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Abstract

Spoken dialog systems are slowly becoming001
and integral part of the human experience due002
to their various advantages over textual inter-003
faces. Spoken language understanding (SLU)004
systems are fundamental building blocks of spo-005
ken dialog systems. But creating SLU systems006
for low resourced languages is still a challenge.007
In a large number of low resourced settings008
we don’t have access to enough data to build009
automatic speech recognition (ASR) technolo-010
gies, which are fundamental to any SLU system.011
Also, ASR based SLU systems do not general-012
ize to unwritten languages. In this paper, we013
present a series of experiments to explore an ex-014
tremely low resourced setting - something we015
refer to as a true k-shot setting, where we per-016
form intent classification with systems trained017
on different values of k. We test our system018
on English and Flemish and find that even in019
such granular settings and no language specific020
ASR technology, we can create SLU systems021
that can be deployed in the real world.022

1 Introduction023

Spoken Language Understanding (SLU) systems024

form an integral part of spoken dialog systems. As025

shown in figure 1, a traditional SLU pipeline is026

made up of two modules - a speech to text mod-027

ule which converts input user audio into textual028

transcripts, and a natural language understanding029

(NLU) module which aims to understand the se-030

mantic content in the user utterance from the tex-031

tual transcripts (Tur and De Mori, 2011; Lugosch032

et al., 2019). The conventional two-module SLU033

pipeline is prone to making ASR errors which prop-034

agate throughout the system. To minimize the au-035

tomatic speech recognition (ASR) errors, a lot of036

recent research has been focused on creating end-037

to-end spoken language understanding (E2E-SLU)038

systems (Qian et al., 2017; Serdyuk et al., 2018).039

But building these E2E-SLU systems requires an040

even larger amount of annotated data when com-041

pared to two-module split SLU pipelines (Lugosch 042

et al., 2019; Wu et al., 2020). 043

Figure 1: A traditional spoken language understanding
system.

While high resourced languages like English 044

are moving towards E2E-SLU, the challenges pre- 045

sented by low resourced languages are very differ- 046

ent. Low resourced languages operate in a regime 047

where we have access to tens or hundreds of la- 048

belled utterances, which are not enough to build 049

robust E2E-SLU systems. Creating robust ASR 050

systems for low resourced languages is itself a 051

challenge as these require large amounts of man- 052

ual annotation. For many low resourced languages, 053

we might not even have enough data to create an 054

ASR technologies. Creating ASR technologies for 055

languages that have only a few hundred or a few 056

thousand speakers alive and languages that have 057

no written scripts, is not even a viable option. But 058

can we create spoken dialog systems for such lan- 059

guages? 060

In this paper, we present a series of experiments 061

to empirically re-create an extremely low resourced 062

setting where each data point becomes valuable. 063

We refer to this as a true k-shot setting. In this 064

scenario, we pose an I-class intent classification 065

problem (I = 2, 4) where we have a variable num- 066

ber speakers (S) available for recording training 067

data. Each speaker provides only k-utterances per 068

intent for training. In what we call a true k-shot set- 069

ting, we evaluate our system in a granular manner 070

for very small values of k. Specifically, we evaluate 071

our system for each of k = 1, 2, 3, 4, 5, 6, 7. Also 072

in such a low resourced setting, we realistically 073

would not have access to an ASR system. Thus 074

we use Allosaurus (Li et al., 2020), a universal 075
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phonetic transcription system that creates language076

independent representations of input speech. Al-077

losaurus has been shown to produce state-of-the-078

art (SOTA) results for low resource languages like079

Sinhala and Tamil and reaches close to SOTA for080

high resourced languages like English Yadav et al.081

(2021); Gupta et al. (2021). We evaluate our SLU082

system on robust test sets containing hundreds of083

utterances collected from multiple speakers which084

are not present in the training set. We find encour-085

aging performance without using language specific086

ASR technologies and with very small amounts of087

training data. Specifically, we find that even with088

as low as 7 speakers recording 7 audio samples per089

intent, we can create an SLU system that can be090

deployed in the real world with simple rule based091

dialog managers.092

Figure 2: SLU system as proposed in (Gupta et al.,
2020a).

