

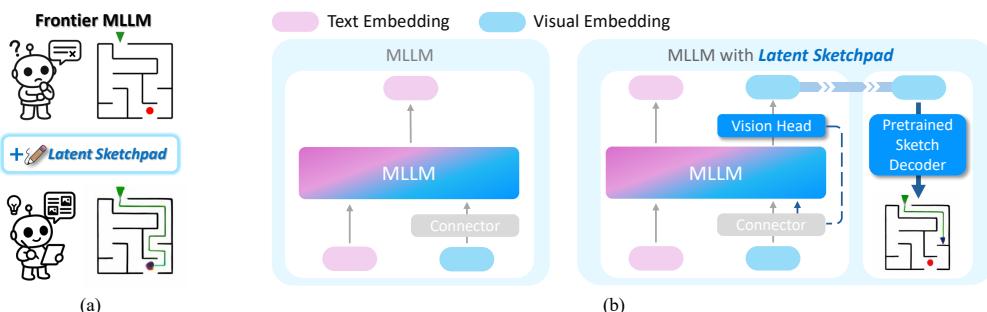
000 LATENT SKETCHPAD: 001 SKETCHING VISUAL THOUGHTS TO 002 ELICIT MULTIMODAL REASONING IN MLLMs 003

004 **Anonymous authors**
005
006

007 Paper under double-blind review
008
009

010 ABSTRACT 011

012 While Multimodal Large Language Models (MLLMs) excel at visual understanding,
013 they often struggle in complex scenarios that require visual planning and
014 imagination. Inspired by how humans use sketching as a form of visual thinking to
015 develop and communicate ideas, we introduce **Latent Sketchpad**, a framework
016 that equips MLLMs with an internal *visual scratchpad*. The internal visual rep-
017 resentations of MLLMs have traditionally been confined to perceptual understand-
018 ing. We repurpose them to support generative visual thought without compromis-
019 ing reasoning ability. Building on frontier MLLMs, our approach integrates visual
020 generation directly into their native autoregressive reasoning process. It allows the
021 model to interleave textual reasoning with the generation of visual latents. These
022 latents guide the internal thought process and can be translated into sketch images
023 for interpretability. To realize this, we introduce two components: a Context-Aware
024 Vision Head autoregressively produces visual representations, and a pretrained
025 Sketch Decoder renders these into human-interpretable images. We evaluate the
026 framework on our new dataset MAZEPLANNING. Experiments across various
027 MLLMs show that Latent Sketchpad delivers comparable or even superior reason-
028 ing performance to their backbone. It further generalizes across distinct frontier
029 MLLMs, including Gemma3 and Qwen2.5-VL. By extending model’s textual
030 reasoning to visual thinking, our framework opens new opportunities for richer
031 human-computer interaction and broader applications.
032



033
034 Figure 1: (a) Latent Sketchpad extends frontier MLLMs (e.g. Gemma3 and Qwen2.5-VL) to
035 interleave text and visual latents generation, incorporating visual thoughts into reasoning. (b) The
036 framework enables interleaved generation by equipping the pretrained MLLM with a Vision Head
037 to generate visual latents autoregressively. A separately pretrained Sketch Decoder visualizes these
038 latents into interpretable sketch images.
039
040
041

042 1 INTRODUCTION 043

044 Multimodal Large Language Models (MLLMs) extend pretrained LLMs with sophis-
045 ticated vision encoders (Bai et al., 2025; Team et al., 2025), demonstrating remarkable success on a wide range
046 of understanding tasks (e.g. VQA) (Zhang et al., 2025b; Fu et al., 2024). Furthermore, reasoning
047

054 techniques such as Chain-of-Thought (CoT) (Wei et al., 2022) have enabled models to tackle complex
 055 challenges by generating step-by-step textual reasoning traces (Li et al., 2025c). However, current
 056 MLLMs still face difficulties when encountering more advanced multimodal reasoning scenarios,
 057 especially those requiring precise spatial reasoning and dynamic visual grounding (Zhang et al.,
 058 2025a; Yang et al., 2025a; Li et al., 2024).

059 Humans naturally overcome such challenges by leveraging internal visual sketches alongside language,
 060 using mental imagery to simulate scenarios, test alternatives, and refine plans (Bruyer & Scailquin,
 061 1998; Pearson, 2002). This interplay between verbal and visual thinking is crucial for effective
 062 reasoning, as visual imagination provides complementary structure and clarity that language alone
 063 fails to convey (Paivio, 1991). Motivated by this, recent research has explored equipping MLLMs
 064 with visual thinking to enhance reasoning (Su et al., 2025c).

065 One common strategy for enhancing multimodal reasoning is to interface with external visual tools,
 066 such as object detectors (Zheng et al., 2025; Su et al., 2025a) or executable code generators (Hu et al.,
 067 2024b; Wu et al., 2025a). However, these approaches are constrained by predefined tool capabilities
 068 and dependence on external environments. Recent efforts such as MVoT (Li et al., 2025a) have
 069 explored synthesizing intermediate visual outputs to aid reasoning. To validate its effectiveness,
 070 MVoT employs unified generative architectures capable of producing both text and images. But these
 071 models (Deng et al., 2025; Tong et al., 2024; Chern et al., 2024) are fundamentally oriented toward
 072 pixel-level rendering. Their training objectives prioritize image realism over visual abstractions most
 073 conducive for reasoning. In parallel, frontier pretrained MLLMs like Qwen2.5-VL and Gemma3 (Bai
 074 et al., 2025; Team et al., 2025) excel at perceptual understanding through large-scale vision–language
 075 pretraining. However, they lack the native ability to generate visual content as part of their reasoning
 076 process. Critically, leveraging their pretrained visual features to actively produce visual thought
 077 for enhancing reasoning also remains largely unexplored. This gap prompts the question: *Can the*
 078 *pretrained visual features of powerful MLLMs be repurposed as a generative sketchpad to enable*
 079 *more complex multimodal reasoning?*

