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Abstract

Reinforcement learning (RL) problems where
the learner attempts to infer an unobserved re-
ward from some feedback variables have been
studied in several recent papers. The setting of
Interaction-Grounded Learning (IGL) is an exam-
ple of such feedback-based RL tasks where the
learner optimizes the return by inferring latent
binary rewards from the interaction with the en-
vironment. In the IGL setting, a relevant assump-
tion used in the RL literature is that the feedback
variable Y is conditionally independent of the
context-action (X, A) given the latent reward R.
In this work, we propose Variational Information-
based IGL (VI-IGL) as an information-theoretic
method to enforce the conditional independence
assumption in the IGL-based RL problem. The
VI-IGL framework learns a reward decoder using
an information-based objective based on the con-
ditional mutual information (MI) between (X, A)
and Y. To estimate and optimize the information-
based terms for the continuous random variables
in the RL problem, VI-IGL leverages the vari-
ational representation of mutual information to
obtain a min-max optimization problem. Also,
we extend the VI-IGL framework to general f-
Information measures leading to the generalized
f-VI-IGL framework for the IGL-based RL prob-
lems. We present numerical results on several
reinforcement learning settings indicating an im-
proved performance compared to the existing
IGL-based RL algorithm.

1. Introduction

In several applications of reinforcement learning (RL) al-
gorithms, the involved agent lacks complete knowledge of
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the reward variable, e.g. in applications concerning brain-
computer interface (BCI) (Schalk et al., 2004; Serrhini &
Dargham, 2017) and recommender systems (Maghakian
et al., 2023). In such RL settings, the lack of an explicit
reward could lead to a challenging learning task where the
learner needs to infer the unseen reward from observed
feedback variables. The additional inference task for the
reward variable could significantly raise the computational
and statistical complexity of the RL problem. Due to the
great importance of addressing such RL problems with a
misspecified reward variable, they have been exclusively
studied in several recent papers (Xie et al., 2021b; 2022;
Maghakian et al., 2023).

To handle the challenges posed by a misspecified reward
variable, Xie et al. (2021b; 2022) propose the Interaction-
Grounded Learning (IGL) framework. According to the
IGL framework, the agent observes a multidimensional con-
text vector based on which she takes an action. Then, the
environment generates a latent 0-1 reward and reveals a
multidimensional feedback vector to the agent. The agent
aims to maximize the (unobserved) return by inferring re-
wards from the interaction, a sub-task which needs to be
solved based on the assumptions on the relationship between
reward and feedback variables.

As aresult, the key to addressing the IGL-based RL problem
is a properly inferred reward decoder v € ¥, which maps a
context-action-feedback tuple (X, 4,Y) € X x A x Y to
a prediction of the posterior probability on the latent reward
R. Given such a reward decoder, the optimal policy can be
obtained using standard contextual bandit algorithms (Lang-
ford & Zhang, 2007; Dudik et al., 2014). However, such
a reward decoder will be information-theoretically infea-
sible to learn without additional assumptions (Xie et al.,
2022). Consequently, the existing works on the IGL set-
ting (Xie et al., 2021b; 2022) make relevant assumptions on
the statistical relationship between the random variables of
context X, action A, feedback Y, and latent reward R. In
particular, a sensible assumption on the connection between
X, A,Y, R is the following conditional independence as-
sumption proposed by Xie et al. (2021b) (The causal graph
is given in Figure 1.):

Assumption 1 (Full conditional independence). For ar-
bitrary (X, A, R,Y) tuple where R and Y are generated
based on the context-action pair (X, A), the feedback Y
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is conditionally independent of X and A given the latent
reward R, i.e., Y 1 X, A|R.

@/

Figure 1. Causal graph of IGL under the full conditional indepen-
dence assumption.

In the work of Xie et al. (2021b), a reward decoder v :
Y — [0,1] takes the feedback Y € Y as input and out-
puts a prediction of the posterior distribution P(R = 1|Y").
Their proposed approach performs a joint training of the
policy and the decoder by maximizing the difference in the
decoded return between the learned policy and a “bad” pol-
icy that is known to have a low (true) return. They show
that a properly inferred reward decoder can be learned sta-
tistically efficiently when: (i) the full conditional indepen-
dence assumption 1 strictly holds, and (ii) the distributions
P(Y|R = 0) and P(Y'|R = 1) of the feedback variable Y’
conditioned to the latent reward can be well separated (Xie
et al., 2021b, Assumption 2). However, these conditions
are quite restricted in practice, where the observation of the
feedback variable is often under significant noise levels, e.g.
in the BCI application. In such noisy settings, Assumption 1
may still hold under an independent noise from the dis-
cussed random variables or may not hold when the noise is
correlated with the context or action variables. On the other
hand, it can be much more difficult to distinguish between
the feedback distributions conditioned to the latent reward.
Consequently, the discussed IGL-based methods may no
longer achieve optimal results under such noisy feedback
conditions.

In this paper, we attempt to address the mentioned chal-
lenges in the IGL-based RL problem and propose Varia-
tional Information-based IGL (VI-IGL) as an information-
theoretic approach to IGL-based RL tasks. The proposed
VI-IGL methodology is based on the properties of informa-
tion measures that allow measuring the dependence among
random variables. According to these properties, Assump-
tion 1 will hold, i.e., the feedback variable Y is conditionally
independent of the context-action (X, A) given the latent
reward R, if and only if the conditional mutual informa-
tion (CMI) I(Y; X, A|R) is zero. Therefore, we suggest an
information bottleneck-based approach (Tishby et al., 2000)
and propose to learn a reward decoder via the following
information-based objective value where 5 > 0 is a tuning

parameter and R, is the random decoded reward from :

argmin{/(Y; X, A|Ry) — B-I(X,A; Ry)} (1)
Ppew

Intuitively, minimizing the first term I(Y; X, A|Ry) en-
sures that the solved reward decoder satisfies the full con-
ditional independence assumption. In addition, the second
term I (Ry; X, A) serves as a regularization term ruling out
naive reward decoders.

Nevertheless, the objective function in (1) is challenging
to optimize, since a first-order optimization of this objec-
tive requires estimating the value and derivatives of the MI
for continuous random variables of the context X and the
feedback Y. To handle this challenge, we leverage the vari-
ational representation of MI (Donsker & Varadhan, 1983;
Nguyen et al., 2010) and cast Objective (1) as a min-max
optimization problem that gradient-based algorithms can
efficiently solve. Using the variational formulation of the
information-based objective, we propose the Variational
Information-based IGL (VI-IGL) minimax learning algo-
rithm for solving the IGL-based RL problem. The VI-IGL
method applies the standard gradient descent ascent algo-
rithm to optimize the min-max optimization problem fol-
lowing the variational formulation of the problem.

We numerically evaluate the proposed VI-IGL method on
several RL tasks. Our empirical results suggest that VI-
IGL can perform better than the baseline IGL RL algorithm
in the presence of a noisy feedback variable. The main
contributions of this paper can be summarized as:

1. We propose an information-theoretic approach to the
IGL-based RL problem, which learns a reward decoder
by minimizing an information-based objective function.

2. To handle the challenges in estimating and optimizing
(f-)MI for continuous random variables, we leverage the
variational representation and formulate our objective as
a min-max optimization problem, which can be solved
via gradient-based optimization methods. We show that
the optimal value can be sample-efficiently learned.

3. We extend the proposed approach to f-Variational
Information-based IGL (f-VI-IGL), leading to a fam-
ily of algorithms to solve the IGL-based RL task.

4. We provide empirical results indicating that f-VI-IGL
performs successfully compared to existing IGL-based
RL algorithms.

