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Abstract

Large-scale multimodal generative modeling has
created milestones in text-to-image and text-to-
video generation. Its application to audio still
lags behind for two main reasons: the lack of
large-scale datasets with high-quality text-audio
pairs, and the complexity of modeling long con-
tinuous audio data. In this work, we propose
Make-An-Audio with a prompt-enhanced diffu-
sion model that addresses these gaps by 1) in-
troducing pseudo prompt enhancement with a
distill-then-reprogram approach, it alleviates data
scarcity with orders of magnitude concept compo-
sitions by using language-free audios; 2) leverag-
ing spectrogram autoencoder to predict the self-
supervised audio representation instead of wave-
forms. Together with robust contrastive language-
audio pretraining (CLAP) representations, Make-
An-Audio achieves state-of-the-art results in both
objective and subjective benchmark evaluation.
Moreover, we present its controllability and gen-
eralization for X-to-Audio with “No Modality
Left Behind”, for the first time unlocking the
ability to generate high-definition, high-fidelity
audios given a user-defined modality input.!

1. Introduction

Deep generative models (Goodfellow et al., 2020; Kingma
& Dhariwal, 2018; Ho et al., 2020) have recently exhibited
high-quality samples in various data modalities. With large-
scale training data and powerful models, kinds of text-to-
image (Saharia et al., 2022; Ramesh et al., 2021; Nichol
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Figure 1. No Modality Left Behind: Make-An-Audio generalizes
well to X-to-Audio with multiple user-defined inputs (text, audio,
image and video), it empowers humans to create rich and diverse
audio content, opening up to a various applications with personal-
ized transfer and fine-grained control.

et al., 2021) and text-to-video (Singer et al., 2022; Hong
et al., 2022) models are now able to vividly depict the visual
scene described by a text prompt, and empower humans to
create rich and diverse visual content with unprecedented
ease. However, replicating this success for audios is limited
for the lack of large-scale datasets with high-quality text-
audio pairs, and the extreme complexity of modeling long
continuous signal data.

In this work, we propose Make-An-Audio, with a prompt-
enhanced diffusion model for text-to-audio (T2A) genera-
tion. To alleviate the issue of data scarcity, we introduce a
pseudo prompt enhancement approach to construct natural
languages that align well with audio, opening up the usage
of orders of magnitude unsupervised language-free data. To
tackle the challenge of modeling complex audio signals in
T2A generation, we introduce a spectrogram autoencoder to
predict the self-supervised representations instead of wave-
forms, which guarantees efficient compression and high-
level semantic understanding. Together with the power of
contrastive language-audio pretraining (CLAP) (Radford
et al., 2021; Elizalde et al., 2022) and high-fidelity diffusion
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models (Ho et al., 2020; Song et al., 2020; Rombach et al.,
2022), it achieves a deep level of language understanding
with high-fidelity generation.

While conceptually simple and easy to train, Make-An-
Audio yields surprisingly strong results. Both subjective
and objective evaluations demonstrate that Make-An-Audio
achieves new state-of-the-art in text-to-audio with natural
and controllable synthesis. Make-An-Audio exhibits su-
perior audio quality and text-audio alignment faithfulness
on the benchmark AudioCaption dataset and even general-
izes well to the unsupervised Clotho dataset in a zero-shot
fashion.

For the first time, we contextualize the need for audio gen-
eration with different input modalities. Besides natural
language, Make-An-Audio generalizes well to multiple user-
defined input modalities (audio, image, and video), which
empowers humans to create rich and diverse audio content
and opens up a host of applications for personalized transfer
and fine-grained control.

Key contributions of the paper include:

* We present Make-An-Audio — an effective method that
leverages latent diffusion with a spectrogram autoen-
coder to model the long continuous waveforms.

* We introduce a pseudo prompt enhancement with the
distill-then-reprogram approach, it includes a large
number of concept compositions by opening up the
usage of language-free audios to alleviate data scarcity.

* We investigate textual representation and emphasize
the advantages of contrastive language-audio pretrain-
ing for a deep understanding of natural languages with
computational efficiency.

* We evaluate Make-An-Audio and present state-of-the-
art quantitative results and thorough evaluation with
qualitative findings.

* We generalize the powerful model to X-to-Audio gen-
eration, for the first time unlocking the ability to gen-
erate high-definition, high-fidelity audios given a user-
defined modality input.

2. Related Works
2.1. Text-Guided Image/Video Synthesis

With the rapid development of deep generative models, text-
guided synthesis has been widely studied in images and
videos. The pioneering work of DALL-E (Ramesh et al.,
2021) encodes images into discrete latent tokens using VQ-
VAE (Van Den Oord et al., 2017) and considers T2I genera-
tion as a sequence-to-sequence translation problem. More

recently, impressive visual results have been achieved by
leveraging large-scale diffusion models. GLIDE (Nichol
et al., 2021) trains a T2I upsampling model for a cascaded
generation. Imagen (Saharia et al., 2022) presents T2I with
an unprecedented degree of photorealism and a deep level of
language understanding. Stable diffusion (Rombach et al.,
2022) utilizes latent space diffusion instead of pixel space
to improve computational efficiency. A large body of work
also explores the usage of T2I models for video genera-
tion. CogVideo (Hong et al., 2022) is built on top of a
CogView?2 (Ding et al., 2022) T2I model with a multi-frame-
rate hierarchical training strategy. Make-A-Video (Singer
et al., 2022) extends a diffusion-based T2I model to T2V
through a spatiotemporally factorized diffusion model.