2 Related Work093

English has been the most widely studied language094

for creating SLU systems. Various datasets have095

been released to aid this development (Hemphill096

et al., 1990; Saade et al., 2018; Lugosch et al.,097

2019). There have been many previous works on098

creating SLU systems in a two-module split fashion099

(Gorin et al., 1997; Mesnil et al., 2014). A typical100

SLU pipeline, as shown in Figure 1, consists of101

an ASR system that converts input speech to text102

and an NLU module that processes the input text103

to understand the user query. As with any system104

composed of multiple modules, errors that occur in105

one part of the system propagate through the sys-106

tem. To prevent this, a large amount of recent work107

has been focussed on creating E2E-SLU systems108

(Qian et al., 2017; Serdyuk et al., 2018; Chen et al.,109

2018). The caveat with making such systems to110

work is that they require an even larger amount of111

task specific data.112

One of the major bottlenecks in creating SLU113

systems for low resourced languages is the creation114

of ASR systems in low data scenario. Previous115

works have tried to use English-based ASR systems116

to convert input speech into a vector representation117

that can be processed by NLU systems (Buddhika118

et al., 2018; Karunanayake et al., 2019b,a). A se-119

Language Avg. Utterances per
intent in Test Set

No. of Speakers in
Test Set

English 135 10
Flemish 54 2

Table 1: Test set statistics.

ries of recent works (Gupta et al., 2020b,a, 2021; 120

Yadav et al., 2021) replace ASR module by a univer- 121

sal phone recognition system called Allosaurus (Li 122

et al., 2020). Their proposed SLU pipeline is shown 123

in Figure 2. Allosaurus provides language and 124

speaker independent phonetic transcriptions and is 125

this able to provide better representations of input 126

audio which can also be used for languages linguis- 127

tically distant from high resourced languages like 128

English. (Gupta et al., 2021; Yadav et al., 2021) 129

show that using Allosaurus based phonetic tran- 130

scriptions to encode speech content outperforms 131

previous state-of-the-art methods for Sinhala and 132

Tamil. In our paper, we want to push Allosaurus 133

to the limits and demonstrate performance in ex- 134

tremely low resourced settings, where each data 135

point becomes crucial. 136

3 Dataset 137

In our paper, we work with two languages - En- 138

glish and Belgian Dutch (Flemish). We use two 139

popular SLU datasets for our experiments - the 140

Fluent Speech Commands (FSC) dataset (Lugosch 141

et al., 2019) for the English language and the Grabo 142

dataset (Tessema et al., 2013; Ons et al., 2014; 143

Renkens et al., 2014) for Flemish. FSC is a large 144

and well maintained SLU dataset for the English 145

language. The dataset contains 19 hours of speech 146

data collected from 97 different speakers. The 147

Grabo dataset contains 11 speakers and is much 148

smaller than FSC. We refer the reader to the origi- 149

nal papers releasing the datasets for further details. 150

The primary reason behind the choice of the 151

datasets was that each utterance in the two datasets 152

had clear speaker identities associated with them. 153

Our aim is to test true low resourced settings where 154

getting speaker recordings is extremely hard. Intent 155

recognition datasets in other languages like French 156

(Devillers et al., 2004; Saade et al., 2018), Chi- 157

nese Mandarin (Zhu et al., 2019; Guo et al., 2021), 158

Sinhala and Tamil (Karunanayake et al., 2019b) 159

do not maintain speaker identities and hence were 160

not suitable for our work. We choose Flemish to 161

demonstrate performance for a low-resourced lan- 162

guage setting since Flemish is not used to train 163
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Allosaurus.164