2. Related Works

Interaction-Grounded Learning (IGL). The framework of
IGL is proposed by Xie et al. (2021b) to tackle learning sce-
narios without explicit reward. At each round, the agent ob-
serves a multidimensional context, takes an action, and then
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the environment generates a latent 0-1 reward and outputs
a multidimensional feedback. The agent aims to optimize
the expected return by observing only the context-action-
feedback tuple during the interaction. When the feedback is
independent of both the context and the action given the la-
tent reward (full conditional independence), Xie et al. show
that the optimal policy can be sample-efficiently learned
with additional assumptions. To relax the full conditional in-
dependence requirement, Xie et al. (2022) introduce Action-
Inclusive IGL, where the feedback can depend on both the
latent reward and the action. They propose a contrastive
learning objective and show that the latent reward can be
decoded under a symmetry-breaking procedure. Recently,
Maghakian et al. (2023) apply the IGL paradigm with a
multi-state latent reward to online recommender systems.
Their proposed algorithm is able to learn personalized re-
wards and show empirical success.

Information-Theoretic Reinforcement Learning Algo-
rithms. Reinforcement learning (RL) is a well-established
framework for agents’ decision-making in an unknown envi-
ronment (Sutton & Barto, 2018). Several recent works focus
on designing RL algorithms by exploiting the information-
related structures in the learning setting. To perform ex-
ploration and sample-efficient learning, Russo and Van
Roy (2014) propose information-directed sampling (IDS),
where the agent takes actions that either with a small regret
or yield large information gain, which is measured by the
mutual information between the optimal action and the next
observation. They show that IDS preserves numerous the-
oretical guarantees of Thompson sampling while offering
strong performance in the face of more complex problems.
In addition, information-theoretic approaches have been
applied for skills discovery in machine learning contexts.
Gregor, Rezende, and Wierstra (2016) introduce variational
intrinsic control (VIC), which discovers useful and diverse
behaviors (i.e., options) by maximizing the mutual informa-
tion between the options and termination states. A setting
that is close to our paper is using information-based method-
ology to learn reward functions in inverse reinforcement
learning (IRL) (Ng & Russell, 2000). Levine, Popovi¢, and
Koltun (2011) propose to learn a cost function by maximiz-
ing the entropy between the corresponding optimal policy
and human demonstrations. However, IGL is different from
this setting, since it does not make any assumptions on the
optimality of the observed behavior.

Estimation of Mutual Information (MI). Mutual informa-
tion (MI) is a fundamental information-theoretic quantity
that measures “the amount of information” between random
variables. However, estimating MI in continuous settings
is statistically and computationally challenging (Gao et al.,
2015). Building upon the well-known characterization of
the MI as the Kullback-Leibler (KL-) divergence (Kullback,
1997), recent works propose to use the variational repre-

sentation of MI for its estimation and more generally for
f- divergences (Nguyen et al., 2010; Belghazi et al., 2018;
Molavipour et al., 2020). We note that estimating mutual in-
formation in high-dimensional setting is subject to the curse
of dimensionality as discussed in the related papers (Panin-
ski, 2003b; Poole et al., 2019; Song & Ermon, 2020). On
the other hand, the neural net based variational estimator of
mutual information seems to generalize well in practical nu-
merical experiments. Studying the generalization properties
of such deep variational estimators of information measures
is an interesting subject for future studies. In addition, we
note an extra challenge in our analysis is to estimate the
conditional mutual information given a latent variable that
has not been addressed in the mentioned related works.

3. Preliminaries
3.1. Interaction-Grounded Learning (IGL)

In the Interaction-Grounded Learning (IGL) paradigm, at
each round, a multidimensional context x € X is drawn
from a distribution d; and is revealed to the agent. Upon
observing z, the agent takes action a € A from a finite ac-
tion space. Let A g denote the probability simplex on space
S. Given the context-action pair (z, a), the environment
generates a latent and binary reward r ~ R(x,a) € Ago,1y
and returns a multidimensional feedback y € ) to the agent.
It can be seen that IGL recovers a contextual bandit (CB)
problem (Langford & Zhang, 2007) if the reward is ob-
served. Letm € IT : X — A4 denote any stochastic
policy. The expected return of policy 7 is given by V' (7) :=
EzndoEamn(.|2)[14(2, a)], where pu(z, a) is the expected (la-
tent) reward of any context-action pair (z,a) € X x A. We
consider batch mode learning, where the agent has access to
a dataset {(zx, ax, yx) H<_, collected by the behavior policy
m : X — Ay, where xi ~ do, ar ~ 7(-|xy), and yy is the
stochastic feedback. The agent aims to learn the optimal
policy, that is, 7* := arg max, oy V() while only observ-
ing the context-action-feedback tuple (z, a, y) at each round
of interaction.

3.2. (f-)Conditional Mutual Information

The (f-)mutual information (MI) (Ali & Silvey, 1966) is a
standard measure of dependence between random variables
in information theory. Formally, let f : R, — R be a
convex function satisfying f(1) = 0. The f-MI (Csiszar,
1967) between a pair of random variables Z; and Zj is given
by

1§(Z1; Z3) := D§(Pz, 2, [Pz, ® Pz,). @

In this definition, D (P||Q) denotes the f-divergence be-
tween distributions P and Q defined as

D;(P|[Q) = Eq [f <3<g)]
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Note that the standard KL-based conditional mutual in-
formation, which is denoted by I(Z1;Z), is given by
f(x) = xlog z. Another popular f-divergence is Pearson-
x? (Peason, 1900), where f(z) = (z — 1)2. An important
property of f-MI is that two random variables 77, Z- are
statistically independent if and only I;(Z1; Z2) = 0, and
hence dependence among between random variables can be
measured via an f-mutual information.

Furthermore, the f-conditional MI (Csiszar, 1967) between
a pair of random variables Z; and Z> when Z3 is observed
can be defined as

If(Zla Z2|Z3) = Df(P21Z2|Z3||]P>Z2\Za ®P21|Z3)' (3)

Similarly, the standard KL-based conditional mutual in-
formation, denoted by I(Z;; Z5|Z3), is given by f(x) =
x log z. One useful property of the f-CMI is that, if Z; is
conditionally independent of Z5 given Z3 then it holds that
If(Zl; ZQ|Z3) =0.

4. Variational Information-Based IGL

In this section, we derive an information-theoretic formu-
lation for the IGL-based RL problem. As discussed ear-
lier, in information theory, a standard measure of the (con-
ditional) dependence between random variables is (con-
ditional) mutual information (MI). Particularly, Assump-
tion 1 (i.e., Y L X, A|R) is equivalent to that the condi-
tional MI between the context-action (X, A) and the feed-
back variable Y is zero given the latent reward R, i.e.,
I(Y; X, A|R) = 0. However, training a reward decoder
by minimizing the conditional mutual information can ei-
ther learn undesired causal structures or “overfit” to the
feedback variable, which may underperform in the IGL set-
ting. We defer the detailed discussion to Section 4.1. Hence,
we propose an information-theoretic objective function to
learn a reward decoder ) € ¥ : X x A x Y — [0,1]
argmin{/(Y; X, A|Ry) — 8- I1(X, A; Ry)}  (4)
pew
where 3 > 0 is a tunable hyperparameter. In the optimiza-
tion of the above objective function, minimizing the first
term I(Y; X, A|R,) guides the reward decoder to satisfy
the conditional independence assumption. Furthermore, as
the feedback variable is often under significant noise levels
in practice, the second term I(X, A; R,;) will play the role
of a regularization term improving the robustness of the
learned reward decoder against the noisy feedback. (The
detailed discussion can be found in Appendix A.)