Moving beyond visual generation, our approach aims to
generate high-fidelity audio from arbitrary natural language,
which has been relatively overlooked.

2.2. Text-Guided Audio Synthesis

While there is remarkable progress in text-guided visual gen-
eration, the progress of text-to-audio (T2A) generation lags
behind mainly due to two main reasons: the lack of large-
scale datasets with high-quality text-audio pairs, and the
complexity of modeling long continuous waveforms data.
DiffSound (Yang et al., 2022) is the first to explore text-
to-audio generation with a discrete diffusion process that
operates on audio codes obtained from a VQ-VAE, lever-
aging masked text generation with CLIP representations.
AudioLLM (Borsos et al., 2022) introduces the discretized ac-
tivations of a masked language model pre-trained on audio
and generates syntactically plausible speech or music.

Very recently, the concurrent work AudioGen (Kreuk et al.,
2022) propose to generate audio samples autoregressively
conditioned on text inputs, while our proposed method dif-
ferentiates from it in the following: 1) we introduce pseudo
prompt enhancement and leverage the power of contrastive
language-audio pre-training and diffusion models for high-
fidelity generation. 2) We predict the continuous spectro-
gram representations, significantly improving computational
efficiency and reducing training costs.

2.3. Audio Representation Learning

Different from modeling fine-grain details of the signal, the
usage of high-level self-supervised learning (SSL) (Baevski
et al., 2020; Hsu et al., 2021; Huang et al., 2022d; Xun et al.,
2023) has been shown to effectively reduce the sampling
space of generative algorithms. Inspired by vector quan-
tization (VQ) techniques, SoundStream (Zeghidour et al.,
2021) and HiFi-Codec (Yang et al., 2023) present a hierar-
chical architecture for high-level representations that carry
semantic information. Data2vec (Baevski et al., 2022) uses
a fast convolutional decoder and explores the contextualized
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Figure 2. A high-level overview of Make-An-Audio. Note that some modules (printed with a lock) are frozen for training the T2A model.
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target representations in a self-supervised manner.

Recently, spectrograms (akin to 1-channel 2D images) au-
toencoder (Gong et al., 2022; He et al., 2022) with recon-
struction objective as self-supervision have demonstrated
the effectiveness of heterogeneous image-to-audio transfer,
advancing the field of speech and audio processing on a vari-
ety of downstream tasks. Among these approaches, Xu et al.
(2022) study the Masked Autoencoders (MAE) (He et al.,
2022) to self-supervised representation learning from audio
spectrograms. Gong et al. (2022) adopt audio spectrogram
transformer with joint discriminative and generative masked
spectrogram modeling. Inspired by these, we inherit the
recent success of spectrogram SSL in the frequency domain,
which guarantees efficient compression and high-level se-
mantic understanding.

3. Make-An-Audio

In this section, we first overview the Make-An-Audio frame-
work and illustrate pseudo prompt enhancement to better
align text and audio semantics, following which we intro-
duce textual and audio representations for multimodal learn-
ing. Together with the power of diffusion models with
classifier-free guidance, Make-An-Audio explicits high-
fidelity synthesis with superior generalization.

3.1. Overview

Deep generative models have achieved leading perfor-
mances in text-guided visual synthesis. However, the current
development of text-to-audio (T2A) generation is hampered
by two major challenges: 1) Model training is faced with

data scarcity, as human-labeled audios are expensive to
create, and few audio resources provide natural language
descriptions. 2) Modeling long continuous waveforms (e.g.,
typically 16,000 data points for 1s 16 kHz waveforms) poses
a challenge for all high-quality neural synthesizers.

As illustrated in Figure 2, Make-An-Audio consists of the
following main components: 1) the pseudo prompt enhance-
ment to alleviate the issue of data scarcity, opening up the us-
age of orders of magnitude language-free audios; 2) a spec-
trogram autoencoder for predicting self-supervised represen-
tation instead of long continuous waveforms; 3) a diffusion
model that maps natural language to latent representations
with the power of contrastive language-audio pretraining
(CLAP) and 4) a separately-trained neural vocoder to con-
vert mel-spectrograms to raw waveforms. In the following
sections, we describe these components in detail.

3.2. Pseudo Prompt Enhancement:
Distill-then-Reprogram

To mitigate the data scarcity, we propose to construct
prompts aligned well with audios, enabling a better under-
standing of the text-audio dynamics from orders of magni-
tude unsupervised data. As illustrated in Figure 3, it consists
of two stages: an expert distillation approach to produce
prompts aligned with audio, and a dynamic reprogramming
procedure to construct a variety of concept compositions.

3.2.1. EXPERT DISTILLATION

We consider the pre-trained automatic audio captioning (Xu
et al., 2020) and audio-text retrieval (Deshmukh et al., 2022;
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Koepke et al., 2022) systems as our experts for prompt gen-
eration. Captioning models aim to generate diverse natural
language sentences to describe the content of audio clips.
Audio-text retrieval takes a natural language as a query to
retrieve relevant audio files in a database. To this end, ex-
perts jointly distill knowledge to construct a caption aligned
with audio, following which we select from these candidates
that endow high CLAP (Elizalde et al., 2022) score as the
final caption (we include a threshold to selectly consider
faithful results). This simple yet effective procedure largely
alleviates data scarcity issues and explicit generalization
to different audio domains, and we refer the reader to Sec-
tion 6.3.2 for a summary of our findings. Details have been
attached in Appendix E.2.

