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ABSTRACT

We present a framework to better leverage natural language supervision for a spe- 1

cific downstream task, namely weakly-supervised object detection (WSOD). Our 2

framework employs a multimodal pre-training step, during which region-level 3

groundings are learned in a weakly-supervised manner and later maintained for the 4

downstream task. Further, to appropriately use the noisy supervision that captions 5

contain for object detection, we use coherence analysis and other cross-modal 6

alignment metrics to weight image-caption pairs during WSOD training. Results 7

indicate that WSOD can better leverage representation learning by (1) learning a 8

region-based alignment between image regions and caption tokens, (2) enforcing 9

the visual backbone does not forget this alignment during the downstream WSOD 10

task, and (3) suppressing instances that have weak image-caption correspondence 11

during the WSOD training stage. 12

1 INTRODUCTION 13

Pre-training and fine-tuning have been integral parts of training deep neural networks for several 14

computer vision tasks where supervision relies on densely-labeled data, such as object detection. 15

Pre-training has commonly relied on datasets labeled at the image level, e.g. ImageNet (Deng 16

et al., 2009). Recently, self-supervised pre-training strategies which leverage massive data readily 17

available on the web have shown great success in learning visual representations. Prior works differ 18

in the type of data used to formulate self-supervised objectives (e.g. different versions of the same 19

image, images with corresponding captions). However, they aim to learn a generic visual space 20

without any specific downstream task in mind, which raises a natural question: “Can we benefit 21

more from pre-training if the downstream task is already known?”. In this work, we investigate 22

the ways of learning better visual representations for weakly-supervised object detection (WSOD), 23

including pre-training and fine-tuning on the downstream task. 24

Weakly-supervised detection has specific requirements: a model needs to ensure the features learned 25

are capable of both distinguishing semantic categories, and estimating their boundaries, without 26

explicit localization supervision. Most prior work formulates WSOD as a multiple instance learning 27

(MIL) problem: an image is considered as a bag of regions, and a positive bag for a given class is 28

supposed to have at least one region that contains an instance of that particular class. The model tries 29

to maximize the likelihood of a positive region belonging to its ground-truth class, while minimizing 30

the same likelihood for negative regions. While most prior WSOD approaches learn from image- 31

level labels, some recent work (Ye et al., 2019) alleviates the need for supervision further, by learning 32

from noisy, but more freely and naturally-available text appearing with images, e.g. web captions. 33

Since MIL can be seen of an instance discrimination task within a bag, high-level semantic informa- 34

tion about regions should be captured in the visual representations used for initialization. Although 35

current vision-language pre-training methods seem to be suitable for learning this semantic infor- 36

mation about regions, they come with several drawbacks. First, most of these approaches (Chen 37

et al., 2020b; Li et al., 2020; Lu et al., 2019), rely on a fully-functional object detector trained with 38

box-level supervision to extract region features, which violates the core presumption of WSOD. 39

Remaining approaches, however, may fail to provide such semantic information because: (1) even 40

though their pre-text tasks require reasoning on both modalities, they do not learn an explicit align- 41
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ment between image regions and text tokens, and (2) these approaches have architectural misalign-42

ments with WSOD that need to be addressed. Concretely, visual encoders used in such pre-training43

strategies are barebone CNNs followed by a pooling and a linear projection on each spatial loca-44

tion. However, region feature extractor of a WSOD architecture consists of a specialized pooling45

layer (e.g. RoI pooling (Girshick, 2015)) and series of non-linear projections. Integrating the re-46

gion feature extractor into the pre-training architecture should result in bringing learned semantic47

information further towards the classification and detection streams used in WSOD models.48

Apart from the problems that should be addressed in pre-training, we also hypothesize that trans-49

ferring learned visual backbone bluntly to downstream WSOD task can cause several issues when50

supervision comes from noisy captions. First, manipulating the transferred rich visual space during51

MIL optimization for only a small number of semantic classes may result in overfitting to incon-52

sistent labels and decreased generalization performance, considering image-level labels extracted53

from captions to supervise WSOD training will have a low recall due to the human reporting bias54

(Misra et al., 2016). Second, treating every instance equally within MIL optimization may add extra55

noise to the challenging weakly-supervised task. Noise arises because some object instances could56

be hard to learn from due to size, occlusion, and clutter. When the weak supervision comes from57

captions, further complications arise due to the loose, non-local association between the image and58

the corresponding captions (content in image is not precisely described in the captions).59