To handle the continuous random variables of the context
X and the feedback Y, we leverage the variational repre-
sentation of the mutual information (Nguyen et al., 2010;
Belghazi et al., 2018) and reduce (4) to the following varia-
tional information-based IGL (VI-IGL) optimization prob-
lem. Here, we first present a min-max formulation for the

above information-based optimization problem and a sam-
ple complexity bound for the resulting RL algorithm. Later
in Section 4.2, we explain the steps in the proof.

Theorem 1 (VI-IGL optimization problem). Objective (4)

argmin{I(Y: X, A|R,) — 8- I(X, A; R,)}
PeW

is equivalent to the following optimization problem:

in £(4) = i {E G
arg Imin () = max min | Epy 1y, [G]

- EPY‘RW ®]P’XAR¢ [eG] (5)
-B- (EPXARw [T] - ]EPXA(X)PRw [GT}) }

where G € G : X X Ax Y x{0,1} > RandT € T :
X x A x {0,1} — R are two function classes.

Algorithm 1 Variational Information-based IGL (VI-IGL)

Require: dataset Dyin = {(@k, ar, yr)}_,, parameter
B > 0, reward decoder class ¥ = {iy}gco, esti-
mators G = {G,, }wreq, and T = {1, }w,eq, Of
I(Y; X, A|Ry) and I(X, A; Ry), respectively.

1: forepochk=1,2,--- | K do

: Sample a mini-batch Dyyipi ~ thra,-n.

3:  Estimate the objective value L£(1) given by Equa-

tion (5).
4:  Update the parameters

w1 w1 +1- Ve, L(¥)
W < Wo — % . vaz(lﬁ)
0 0—n- VoLl(V)

where 7 is the learning rate.
end for
: Train a policy 7 via an offline contextual bandit oracle.
: Output: Policy 7.

The inner level of the VI-IGL optimization problem mini-
mizes over function class 7 to estimate I(X, A; Ry), the
medium level maximizes over function class G to estimate
I(Y; X, A|Ry), and the outer level minimizes over class ¥
to find the appropriate reward decoder.

Finally, as learning in IGL requires interaction with the
environment, which can be expensive in practice, we provide
theoretical guarantees for the VI-IGL optimization problem
and show that the optimal objective value can be sample-
efficiently learned. (The detailed proof can be found in
Appendix B.)

Theorem 2 (Sample complexity). Consider a feedback-
dependent reward decoder class V such that 1)(y) € [c,1 —
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c| forany ) € Wandy € Y, where c € (0, ). Suppose the
function classes T and G are bounded by B < oc. Then,
forany 6 € (0,1, given a dataset D = {(zy, ar, yx) 1y
collected by the behavior policy T, : X — A 4, there exists
an algorithm such that the solved reward decoder 1 from
the optimization problem (5) satisfies that

<max{1,8}-O <(1;0)2

C(Vp, B) |V%ldy, g
\/ % log ( ; ))

where L* := minycy L(V) is the optimal value, Y5 C
Y is a e-covering of the feedback space ) equipped with
(pseudo-)metric p(y,y') = maxpcr |F(y)— F(y')| where
F =0 U {ef@am) . (za,r) € X x Ax{0,1}}geg,
C(Y5) is the capacity number defined in Equation (25) in
the Appendix, and dy 1 ¢ is the statistical complexity of
the joint function classes V, G, and T, with the parameter
e=K'~

e -

(6)

In practice, the functions 7', G, and the reward decoder
are often overparameterized deep neural networks which
enable expressing complex functions. As discussed in the
related works, estimating MI with finite samples can be sta-
tistically and computationally challenging, and we note that
exponential factors indeed show up in our analysis. Specif-
ically, the capacity number C in the sample complexity
bound (6) depends on the covering number of the function
class and also scales with O(e?B), where B is the upper
bound of the function classes. In application to deep neu-
ral networks, the covering number in the above sample
complexity bound can be prohibitively large. We note that
this issue in theoretically bounding the generalization er-
ror and sample complexity of deep learning algorithms is
well-recognized in the supervised learning literature and is
considered an open problem (Zhang et al., 2021). Similar
to the supervised learning setting, we observed satisfactory
numerical results achieved by the proposed VI-IGL-learned
function, which highlights the role of gradient-based opti-
mization in the success of the algorithm. Proving a sample
complexity bound that takes the role of the gradient-based
optimization algorithm into account will be an interesting
future direction to our analysis.

4.1. Minimizing Conditional MI with Regularization

In this section, we present the detailed derivation of our
information-theoretic objective (4). Recall that we aim to
learn a reward decoder ) € ¥ : X x A x Y — [0,1]
which minimizes the dependence measure I(Y; X, A|Ry).
Here, Ry, ~ Bernoulli(¢(X, A,Y)) is the decoded 0-1 re-
ward. However, minimizing only I(Y; X, A|R,) can be
problematic. On one hand, a reward decoder satisfying

(Y; X, A|Ry;) = 0 may correspond to a causal structure
suchas X -+ Ry =Y or A = Ry — Y, which performs
poorly in IGL as the latent reward often depends on the
context-action pair (X, A). On the other hand, note that the
chain rule of MI results in the following identity

I(Y; X, AlRy)

:I(Y§R¢|X,A)—I(Y;R¢)+I(Y;X,A) @

As a result of the above information-theoretic identity,
training to minimize only I(Y; X, A|R,) may result in a
context-action-dependent reward decoder ¢ : X x A —
[0,1],1e., I(Y;Ry|X, A) = 0, that “over-fits” to the feed-
back Y to maximize I(Y; Ry), and hence may underper-
form under a noisy feedback variable. One such example is
given as follows.

Example 1 (Unregularized objective leads to overfitting).
By the expansion (7), for a reward decoder 1 such that
I(Y;Ry|X,A) =0, it holds that I(Y; X, A|Ry) = 0 if
I(Y;Ry) =I1(Y; X,A), ie,

H(Y|Ry) = H(Y|X, A)

There could exist multiple reward decoders satisfying the
condition. One case is that if the action-context pairs can
be partitioned into two disjoint sets, i.e., X x A = Sy U S;
where S N'S1 = ), such that the conditional entropy
H(Y|xz,a) is the same for any (x,a) in the same sub-
set, then the reward decoder R assigning value O (and
1) to all the context-action pairs in Sy (and S1) satisfies
I(Y;Ry|X,A)=0and I(Y; X, A|Ry) = 0.

To address this issue, we propose the regularized
information-based IGL objective (4) where § > 0 is a
tunable parameter:

argmin{/(Y; X, A|Ry) — 8- I(X, A; Ry)} (4
YeET
To gain intuition on why Objective (4) can be robust against
noisy feedback, note that

I(X, A; Ry) = H(Ry) — H(Ry|X, A)

where H is the Shannon entropy. Thus, Objective (4) en-
courages the reward decoder to remain unchanged to the
context-action (X, A) to minimize H(R,|X, A). Hence,
the noises present in the feedback variable Y cannot signifi-
cantly affect the accuracy of the optimized reward decoder.
On the other hand, we can show that in the noiseless set-
ting, including the regularization term does not (greatly)
affect the quality of the optimized reward decoder with a
proper selection of 5. (The detailed proof can be found in
Appendix C.)