3.2.2. DYNAMIC REPROGRAMMING

To prevent overfitting and enable a better understanding
of concept compositions, we introduce a dynamic repro-
gramming technique that constructs a variety of concept
compositions. It proceeds in three steps as illustrated in
Figure 3, where we elaborate the process as follows: 1) We
first prepare our sound event database D annotated with a
single label. 2) Each time N concepts are sampled from
the database D, where N € {0, 1,2}. 3) The original text-
audio pair data has been randomly concatenated with the
sampled events according to the template, constructing a
new training example with varied concept compositions. It
can be conducted online, significantly reducing the time con-
sumed for data preparation. The reprogramming templates
are attached in Appendix F.

3.3. Textual Representation

Text-guided synthesis models need powerful semantic text
encoders to capture the meaning of arbitrary natural lan-
guage inputs, which could be grouped into two major cate-
gories: 1) Contrastive pretraining. Similar to CLIP (Radford
et al., 2021) pre-trained on image-text data, recent progress
on contrastive language-audio pretraining (CLAP) (Elizalde
et al., 2022) brings audio and text descriptions into a joint
space and demonstrates the outperformed zero-shot gener-
alization to multiple downstream domains. 2) Large-scale
language modeling (LLM). Saharia et al. (2022) and Kreuk
et al. (2022) utilize language models (e.g., BERT (Devlin
et al., 2018), TS5 (Raffel et al., 2020)) for text-guided gen-
eration. Language models are trained on text-only corpus
significantly larger than paired multimodal data, thus being
exposed to a rich distribution of text.

Following the common practice (Saharia et al., 2022;
Ramesh et al., 2022), we freeze the weights of these text
encoders. We find that both CLAP and T5-Large achieve
similar results on benchmark evaluation, while CLAP could
be more efficient without offline computation of embed-

dings required by LLM. We refer the reader to Section 6.3.1
for a summary of our findings.

3.4. Audio Representation

Recently, spectrograms (akin to 1-channel 2D images) au-
toencoder (Gong et al., 2022; He et al., 2022) with recon-
struction objective as self-supervision have demonstrated
the effectiveness of heterogeneous image-to-audio trans-
fer, advancing the field of speech and audio processing on
a variety of downstream tasks. The audio signal is a se-
quence of mel-spectrogram sample x € [0, 1]*T, where
C,, T respectively denote the mel channels and the number
of frames. Our spectrogram autoencoder is composed of
1) an encoder network E which takes samples « as input
and outputs latent representations z; 2) a decoder network
G reconstructs the mel-spectrogram signals @’ from the
compressed representation z; and 3) a multi-window dis-
criminator Dis learns to distinguish the generated samples
G(z) from real ones in different multi-receptive fields of
mel-spectrograms.

The whole system is trained end-to-end to minimize 1)
Reconstruction loss L., which improves the training ef-
ficiency and the fidelity of the generated spectrograms; 2)
GAN losses Lgan, where the discriminator and genera-
tor play an adversarial game; and 3) KL-penalty loss Lk,
which restricts spectrogram encoders to learn standard z and
avoid arbitrarily high-variance latent spaces.

To this end, Make-An-Audio takes advantage of the spec-
trogram autoencoder to predict the self-supervised repre-
sentations instead of waveforms. It largely alleviates the
challenges of modeling long continuous data and guarantees
high-level semantic understanding.

3.5. Generative Latent Diffusion

We implement our method over Latent Diffusion Models
(LDMs) (Rombach et al., 2022), a recently introduced class
of Denoising Diffusion Probabilistic Models (DDPMs) (Ho
et al., 2020) that operate in the latent space. It is conditioned
on textual representation, breaking the generation process
into several conditional diffusion steps. The training loss is
defined as the mean squared error in the noise € ~ N (0, I)
space, and efficient training is optimizing a random term of
t with stochastic gradient descent:

Lo = |leg(ze,t,c) — el (1)

where o denotes the small positive constant, and €y denotes
the denoising network. To conclude, the diffusion model can
be efficiently trained by optimizing ELBO without adver-
sarial feedback, ensuring extremely faithful reconstructions
that match the ground-truth distribution. Detailed formula-
tion of DDPM has been attached in Appendix D.
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Figure 4. A high-level overview of visual-to-audio generation (I2A/V2A) pipeline using Make-An-Audio.

3.6. Classifier-Free Guidance

For classifier-free guidance shown in (Dhariwal & Nichol,
2021; Ho & Salimans, 2022), by jointly training a condi-
tional and an unconditional diffusion model, it could be pos-
sible to combine the conditional and unconditional scores
to attain a trade-off between sample quality and diversity.
The textual condition in a latent diffusion model €y(z, ¢, ¢)
is replaced by an empty prompt cy with a fixed probability
during training. During sampling, the output of the model is
extrapolated further in the direction of €4(z, t, ¢) and away
from €q(z¢, t, ¢y) with the guidance scale s > 1:

€9(ze,t,c) = €9(ze,t,cp) + 5 (€9(2e, t, c) —€a(ze,t,cp)) (2)

4. X-To-Audio: No Modality Left Behind

In this section, we generalize our powerful conditional dif-
fusion model for X-To-Audio generation. For the first time,
we contextualize the need for audio generation with different
conditional modalities, including: 1) text, 2) audio (inpaint-
ing), and 3) visual. Make-An-Audio empowers humans to
create rich and diverse audio content with unprecedented
ease, unlocking the ability to generate high-definition, high-
fidelity audio given a user-defined modality input.

