replaced with a single-value output which ranges from [0, 1], representing the
grasp quality. The spatial features of the scene and the geometric features of the objects are first
extracted by the 3-D FCN. We then use the sampled contact pairs as indices to retrieve the grasp
features from the 3-D feature maps. Finally, the retrieved features for each contact pair will be
sent to the MLP module to predict the corresponding grasp quality. The entire process can be
formulated as Q̃t = fθ(Vt,Pt,P ′t,Gt), where Q̃t ∈ RN represents the estimated grasp qualities for
all the contact candidates. By leveraging the proposed CPN, we not only make the most of scene
information provided by the TSDF volume but also circumvent redundant computation costs by only
evaluating potential antipodal contact pairs.

3.4 Approach Vector Selection

So far, we have obtained the contact pairs with high grasp quality, which can determine the end-
point positions and the grasp vectors according to Eqn. 1. However, we cannot directly deduce the
approach vectors from the contact pairs. Benefiting from the convenient collision checking in the
TSDF volume, we can select the approach vector for each contact pair by rotating the gripper mesh
on the axis of the grasp vector. One example is shown in Figure 2(e).

Assume that we have the gripper mesh modelmg with its vertices denoted asPg = {p1,g, ..., pNg,g}.
For each contact pair (pi,t, p

′
i,t), we sample Na poses bT gi,t = {bT g1,i,t, ..., bT

g
Na,i,t

} with their posi-
tions centered at the end-point position and the y axes of their orientation aligned to the grasp vector.
The z axes, uniformly sampled in the subspace perpendicular to y, denote the potential approach vec-
tors. Based on the TSDF volume, the vertex set, and the sampled poses of the gripper, we can check
whether the gripper will collide with the objects by transforming the vertices with the sampled pose
and evaluating the signed distance values retrieved by the transformed vertices in the TSDF volume.
The poses whose retrieved signed distance values are all greater than 0 (i.e., the transformed vertices
are all located outside the objects) will be considered as feasible grasp poses. This operation can
be denoted as bT̃ gi,t = fcc sdf (bT gi,t,Pg, Vt), where bT̃ gi,t ⊆ bT gi,t is the collision-free pose set for
contact pair i. And the entire process can be summarized as bT̃ gt = {bT̃ g1,t, ..., bT̃

g
N,t}, where N is

the number of graspable contact pairs and bT̃ gt contains all the feasible poses. Finally, the final grasp
pose bT

g
t
∗ can be determined by performing non-maximum suppression (NMS) operation [12] on

bT̃ gt .

4 Data Generation

To train the proposed CPN, we require training data consisting of the TSDF volume of the scene,
sampled contact pairs, and their corresponding grasp qualities. Such data can be generated in three
steps: grasp analysis on a single mesh, label validation on the simulator, and scene construction.
Visualization of the synthesized data is available in the appendix.

Grasp analysis on single mesh. Before generating the cluttered scenarios with multiple objects
stacked on top of each other, we first sample potential contact pairs on every single mesh and perform
grasp analysis on all the candidates. Specifically, for each object meshmi = {Pmi ,Fmi ,Nmi} rep-
resented as the set of vertices, faces, and vertex normals, we consider the vertices as contact points
between one of the fingertips and the object. The opposite contacts P ′mi

for another fingertip are
generated by finding the intersections between the object and the rays cast in the inverse normal di-
rection. For each contact pair (pj , p

′
j), we next evaluate the grasp quality by computing the antipodal

score [12] and validating the collision status between the scene (the object mi) and the gripper mg ,
with its poses wT gj determined by the contact points and the uniformly sampled approach vectors. If
the antipodal score is greater than the given threshold and any of the poses conditioned on that con-
tact pair lead to a collision-free grasp, we regard the candidate as graspable. Therefore, the output is
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(a) Contact points with normals (b) Positive contact pairs (c) Negative contact pairs

Figure 5: Visualization of grasp analysis on a single mesh.
a binary vector Qmi ∈ {0, 1}Nmi , where each of the binary values is determined by

qj =

{
1, sj ≥ cos(α1) · cos(α2) and fcc sim(bT gj ,mg, bTMi ,Mi) 6= Ø,
0, otherwise

, (2)

where sj is the antipodal score for contact pair (pj , p
′
j), α1 and α2 are the given thresholds of

angles between the contact normal and the grasp direction, and fcc sim provides collision checking
between the gripper mg and other meshesMi given the gripper poses bT gj and mesh poses bTMi

respectively. In this step, Mi = {mi}. Similar to fcc sdf in Sec. 3.4, fcc sim outputs the set of
collision-free poses in bT gj .