Theorem 3 (Regularization (almost) ensures conditional
independence). Assume the reward decoder class V ad-
mits realizability assumption, i.e., there exists 1 € VU such
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that I(Y; X, A|R ;) = 0. Then, under Assumption 1, any
reward decoder optimizing Objective (4) satisfies that

I(Y; X, A|lRy) < B (log2 = I(Y; R)) ®)

where R is the true latent binary reward and I1(Y; R) <
log 2. Particularly, when U is feedback-dependent, a reward
decoder v : Y — [0, 1] attains the minimum if and only if
I(Y; X, AlRy) = 0.

In other words, for a feedback-dependent reward decoder
class, the optimized reward decoder is guaranteed to satisfy
the conditional independence assumption regardless of the
selection of 3. For reward decoder class that also depends
on the context-action, the learned reward decoder violates
Assumption 1 by at most (a multiplicative of) .

As demonstrated by our numerical results in Section 6.2,
introducing this regularizer not only helps to handle a noisy
feedback variable, but also results in a more consistent algo-
rithm performance under lower noise levels.

4.2. Leveraging Variational Representation to Solve
Information-based Objective

While the previous sub-section introduces an information-
theoretic objective to address the IGL-based RL problem,
optimizing (4) in complex environments can be highly chal-
lenging. The primary challenge to solve (4) is that it re-
quires estimating MI among continuous random variables
of the context X and the feedback Y, which is widely rec-
ognized as a statistically and computationally difficult prob-
lem (Paninski, 2003a). To derive a tractable optimization
problem, we utilize the variational representation of the KL-
divergence, which reduces the evaluation and estimation of
MI to an optimization task.

Proposition 1 (Donsker-Varadhan representation (Donsker
& Varadhan, 1983)). Let P,Q € Ag be two probability
distributions on space S. Then,

Dy (P|Q) = ;gg{ESNP[T(s)] — Eoug [eT(s)H

where the supremum is taken over all functions T such that
the two expectations are finite.

Recall that the MI between random variables Z; € Z; and
Zy € Z5 is the KL-divergence between their joint distribu-
tion Pz, 7, and the product of their marginal distributions
]P)Zl (24 ]PZ2, ie., I(Zl; Zg) = DKL(P21Z2”PZ1 X EDZQ).
Proposition 1 enables us to estimate [(Z;; Z2) through opti-
mizing over a class of function 7" : Z; x Z5 — R. Therefore,
directly applying Proposition 1 to Objective (4) results in
the VI-IGL optimization problem in Theorem 1.

. . a
arg min max min < £ G| —-E e
;%G\I/ Geo TGT{ PxavR, [ ] Py |r, ®PxaR,, [ ]

-B- (EPXAR,U, [T] - EPXA(X)IPRw [eT]> }

5. Extension of VI-IGL to General
f-divergences

Algorithm 2 f-Variational Information-based IGL (f-VI-
IGL)

Require: dataset Dyin = {(7k,ar, yx)}_,, parameter
B > 0, reward decoder class ¥ = {iy}gco, esti-
mators G = {G,, }wreq, and T = {1, }u,eq, Of
I, (Y; X, A|Ry) and I, (X, A; Ry), respectively.

1: forepochk=1,2,--- K do

2:  Sample a mini-batch Dyini ~ Dirain-

3:  Construct datasets with distributions Py ® Pg vo and
PYlng ® ]PXAng using Dpini (See the algorithm
description).

4:  Estimate the f-MI terms

Ifl (X’ A; Rwe) <_]EPXAR1[)9 [T}
- EPXA(@PRwS [ff (T)]
Iy, (YV; X, AlRi/Je) <_]E]P’XAYR,¢9 [G]
- EPY\Rwe ®PXARw9 [fQ*(G)]
5.  Update the parameters
w e wr - Vo, { T (X, 4 Ry) }

wa ¢ wa + 1V, {fh(X,A; Rw)}

O0—n- Ve{ffl(Y;X,AlRwe)

— BT (X, As Ry,) |

where 7 is the learning rate.
6: end for
7: Select between 1)y and its opposite counterpart 1 — g
based on their decoded returns of 7.
: Train a policy 7 via an offline contextual bandit oracle.
: Output: Policy 7.

O o0

5.1. The Extended f-Variational Information-based
IGL

In this section, we first propose an extended version of the
information-based objective in (4) and the VI-IGL optimiza-
tion problem (5). Recall that f-mutual information defined
in Equation (3) generalizes the standard KL-divergence-
based MI to a general f-divergence-based MI. Therefore,
we can extend the standard MI-based IGL objective (4) to
the following f-MI-based IGL objective:

¢* = argmin{l, (Y; X, A[Ry) — B - I5,(X, A; Ry)}
YeET
€))
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where f1 and f, are two f-divergences. Note that Objec-
tive (4) is a special case of the above formulation by select-
ing fi(x) = fa(x) = zlogx to obtain the standard KL-
based mutual information. Similar to the VI-IGL problem
formulation, to derive a tractable optimization problem cor-
responding to the above task, we adopt the variational repre-
sentation of f-divergences (Proposition 2 in Appendix D).
We propose the following min-max optimization problem
to solve Objective (9).

Theorem 4 (f-VI-IGL optimization problem). Let f and
fa be functions satisfying the requirements in Proposition 2
and we denote by f{ and f5 their Fenchel conjugate, respec-
tively. Objective (9) is equivalent to the following min-max
optimization problem

1r/;nel$ Igg‘g quelgl_ {EPXAYRw [G] - EPY\Rw QPx AR, [fl*(G)]
— 8+ (Epsan, [T]) ~ Eexacrn, [f3 (1))}
(10)
where G € G: X X Ax Y x{0,1} > RandT € T :
X xAx{0,1} - R

Similarly, we derive the sample complexity for the above
optimization problem in Theorem 5 in the Appendix.

5.2. Algorithm Description

Here, we present f-VI-IGL Algorithm 2 as an optimization
method to solve the f-VI-IGL optimization problem (10) for
continuous random variables of the context X and the feed-
back Y. The algorithm optimizes over three function classes
G, T, and ¥. Specifically, function class ¥ = {ty}yco
consists of the reward decoders parameterized by 6 € ©.
Function class G = {G,,, } parameterized by wy € € is the
estimator of f;-MI Iy, (Y; X, A|Ry, ). In addition, function
class T = {T,,, }w,cq, parameterized by wa € s is the
estimator of fo-MI Iy, (X, A; Ry,). We focus on learning
in the batch mode, where the algorithm has access to an
offline dataset Dyain = { (24, a¢,y¢)}1—, consisting of the
context-action-feedback tuples, which is collected by the
behavior policy 7}, interacting with the environment.

At each epoch, f-VI-IGL first uses a mini-batch of data
to estimate the value of Objective (10) (Lines 2-4). One
difficulty is that estimating Iy, (Y'; X, A|Ry, ) requires sam-
pling (a?, a, y) ~ ]P)ng & PY|R1/19 ® ]P)XA|R1/,9 , where
Py |r » and Px R 1, CAN be intractable for continuous
random variables of the context X and the feedback Y.
To address the problem, we first augment each sample
(w4, as,y;) N times to obtain {(z,as, v, i)}, where
ri ~ Bernoulli(¢g (¢, ar,y;)) and N is a small positive
integer (e.g. 5 in our experiments). To sample, e.g., the
feedback y ~ Py g sp=1> We randomly sample a data point
from {(z,as,y;, 1) 1 j € [N], 7 = 1}, i.e., the “aug-
mented” data points whose random decoded reward is 1.