Moreover, these datasets also allow us to cre-165

ate large test sets such that the results are robust166

enough to evaluate the system performance and yet167

have no overlapping speakers with the training set.168

We experiment with two different intent classifica-169

tion problems containing I = 2,4 intents. The test170

set sizes are given in Table 1.171

4 System and Model172

We use the SLU system proposed in (Gupta et al.,173

2020a, 2021) for our experiments, as shown in Fig-174

ure 2. It replaces a language specific ASR system175

with Allosaurus (Li et al., 2020), which is a uni-176

versal phonetic transcription system. Allosaurus177

converts input speech to its phonetic transcriptions.178

We then build a word-free NLU system from these179

phonetic transcriptions to perform intent recogni-180

tion.181

The model used in this work is very similar to the182

model used in (Gupta et al., 2020a). (Gupta et al.,183

2020a) propose a model which uses Convolutional184

Neural Networks (CNN) (LeCun et al., 1998) to185

extract contextual information from phonetic input,186

and a Long-Short Term Memory (LSTM) (Hochre-187

iter and Schmidhuber, 1997) network to make ut-188

terance level decision and account for sequential189

information.190

We reduce the model size to account for the191

scarcity of data. We use a 256-dimensional embed-192

ding layer with just one CNN layer of kernel size193

3 and one LSTM layer of hidden dimension 256.194

Batch normalization (Ioffe and Szegedy, 2015)195

layer is removed because there are scenarios where196

we are working with a training set of as low as197

2 samples, which are not enough to learn batch198

statistics and give unstable performance.199

5 Experiments200

In this paper, we try to emulate a real world data201

collection scenario for low resourced languages.202

Data collection is expensive, even more so in ex-203

tremely low resourced languages. For example,204

Canadian Indigenious languages like Inuktitut or205

Siksika have only a few thousand living speakers.206

Native speakers of such languages are hard to catch207

hold of for data collection process. This makes208

every data point collected crucial.209

Another challenging aspect of building SLU sys-210

tems for low resourced languages is having access211

to language specific ASR systems. We bypass the212

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 61.74 77.10 72.89 71.38 83.73 82.53 85.94
S = 2 70.18 81.62 82.22 86.14 91.56 87.34 87.75
S = 3 68.07 85.84 82.83 87.65 87.34 90.60 90.97
S = 4 82.22 85.24 81.62 89.75 86.74 90.36 90.60
S = 5 67.77 82.22 87.04 93.07 91.86 94.57 93.97
S = 6 84.63 84.63 86.74 92.77 92.77 92.16 92.77
S = 7 80.12 88.89 89.45 92.77 91.86 94.45 94.27

Table 2: Two class classification results for the FSC
(English) Dataset. Intents - ’activate kitchen lights’,
’deactivate bedroom lights’.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 45.83 58.73 47.42 61.11 57.53 54.56 64.88
S = 2 42.65 55.55 56.15 66.86 73.81 72.42 76.67
S = 3 52.57 74.01 73.21 67.26 78.76 80.35 85.11
S = 4 53.57 75.19 73.81 78.37 76.98 83.13 84.72
S = 5 59.72 68.25 75.79 80.55 83.53 80.75 83.73
S = 6 69.45 74.61 78.37 81.54 85.31 82.73 86.31
S = 7 73.21 72.22 80.75 85.51 86.90 84.12 88.49

Table 3: Four class classification results for the FSC
(English) Dataset. Intents - ’activate kitchen lights’,
’deactivate bedroom lights’, ’increase washroom heat’
and ’decrease volume’.

need for language specific ASR systems by using 213

Allosaurus (Li et al., 2020; Gupta et al., 2020a). 214

We convert input audio to their language indepen- 215

dent phonetic transcriptions, and intent recogni- 216

tion is performed using this phonetic transcription. 217

Allosaurus was trained on the English but is not 218

trained on Flemish, thus recreating the scenario 219

where we don’t have language specific speech-to- 220

symbol conversion systems. 221

We pose two I-class intent classification prob- 222

lems, where I = 2, 4. The results for English are 223

shown in Table 2, 3 and for Flemish are shown in 4, 224

5. The columns of each show results for different 225

values of k, where k is the number of utterances 226

recorded by a speaker per intent. This means that if 227

k = 3, each speaker provided 3 recordings for each 228

intent, which amounts to a total of 3 ∗ I recordings 229

per speaker. In general, each speaker records k ∗ I 230

audios, where k is the number of audios recorded 231

by a speaker per intent, and I is the number of in- 232

tents. The rows represent the number of speakers 233

(S) involved in creating the dataset. 234

We want to point the reader to four locations in 235

Tables 2, 3, 4 and 5, which describe four different 236

scenarios of data collection. (S = 3, k = 3) refers 237

to a scenario where we only use 3 speakers to create 238

a training set and each speaker records 3 audio sam- 239

ples per intent, which means we need 6 or 12 audio 240

samples per speaker depending on the classification 241

problem. In this scenario, we have just 9 training 242
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 86.11 86.11 90.74 97.22 83.33 85.18 88.88
S = 2 91.66 96.29 95.37 96.29 96.29 98.14 94.44
S = 3 89.81 96.29 98.14 96.29 92.59 1.0 98.14
S = 4 97.22 92.59 94.44 98.14 97.22 98.14 97.22
S = 5 92.59 95.37 94.44 92.59 98.14 97.22 99.07
S = 6 91.66 96.29 96.29 97.22 99.07 97.22 97.22
S = 7 93.51 95.37 98.14 98.14 97.22 98.14 1.0

Table 4: Two class classification results for the GRABO
(Flemish) Dataset. Intents - ’approach’, ’lift’.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 56.48 54.16 56.01 55.09 58.33 57.87 57.40
S = 2 67.12 71.29 75.92 75.92 70.83 72.22 82.40
S = 3 74.07 72.22 73.14 73.14 74.53 77.31 76.38
S = 4 69.90 72.22 72.22 73.14 79.16 73.61 80.09
S = 5 65.74 75.00 78.70 79.16 78.24 82.87 80.09
S = 6 73.61 80.09 85.64 84.25 87.03 86.11 89.35
S = 7 81.48 81.94 86.57 86.11 89.81 89.35 90.27

Table 5: Four class classification results for the GRABO
(Flemish) Dataset. Intents - ’approach’, ’lift’, ’pointer’,
’grab’.