4.1. Personalized Text-To-Audio Generation

Adapting models (Chen et al., 2020b; Huang et al., 2022b)
to a specific individual or object is a long-standing goal
in machine learning research. More recently, personaliza-
tion (Gal et al., 2022; Benhamdi et al., 2017) efforts can be
found in vision and graphics, which allows to inject unique
objects into new scenes, transform them across different
styles, and even produce new products. For instance, when
asked to generate “baby crying” given the initial sound of
“thunder”, our model produces realistic and faithful audio
describing “a baby cries in the thunder day”. Distinctly,
it has a wide range of uses for audio mixing and tuning,

e.g., adding background sound for an existing clip or editing
audio by inserting a speaking object.

We investigate the personalized text-to-audio generation by
stochastic differential editing (Meng et al., 2021), which has
been demonstrated to produce realistic samples with high-
fidelity manipulation. Given input audio with a user guide
(prompt), we select a particular time ¢ with total denoising
steps N, and add noise to the raw data zy for zp (I' =
to X N) according to Equation 4. It is then subsequently
denoised through a reverse process parameterized by shared
6 to increase its realism according to Equation 6.

A trade-off between faithfulness (text-caption alignment)
and realism (audio quality) could be witnessed: As 7" in-
creases, a large amount of noise would be added to the
initial audio, and the generated samples become more real-
istic while less faithful. We refer the reader to Figure 5 for
a summary of our findings.

4.2. Audio Inpainting

Inpainting (Liu et al., 2020; Nazeri et al., 2019) is the task
of filling masked regions of an audio with new content
since parts of the audio are corrupted or undesired. Though
diffusion model inpainting can be performed by adding
noise to initial audio and sampling with SDEdit, it may
result in undesired edge artifacts since there could be an
information loss during the sampling process (the model
can only see a noised version of the context). To achieve
better results, we explicitly fine-tune Make-An-Audio for
audio inpainting.

During training, the way masks are generated greatly in-
fluences the final performance of the system. As such, we
adopt irregular masks (thick, medium, and thin masks) sug-
gested by LaMa (Suvorov et al., 2022), which uniformly
uses polygonal chains dilated by a high random width (wide
masks) and rectangles of arbitrary aspect ratios (box masks).
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In addition, we investigate the frame-based masking strategy
commonly adopted in speech liteature (Baevski et al., 2020;
Hsu et al., 2021). It is implemented using the algorithm
from wav2vec 2.0 (Baevski et al., 2020), where spans of
length are masked with a p probability.

4.3. Visual-To-Audio Generation

Recent advances in deep generative models have shown im-
pressive results in the visually-induced audio generation (Su
et al., 2020; Gan et al., 2020), towards generating realistic
audio that describes the content of images or videos: Hsu
et al. (2020) show that spoken language could be learned
by a visually-grounded generative model of speech. Iashin
& Rahtu (2021) propose a multi-class visual guided sound
synthesis that relies on a codebook prior-based transformer.

To pursue this research further, we extend Make-An-Audio
for visual-to-audio generation. For the lack of large-scale
visual-audio datasets in image-to-audio (I2A) research, our
main idea is to utilize contrastive language-image pretrain-
ing (CLIP) with CLIP-guided T2A model and leverage tex-
tual representations to bridge the modality gap between
visual and audio world. As CLIP encoders embed images
and text to the joint latent space, our T2A model provides
a unique opportunity to visualize what the CLIP image
encoder is seeing. Considering the complexity of V2A gen-
eration, it is natural to leverage image priors for videos to
simplify the learning process. On this account, we uniformly
pick up 4 frames from the video and pool these CLIP image
features to formulate the “averaged” video representation,
which is then deteriorated to I2A generation.

To conclude, the visual-to-audio inference scheme can be
formulated in Figure 4. It significantly reduces the require-
ment for pair visual datasets, and the plug-and-play module
with pre-trained Make-An-Audio empowers humans to cre-
ate rich and diverse audio content from the visual world.

5. Training and Evaluation
5.1. Dataset

We train on a combination of several datasets: AudioSet,
BBC sound effects, Audiostock, AudioCaps-train, ESC-50,
FSD50K, Free To Use Sounds, Sonniss Game Effects, We-
SoundEffects, MACS, Epidemic Sound, UrbanSound8K,
WavText5Ks, LibriSpeech, and Medley-solos-DB. For au-
dios without natural language annotation, we apply the
pseudo prompt enhancement to construct captions aligned
well with the audio. Overall we have ~3k hours with
IM audio-text pairs for training data. For evaluating text-
to-audio models (Yang et al., 2022; Kreuk et al., 2022),
the AudioCaption validation set is adopted as the stan-
dard benchmark, which contains 494 samples with five
human-annotated captions in each audio clip. For a more

challenging zero-shot scenario, we also provide results in
Clotho (Drossos et al., 2020) validation set which contain
multiple audio events. A more detailed data setup has been
attached in Appendix A.

We conduct preprocessing on the text and audio data: 1)
convert the sampling rate of audios to 16kHz and pad short
clips to 10-second long; 2) extract the spectrogram with
the FFT size of 1024, hop size of 256 and crop it to a
mel-spectrogram of size 80 x 624; 3) non-standard words
(e.g., abbreviations, numbers, and currency expressions) and
semiotic classes (Taylor, 2009) (text tokens that represent
particular entities that are semantically constrained, such as
measure phrases, addresses, and dates) are normalized.