Given the estimated objective value, we alternatively update
the parameters for the f-MI estimators and the reward de-
coder (Line 5). At the end of the training, we use the learned
reward decoder 1)y to train a policy via an offline contextual
bandit oracle (Langford & Zhang, 2007; Dudik et al., 2011).
However, note that in Objective (9), both the optimal reward
decoder ¢* and its opposite counterpart 1 — ¢* may attain
the minimum simultaneously (while only one of them aligns
is consistent with the true latent reward). Hence, we use
the data-driven collector (Xie et al., 2021b) and select the
reward decoder (between the learned reward decoder g
and its opposite counterpart 1 — 1)g) that gives a decoded
return of 7, lower than 0.5.!

6. Empirical Results

In this section, we numerically evaluate the f-VI-IGL algo-
rithm on the number-guessing task (Xie et al., 2021b) with
noisy feedback, the details of which are described in the
following.

Number-guessing task with noisy feedback. In the stan-
dard setting, a random image x; (context), whose corre-
sponding number is denoted by I, € {0,1,---,9}, is
drawn from the MNIST dataset (Lecun et al., 1998) at the
beginning of each round ¢. Upon observing x;, the learner
selects a; € {0,1,- -, 9} as the predicted number of x; (ac-
tion). The latent binary reward r; = 1[a; = I,,] is the
correctness of the prediction label. Then, a random image
of digit r; € {0, 1} is revealed to the learner (feedback). In
many real-world scenarios, the observation of the feedback
variable is often under significant noise level, e.g., in the BCI
application. To simulate these cases, we consider four types
of noisy feedback. Specifically, with a small probability, the
feedback is replaced with: 1) independent noises (1): a ran-
dom image of letter “t” (True) when the guess is correct or a
random image of letter “f” (False) when the guess is wrong,
which is sampled from the EMNIST Letter dataset (Cohen
et al., 2017), 2) action-inclusive noises (A): a random im-
age of digit (a; 4+ 6 - 7 — 3) mod 10, 3) context-inclusive
noises (C): arandom image of digit (I,;, +6-7; —3) mod 10,
4) context-action-inclusive noises (C—2): a random image of
digit (5, + a¢ + 6 - r, — 3) mod 10. An example is given in
Table 1. Note that the full conditional independence assump-
tion does not strictly hold as the feedback is also affected by
the context-action pair (except for the independent noises).

Data collection. We focus on the batch learning mode,
where a training dataset Dygin = {(2k, a, yx) He, is col-
lected by the uniform behavior policy using the training set.
In all the experiments, the training dataset contains 60, 000
samples, i.e., K = 60,000. The output (linear) policy is

"Following the previous works (Xie et al., 2021b; 2022), we
assume the behavior policy has a low (true) return.
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I A C
Table 1. An example of the noisy feedback: The context is a ran-
dom image of digit “5”, i.e., l; = 5. The rows show the noisy feed-
back when the guess is digit “5” (correct) and “6” (wrong), respec-
tively. The columns show the cases for each type of noise (I: inde-

pendent, A: action-inclusive, C: context-inclusive, C—A: context-
action-inclusive).

C-A

Noisy Y (A = 5)

Noisy Y (A = 6)

evaluated on a test dataset Dy containing 10, 000 samples
of context, which is randomly collected from the fest set.
Additional experimental details are provided in Appendix G.

6.1. Robustness to Noises

In this section, we show that VI-IGL optimizing the stan-
dard Ml-based Objective (4) is more robust to the noisy
feedback than the previous IGL-based E2G algorithm (Xie
et al., 2021b). We compare the accuracy of the output
policy under different noise levels (10%, 20%, 30%), and
the results are summarized in Figure 2. (The detailed data
can be found in Appendix F.1) In the noiseless setting, VI-
IGL achieves a comparable performance ((81.6 & 7.9)%)
to E2G ((82.2 + 4.3)%). However, VI-IGL (blue lines)
significantly outperforms E2G (orange lines) in all noisy
settings and across all noise levels.

Why previous IGL method fails. Recall that solving an
appropriate reward decoder in the previous IGL method is
given by (Xie et al., 2021b, Assumption 2), which states
that there exists a reward decoder that well distinguishes
between the feedback (distribution) generated from a latent
reward of 0 and the one generated from a latent reward of
1. When additional noises present in the feedback, these
two distributions can be quite similar. For example, for
context-inclusive noises, a latent reward of 0 can also gener-
ate an image of digit “1” (I, = 4 and r; = 0). Hence, the
condition easily fails and the performance degrades.

6.2. Necessity of Regularization

In this section, we show that including the regularization
term I(X, A; Ry) in Objective (4) helps achieve a more
consistent algorithm performance. We compare the algo-
rithm performance when optimizing the unregularized ob-
jective (8 = 0) and the regularized objective (8 = 10).
Note that the case of 5 = 0 corresponds to minimizing only
I(Y; X, A|Ry). The results are summarized in Table 2. (Re-
sults for other selections of 3 can be found in Appendix F.2.)
The results show that regularization significantly improves

—e— ViIGL w0l & — VIHIGL
€26 £26

30 0 10 30

10 20 20
IndependentNoise Level (%) Actionnclusive Noise Level (%)

(a) Independent (b) Action-Inclusive

< viiGL 5 = viiGL
E26 80 E26

0 10 20 30 0 10 20 30
Context-Inclusive Noise Level (%) Context-Action-Inclusive Noise Level (%)

(c) Context-Inclusive (d) Context-Action-Inclusive
Figure 2. Policy accuracy under different noise level: Our VI-IGL
algorithm outperforms batch E2G (Xie et al., 2021b) in all noisy
environments and across all noise levels. The results are averaged
over 16 trials.

the performance.

| Methods || VI-IGL (3 = 0) [ VI-IGL (3 = 10) |

I 60.6 £ 15.5 71.0 £ 16.2

A 64.8£17.9 73.6 £ 16.0

C 52.4+25.3 72.1+10.2

C-A 63.4 £ 16.4 65.2 £16.3
[N | 557£273 [ 81.6+7.9 |

Table 2. Noise level=0.1. The results are averaged over 16 tri-
als (I: independent, A: action-inclusive, C: context-inclusive, C—A:
context-action-inclusive, N: noiseless setting).

6.3. Ablation Experiments

6.3.1. Selection of f-divergences. Recall that in Ob-
jective (9), we use f; and f> as general measures of
I(Y; X, A|Ry) and I(X, A; R), respectively. We analyze
how the selection of f-divergences affects the performance.
We test three pairs of f1-fo: (i) KL-KL: both f; and f5 are
KL divergence, i.e., fi(z) = fa2(x) = xloga (this case
corresponds to Objective (4)), (i) x2-x2: both f; and f, are
Pearson-) 2 divergence, i.e., f1(x) = fo(z) = (x—1)2, and
(i) x2-KL: fi(z) = x log = is KL divergence and f5(z) =
(x —1)2 is Pearson-x? divergence. Note that in the last case,
the objective value, i.e., I,2 (Y; X, A|Ry)—B3-1(X, A; Ry),
upper bounds the value of Objective (4).> We summarize the

’By the inequality log < x — 1, we have that Dk (P||Q) =
Ep(log(§5)] < Ez[(§5 — 1)] = Ee[(§5)*] — 1 = DX(P[Q).



An Information Theoretic Approach to Interaction-Grounded Learning

results in Table 3 for a feedback-dependent reward decoder
and S = 10. The results show that different f-divergences
benefit from different types of noises.

f1-f2 KL-KL X-x x*-KL

I 7T1.0+162 | 727174 | 741+ 12.7

A 73.6+16.0 | 653 L11.1 | 71.5+16.7

C 721+102 | 76.2+£11.5 | 60.4+115

C-A || 652163 | 70.4 X 15.5 | 64.6+ 14.7
[N [ 81.6+7.9 | 748+133 | 77.3+11.1 |

Table 3. Selection of f-divergences: The results are averaged over
16 trials (I: independent, A: action-inclusive, C: context-inclusive,
C—A: context-action-inclusive, N: noiseless setting).

