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Abstract

Spoken dialog systems are slowly becoming
and integral part of the human experience due
to their various advantages over textual inter-
faces. Spoken language understanding (SLU)
systems are fundamental building blocks of spo-
ken dialog systems. But creating SLU systems
for low resourced languages is still a challenge.
In a large number of low resourced settings
we don’t have access to enough data to build
automatic speech recognition (ASR) technolo-
gies, which are fundamental to any SLU system.
Also, ASR based SLU systems do not general-
ize to unwritten languages. In this paper, we
present a series of experiments to explore an ex-
tremely low resourced setting - something we
refer to as a true k-shot setting, where we per-
form intent classification with systems trained
on different values of k. We test our system
on English and Flemish and find that even in
such granular settings and no language specific
ASR technology, we can create SLU systems
that can be deployed in the real world.

1 Introduction

Spoken Language Understanding (SLU) systems
form an integral part of spoken dialog systems. As
shown in figure 1, a traditional SLU pipeline is
made up of two modules - a speech to text mod-
ule which converts input user audio into textual
transcripts, and a natural language understanding
(NLU) module which aims to understand the se-
mantic content in the user utterance from the tex-
tual transcripts (Tur and De Mori, 2011; Lugosch
et al., 2019). The conventional two-module SLU
pipeline is prone to making ASR errors which prop-
agate throughout the system. To minimize the au-
tomatic speech recognition (ASR) errors, a lot of
recent research has been focused on creating end-
to-end spoken language understanding (E2E-SLU)
systems (Qian et al., 2017; Serdyuk et al., 2018).
But building these E2E-SLU systems requires an
even larger amount of annotated data when com-

pared to two-module split SLU pipelines (Lugosch
et al., 2019; Wu et al., 2020).

Figure 1: A traditional spoken language understanding
system.
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While high resourced languages like English
are moving towards E2E-SLU, the challenges pre-
sented by low resourced languages are very differ-
ent. Low resourced languages operate in a regime
where we have access to tens or hundreds of la-
belled utterances, which are not enough to build
robust E2E-SLU systems. Creating robust ASR
systems for low resourced languages is itself a
challenge as these require large amounts of man-
ual annotation. For many low resourced languages,
we might not even have enough data to create an
ASR technologies. Creating ASR technologies for
languages that have only a few hundred or a few
thousand speakers alive and languages that have
no written scripts, is not even a viable option. But
can we create spoken dialog systems for such lan-
guages?

In this paper, we present a series of experiments
to empirically re-create an extremely low resourced
setting where each data point becomes valuable.
We refer to this as a true k-shot setting. In this
scenario, we pose an I-class intent classification
problem (I = 2, 4) where we have a variable num-
ber speakers (S) available for recording training
data. Each speaker provides only k-utterances per
intent for training. In what we call a true k-shot set-
ting, we evaluate our system in a granular manner
for very small values of k. Specifically, we evaluate
our system foreach of k = 1,2,3,4,5,6,7. Also
in such a low resourced setting, we realistically
would not have access to an ASR system. Thus
we use Allosaurus (Li et al., 2020), a universal



phonetic transcription system that creates language
independent representations of input speech. Al-
losaurus has been shown to produce state-of-the-
art (SOTA) results for low resource languages like
Sinhala and Tamil and reaches close to SOTA for
high resourced languages like English Yadav et al.
(2021); Gupta et al. (2021). We evaluate our SLU
system on robust test sets containing hundreds of
utterances collected from multiple speakers which
are not present in the training set. We find encour-
aging performance without using language specific
ASR technologies and with very small amounts of
training data. Specifically, we find that even with
as low as 7 speakers recording 7 audio samples per
intent, we can create an SLU system that can be
deployed in the real world with simple rule based

dialog managers.
£ -

Figure 2: SLU system as proposed in (Gupta et al.,
2020a).
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2 Related Work