5.2. Model Configurations

We train a continuous autoencoder to compress the percep-
tual space with downsampling to a 4-channel latent represen-
tation, which balances efficiency and perceptually faithful
results. For our main experiments, we train a U-Net (Ron-
neberger et al., 2015) based text-conditional diffusion model,
which is optimized using 18 NVIDIA V100 GPU until 2M
optimization steps. The base learning rate is set to 0.005,
and we scale it by the number of GPUs and the batch size
following LDM. We utilize HiFi-GAN (Kong et al., 2020)
(V1) trained on VGGSound dataset (Chen et al., 2020a)
as the vocoder to synthesize waveform from the generated
mel-spectrogram in all our experiments. Hyperparameters
are included in Appendix B.

5.3. Evaluation Metrics

We evaluate models using objective and subjective metrics
over audio quality and text-audio alignment faithfulness.
Following common practice (Yang et al., 2022; lashin &
Rahtu, 2021), the key automated performance metrics used
are melception-based (Koutini et al., 2021) FID (Heusel
et al., 2017) and KL divergence to measure audio fidelity.
Additionally, we introduce the CLAP score to measure
audio-text alignment for this work. CLAP score is adapted
from the CLIP score (Hessel et al., 2021; Radford et al.,
2021) to the audio domain and is a reference-free evaluation
metric that closely correlates with human perception.

For subjective metrics, we use crowd-sourced human evalu-
ation via Amazon Mechanical Turk, where raters are asked
to rate MOS (mean opinion score) on a 20-100 Likert scale.
We assess the audio quality and text-audio alignment faith-
fulness by respectively scoring MOS-Q and MOS-F, which
is reported with 95% confidence intervals (CI). More infor-
mation on evaluation has been attached in Appendix C.
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Model | Textcond Params | FID KL CLAP | MOS-Q  MOSF | FID-Z KL-Z
Reference |/ /| 71 0526 | 747+094 80.5+1.84 | / /
Diffsound | CLIP  520M | 7.17 3.57 0420 | 67.141.03 70.9+1.05 | 2497  6.53

| CLAP  332M [ 4.61 279 0482 | 72.5£0.90 78.6+1.01 | 17.38  6.98
Make-An-Audio | BERT ~ 809M | 5.15 289 0480 | 70.5+0.87 77.2+0.98 | 1875  7.01
T5-Large  563M | 483 281 0.486 | 71.8+£091 77.24£093 | 1723  7.02

CLIP  576M | 645 291 0444 | 7212092 7544096 | 1755  7.09

Table 1. Text-to-audio evaluation. We report the evaluation metrics including MOS(1), FID({), KL({), and CLAP(1). FID-Z and
KL-Z denote the zero-shot results in the Clotho dataset. To benchmark the text-to-audio (T2A) generation task, we further compare
Make-An-Audio with AudioLDM (Liu et al.) and AudioGen (Kreuk et al., 2022) in Appendix C.

Training Masks Narrow Masks Wide Masks Method | MOS-Q MOS-F

FID KL MOS-Q FID KL MOS-Q Image-to-Audio Generation
Irregular (Thin) 1.83 0.46 68.3%1.38 | 401 0.86 66.2+1.20 Reference 1204154 76.4+1.83
Irregular (Thick) | 1.73  0.32  69.6£1.36 | 3.83 0.67 69.3%1.05

Video-to-Audio Generation

Frame (p=30%) | 1.64 029 66.94+1.60 | 3.68 0.62 66.1£1.29
Frame (p=50%) | 1.77 032 68.6=1.42 | 3.66 0.63 6744127 Reference | 69.5+1.22  81.0+1.43
Frame (p=70%) | 1.59 032 71.04+1.12 | 349 0.65 70.841.50 Make-An-Audio | 60.0+1.31  69.0+1.08

Table 2. Audio inpainting evaluation with variety masking strategies.

6. Results
6.1. Quantitative Results

Automatic Objective Evaluation The objective evalua-
tion comparison with baseline Diffsound (the only publicly-
available T2A generation model) are presented in Table 1,
and we have the following observations: 1) In terms of au-
dio qualty, Make-An-Audio achieves the highest perceptual
quality in AudioCaption with FID of 4.61 and KL of 2.79.
For zero-shot generation, it also demonstrates the outper-
formed results superior to the baseline model; 2) On text-
audio similarity, Make-An-Audio scores the highest CLAP
with a gap of 0.037 compared to the ground truth audio, sug-
gesting Make-An-Audio’s ability to generate faithful audio
that aligns well with descriptions.

Subjective Human Evaluation The evaluation of the T2A
models is very challenging due to its subjective nature in
perceptual quality, and thus we include a human evaluation
in Table 1: Make-An-Audio (CLAP) achieves the highest
perceptual quality with MOS-Q of 72.5 and MOS-F of 78.6.
It indicates that raters prefer our model synthesis against
baselines in terms of audio naturalness and faithfulness.

For audio-inpainting, we compare different masking designs,
including the irregular (thick, medium, and thin) strategy
from visual world (Suvorov et al., 2022), as well as the
frame-based (with varying p) strategy commonly used in
speech (Baevski et al., 2020; Hsu et al., 2021). During
evaluation, we randomly mask the wide or narrow regions
and utilize FID and KL metrics to measure performance.

Table 3. Image/Video-to-audio evaluation.

The results have been presented in Table 2, and we have the
following observations: 1) In both frame-based or irregular
strategies, larger masked regions in training have witnessed
the improved perceptual quality, which force the network to
exploit the high receptive field of continuous spectrograms
fully. 2) With the similar size of the masked region, the
frame-based strategy consistently outperforms the irregular
one, suggesting that it could be better to mask the audio
spectrograms which align in time series.