Label validation. Although analytical measures provide effective ways to generate grasp labels,
they are not always reliable when such heuristics are transferred to the physical environment. Due
to the rapid development of physics simulation, many works make use of a simulator to generate
physically realistic grasp labels using a simulated robot arm to validate the graspability of the poses
generated from analytical heuristics [15, 10, 32, 33]. In this work, we validate the grasp labels
{Qmi} by leveraging the Isaac Gym simulator [34], which can run thousands of environments in
parallel with GPU acceleration. We follow the settings proposed by [33] to evaluate the reliability
of all the candidate poses. One of the labeled meshes is shown in Figure 5.

Scene construction. Given sets of the mesh, contact pair, and grasp quality, we can build stacked
scenes with labeled contact points. To achieve this, we first randomly pick and drop the meshes into
a tray. The depth maps and their camera poses are respectively recorded as IT and bT cT . All the
contact pairs are then transferred to the scene according to the mesh poses, and collision checking is
executed based on fcc sim. Candidates that are both graspable and collision-free will be considered
positive samples. Moreover, negative samples are collected based on three patterns, i.e., contact pairs
1) whose grasp qualities after label validation are 0, 2) whose grasp qualities after label validation
are 1, while all the sampled poses on those contacts cause collisions in the scene, and 3) that are
from positive samples but perform random permuting and re-matching, which generates a new set of
contact point pairs. Finally, the depth maps IT with corresponding camera poses bT cT merge into the
TSDF volume by TSDF fusion Vt = ftsdf (It, bT ct ,K), where t ranges from 0 to T such that we can
save volumes that integrate different numbers of depth maps. Despite the multi-view observation,
some areas containing contact points may be invisible. Therefore, we neglect samples which have
signed distance values of the contact points larger than a specific threshold.

5 Experiments

This section presents extensive simulation and real-world experiments to evaluate the proposed grasp
detection pipeline. We aim to validate 1) the superiority of the proposed contact-based method
under the stacked scenarios compared with normal-based baselines and 2) the performance of the
approach in a physical platform under different clutter removal scenarios. To this end, we compare
the proposed method with three normal-based approaches, GPD [8], VGN [23], and VPN [12]. GPD
performs grasp detection in a point cloud, while VGN and VPN detect grasp poses from the TSDF
volume.

5.1 Evaluation Metrics

In this work, we use four metrics to evaluate the estimated grasp poses: 1) antipodal score (AS):
s ≥ cos(α1) · cos(α2), where α1 and α2 are the angles of the grasp direction and contact normals
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of the parallel-jaw gripper, 2) collision-free rate (CFR): the percentage of grasp poses that do not
cause collisions to grasp attempts on cluttered scenes, 3) grasp success rate (GSR): the percentage
of successful grasps compared to total grasp attempts, and 4) grasp completion rate (GCR): the
percentage of objects removed by the robot compared to the total number of grasp items. Follow-
ing [12], we will manually remove any object that successively fails to be grasped three times.

5.2 Implementation Details

As demonstrated by Cai et al. [12], primitive-shaped objects can provide precise grasp annotation,
and those grasp patterns are transferred well to unknown objects. We thus keep using the 191
primitive-shaped objects, including spheres, cubes, ellipsoids, cylinders, and building blocks re-
leased by [35] to generate the dataset. For scene construction, we follow the settings of VPN [12] to
generate 8000 cluttered scenes with 5, 10, 15, and 20 objects stacked in the tray, respectively. For
TSDF generation, four TSDF volumes are collected when 5, 10, 14, and 19 frames of depth images
are integrated into the volume. All the training data are collected in PyBullet [36], and no real data
are required.