utterances per intent. We see that for both Flemish243

and English, even (S = 3, k = 3) systems can be244

deployed in the real world. By systems that can be245

deployed, we mean that the performance is such246

that the above SLU system can be incorporated in a247

spoken dialog system in the real world with a rule248

based dialog manager, confirming the recognized249

intent. We also see that a (S = 3, k = 3) system is250

able to generalize well to a test set with no speaker251

overlap and hundreds of utterances, which are way252

less than the utterances used to train the system.253

(S = 3, k = 7) refers to a more involved record-254

ing process where we still only have access to 3255

speakers but each record 7 audio samples per intent,256

which makes it 14 or 28 audio samples recorded257

per speaker. In this setting, we have 21 train-258

ing utterances per intent. A comparable case is259

(S = 7, k = 3), where we again have 21 training260

utterances per intent, but with a larger number of261

speakers with reduced load, each having to record262

only 6 or 12 training utterances in total. We see that263

for both Flemish and English, increasing the total264

number of utterances per intent increases perfor-265

mance. Also, keeping the number of utterances per266

intent constant, increasing the number of speakers267

provides better results as speaker variability adds268

to the generalization capability of the model.269

Finally, (S = 7, k = 7) is the most exhaustive270

recording procedure presented in these experiments271

with 7 speakers, where each speaker still records 7272

audio samples each per intent or 14-28 audio sam-273

ples depending on the classification problem. We274

see that increasing the number of audio samples 275

per speaker (k) in general increases performance. 276

Increasing the number of speakers provides more 277

variability in the training set and allows the model 278

to generalize better. In a real world data collection 279

setting, getting more individual speakers and get- 280

ting each speaker to record multiple recordings are 281

both important variables that determine the success 282

of the data collection procedure. 283

6 Conclusion 284

In this paper, we provide a series of experiments 285

that empirically recreate a real world setting of 286

building spoken dialog systems for extremely low 287

resourced scenarios - where we don’t even have 288

access to speech to text conversion technologies. 289

To overcome this problem, we use Allosaurus to 290

convert speech into its phonetic transcription which 291

we vectorize and use as inputs to our model. In 292

such a setting, collecting annotated data can be 293

difficult, thus making every collected data point 294

crucial. To see if we can build SLU systems in such 295

settings, we present intent classification results at 296

a granularity where we see the effects changing 297

the number of speakers and utterances recorded 298

by each speaker. We see encouraging results and 299

find that even with as low as 7 speakers recording 7 300

utterances per intent, we can create real world SLU 301

systems. Through this paper, we want to push the 302

exploration in building spoken dialog systems in 303

extremely low resourced settings and our work is 304

a step in that direction. Note that we haven’t used 305

any data augmentation methods yet which would 306

further boost the performance of our systems. 307

Allosaurus is a nearly universal phone recogni- 308

tion system creating language and speaker inde- 309

pendent representations, thus we can expect similar 310

performance on other languages for tasks of similar 311

complexities, as has been observed for languages 312

like Sinhala and Tamil in previous works (Gupta 313

et al., 2021; Yadav et al., 2021). A possible consid- 314

eration for the system to work is the task complex- 315

ity. Usual Intent recognition tasks like the ones in 316

the FSC and Grabo dataset have relatively shorter 317

token sequences, where each utterance is between 318

2-5 words long. More complex tasks with longer 319

and more confusing utterances might require more 320

data for disambiguation of intents. 321
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A Implementation Details459

All models are trained using the NVIDIA GeForce460

GTX 1070 GPU using python3.7. The training is461

very quick due to the small dataset sizes, with each462

epoch taking 1-2 seconds. For each experiment, a463

validation set identical to the test set was used. For464

the FSC dataset, the validation set had 10 speakers465

with no speaker overlap with the training or the466

test set. Similarly for the GRABO dataset, the467

validation set had 2 speakers that were not present468

in the training or the test set. Each experiment in469

Tables 2-5 was repeated 3 times and the maximum470

accuracy has been reported.471

As mentioned in section 4, we use a472

CNN+LSTM architecture, as proposed in (Gupta473

et al., 2020a). We performed a grid search over474

various parameters of the architecture. The best475

performing models varied slightly for each experi-476

ment. The exact model parameters for the results477

reported in Tables 2-5 are shown in Table 6. For478

larger amounts of utterances recorded per speaker,479

we found better results with 2 LSTM layers instead480

of one.481

Model Parameters Value
Embedding Size 256
CNN kernel size 3

No. of CNN filters 256
No. of LSTM layers 1 ( or 2)
LSTM hidden size 256

Batch Normalization False

Table 6: Model Parameters
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