6.3.2. Input of reward decoder. We empirically analyze
how the input of the reward decoder affects the actual per-
formance. Particularly, we consider two types of input: (i)
feedback Y and (ii) context-action-feedback (X, A, Y"). We
present the results in Table 4 for 8 = 10 and KL-KL diver-
gence measure. The results show that in all cases, using a
feedback-dependent reward decoder class leads to better per-
formance than a context-action-feedback-dependent reward
decoder class.

[ Input [| Y | (X,AY) |
I 71.0£16.2 [ 42.0£24.1
A 73.6 £ 16.0 | 49.6 £ 24.4
C 69.3 £10.9 [ 46.2+16.9
c-a [[72.1£10.2 | 59.4£174

[N ][ 81.6+7.9 [625+19.1 |

Table 4. Input of Reward Decoder: The results are averaged over
16 trials (I: independent, A: action-inclusive, C: context-inclusive,
C—A: context-action-inclusive, N: noiseless setting).

7. Discussion and Future Work

Regarding the limitations of our methodology and analy-
sis, we observed that the variance of the numerical perfor-
mance could be considerably large in some experiments.
We hypothesize that this issue could be related to jointly
training multiple networks and model initialization, also
reported by Xie et al. (2021b), which could be an interest-
ing topic for future studies. Furthermore, a relevant direc-
tion for future exploration is to consider non-information-
theoretic dependence measures, e.g., Maximum Mean Dis-
crepancy (MMD) (Gretton et al., 2012) and Wasserstein dis-
tances (Villani et al., 2009), to enforce the IGL assumption.
Another potential extension of our studied IGL problem
is to relax the conditional independence assumption (As-
sumption 1). Such an extension could follow (Xie et al.,

2022)’s idea on the Action-Inclusive IGL (AI-IGL), where
the feedback may also be affected by the action.
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A. Proof of Theorem 1: The VI-IGL Optimization Problem

Proof. The theorem is a direct application of Proposition 1. The optimization problem possesses three levels: (i)
the inner level minimizes over function class 7" € 7 to estimate I(X,A;Ry) = DyxiL(Pxar,|[Pxa ® Pr,) =
supre{Epy ARy, [T] — Ep, A®PR,, [eT]}, (ii) the medium level maximizes over function class G € G to estimate
I(Y; X, AlRy) = DKL(IP’XAYRw ||Py|Rw ® IP’XARW) = squeg{EpXAYRw [G] — E]}DY‘RW ®PxAr, [e]}, and (iii) the outer
level finds the desired reward decoder. O

B. Proof of Theorem 2: Sample Complexity of VI-IGL Optimization Problem

Recall that the optimization problem (5) is minimizing

'C(l/]) = %}gg qqlel%l_ {EPXAYRd, [G] - ]EPY\R¢®PXA\R¢ [eG] - 5 : (EPXARw [T] - EHDXA@HDRd, [eT]) } (11)

over the reward decoder ¢) € W. In the offline setting, the learner has access to a K-size dataset D = {(z, ax, yx) }H
collected by the behavior policy m, : X — A 4. Particularly, at round k, a context x; ~ dg is drawn from the context
distribution. The behavior policy returns ay, ~ m(+|z)) and receives feedback yy, from the environment.

The algorithm constructs the empirical objective 2(1/1) from the dataset for any reward decoder ¢» € ¥ and outputs the
minimizer ¢ = arg minycy £(¢). To show Theorem 2, it suffices to show that

L) — E(ﬂ’) <e+max{1,8} O - : Z P B log <|y}|d\l”T’g)

2 . ~€
c yeVsior (1)>0 K Uﬂ(y) 1)

for any reward decoder ¢ € ¥ with high probability, where the parameters J%, o7, , and dy 7 ¢ are specified in the proof.
Once obtained, we set the parameter ¢ = K ~'/2 and invoke the following inequality

L)~ L") < |£@) ~ £@)| + @) - L") +|E@") - L") (12)
~—————
<0
to conclude the proof. Since the optimization problem over function classes G and T are decoupled, we define
‘Cl("/}) = Iéleag {EPXAYRw [G} - E]P’ymw ®PxalR, [eG] } (13)
Ly (¢) = Ijl}g;_( {EPXARw [T] - ]EPXA®PRw [eT] } (14)

Hence, we have that £(v) = L1(¢) — 8- La2().

The details of the algorithm is given as follows. We consider a feedback-dependent reward decoder class, where ¢ (y) €
[e, 1 — ] is the decoded probability given by ¢ € W that the feedback y € ) is associated with a latent reward of 1. For
convenience, we define ¥ (y) := ¥ (y) and ¢y (y) := 1 —1(y), where the subscript is decoded binary reward. The algorithm
computes the empirical counterpart of £4 (1)) and L2(v)) as follows.

. 1 & i
L1(v) = max { 2> Ul - (Glananyer) ~Bg _ [eCloreen]) } (1s)
k=17=0,1
. 1 & ~
Lo(y) = max {K Z Z (ﬂ’r(?ﬂc) -T2k, ak, ) — Dy(r) - eT(mk’ak’T)> } (16)
k=1r=0,1

where ¢ ~ @yg |Ry=r I 21 (v) is the empirical estimation of Py|r,,=r constructed from the dataset (see details in the proof)
and Py (r) == & Zle 1 (yx)- In the proof, we aim to bound the estimation errors |£; (1)) — £ ()| and | L2 () — 22(1/))|

Proof. Fix a reward decoder ¢ € .

12
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Step 1. Bounding | L2 () — L, ()|. Recall that T is bounded by B. Hence, with probability at least 1 — § and applying
a union bound over the function classes 7, the estimation errors are bounded by

B2 [dr
e2B dr

for any function T' € T, where d7 is the statistical complexity of the function class 7. Particularly, if 7 is finite, we have
that dr = |T‘

K
1
]EPXARw [T] - ? Z wr(yk) ' T(xlm ag, T)
k=1r=0,1

K
1 -~ Tk, T
L ?Z Pu(r) - el (@rawr)
k=1r=0,1

Step 2. Bounding |£; () — Ly (v)|. Fix a function G € G. Recall that G is bounded by B. Hence, with probability at

least 1 — 8, we have that
K
1 B2 1
EPXAYRU) [G} - Z wT(yk?) : G(xk7ak77yk?7/r) S O < ? ]'Og (6)) (19)

K
k=1r=0,1

The challenge is to analyze the estimation error

{6G(mk,ak,ﬂﬂ”)} (20)

K
1
EPY\Rw OPx AR, [GG] - R Z wr(yk) 'Eﬁyg
k=1 1

Ir

r=0,

To handle the continuous feedback space, we first introduce the notion of e-covering, which results in a finite “clusterings”
of the feedback and yields nice statistical properties.

Definition 1 (e-covering). Let G C {Y — R} denote a function class. A (finite) set yg C Y is said to be e-covering the
space )) with respect to function class G if for any y € Y, there exists y© € Y§ such that maxgeg |G(y) — G(y)| < e
Further, we denote by |y5| the e-covering number.

Remark 1. Definition 1 is a classic e-covering of space Y equipped with (pseudo-)metric p(y,y') = maxgeg |G(y) —
G(y')|.> For example, if the class G includes a-Lipschitz functions, i.e., |G(y) — G(y)| < a - |ly — y'||2, then Y§ is an
(£)-covering of Y equipped with metric p(y,y') = [ly — y'[[2.