In this work, we propose a framework for learning better representations for WSOD task from noisy60

but freely-available captions. We address the issues with pre-training by (1) learning an explicit61

alignment between image regions and text tokens, and integrating the region feature extractor into62

the pre-training architecture. Issues with the downstream WSOD task are addressed by (2) trans-63

ferring the same region-token alignment objective from pre-training in order to preserve learned64

semantic space during MIL optimization as a form of regularization and (3) applying weighting65

mechanisms for reducing the effect of instances that have weak multimodal alignment with their66

paired captions, by relying on coherence analysis.67

Our method achieves competitive performance on COCO, even though it uses image-level labels68

extracted from noisy captions by simple lexical matching. In addition to COCO, we focus on the69

important transfer setting, i.e. training on COCO, but evaluating on PASCAL VOC. This setting70

tests the true generalization ability of the detection models. We show our method’s contribution71

is even more significant in the transfer setting. We also compare our method to a recent WSOD72

approach, Cap2Det (Ye et al., 2019), which also tries to learn an object detector from captions, and73

show our method achieves superior results, even though Cap2Det needs some ground-truth labels to74

train its text classifier for extracting image-level labels from captions. Most importantly, our method75

improves detection performance by absolute 2% (relative gain 8%) in the COCO→ VOC transfer76

setting, without utilizing any ground-truth labels or additional data.77

2 RELATED WORK78

2.1 PRE-TRAINING AND SELF-SUPERVISED REPRESENTATION LEARNING79

The training recipe for dense computer vision tasks (e.g object detection) often entails initializing the80

network with the weights learned through pre-training on a large dataset (e.g. ImageNet), and then81

fine-tuning the obtained visual representation for the task of interest. This strategy can help learning82

downstream task in at least three ways. First, low-level convolutional filters for extracting primitive83

features, such as edge, blob and texture, would be already learned (Zeiler & Fergus, 2014). Second,84

the initialization weights would be capable of providing a semantic signal (e.g. 1,000 classes learned85

on ImageNet) that may well transfer to the downstream task. Third, pre-training may alleviate the86

risk of an optimizer being stuck in a bad local minimum, and provide a better starting point for87

learning than random initialization (Erhan et al., 2009).88

While early approaches for pre-training relied on a dataset with labels at the image level (e.g. Im-89

ageNet), a vast amount of recent work has shown the benefits of self-supervised pre-text tasks.90

Some prior work use image-only pre-training with several pre-text objectives, maximizing repre-91

sentation similarity between different versions of the same image generated through augmentations92

(He et al., 2020; Chen et al., 2020a; Grill et al., 2020; Chen & He, 2021; Zbontar et al., 2021).93

Recent work in this line of research also investigates learning visual representations that can better94
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transfer to object detection task, utilizing region/pixel-level variants of similar pre-text objectives 95

to ensure local consistency (Xie et al., 2021; Yang et al., 2021; Roh et al., 2021; Selvaraju et al., 96

2021). However, visual representations learned by this line of work suffer from lack of high-level 97

semantic signal and leave bridging this semantic gap to downstream tasks. Another line of work uti- 98

lizes both visual and textual data to alleviate this semantic gap, integrating pre-text tasks that require 99

multimodal understanding (Zhang et al., 2020; Huang et al., 2020; Sariyildiz et al., 2020; Desai 100

& Johnson, 2021; Yuan et al., 2021). Unlike prior work that treat each instance equally, Morgado 101

et al. (2021) use instance weighting to suppress the effects of faulty positives and faulty negatives 102

within multimodal contrastive learning. Recent work also use multimodal pre-training for zero-shot 103

object detection (Zareian et al., 2021), learning an explicit pixel-level alignment between visual and 104

textual tokens. Our approach is similar to Zareian et al. (2021) and Morgado et al. (2021) as we 105

also perform multimodal pre-training with a specific task in mind, and integrate instance weighting. 106

However, Zareian et al. (2021) learns a pixel-level alignment between visual and textual tokens dur- 107

ing pre-training, and leaves learning how to localize object instances to the downstream task utilizing 108

box-level ground-truth labels for some categories. We learn a region-level alignment between visual 109

and textual tokens in pre-training and use the same region feature extractor in downstream WSOD, 110

without utilizing any box-level ground-truth supervision. Further, unlike our method, Zareian et al. 111