We also present our visual-to-audio generation results in
Table 3. As can be seen, Make-An-Audio can generalize to
a wide variety of images and videos. Leveraging contrastive
pre-training, the model provides a high-level understanding
of visual input, which generates high-fidelity audio spectro-
grams well-aligned with their semantic meanings.

6.2. Qualitative Findings

Firstly, we explore the classifier-free guidance in text-to-
audio synthesis. We sweep over guidance values and present
trade-off curves between CLAP and FID scores in Figure 7.
Consistent with the observations in Ho & Salimans (2022),
the choice of the classifier guidance weight could scale
conditional and unconditional synthesis, offering a trade-off
between sample faithfulness and realism with respect to the
conditioning text.

For better comparison in audio inpainting, we visualize
different masking strategies and synthesis results in Fig-
ure 6. As can be seen, given the initial audio with undesired
content, our model correctly fills and reconstruct the audio
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Figure 6. Qualitative results with our inpainting model.

robust to different shapes of masked regions, suggesting that
it is capable of a high-level understanding of audio content.

On the personalized text-to-audio generation, we explore
different to € (0,1) to add Gaussian noise and conduct
reverse sampling. As shown in Figure 5, a trade-off between
faithfulness (measured by CLAP score) and realism (mea-
sured by 1-MSE distance) could be witnessed. We find that
to € [0.2,0.5] works well for faithful guidance with realistic
generation, suggesting that audio variants (e.g., speed, tim-
bre, and energy) could be easily destroyed as ¢y increases.

6.3. Analysis and Ablation Studies

To verify the effectiveness of several designs in Make-An-
Audio, including pseudo prompt enhancement, textual and
audio representation, we conduct ablation studies and dis-
cuss the key findings as follows. More analysis on audio
representation has been attached in Appendix E.1.

5.8

5.6

5.4

FID

5.2

5.01

4.8 1

044 046 048 050 052 0.54
CLAP Score

Figure 7. Classifier-free guidance trade-off curves.

6.3.1. TEXTUAL REPRESENTATION

We explore several pretrained text encoders, including lan-
guage models BERT (Devlin et al., 2018), T5-Large (Raf-
fel et al., 2020), as well as the multimodal contrastive
pre-trained encoder CLIP (Radford et al., 2021) and
CLAP (Elizalde et al., 2022). We freeze the weights of
text encoders for T2A generation. For easy comparison, we
present the results in Table 1 and have the following obser-
vations: 1) Since CLIP is introduced as a scalable approach
for learning joint representations between text and images,
it could be less useful in deriving semantic representation
for T2A in contrast to Yang et al. (2022). 2) CLAP and T5-
Large achieve similar performances on benchmarks dataset,
while CLAP could be more computationally efficient (with
only %59 params), without the need for offline computation
of embeddings in large-scale language models.

6.3.2. PSEUDO PROMPT ENHANCEMENT

Our prompt enhancement approach alleviates the issue of
data scarcity, which consists of two stages with a distill-then-
reprogram approach. As shown in Table 5 in Appendix A,
we calculate and compare the prompt-audio faithfulness av-
eraged across datasets: The joint expert distillation produces
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high-quality captions aligned well with audio, and suggests
strong generalization to diverse audio domains.

To highlight the effectiveness of the proposed dynamic re-
programming strategy to create unseen object compositions,
we additionally train our Make-An-Audio in the static train-
ing dataset, and attach the results in Table 8 in Appendix E:
1) Removing the dynamic reprogramming approach results
in a slight drop in evaluation; 2) When migrating to a more
challenging scenario to Clotho in a zero-shot fashion, a sig-
nificant degradation could be witnessed, demonstrating its
effectiveness in constructing diverse object compositions
for better generalization.

7. Conclusion

In this work, we presented Make-An-Audio with a prompt-
enhanced diffusion model for text-to-audio generation.
Leveraging the prompt enhancement with the distill-then-
reprogram approach, Make-An-Audio was endowed with
various concept compositions with orders of magnitude un-
supervised data. We investigated textual representation and
emphasized the advantages of contrastive pre-training for
a deep understanding of natural languages with computa-
tional efficiency. Both objective and subjective evaluation
demonstrated that Make-An-Audio achieved new state-of-
the-art results in text-to-audio with realistic and faithful
synthesis. Make-An-Audio was the first attempt to gener-
ate high-definition, high-fidelity audio given a user-defined
modality input, opening up a host of applications for person-
alized transfer and fine-grained control. We envisage that
our work serve as a basis for future audio synthesis studies.
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Appendices

Make-An-Audio: Text-To-Audio Generation with Prompt-Enhanced Diffusion

Models
A. Detailed Experimental Setup
Dataset Hours  Type Source
Clotho 152 Caption Drossos et al. (2020)
AudioCaps 109 Caption Kim et al. (2019)
MACS 100 Caption Martin-Morat6 & Mesaros (2021)
WavText5Ks 25 Caption Deshmukh et al. (2022)
BBC sound effects 481 Caption https://sound-effects.bbcrewind.co.uk/
Audiostock 43 Caption https://audiostock.net/se
Filter AudioSet 2084 Label Gemmeke et al. (2017)
ESC-50 3 Label Piczak (2015)
FSD50K 108 Label https://annotator.freesound.org/fsd/
Sonniss Game Effects 20 Label https://sonniss.com/gameaudiogdc/
WeSoundEffects 11 Label https://wesoundeffects.com/
Epidemic Sound 220 Label https://www.epidemicsound.com/
UrbanSound8K 8 Label Salamon et al. (2014)
LibriTTS 300 Language-free  Zen et al. (2019)
Medley-solos-DB 7 Language-free  Bittner et al. (2014)

Table 4. Statistics for the combination of several datasets.