In the following, we denote by V% an e-covering with respect to the joint function class F := ¥ U {eG(“”“"”’) (x,a,7) €
X xAx{0,1}}geg and let s : Y — V% be a mapping from any y € ) to Y% such that maxpe 7 | F(y) — F(y©)| < e. Let
ox, € Ay be the feedback distribution induced by the behavior policy 7. We denote by o the corresponding distribution
on the e-covering V%. Specifically, the mass at any y© € V% is given by 0% () := fy:s(y):yé dor, (y). Further, the
reward decoder i) € ¥ induces posterior distributions ]P’y| Ry and Py« IRy conditioned to the decoded reward on ) and V%,
respective. By Definition 1, the expectation with respect to the distribution Py, can be well estimated by the expectation
computed from Py« g, .

Sub-Step 2.1. Construction of @ys e The construction of @ye r» Which involves: 1) computing the empirical feedback
distribution 0%, := + Zle 1[s(y) = y°] forany y¢ € V%, and 2) utilizing Bayes rules to estimate the posterior distribution
by

0 (y°) - (y)
veve 0 (Y) - ¥r(y)

Pyeipy=r(y°) = > @1)

3To show p is indeed a metric, note that 1) p(y,3’) = p(v',y) > 0 p(y,y) = 0 for any y,3 € Y and 2) p(y,v’) < p(y,y") +
p(y",y') forany y, ¢, y" € V.

13
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for any y© € V%. Hence, the error (20) can be further written as

K
1 Tg QL Yy, T)—
Ery n,@Pxan, [€7] = }Z > trlur) "By ein, [eG< ks Gror) 1}

k=1r=0,1

S ‘Epy\Rw ®IP’XAR1/J [eG] - ]EPY“R’LP ®]P’XAR1/, [eG] ‘

<e
a1 1v o (22)
+ EPY€|R¢®PXARw [6 } - Ez Z wr(yk) 'EIP’ys‘Rw:T [e ]
k=1r=0,1
concentration error
K
G(zg,ar,y,r G(zy,ar,y,r
+ Z (E]PY{\R#;:T |:€ (@r.a5.7 )] _Eﬁyé‘Rdj:r |:€ (e ang ):|>‘

Observe that the last term is bounded by

Hlf}X H]P)Y‘IR‘LP:T — PY‘|Rw:T L

for any (¢,G) € ¥ x G and (z,a) € X x A. It remains to bound the error ||Py« |z, —, — fﬁ’ye‘Rw:rHl.

Sub-Step 2.2. Bounding ||Py<|r,—, — @Ye \Ry=rll1- To start with, by (Xie et al., 2021a, Lemma A.1), with probability
at least 1 — ¢ and applying union bound over )%, it holds that

35, — o5 v )‘<O<\/K-a;b(y€)lg< 5 ))

for any y© € V%. Recall that 1, is bounded between [c, 1 — ¢] where 0 < ¢ < §. We have that

Pyeip(y*) = Prepe(v°)|

om0 y)  on () - ()
doyeys 0 (W) - Ur(Y)  Xyeye 0%, (W) - e (y)
(05, () — o7, () - ¥ (y°) o5, () e (y°) o5, (U°) e (y°)

S yers 00 ) W) yeys O ) V() Cyeys O y) - Ur(y)
1—c 1 |V (1—¢)? | V5|
e \/K-Jf (ye)log( 5f> 2 m,y)log( 5F>

Th 1/6))5

(1-¢)? 1 V|
=0 N 2 K05 (v) log( J )

YyEVEiog, (¥)>

where the second inequality holds by the fact that >
[c,1 — ¢]. Hence, for any r € {0, 1}, it holds that

yeys O o5, (y) - ¥r(y) and Eyey; 0%, (y) - ¥r(y) are bounded between

—_ )2 € |2 €
1§O (1 2‘3) ) Z |V 10g<y]-'> (23)

K -o¢€ 0
c YEVSiot, (¥)>0 O, (y)

H]PYF‘R#’:T - PyelRw:T

14
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Therefore, combining Inequalities (22)~(23) and applying a union bound over G € G yields,

K
1 _
]EIP’Y\RU,(X)PXARw [eG] - E Z Z ¢T(yk) ']Eﬁys‘r [€G(1k7ak7y,r)}

k=1r=0,1
(24)
(1— 0o PPV [ [V5ldg
<o ==L o WVFEE e [ EIRG
=0\ Ta 2 Ao s

yey}:ajrb (y)>0

where dg is the statistical complexity of the function class G, with dg = |G| for finite class G.

Step 3. Putting everything together. Combining Inequalities (17)~(19) and (24) and applying a union bound over the
reward decoder class W, we have that

L) — L()| < e+ max{1,8} - O 1-o? 3 (2B + B2)|Y5|? log <|y}|d¢,fr,g)

2 . ~€
c yeys e >0 K -o¢, (y) 5

for any ¢ € ¥, where we denote by dy 7 ¢ the statistical complexity of the joint function classes ¥, T, and G, with
dw 7.6 = |¥||T]|G| for finite classes. Define the capacity number

2B B2 €3
C(V5s,B) := Z @;())'y}" (25)
yGy}:a;b(y)>0 m \Y
By Cauchy-Schwartz inequality, we further have
~ 1—¢)? C(Ys, B Y<|d
£0) — E)| < e + max{1,8} -0 <( - ¢ 02 5) g ( f';“”)
Set e = K —'/2 and we conclude the proof. O

C. Proof of Theorem 3: Regularization (Almost) Ensures Conditional Independence

Proof. Under the realizability assumption, there exists either (i) a context-action-dependent reward decoder VX xA—
[0, 1] or (ii) a feedback-dependent reward decoder ¢ : Y — [0, 1] such that I(Y; X, A[R ;) = 0.* We first show that

I(X7A;R1;)=I(Y;X,A):I(Y;R) (26)
holds for both cases, where R is the true latent reward.
Case (i). Note that by the chain rules of CMI, we derive

0=I(Y;X,AR;) = I(Y; X, A) + I(Y; Ry| X, A) ~I(Y; R;)
N————
=0

where the second term I(Y; R¢|X ,A) on the RHS is zero as Ry is context-action-dependent. Hence, we have that
I(Y; R;) = I(Y; X, A). Further, note that the following Markov chain holds:

(X, A) — RJ) —-Y
By the data processing inequality, we derive that I(X, A;R;) < I(Y;X,A) and the equality holds if and only if

I(Y;Rj;) = I(Y; X, A). Therefore, we have that I(X, A; R;) = I(Y; X, A). Since the true latent reward R is context-
action-dependent, following the same analysis, we have

I(Y;X,A) =I(Y;R) = I(X, A; R) @27)

“Note that if a reward decoder depends on the (X, A,Y) tuple, it can be regarded as case (i).