(2021) do not utilize region-level alignment and cross-modal instance discrimination during the 112

downstream task. Morgado et al. (2021) formulates multimodal alignment within the same model to 113

identify faulty positives and faulty negatives, while we exploit coherence and concreteness relations 114

between modalities to quantify their alignment for instance weighting. 115

2.2 WEAKLY-SUPERVISED OBJECT DETECTION VIA MIL 116

In the common multiple-instance learning (MIL) formulation, an image is considered as a bag of 117

regions. If an image is labeled with class c, then there must be at least one region containing 118

an instance of c. Oquab et al. (2015); Zhou et al. (2016) use global pooling layers to build class 119

activation maps for instance localization. Bilen & Vedaldi (2016) introduce weakly-supervised deep 120

detection networks (WSDDN) that rank region proposals using detection and classification streams. 121

Kantorov et al. (2016) builds on WSDDN and integrates contextual information by exploiting region 122

surroundings within two context models. Tang et al. (2017) formulate an iterative refinement module 123

in which each iteration is supervised by its predecessor. Wan et al. (2018) learn spatial distribution 124

of object classes by minimizing local and global entropy to reduce randomness of object locations. 125

Ren et al. (2020) propose a spatial regularizer to combat part domination. All these works are similar 126

to ours in terms of how they formulate WSOD problem. However, we use even weaker supervision 127

utilizing image captions to learn an object detection model. In this perspective, our work is very 128

similar to Ye et al. (2019) as their aim is also to learn an object detector using image captions. They 129

extract image-level pseudo-labels from captions using a text classifier to guide WSOD training. 130

Nonetheless, their method still requires ground-truth labels to train the text classifier. We learn an 131

object detector from image-caption pairs without using any ground-truth labels. 132

3 METHOD 133

Our method aims to leverage natural language supervision in order to learn better visual representa- 134

tions for the downstream WSOD task. The contribution of language factors into three components 135

of the method: (1) vision-language grounding over regions, (2) enforcing this grounding during 136

both pre-training and weakly-supervised detection, and (3) weighting the contribution of image-text 137

paired samples according to the degree of alignment in the pair. Our approach follows a standard 138

pipeline (pre-training followed by the downstream detection task), but makes changes to both stages, 139

to optimize the contribution of language for visual representation learning. 140

3.1 MULTIMODAL PRE-TRAINING 141

The purpose of pre-training is to leverage coarsely-aligned, co-occurring image-text pairs, as weak 142

semantic signal for the subsequent detection. While image-text pre-training has been widely adopted 143

for vision-language tasks (e.g., visual question answering), it is significantly less common for detec- 144

tion, especially WSOD. Our innovations include: (1) performing vision-language grounding on the 145

region rather than pixel level, and (2) enforcing this grounding beyond the pre-training stage. 146
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Figure 1: Demonstration of our overall framework for learning an object detector from noisy cap-
tions (best viewed in color). In pre-training (A), we learn an explicit region-token alignment along
with other auxiliary objectives that require multimodal understanding. We transfer learned visual
backbone along with the projection weights that are used for region-token alignment into down-
stream task (B), and perform cross-modal instance discrimination utilizing randomly-sampled cap-
tions to force our backbone not to forget the region-token alignment learned during pre-training.

Our multimodal pre-training architecture closely resembles PixelBERT (Huang et al., 2020). It takes147

a paired image and text, feeds them through separate encoders, and finally feeds these features into a148

multimodal transformer encoder to extract contextualized embeddings. However, our approach has149

two major differences with PixelBERT. First, we slice the extracted visual feature map into n × n150

spatial grid and apply RoI pooling followed by two non-linear transformations on each grid cell151

instead of treating each spatial location of the feature map as a visual token. The intuition is to152

learn better initialization weights for the region feature extractor which is the integral part of WSOD153

architecture. Second, our method learns an explicit alignment between image regions and caption154

tokens in a weakly-supervised manner contrasting other images and captions within the minibatch.155

Our visual backbone φ takes an image I and extracts a w × h× di feature map (di is the number of156

filters in the last conv layer). This feature map is sliced into n×n grid, and RoI pooling followed by157

two non-linear projections is applied on each grid cell to generate dr-dimensional feature vectors for158

regions, resulting in φ(I) ∈ Rn2×dr . We employ a pre-trained BERT as the language backbone ψ,159

which takes a tokenized caption consisting of k words T = [t1, t2, ..., tk] and outputs contextualized160

token embeddings T̂ = [t̂1, t̂2, ..., t̂k] where ti, t̂i ∈ Rdw , resulting in ψ(T ) ∈ Rk×dw . We project161

each visual token into a dw-dimensional space by multiplying visual tokens with Wp ∈ Rdr×dw as162

we later feed both visual and textual tokens into a multimodal transformer encoder.163