As shown in Table 5, we collect a large-scale audio-text dataset consisting of 1M audio samples with a total duration of
~3k hours. It contains audio of human activities, natural sounds, and audio effects, consisting of several data sources from
publicly available websites. For audio with text descriptions, we download the parallel audio-text data. For audios without
natural language annotation (or with labels), we discard the corresponding class label (if any) and apply the pseudo prompt
enhancement to construct natural language descriptions aligned well with the audio.

As speech and music are the dominant classes in Audioset, we filter these samples to construct a more balanced dataset.
Overall we are left with 3k hours with 1M audio-text pairs for training data. For evaluating text-to-audio models (Yang
et al., 2022; Kreuk et al., 2022), the AudioCaption validation set is the standard benchmark, which contains 494 samples
with five human-annotated captions in each audio clip. In both training and inference, we pad short clips to 10-second long
and randomly crop a 624 x 80 mel-spectrogram from 10-second 16 kHz audio.

Method | FSD50K  ESC-50  Urbansound8k
Original | 040 0.43 0.33
Captioning 0.35 0.46 0.37
Retrieval 0.31 0.44 0.38
Both + CLAP Select |  0.54 0.62 0.55

Table 5. Text-audio alignment CLAP score averaged across the single-label dataset.

B. Model Configurations
We list the model hyper-parameters of Make-An-Audio in Table 6.
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Hyperparameter | Make-An-Audio
Input/Output Channels 1
Hidden Channels 4
Spectrogram Autoencoders Residual Blocks 2
Spectrogram Size 80 x 624
Channel Mult [1,2,2,4]
Input/Output Channels 4
Model Channels 320
Denoisine Unet Attention Heads 8
g Condition Channels 1024
Latent Size 10 x 78
Channel Mult [1,2]
Transformer Embed Channels 768
CLAP Text Encoder Output Project Channels 1024
Token Length 77
Total Number of Parameters | 332M

Table 6. Hyperparameters of Make-An-Audio models.

C. Evaluation

“«

To probe audio quality, we conduct the MOS (mean opinion score) tests and explicitly instruct the raters to “focus on
examining the audio quality and naturalness.”. The testers present and rate the samples, and each tester is asked to evaluate
the subjective naturalness on a 20-100 Likert scale.

To probe text-audio alignment, human raters are shown an audio and a prompt and asked “Does the natural language

description align with audio faithfully?”. They must respond with “completely”, “mostly”, or “somewhat” on a 20-100
Likert scale.

Our subjective evaluation tests are crowd-sourced and conducted via Amazon Mechanical Turk. These ratings are obtained
independently for model samples and reference audio, and both are reported. The screenshots of instructions for testers have
been shown in Figure 8. We paid $8 to participants hourly and totally spent about $750 on participant compensation. A
small subset of speech samples used in the test is available at https://Make—An-Audio.github.io/.

To benchmark the text-to-audio (T2A) generation task, we further evaluate Make-An-Audio and baseline T2A models
following AudioLDM (Liu et al.).

Model FD 1S KL FAD
GT - - - -

AudioGen-S - - 2.09 3.13

AudioGen-L 1.69 1.82

Make-An-Audio 1832 729 1.61 2.66
AudioLDM-S 2948 69 197 243
AudioLDM-L 2331 813 159 1.96

Table 7. The comparison between Make-An-Audio and baseline T2A models on the AudioCaps dataset. We borrowed results from (Liu
et al.; Ghosal et al., 2023) and used the model released by the authors on Huggingface to test CLAP Score.

D. Detailed Formulation of DDPM

As a blossoming class of generative models, denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020; Song et al.,
2020; ?) has emerged to prove its capability to achieve leading performances in both image and audio syntheses (Xun et al.,
2021; Huang et al., 2022c;a). We define the data distribution as ¢(xg). The diffusion process is defined by a fixed Markov
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Select an option

Natural language discriptions: a cat meowing and young female speaking Excellent - Completely faithful - 100 !
Gernerated audio: Good - Mostly faithful - 80 2
Fair - Equally faithful and inconsistent - 60 3

» 0:00/0:09 L DI Poor - Mostly inconsistent - 40 4
Bad - Completely inconsistent - 20 5

(a) Screenshot of MOS-F testing.

Instructions | | Shortcuts | How natural is this audio recording? Please focus on examining the audio quality and naturainess (noise, timbre, sound clarity and high-frequency detaiis), @

Select an option

Testing audio: Excellent - Completely natural audio - 100 1
Good - Mostly natural audio - 80 2

D> CREE) 0 Fair - Equally natural and unnatural audio - 60 3
Poor - Mostly unnatural audio - 40 4

Bad - Completely unnatural audio - 20 5

(b) Screenshot of MOS-Q testing.

Figure 8. Screenshots of subjective evaluations.

chain from data x to the latent variable x:

T
q(x1,-+ xrlxo) = [ [ a(xelxi-1), 3
=1

For a small positive constant 3;, a small Gaussian noise is added from x;_; to the distribution of x; under the function of
q(x |Xt7 1 ) .