During performance demonstration, primitive-shaped, procedural [37], and Kit [38] object sets are
used for the AS and CFR evaluation in PyBullet and GSR evaluation in Isaac Gym. In the physical
experiment, 32 unseen objects, comprising 8 fruits and 4 cups from the YCB object set [39], 8
household objects from YCB [39] and GraspNet [7], and 12 adversarial objects from DexNet [5] are
used. Moreover, we use the Franka Emika robot arm with the RealSense D435 and a parallel-jaw
gripper to perform grasp demonstrations. The vision sensor is mounted on the end-effector with its
pose from the base to camera calibrated [40].

More details about the data, network architecture, parameter configuration, test objects, sampled
cluttered scenes, and physical setting are posted in the appendix.

5.3 Simulation Experiments

Table 1: AS / CFR / GSR
# VGN [23] VPN [12] VPN+GPRN [12] CPN (Ours)

Primitive

5 0.654 / 47.0 / 78.0 0.954 / 93.2 / 99.7 0.959 / 92.9 / 99.6 0.987 / 98.1 / 100.0
10 0.629 / 33.4 / 66.5 0.958 / 91.5 / 99.9 0.960 / 90.2 / 99.8 0.986 / 95.9 / 99.9
15 0.631 / 28.8 / 62.8 0.960 / 90.1 / 99.6 0.964 / 87.5 / 99.7 0.985 / 96.5 / 99.8
20 0.621 / 27.2 / 58.8 0.961 / 86.4 / 99.2 0.962 / 84.0 / 98.9 0.985 / 95.4 / 99.7

Kit

5 0.638 / 71.1 / 82.9 0.917 / 88.8 / 94.1 0.921 / 89.2 / 92.9 0.970 / 93.3 / 98.8
10 0.621 / 56.6 / 84.0 0.973 / 85.5 / 93.8 0.946 / 84.4 / 96.1 0.980 / 93.0 / 99.3
15 0.614 / 44.0 / 80.1 0.952 / 81.0 / 95.6 0.953 / 78.7 / 95.2 0.980 / 91.8 / 99.7
20 0.608 / 34.0 / 79.1 0.946 / 76.2 / 95.0 0.947 / 74.4 / 96.0 0.980 / 90.0 / 99.4

Procedual

5 0.424 / 47.9 / 71.6 0.801 / 69.3 / 92.9 0.830 / 69.3 / 93.0 0.945 / 89.6 / 98.4
10 0.470 / 51.3 / 68.1 0.794 / 67.2 / 90.7 0.818 / 66.9 / 92.2 0.939 / 88.2 / 98.6
15 0.483 / 43.4 / 63.5 0.796 / 66.0 / 90.1 0.814 / 66.7 / 89.8 0.940 / 88.6 / 98.7
20 0.471 / 38.6 / 65.9 0.785 / 62.9 / 89.4 0.801 / 62.0 / 88.6 0.942 / 90.3 / 98.1

We first investigate
the antipodal scores
and collision-free
rates of the different
methods by finding
the contacts and
collision status of
the gripper given the
pose estimated by the
models in PyBullet.
To demonstrate the
robustness of the proposed methods, we respectively compute the average of the metrics on every
1000 scenes with 5, 10, 15, or 20 objects stacked together. We randomly render 20 depth maps from
different viewpoints for each scene to generate the TSDF volume.

The results, reported in Table 1, show that 1) the proposed contact-based method achieves state-of-
the-art performance in terms of AS compared with the baselines, which implies that it can generate
gripper poses that are more antipodal, and shows the superiority of the proposed contact-based
method; 2) our method achieves similar performance on both the seen (primitive) and unseen (Kit
and procedual) object sets, which demonstrates its generalization ability and robustness; and 3) our
method outperforms the baselines on the CFR. We thus believe that the gripper widths estimated
from the contact points and TSDF volume effectively decrease the risk of collision with other ob-
jects.