Next, we learn a linear joint-projection layer (JPL) that embeds both visual and textual tokens into164

a dj-dimensional space in which we can measure cross-modal token similarity. JPL consists of a165

learnable weight matrix WJPL ∈ Rdw×dj , which is same for both modalities. Even though one could166

measure cross-modal similarity on the dw-dimensional space without applying a further projection,167

we found that doing so stabilizes training.168

In the detection stage, we will need to learn associations between regions and semantic concepts.169

Thus, we want to mimic this objective in the pre-training stage. As we do not have ground-truth170

region-token associations to supervise our region-token alignment task, we learn it in a weakly-171

supervised manner contrasting other images and captions in the minibatch. Specifically, we calculate172

a global alignment score S(I, T ) for an image-caption pair such that:173

S(I, T ) = 1

k

n2∑
i=1

k∑
j=1

(I ∗TT )(i,j) (1)
I = (φ(I) ∗Wp) ∗WJPL (2a)

T = T ∗WJPL (2b)
174
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Using Eqs. 2a and 2b, we measure dot-product similarity between each region and textual token 175

pair (I ∗ TT in Eq. 1), and calculate image-level alignment by summing region-token dot-product 176

similarity scores and dividing with the number of text tokens in the caption. We employ InfoNCE 177

loss to enforce this alignment to be maximized for a positive pair, using other images and captions 178

within the minibatch separately as negatives: 179

LI→T = − log
exp[S(I, T+)/τ ]∑
T∈BT

exp[S(I, T )/τ ]
(3) LT→I = − log

exp[S(I+, T )/τ ]∑
I∈BI

exp[S(I, T )/τ ]
(4) 180

where BT and BI denote the set of captions and images in the minibatch, respectively and τ is the 181

temperature parameter and we set it to 1 in our experiments unless stated otherwise. 182

Several auxiliary objectives are used to train the multimodal transformer encoder to ensure our model 183

learns not only how to align a token pair in isolation without knowing anything about other words 184

and regions, but also reason about both modalities utilizing multimodal context attending to both 185

visual and textual tokens. Following (Chen et al., 2020b; Huang et al., 2020), we employ masked- 186

language modeling (MLM), image-text matching (ITM) and masked region feature reconstruction 187

(MRFR) tasks. While these objectives are not new, to the best our knowledge, we are the first to use 188

them in a novel setting of learning visual representations for weakly-supervised object detection. 189

MLM: Denoting visual regions V = [v1, v2, ..., vn2 ] and caption tokens T̂ = [t̂1, t̂2, ..., t̂k], we 190

replace a random word ti ∈ T with [MASK]. The MLM objective is to correctly classify this 191

masked token representation, attending to both caption tokens and visual regions: 192

LMLM(θ) = −E(V,T̂ )∼D logPθ(t̂i|t̂j 6=i, V ) (5)

ITM: We feed a special token, [CLS], along with visual and textual tokens to the multimodal trans- 193

former encoder to measure how well these two modalities align. We apply a fully-connected layer 194

followed by sigmoid to get an alignment between 0 and 1. Denoting y = 1 for a positive image- 195

caption pair (image and its paired caption in the dataset), we optimize a binary cross-entropy loss: 196

LITM(θ) = −E(V,T̂ )∼D[y log σθ(V, T̂ ) + (1− y) log(1− σθ(V, T̂ ))] (6)

MRFR: We randomly sample a region i among n2 regions and zero-out its feature vector vi. De- 197

noting the reconstructed feature vector as hθ(~0 | vj 6=i, T̂ ), MRFR minimizes: 198

LMRFR(θ) = E(V,T̂ )∼D

∥∥∥vi − hθ(~0 | vj 6=i, T̂ )∥∥∥2
2

(7)

The final loss that our pre-training method tries to minimize, LPRE, is the combination of the loss 199

terms from individual tasks explained above: 200

LPRE =
LT→I + LI→T

2
+ LMLM + LITM + LMRFR (8)

3.2 WEAKLY-SUPERVISED OBJECT DETECTION 201

Our method stands out from most prior weakly-supervised detection techniques in that it uses image- 202

level labels that are not provided through crowdsourcing, but rather extracted from image captions. 203