English has been the most widely studied language
for creating SLU systems. Various datasets have
been released to aid this development (Hemphill
et al., 1990; Saade et al., 2018; Lugosch et al.,
2019). There have been many previous works on
creating SLU systems in a two-module split fashion
(Gorin et al., 1997; Mesnil et al., 2014). A typical
SLU pipeline, as shown in Figure 1, consists of
an ASR system that converts input speech to text
and an NLU module that processes the input text
to understand the user query. As with any system
composed of multiple modules, errors that occur in
one part of the system propagate through the sys-
tem. To prevent this, a large amount of recent work
has been focussed on creating E2E-SLU systems
(Qian et al., 2017; Serdyuk et al., 2018; Chen et al.,
2018). The caveat with making such systems to
work is that they require an even larger amount of
task specific data.

One of the major bottlenecks in creating SLU
systems for low resourced languages is the creation
of ASR systems in low data scenario. Previous
works have tried to use English-based ASR systems
to convert input speech into a vector representation
that can be processed by NLU systems (Buddhika
et al., 2018; Karunanayake et al., 2019b,a). A se-

Language

Avg. Utterances per No. of Speakers in
intent in Test Set ‘ Test Set

English 135 10

Flemish ‘ 54 ‘ 2

Table 1: Test set statistics.

ries of recent works (Gupta et al., 2020b,a, 2021;
Yadav et al., 2021) replace ASR module by a univer-
sal phone recognition system called Allosaurus (Li
etal., 2020). Their proposed SLU pipeline is shown
in Figure 2. Allosaurus provides language and
speaker independent phonetic transcriptions and is
this able to provide better representations of input
audio which can also be used for languages linguis-
tically distant from high resourced languages like
English. (Gupta et al., 2021; Yadav et al., 2021)
show that using Allosaurus based phonetic tran-
scriptions to encode speech content outperforms
previous state-of-the-art methods for Sinhala and
Tamil. In our paper, we want to push Allosaurus
to the limits and demonstrate performance in ex-
tremely low resourced settings, where each data
point becomes crucial.

3 Dataset

In our paper, we work with two languages - En-
glish and Belgian Dutch (Flemish). We use two
popular SLU datasets for our experiments - the
Fluent Speech Commands (FSC) dataset (Lugosch
etal., 2019) for the English language and the Grabo
dataset (Tessema et al., 2013; Ons et al., 2014,
Renkens et al., 2014) for Flemish. FSC is a large
and well maintained SLU dataset for the English
language. The dataset contains 19 hours of speech
data collected from 97 different speakers. The
Grabo dataset contains 11 speakers and is much
smaller than FSC. We refer the reader to the origi-
nal papers releasing the datasets for further details.

The primary reason behind the choice of the
datasets was that each utterance in the two datasets
had clear speaker identities associated with them.
Our aim is to test true low resourced settings where
getting speaker recordings is extremely hard. Intent
recognition datasets in other languages like French
(Devillers et al., 2004; Saade et al., 2018), Chi-
nese Mandarin (Zhu et al., 2019; Guo et al., 2021),
Sinhala and Tamil (Karunanayake et al., 2019b)
do not maintain speaker identities and hence were
not suitable for our work. We choose Flemish to
demonstrate performance for a low-resourced lan-
guage setting since Flemish is not used to train



Allosaurus.

Moreover, these datasets also allow us to cre-
ate large test sets such that the results are robust
enough to evaluate the system performance and yet
have no overlapping speakers with the training set.
We experiment with two different intent classifica-
tion problems containing I = 2,4 intents. The test
set sizes are given in Table 1.

4 System and Model

We use the SLU system proposed in (Gupta et al.,
2020a, 2021) for our experiments, as shown in Fig-
ure 2. It replaces a language specific ASR system
with Allosaurus (Li et al., 2020), which is a uni-
versal phonetic transcription system. Allosaurus
converts input speech to its phonetic transcriptions.
We then build a word-free NLU system from these
phonetic transcriptions to perform intent recogni-
tion.