To further evaluate the reliability of the proposed method, we measure the GSR on all the object sets
in the Isaac Gym simulator. The scene configuration and the number of depth maps are the same
as in PyBullet. We randomly generate 1000 scenes with different levels of clutter and conduct one
grasp attempt for each scene. The results, also reported in Table 1, demonstrate that our method can
detect robust and reliable poses for the gripper on scenes with different clutter levels. More results
and analyses of grasp experiments on other object sets are posted in the appendix.
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Figure 6: Demonstration of real robot grasping.
5.4 Real-robot Experiments

Table 2: GSR / GCR
Mugs (4× 5) Fruits (8× 5) Household (8× 5) Adversarial (8× 5)

GPD [8] 58.06 / 90.00 43.59 / 85.00 68.42 / 97.50 70.91 / 97.50
VGN [23] 80.00 / 100.0 56.25 / 90.00 39.74 / 77.50 41.56 / 80.00
VPN [12] 100.0 / 100.0 84.78 / 97.50 86.97 / 100.0 73.85 / 97.50

VPN+GPRN [12] 100.0 / 100.0 81.63 / 100.0 90.91 / 100.0 78.43 / 100.0
CPN (Ours) 100.0 / 100.0 93.02 / 100.0 95.24 / 100.0 85.11 / 100.0

(m× n) represents m objects with n test rounds.

We design a series of
clutter removal experi-
ments on the four types
of objects mentioned in
Sec. 5.2. We select 8
(4 objects only for cup-
shaped objects) objects of
the same type for each experiment and randomly place them into the workspace to form a stacked
scene. We then execute the grasp according to the pose estimated by the models. We compare our
method with GPD [8], VGN [23], and VPN [12]. Concretely, GPD estimates the gripper pose on a
point cloud. For VGN, we follow the settings from [23] to generate the TSDF volume by moving
the vision sensor to four viewpoints, while for VPN and our method, we keep using the VPN setting
that the TSDF fusion and pose estimation are conducted on the fly, and the entire grasp trial is run
in a closed-loop manner.

The GSR and GCR listed in Table 2 suggest that 1) our method achieves state-of-the-art perfor-
mance on all types of grasp items, performing especially well on spherical objects, such as fruits,
compared with the normal-based methods, which further demonstrates the ability to obtain antipo-
dal grasp poses; 2) though trained with only primitive-shaped objects and synthesized images, the
proposed pipeline can be directly applied to handling unknown objects in physical environments,
which implies that the generated scenes are complex enough for the model to learn to detect gras-
pable regions; and 3) although the viewpoints of the vision sensor are different from those set in
the simulator during the TSDF fusion process, all the modules that require the TSDF volume still
perform well, which shows the robustness of our method.

6 Conclusion and Limitations

This paper presents a novel vision-based grasp pipeline for detecting and evaluating contact pairs
on the TSDF volume. The key advantages of this work are 1) the use of the TSDF volume, a
comprehensive representation of the scene that allows reliable sampling of antipodal contact pairs,
geometry-aware grasp quality inference, and collision checking with real-time performance, and
2) contact-based pose representation that effectively circumvents the ambiguity introduced by the
normal-based approaches. Simulation experiments show that our method can efficiently avoid col-
lision and compute more antipodal grasp poses. Clutter removal experiments show that our method
trained with only synthesized data performs significantly better than other volumetric methods on
all objects, which further demonstrates its ability of generalization.

Despite the advantages presented by the TSDF volume, this volumetric-based pipeline suffers lim-
itations when handling slim- or flat-shaped objects in the physical environment. Due to the noise
introduced by the consumer-level sensor and the truncated margin of the TSDF volume, the slim
parts of the objects might be missing or the side surfaces of flat objects may be prone smoothing
during the TSDF fusion, which leads to no contact points being found. To overcome this limitation,
a more robust heuristic to infer the contact points and the contact normals will be considered in
future work. More details about the failure cases are illustrated in the appendix.

Moreover, this work can only infer contact points for a parallel-jaw gripper. It would be a promising
direction to investigate how to apply this contact-based pipeline for multi-finger grippers.
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