This technique opens the possibility to use freely-available web captions for supervision at the image 204

level. However, in prior work, e.g. Ye et al. (2019), all image-caption pairs contribute equally to 205

the detection loss. This is problematic because in some captions, the alignment between image and 206

caption is more pure, hence the chance of false positives (objects mentioned in the caption but not 207

shown) and false negatives (objects shown but not mentioned) is lower. Our contribution in this 208

section is the investigation of image-caption weighting techniques that adjust the contribution of the 209

paired samples used to extract labels at the image level. 210

Our method builds upon WSDDN (Bilen & Vedaldi, 2016), a well-established WSOD baseline, 211

but adds a module to prevent the visual backbone from forgetting the rich semantic information 212

5



Under review as a conference paper at ICLR 2022

learned from captions in the pre-training stage, by transferring the visual backbone φ, Wp andWJPL.213

Our method takes input image (I), set of captions (BT ) and region proposal set (RI ) generated by214

Selective Search (Uijlings et al., 2013). It performs multiple instance detection and cross-modal215

instance discrimination, detailed below. Unlike WSDDN and Ye et al. (2019), the final loss is216

weighed based on how well the input image and its paired caption are aligned.217

Multiple instance detection. Given image I and region proposalsRI , we extract a dr-dimensional218

feature vector for each region, resulting in φ(I,RI) ∈ Rm×dr where |RI | = m and φ(I,RI) =219

[r1, r2, ..., rm]. These features are fed into two separate fully-connected layers that work in parallel220

to produce classification and detection scores for each region. Denoting the object classes to learn221

as C = {c1, c2, ..., ck}, region ri’s classification and detection scores for a class ca are calculated:222

rcls
i,ca =

exp(ri ·Wcls,a + bcls,a)∑k
b=1 exp(ri ·Wcls,b + bcls,b)

(9) rdet
i,ca =

exp(ri ·Wdet,a + bdet,a)∑m
j=1 exp(rj ·Wdet,a + bdet,a)

(10)223

The model’s prediction of ca being present in the image is calculated as:224

ŷca =

m∑
i=1

rcls
i,ca r

det
i,ca (11)

Lastly, given y = {yc1 , yc2 , ..., yck}, which are the binary image-level labels extracted from captions225

and described shortly, our model optimizes the following for multiple instance detection:226

LMID = −1

k

k∑
i=1

yci log(ŷci) + (1− yci)(1− ŷci) (12)

Image-level label inference. We use EXACTMATCH, introduced in (Ye et al., 2019) as a base-227

line that does not require any supervision, to extract image-level object labels from captions. This228

approach entails applying lexical matching on captions to look for exact class labels.229

Cross-modal instance discrimination (xID). We next introduce the cross-modal instance discrim-230

ination task that our method performs during WSOD training in order to preserve the rich semantic231

space learned from image captions during pre-training. We utilize a set of captions BT which con-232

sists of a positive caption (i.e. paired with the input image) and randomly sampled negative captions.233

We first extract region features φ(I,RI) = [r1, r2, ..., rm] as explained previously, then map these234

to token space using transferred Wp ∈ Rdr×dw . We feed both visual (V ) and textual (T ) tokens235

into JPL to project them into the same joint-space learned in the pre-training stage. We calculate a236

global alignment score between image and caption as formulated in (Eqs. 1, 2a and 2b). Lastly, we237

employ InfoNCE loss to enforce this alignment score to be maximized between the input image and238

its paired caption among all captions in BC , similar to Eq. 3:239

LxID = − log
exp[S(I, T+)/τ ]∑
T∈BT

exp[S(I, T )/τ ]
(13)

Instance weighting. The final loss that our method optimizes during WSOD training is the combi-240

nation of two loss terms coming from aforementioned sub-tasks:241

LWSOD = β(LMID + λLxID) (14)

Here λ weighs the importance of cross-modal instance discrimination within WSOD training and β242

is the weight for an individual instance. We found λ = 0.1 gives the best results. We experimented243

with the following to produce β values to weight supervision signal of image-caption pairs in WSOD244

training.245

• βITM: We use our pre-training architecture’s own cross-modal alignment prediction from246

ITM output for an image-caption pair.247
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Figure 2: Distribution of β values in MS COCO.