15
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Combining the analysis above, Equation (26) is proved.
Case (ii). Note that the following Markov chain holds for any feedback-dependent reward decoder:
(X,4) =Y = R;

Then, the data processing inequality implies that (X, A; R;) < I(Y; X, A) and the equality holds if and only if
I(Y; X, A[Rj) = 0. Therefore, we derive I(X, A; Rj;) = I(Y; X, A) = I(Y; R), where the last equality holds by
Equation (27). This also implies that for feedback-dependent reward decoder class, it holds that

min{7(Y; X, A|Ry) = f- I(X, A Ry)} > 5 - 1(Y: R)
Therefore, when U is feedback-dependent, a reward decoder ¢ : YV — [0, 1] attains the minimum if and only if
I(Y; X,A|Ry) =0.
Once Equation (26) is obtained, we have that
min{I(Y: X, A|Ry) — 5 1(X, A; Ry)} < I(Y: X, A[Rg) = B-1(X, A Ry) = =5 - I(Y: R)

Let ¢b* denote any reward decoder optimizing Objective (4). Rearranging the terms proves
IY; X, AlRy-) < B (I(X, A; Ry») = I(Y; R)) < 8- (log2 — I(Y; R))

where the second inequality holds by the fact that 12, is a 0-1 random variable. Therefore, we conclude the proof. O

D. The Variational Representation of f-divergences

Proposition 2 (Variational representation of f-divergences (Nguyen et al., 2010)). Let f : Ry — R be a convex, lower-
semicontinuous function satisfying f(1) = 0. Consider P,Q € Ag as two probability distributions on space S. Then,

dP x
Dy (P|Q) =Eq [f (dQ)} > sup {Eaup[T(5)] — Eanol/*(T()])

TeT

where T C {T : S — R} is any class of functions and f*(z) := sup,cp{u - z — f(u)} for any z € R, is the Fenchel
conjugate.

E. Sample Complexity of Optimization Problem (9)

Theorem 5 (Sample complexity of f-VI-IGL). Consider a feedback-dependent reward decoder class U such that ¥ (y) €
[c,1 =] for any ¢ € W and y € Y, where ¢ € (0, 3). Suppose the functions |G|, |T|,|f{(G)|,|f;(T)| < B* < oo are
bounded. Then, for any § € (0,1], given a dataset D = {(wy, ax, yx) } I, collected by the behavior policy T, : X — A,

-~

there exists an algorithm such that the solved reward decoder 1 from the optimization problem (10) satisfies that | L ; (1)) —L’}Z |

is bounded by
(1-¢? (B*)?| Vel Veldw 7.6
1 . . = 1 = y /oy
max{1,5}-O =2 E Kot (1) og 5
yeyg:a;b(y)>o b

where E} is the optimal value to the optimization problem (10), parameters oy, and dy 1.g are defined in the Appendix B,
and Y% is e-covering of feedback space Y with respect to the joint function class 2 := VU {f*(G(z,a,-,7)) : (z,a,7) €
X x Ax{0,1}}geg-

Proof. The proof follows the exact same analysis in Appendix B, with f*(x) = exp(x — 1) as a special case. O
F. Additional Experimental Results

F.1. Robustness to Noises

This section provides the detailed data in Section 6.1. We compare the performance of E2G (Xie et al., 2021b) and the
VI-IGL algorithm 1 in the number-guessing task. We report both the policy accuracy and the standard deviation. The results
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are averaged over 16 trials. Specifically, Table 5 corresponds to the noiseless setting and Tables 6~8 show the results under
three noise levels (0.1, 0.2, 0.3). We use the results for 5 = 10 to plot Figure 2.

In addition, the results show that as the noise level increases, our regularized objective (4) with 5 = 10 attains more
consistent performance than the unregularized one (i.e., only minimizing I(X, A;Y|R,;), which is shown by 8 = 0), in
terms of both accuracy and the standard deviation. This reinforces the necessity to include the regularization term.

[ Methods || VIIGL (3=0) [ VFIGL (8=10) [  E2G |
B | 557+273 [ 81.6+7.9 [822+4.3]

Table 5. Noiseless setting. The results are averaged over 16 trials.

Methods || VIIGL (3=0) | VIIGL(8=10) |  E2G |

I 60.6 £15.5 71.0 £ 16.2 25.0£ 184
A 64.8 £17.9 73.6 = 16.0 21.6£124
C 52.4£25.3 72.1 +£10.2 15.4+14.3
C-A 63.4 £16.4 65.2 +16.3 20.6 £ 14.8

Table 6. Noise level=0.1. The results are averaged over 16 trials (I: independent, A: action-inclusive, C: context-inclusive, C—A: context-
action-inclusive).

Methods || VIIGL (3=0) | VIIGL(8=10) | E2G |

I 54.6 £23.5 68.8 +16.2 185 +13.1
A 43.9 +£23.5 64.1 4+ 18.7 15.1+11.7
c 49.0£25.9 62.7 + 21.6 21.0£13.3
C-A 57.6 £24.3 62.8 +23.9 1724+ 13.7

Table 7. Noise level=0.2. The results are averaged over 16 trials (I: independent, A: action-inclusive, C: context-inclusive, C—A: context-
action-inclusive).

Methods || VIIGL (3 =0) | VIIGL(8=10) |  E2G |

I 56.9£21.4 57.84+19.0 16.8 £ 12.7
A 33.6 +22.3 42.8 +17.2 16.4 +12.6
C 50.5 £21.2 51.44+18.3 24.6£16.4
C-A 50.6 & 22.6 50.3 £18.1 18.5 £ 14.7

Table 8. Noise level=0.3. The results are averaged over 16 trials (I: independent, A: action-inclusive, C: context-inclusive, C—A: context-
action-inclusive).

F.2. Value of Parameter (3
This section provides the detailed data in Section 6.2.

Tables 9 and 10 show the results for the noiseless setting and the noisy settings (with noise level 0.1), respectively. In
contrast, the performance of the unregularized objective significantly degrades.

[ 8] 0 \ 5 \ 10 | 15 ] 20 \
[N [[55.7+27.3 [ 69.74+15.6 | 81.6 £7.9 [ 79.1+9.1 | 72.7+164 |

Table 9. Value of Parameter 3: Noiseless environment. The results are averaged over 16 trials.
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0 ] 5 [ 10 15 [ 20 |
60.6 £ 155 | 59.5+242 | 71.0£16.2 | 71.7£19.3 | 63.0 £ 18.7
648+17.9 | 68.5+18.8 | 73.6 £ 16.0 | 67.7+20.6 | 582+ 195
52.4+253 | 61.4+13.9 | 72.1£10.2 | 63.1+21.1 | 58.0+26.3
A |[634+164 | 68.7£20.8 | 65.2+16.3 | 602+15.0 | 626+ 11.7

Qla|¥ | H||

Table 10. Value of Parameter 3: Noise level= 0.1. The results are averaged over 16 trials (I: independent, A: action-inclusive, C:
context-inclusive, C—A: context-action-inclusive).

85 T—————o— | A —— C CA —> N

NN

™~

Accuracy (%)
o (=)} ~ ~ o0
<) & =) a 1S3

vl
vl

[
o

0 5 10* X 15® 20

Figure 3. Policy accuracy for different 3: All noisy settings have level= 0.1. The optimal selections are marked beside the value. The
results show the necessity of regularization. The results are averaged over 16 trials.

G. Additional experimental details

For the f-variational estimators (functions 7" and G), the reward decoder v, and the linear policy 7, we use a 2-layer
fully-connected network to process each input image (i.e., the context or the feedback). Then, the concatenated inputs go
through an additional linear layer and the final value is output. The same network structures are used to implement the
reward decoder and the policy of the previous IGL algorithm (Xie et al., 2021b). In each experiment, we train the f-VI-IGL
algorithm for 1,000 epochs with a batch size of 600. Particularly, we alternatively update the parameters of the f-MI
estimators and the reward decoders (i.e., 500 epochs of training for each). To stabilize the training, we clip the gradient norm
to be no greater than 1 and use an exponential moving average (EMA) with a rate of 0.99. For the previous IGL method, we
follow the experimental details provided in the work of Xie et al. (Xie et al., 2021b, Appendix C) and train the algorithm for
10 epochs over the entire training datasets.
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