The whole process gradually converts data x( to whitened latents x according to the fixed noise schedule 31, - , B,
where € ~ N(0, I):

q(x¢[xi—1) := N (x5 /1 = Bexi—1, Be ) 4)
Efficient training is optimizing a random term of ¢ with stochastic gradient descent:
2
Lo = ||€g <atxo+\/1—a%e> —€ (@)
2

Unlike the diffusion process, the reverse process is to recover samples from Gaussian noises. The reverse process is a
Markov chain from a7 to ¢ parameterized by shared 6:

T
po(xo0,- -+ xr-1lxr) = [ [ po(xe-1/xs), (©)
t=1

where each iteration eliminates the Gaussian noise added in the diffusion process:

Po(X—1]%¢) = N (xp-1; po(x¢, ), o9 (x¢, t)°I) @)

E. Implementation Details
E.1. Spectrogram Autoencoders

We also investigate the effectiveness of several audio autoencoder variants in Table 8, and find that deeper representation
(i.e., 32 or 128) relatively brings more compression, while the information deterioration could burden the Unet model in
generative modeling.

15



Make-An-Audio: Text-To-Audio Generation with Prompt-Enhanced Diffusion Models

Method | Channel — FID KL
Supervised Evaluation in AudioCaps dataset

4 5.15 2.89

Base 32 9.22 3.54

128 10.92 3.68

w/o PPE \ 4 5.37 3.05

Zero-Shot Evaluation in Clotho dataset
Base 4 18.75 7.01
w/o PPE 4 22.31 7.19

Table 8. Audio quality comparisons for ablation study with Make-An-Audio BERT. We use PPE to denote pseudo prompt enhancement.

E.2. Text-to-audio

We first encode the text into a sequence of K tokens, and utilize the cross-attention mechanism to learn a language and
mel-spectrograms representation mapping in a powerful model. After the initial training run, we fine-tuned our base model
to support unconditional generation, with 20% of text token sequences being replaced with the empty sequence. This
way, the model retains its ability to generate text-conditional outputs, but can also generate spectrogram representation
unconditionally.

We consider the pre-trained automatic audio captioning (Xu et al., 2020) and audio-text retrieval (Deshmukh et al., 2022;
Koepke et al., 2022) systems as our experts for prompt generation. Regarding automatic audio captioning, the model consists
of a 10-layer convolution neural network (CNN) encoder and a temporal attentional single-layer gated recurrent unit (GRU)
decoder. The CNN encoder is pre-trained on a large-scale Audioset dataset. As for audio-text retrieval, the model leverages
BERT with a multi-modal transformer encoder for representation learning. It is trained on AudioCaps and Clotho datasets.

E.3. Visual-to-audio

For visual-to-audio (image/video) synthesis, we utilize the CLIP-guided T2A model and leverage global textual represen-
tations to bridge the modality gap between the visual and audio worlds. However, we empirically find that global CLIP
conditions have a limited ability to control faithful synthesis with high text-audio similarity. On that account, we use the
110h FSD50K audios annotated with a class label for training, and this simplification avoids multimodal prediction (a
conditional vector may refer to different concepts) with complex distribution.

We conduct ablation studies to compare various training settings, including datasets and global conditions. The results have
been presented in Table 9, and we have the following observations: 1) Replacing the FSD50K dataset with AudioCaps (Kim
et al., 2019) have witnessed a significant decrease in faithfulness. The dynamic concepts compositions confuse the
global-condition models, and the multimodal distribution hinders its capacity for controllable synthesis; 2) Removing the
normalization in the condition vector has witnessed the realism degradation measured by FID, demonstrating its efficiency
in reducing variance in latent space.

Training/Testing Dataset Condition ‘FID KL CLAP

AudioCaption Global / / 0.12
FSD50k Global 40.7 82 040
FSD50k NormGlobal | 31.1 8.0 042

Table 9. Ablation studies for training Make-An-Audio with global conditions.

F. Dynamic Reprogramming Templates

Below we provide the list of text templates used when providing dynamic reprogramming:

e before v g an of &, X
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* X before v ¢ a n of &,

* in front of v g a n of &, X
e firstis X second is g a n of &
e after X,vqganof &

e aftervganof & X

e behind v g a n of &, X

e vqanof &, then X

* v qanof &, following X
e vqanof &, later X

e Xaftervganof&

e before X,vqganof&

Specifically, we replace X and &, respectively, with the natural language of sampled data and the class label of sampled
events from the database.

For verb (denoted as v), we have {‘hearing’, ‘noticing’, ‘listening to’, ‘appearing’}; for adjective (denoted as a), we
have {‘clear’, ‘noisy’, ‘close-up’, ‘weird’, ‘clean’}; for noun (denoted as n), we have {‘audio’, ‘sound’, ‘voice’}; for
numeral/quantifier (denoted as q), we have {‘a’, ‘the’, ‘some’};

G. Potential Negative Societal Impacts

This paper aims to advance open-domain text-to-audio generation, which will ease the effort of short video and digital art
creation. The efficient training method also transfers knowledge from text-to-audio models to X-to-audio generation, which
helps avoid training from scratch, and thus reduces the issue of data scarcity. A negative impact is the risk of misinformation.
To alleviate it, we can train an additional classifier to discriminate the fakes. We believe the benefits outweigh the downsides.

Make-An-Audio lowers the requirements for high-quality text-to-audio synthesis, which may cause unemployment for
people with related occupations, such as sound engineers and radio hosts. In addition, there is the potential for harm from
non-consensual voice cloning or the generation of fake media, and the voices in the recordings might be overused than they
expect.

H. Limitations

Make-An-Audio adopts generative diffusion models for high-quality synthesis, and thus it inherently requires multiple
iterative refinements for better results. Besides, latent diffusion models require typically require more computational
resources, and degradation could be witnessed with decreased training data. One of our future directions is to develop
lightweight and fast diffusion models for accelerating sampling.
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