• βCLUE: We use the output of a binary cross-modal coherence classifier trained on the 248

CLUE dataset (Alikhani et al., 2020). CLUE investigates the different purposes of writing a 249

caption for an image, and the different coherence relations between caption and image. The 250

caption may literally describe the content of the image (resulting in a Visible relation), or 251

may be complementary to the image, resulting in different relations, e.g. Story (describing 252

circumstances) or Action (extending the activity presented in the image). CLUE contains 253

image-caption coherence labels (Visible, Subjective, Action, Story, Meta) for a subset of 254

Conceptual Captions (Sharma et al., 2018). We use these to train a Visible/Not model, 255

and use the predicted probability of Visible, for a COCO image-caption pair, to weight its 256

contribution in the detection loss. The use of CLUE is innovative as it brings pragmatics 257

and coherence analysis into object detection, and this has been done the first time. 258

• βHESSEL: Hessel et al. (2018) assigns a concreteness score for words based on how similar 259

the images paired with the same words are in a generic feature space. For each caption in 260

our dataset, we extract Hessel et al. (2018)’s concreteness scores of each individual word 261

that is in the particular caption and average these scores in order to compute the visual 262

concreteness score for the caption. To our knowledge, this is the first time concreteness 263

scores have been used to weight supervision used for object detection. 264

All β scores are bounded in [0, 1], however their distributions vary greatly (see Figure 2). We shift 265

their range with a constant ω so that cumulative effect of the weights would be the same as using 266

no weighting at all. Concretely, we learn a shifting constant ω for each distribution that satisfies 267∑|D|
i=1 ω + β(xi) = |D| where βxi denotes the weight of instance xi and |D| is dataset size. 268

4 EXPERIMENTS 269

We evaluate all components of our method: (1) multimodal pre-training with region-token align- 270

ment, (2) transferring this alignment into WSOD training to preserve the learned visual space, and 271

(3) weighting instances in WSOD training to suppress the effect of ones with weak image-caption 272

alignment. We stress that all components can be easily integrated in existing multimodal pre-training 273

and WSOD architectures. Hence, we focus on verifying our hypotheses with empirical evidence us- 274

ing simple baselines without bells and whistles, rather than outperforming the state-of-the-art. 275

4.1 SETUP 276

Datasets and metrics. We use COCO (Lin et al., 2014) and PASCAL VOC2007 (Everingham 277

et al., 2010). We pre-train our visual backbone on COCO utilizing its paired captions. We use both 278

datasets to train and evaluate our WSOD method. Average precision (AP) is used as the performance 279

metric for WSOD. We report AP0.50 for both datasets, and also AP0.50:0.95 for COCO. 280

Implementation details. All models and baselines were implemented in PyTorch (Paszke et al., 281

2019). We choose VGG-16 (Simonyan & Zisserman, 2015) as our visual backbone as it has been 282

extensively used in the WSOD literature. Pre-training employs BERT (Devlin et al., 2019) from 283

HuggingFace (Wolf et al., 2019), pre-trained on BookCorpus and English Wikipedia, as the language 284

backbone. The multimodal transformer module is a 6-layer encoder (Vaswani et al., 2017) with 8 285

attention heads, and operates on 768-D feature space. We resize images to 490× 490 and slice the 286

generated feature map into 7 × 7 grid feeding RoI pooling with 49 static proposals, each of which 287
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covers 70 × 70 on the input image. We randomly apply horizontal flipping with probability 0.5.288

For MRFR, we randomly choose one region among the 7 × 7 = 49 and zero out its feature vector.289

For MLM, we reduce dictionary size to 1, 000 to ease training, and apply masking only on the most290

frequent 1, 000 nouns, adjectives and verbs in COCO captions. We run pre-training for 20 epochs291

with mini batch size of 16, on an NVIDIA Quadro RTX 5000 (16GB). We start pre-training with an292

initial learning rate of 1e-3 for multimodal transformer and 1e-5 for visual backbone, then decay it293

at the end of 10th and 16th epochs by factor of 0.1.294

For WSOD, we build on WSDDN (Bilen & Vedaldi, 2016) but replace spatial pyramid pooling295

(SPP) with RoI pooling, and remove the spatial regularizer following Tang et al. (2017). During296

training, we preserve the aspect ratio of images while randomly resizing their longest side to one of297

{480, 576, 688, 864, 1200}, and apply random horizontal flipping with probability 0.5. For cross-298

modal instance discrimination, we utilize 16 captions per image, one of which is positive. We train299

all WSOD models on a single GPU (Quadro RTX 5000 or GeForce GTX 1080Ti) with batch size300

1. Training lasts 750K steps (∼ 6.5 epochs) for COCO and 100K for VOC2007 (∼ 20 epochs). We301

use initial learning rate of 1e-3, and decay it by factor of 0.1 after 10th epoch for VOC2007 and 2nd302

for COCO. We control the random seed among experiments so that all models get training images in303

the same order. We held out a small validation set (200 images) from each dataset to evaluate model304

checkpoints, and pick the best performing checkpoint for complete testing. At inference time, we305

use both the original and horizontally-flipped version of the image, and resize their longest side to306

each of {480, 576, 688, 864, 1200}. Proposal scores are averaged across these 10 versions of the307

same image. We utilize max 1, 000 region proposals per image during training and inference.308