The model used in this work is very similar to the
model used in (Gupta et al., 2020a). (Gupta et al.,
2020a) propose a model which uses Convolutional
Neural Networks (CNN) (LeCun et al., 1998) to
extract contextual information from phonetic input,
and a Long-Short Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) network to make ut-
terance level decision and account for sequential
information.

We reduce the model size to account for the
scarcity of data. We use a 256-dimensional embed-
ding layer with just one CNN layer of kernel size
3 and one LSTM layer of hidden dimension 256.
Batch normalization (Ioffe and Szegedy, 2015)
layer is removed because there are scenarios where
we are working with a training set of as low as
2 samples, which are not enough to learn batch
statistics and give unstable performance.

5 Experiments

In this paper, we try to emulate a real world data
collection scenario for low resourced languages.
Data collection is expensive, even more So in ex-
tremely low resourced languages. For example,
Canadian Indigenious languages like Inuktitut or
Siksika have only a few thousand living speakers.
Native speakers of such languages are hard to catch
hold of for data collection process. This makes
every data point collected crucial.

Another challenging aspect of building SLU sys-
tems for low resourced languages is having access
to language specific ASR systems. We bypass the
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61.74
70.18
68.07
82.22
67.77
84.63
80.12

k=2
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81.62
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Table 2: Two class classification results for the FSC
(English) Dataset. Intents - ’activate kitchen lights’,
"deactivate bedroom lights’.

k=1
45.83
42.65
52.57
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59.72
69.45
73.21

k=2
58.73
55.55
74.01
75.19
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Table 3: Four class classification results for the FSC
(English) Dataset. Intents - ’activate kitchen lights’,
"deactivate bedroom lights’, ’increase washroom heat’
and ’decrease volume’.

need for language specific ASR systems by using
Allosaurus (Li et al., 2020; Gupta et al., 2020a).
We convert input audio to their language indepen-
dent phonetic transcriptions, and intent recogni-
tion is performed using this phonetic transcription.
Allosaurus was trained on the English but is not
trained on Flemish, thus recreating the scenario
where we don’t have language specific speech-to-
symbol conversion systems.

We pose two I-class intent classification prob-
lems, where I = 2, 4. The results for English are
shown in Table 2, 3 and for Flemish are shown in 4,
5. The columns of each show results for different
values of k, where k is the number of utterances
recorded by a speaker per intent. This means that if
k = 3, each speaker provided 3 recordings for each
intent, which amounts to a total of 3 % I recordings
per speaker. In general, each speaker records k& *
audios, where k is the number of audios recorded
by a speaker per intent, and [ is the number of in-
tents. The rows represent the number of speakers
(S) involved in creating the dataset.

We want to point the reader to four locations in
Tables 2, 3, 4 and 5, which describe four different
scenarios of data collection. (S = 3, k = 3) refers
to a scenario where we only use 3 speakers to create
a training set and each speaker records 3 audio sam-
ples per intent, which means we need 6 or 12 audio
samples per speaker depending on the classification
problem. In this scenario, we have just 9 training



k=1
86.11
91.66
89.81
97.22
92.59
91.66
93.51

k=2
86.11
96.29
96.29
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95.37
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96.29
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83.33 | 85.18
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9259 | 1.0
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Table 4: Two class classification results for the GRABO
(Flemish) Dataset. Intents - *approach’, ’lift’.
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k=2
54.16
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k=3
56.01

75.92
73.14
72.22
78.70
85.64
86.57

k=4
55.09
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k=5
58.33
70.83
74.53
79.16
78.24
87.03
89.81

k=6
57.87
72.22
77.31
73.61
82.87
86.11
89.35

k=17
57.40
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76.38
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89.35
90.27
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Table 5: Four class classification results for the GRABO
(Flemish) Dataset. Intents - "approach’, ’lift’, *pointer’,
‘grab’.