4.2 RESULTS309

Does region-token alignment help? To validate our pre-training hypothesis, we train two instances310

of WSDDN on VOC2007 train+val split using ground-truth labels, varying the initial weights. The311

first variant, WSDDN (W/O ALIGN), is initialized from the visual encoder of a multimodal pre-312

training architecture that shares the same auxiliary objectives with our approach but does not explic-313

itly align visual regions and text tokens. The second variant, WSDDN (W/ ALIGN), it initialized314

using our pre-training architecture. Results in Table 1 show that learning an explicit region-token315

alignment in pre-training stage slightly improves the learned backbone’s performance for WSOD.316

Table 1: Effect of learning explicit region-token alignment in pre-training, testing on VOC2007.
mAP0.50 @ VOC

WSDDN (W/O ALIGN) 22.9%
WSDDN (W/ ALIGN) 23.2%

Does preserving transferred visual space help? Our hypothesis was that manipulating the rich317

visual space for a small number of semantic classes during WSOD training may cause problems318

such as overfitting and poor generalization ability especially when task supervision comes from319

noisy captions. To evaluate our hypothesis, we train two models: the first, WSDDN (W/O XID),320

is our WSDDN implementation and does not include any additions. The second model, WSDDN321

(W/ XID), adds cross-modal instance discrimination loss on top of WSDDN, utilizing a caption set322

among which one is positive. Both models start with the same visual backbone, learned through323

our pre-training schema with region-token alignment objective. They use EXACTMATCH labels,324

and are trained on the COCO 2017 train split, and tested on both COCO 2017 and VOC2007 test325

splits. Results in Table 2 show that integrating multimodal instance discrimination task improves326

the detection performance by 4% and 8% in mAP0.50 and mAP0.50:0.95 settings, respectively.327

Table 2: Effect of integrating multimodal instance discrimination task in WSOD.
mAP0.50 @ COCO mAP0.50:0.95 @ COCO mAP0.50 @ VOC

WSDDN (W/O XID) 6.8% 2.5% 17.7%
WSDDN (W/ XID) 7.1% 2.7% 21.4%

Does instance weighting help? We train eight variants of our method using EXACTMATCH la-328

bels: pre-training with region-token alignment, with/without cross-modal instance discrimination in329

WSOD, using three different sources of β (as explained in Sec. 3.2) plus no-weighting versions.330
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Table 3: Contribution of different mechanisms to clean up the signal image-caption pairs provide.
Best performer per group bolded; all weighting mechanisms outperforming the no-weighting base-
line underlined. Gains (ratio of method vs baseline performance) obtained by our instance weighting
are much more significant than incurred losses; losses are only in the within-dataset setting.

mAP0.50 @ COCO mAP0.50:0.95 @ COCO mAP0.50 @ VOC
OURS 7.1% 2.7% 21.4%
+βITM 7.0% (1% loss) 2.6% 21.5% (0% gain)
+βHESSEL 7.0% (1% loss) 2.6% 21.6% (1% gain)
+βCLUE 6.9% (3% loss) 2.6% 21.9% (2% gain)
OURS W/O XID 6.8% 2.5% 17.7%
+βITM 7.4% (9% gain) 2.8% 19.1% (8% gain)
+βHESSEL 7.3% (7% gain) 2.7% 18.6% (5% gain)
+βCLUE 7.3% (7% gain) 2.7% 18.2% (3% gain)

We observe in Table 3 that all of our instance weighting schemes help in the transfer setting, on 331

PASCAL VOC. On COCO, using our full backbone (OURS, which uses xID, i.e. cross-modal in- 332

stance discrimination), differences between weighting methods are smaller, and all weighting meth- 333

ods are equivalent and comparable to the no-weighting version. In the case where no instance 334

discrimination is used, all weighting methods improve the no-weighting version (OURS W/O XID). 335

Interestingly, the best overall setting differs between COCO (OURS W/O XID +βITM) and VOC 336

(OURS +βCLUE, which uses coherence analysis). Importantly, gains obtained with any of our 337

weighting methods are much more significant than losses incurred in a single setting (top half, 338

on COCO). This verifies the positive contribution of our weighting techniques. 339