utterances per intent. We see that for both Flemish
and English, even (S = 3,k = 3) systems can be
deployed in the real world. By systems that can be
deployed, we mean that the performance is such
that the above SLU system can be incorporated in a
spoken dialog system in the real world with a rule
based dialog manager, confirming the recognized
intent. We also see that a (S = 3,k = 3) system is
able to generalize well to a test set with no speaker
overlap and hundreds of utterances, which are way
less than the utterances used to train the system.
(S = 3,k = 7) refers to a more involved record-
ing process where we still only have access to 3
speakers but each record 7 audio samples per intent,
which makes it 14 or 28 audio samples recorded
per speaker. In this setting, we have 21 train-
ing utterances per intent. A comparable case is
(S =7,k = 3), where we again have 21 training
utterances per intent, but with a larger number of
speakers with reduced load, each having to record
only 6 or 12 training utterances in total. We see that
for both Flemish and English, increasing the total
number of utterances per intent increases perfor-
mance. Also, keeping the number of utterances per
intent constant, increasing the number of speakers
provides better results as speaker variability adds
to the generalization capability of the model.
Finally, (S = 7,k = 7) is the most exhaustive
recording procedure presented in these experiments
with 7 speakers, where each speaker still records 7
audio samples each per intent or 14-28 audio sam-
ples depending on the classification problem. We

see that increasing the number of audio samples
per speaker (k) in general increases performance.
Increasing the number of speakers provides more
variability in the training set and allows the model
to generalize better. In a real world data collection
setting, getting more individual speakers and get-
ting each speaker to record multiple recordings are
both important variables that determine the success
of the data collection procedure.

6 Conclusion

In this paper, we provide a series of experiments
that empirically recreate a real world setting of
building spoken dialog systems for extremely low
resourced scenarios - where we don’t even have
access to speech to text conversion technologies.
To overcome this problem, we use Allosaurus to
convert speech into its phonetic transcription which
we vectorize and use as inputs to our model. In
such a setting, collecting annotated data can be
difficult, thus making every collected data point
crucial. To see if we can build SLU systems in such
settings, we present intent classification results at
a granularity where we see the effects changing
the number of speakers and utterances recorded
by each speaker. We see encouraging results and
find that even with as low as 7 speakers recording 7
utterances per intent, we can create real world SLU
systems. Through this paper, we want to push the
exploration in building spoken dialog systems in
extremely low resourced settings and our work is
a step in that direction. Note that we haven’t used
any data augmentation methods yet which would
further boost the performance of our systems.

Allosaurus is a nearly universal phone recogni-
tion system creating language and speaker inde-
pendent representations, thus we can expect similar
performance on other languages for tasks of similar
complexities, as has been observed for languages
like Sinhala and Tamil in previous works (Gupta
et al., 2021; Yadav et al., 2021). A possible consid-
eration for the system to work is the task complex-
ity. Usual Intent recognition tasks like the ones in
the FSC and Grabo dataset have relatively shorter
token sequences, where each utterance is between
2-5 words long. More complex tasks with longer
and more confusing utterances might require more
data for disambiguation of intents.
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A Implementation Details

All models are trained using the NVIDIA GeForce
GTX 1070 GPU using python3.7. The training is
very quick due to the small dataset sizes, with each
epoch taking 1-2 seconds. For each experiment, a
validation set identical to the test set was used. For
the FSC dataset, the validation set had 10 speakers
with no speaker overlap with the training or the
test set. Similarly for the GRABO dataset, the
validation set had 2 speakers that were not present
in the training or the test set. Each experiment in
Tables 2-5 was repeated 3 times and the maximum
accuracy has been reported.

As mentioned in section 4, we use a
CNN+LSTM architecture, as proposed in (Gupta
et al., 2020a). We performed a grid search over
various parameters of the architecture. The best
performing models varied slightly for each experi-
ment. The exact model parameters for the results
reported in Tables 2-5 are shown in Table 6. For
larger amounts of utterances recorded per speaker,
we found better results with 2 LSTM layers instead
of one.

Model Parameters Value
Embedding Size 256
CNN kernel size 3

No. of CNN filters 256

No. of LSTM layers 1 (or?2)

LSTM hidden size 256

Batch Normalization False

Table 6: Model Parameters