Comparison with Cap2Det. We next compare our approach to a state-of-the-art method, namely 340

CAP2DET (Ye et al., 2019), which also learns an object detector from image-caption pairs. 341

CAP2DET utilizes a text classifier to extract image-level labels from an input caption to supervise 342

WSOD training. However, it still needs image-level ground-truth labels to learn the text classi- 343

fier. We train a WSDDN on COCO 2017 train split using the labels outputt by CAP2DET’s text 344

classifier (WSDDN(IM)-C2D). We also train WSDDN with ground-truth labels as upper bound 345

(WSDDN(IM)-GT), and another using just the EXACTMATCH labels (WSDDN(IM)-EM). The 346

three IM methods start with an ImageNet pre-trained visual backbone. 347

Table 4: Our method outperforms Cap2Det on all three settings without utilizing any ground-truth
labels. Best performer except upper-bound (GT) is bolded. Gains shown for our methods (last two
rows) are compared to the Cap2Det baseline (third row).

mAP0.50 @ COCO mAP0.50:0.95 @ COCO mAP0.50 @ VOC
WSDDN(IM)-GT 7.4% 3.1% 19.9%
WSDDN(IM)-EM 7.3% 2.7% 18.2%
WSDDN(IM)-C2D 6.2% 2.5% 20.0%
WSDDN (W/ XID, W/ ITM) 7.0% (13% gain) 2.6% 21.5% (8% gain)
WSDDN (WO/ XID, W/ ITM) 7.4% (19% gain) 2.8% 19.1% (4% loss)

Results in Table 4 clearly indicate that our method outperforms CAP2DET easily in all three set- 348

tings, without utilizing any ground-truth labels or any additional data. It is worth mentioning 349

that our method also outperforms WSDDN(IM)-GT in the COCO → VOC transfer setting, with 350

1.6% absolute (8% relative) improvement, while performing competitively in the mAP0.50 setting 351

on COCO. 352
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Maxime Oquab, Léon Bottou, Ivan Laptev, and Josef Sivic. Is object localization for free?-weakly- 415

supervised learning with convolutional neural networks. In Proceedings of the IEEE conference 416

on computer vision and pattern recognition, pp. 685–694, 2015. 417

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor 418

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, 419

high-performance deep learning library. Advances in neural information processing systems, 32: 420

8026–8037, 2019. 421

Zhongzheng Ren, Zhiding Yu, Xiaodong Yang, Ming-Yu Liu, Yong Jae Lee, Alexander G Schwing, 422

and Jan Kautz. Instance-aware, context-focused, and memory-efficient weakly supervised object 423

detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni- 424

tion, pp. 10598–10607, 2020. 425

Byungseok Roh, Wuhyun Shin, Ildoo Kim, and Sungwoong Kim. Spatilly consistent representation 426

learning. In CVPR. IEEE, 2021. 427

Mert Bulent Sariyildiz, Julien Perez, and Diane Larlus. Learning visual representations with caption 428

annotations. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 429

23–28, 2020, Proceedings, Part VIII 16, pp. 153–170. Springer, 2020. 430

Ramprasaath R Selvaraju, Karan Desai, Justin Johnson, and Nikhil Naik. Casting your model: 431

Learning to localize improves self-supervised representations. In Proceedings of the IEEE/CVF 432

Conference on Computer Vision and Pattern Recognition, pp. 11058–11067, 2021. 433

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned, 434

hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of the 56th 435

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 436

2556–2565, 2018. 437

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image 438

recognition. In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning 439

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed- 440

ings, 2015. URL http://arxiv.org/abs/1409.1556. 441

Peng Tang, Xinggang Wang, Xiang Bai, and Wenyu Liu. Multiple instance detection network with 442

online instance classifier refinement. In Proceedings of the IEEE Conference on Computer Vision 443

and Pattern Recognition, pp. 2843–2851, 2017. 444

Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeulders. Selective 445

search for object recognition. International journal of computer vision, 104(2):154–171, 2013. 446

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, 447

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information 448

processing systems, pp. 5998–6008, 2017. 449

Fang Wan, Pengxu Wei, Jianbin Jiao, Zhenjun Han, and Qixiang Ye. Min-entropy latent model for 450

weakly supervised object detection. In Proceedings of the IEEE Conference on Computer Vision 451

and Pattern Recognition, pp. 1297–1306, 2018. 452

11

http://arxiv.org/abs/1409.1556


Under review as a conference paper at ICLR 2022

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,453
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