080 To address the limitations of existing approaches, we propose **Latent Sketchpad**, a simple yet
 081 effective framework that extends pretrained MLLMs to integrate visual thoughts into their reasoning
 082 process, as illustrated in Figure 1(a). Inspired by human mental sketching for complex reasoning,
 083 Latent Sketchpad enables the model to generate continuous visual latents within its reasoning
 084 trajectory. Rather than decoding into images, these latents remain in the latent representation space
 085 during reasoning. Furthermore, our approach seamlessly integrates visual reasoning into the MLLM’s
 086 autoregressive generation loop, without compromising its multimodal understanding capabilities.

087 Specifically, as illustrated in Figure 1(b), we introduce a **Context-Aware Vision Head**, which is
 088 responsible for generating visual latents at each reasoning step. It is conditioned not only on the
 089 current hidden state but also on the previous visual representations. This design allows the model
 090 to maintain visual coherence and refine its internal visual representation based on both inter- and
 091 intra-image contextual cues. To make these visual representations human-interpretable, we further
 092 propose a standalone **Sketch Decoder**, pretrained to render visual latents into sketch-style images.
 093 This enables inspection of the model’s evolving reasoning trajectory, offering interpretable insight into
 094 the model’s internal visual thought process. Together, these components endow the MLLM with the
 095 ability to generate visual latents during reasoning and to render them into explicit, human-interpretable
 096 images. To evaluate the effectiveness of our framework, we construct a MAZEPLANNING dataset
 097 featuring complex, interleaved multimodal reasoning trajectories. Experimental results demonstrate
 098 that Latent Sketchpad preserves the reasoning strength of pretrained MLLMs while augmenting it
 099 with interpretable visual traces. Moreover, Latent Sketchpad exhibits broad applicability, enabling
 100 models such as Gemma3 and Qwen2.5-VL to reason beyond text through internal visual generation.

101 The main contributions of this paper include:

- 102 • We propose Latent Sketchpad, a framework that equips pretrained MLLMs with a Vision
 103 Head to interleave the autoregressive generation of visual latents and text, thereby enhancing
 104 their ability to perform complex multimodal reasoning beyond language-only deliberation.
- 105 • We introduce a pretrained Sketch Decoder that faithfully visualize the pretrained visual
 106 features into images for transparent inspection of internal reasoning steps, and is broadly
 107 compatible with diverse pretrained vision encoders like CLIP and SigLIP.

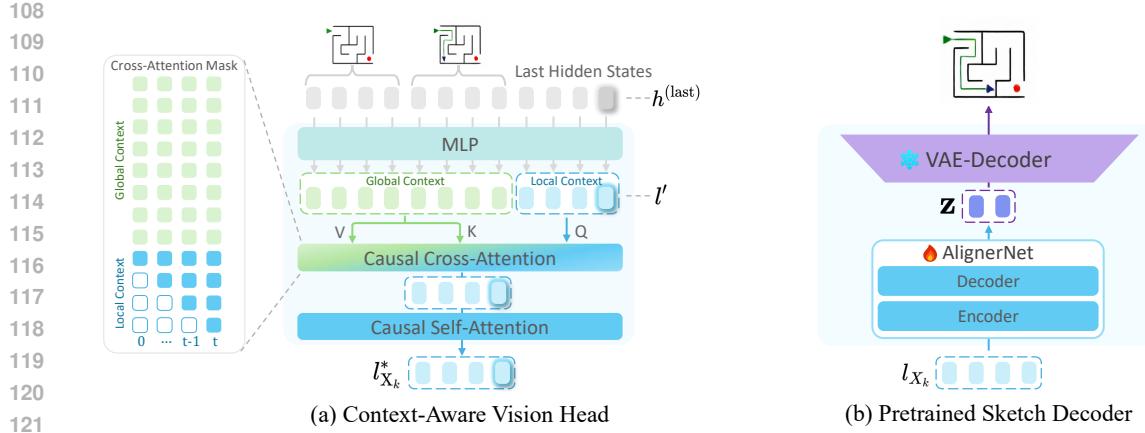


Figure 2: Architecture of the Context-Aware Vision Head and Sketch Decoder. The Vision Head transforms hidden states from the MLLM backbone into visual latents. The Sketch Decoder operates independently, converting these latents into sketch-style images for visualization and interpretability.

- We validate the effectiveness of Latent Sketchpad through comprehensive evaluations and analysis. The results show that our approach yields interpretable visual traces while retaining plug-and-play modularity and broad applicability across diverse pretrained MLLMs.

2 LATENT SKETCHPAD

To solve complex problems, humans often go beyond language, creating internal mental sketches to organize thoughts and visualize solutions. Inspired by this dual-modality process, we propose Latent Sketchpad, a framework that enables MLLMs to ‘think’ visually by repurposing pretrained visual features to generate continuous visual latents alongside text. By integrating linguistic and visual representations, Latent Sketchpad enhances reasoning with greater expressiveness and interpretability.

2.1 OVERVIEW

In the connector-based MLLM, a pretrained vision encoder encodes an input image X_0 into a sequence of latent visual tokens: $l_{X_0} = \mathcal{G}(X_0) \in \mathbb{R}^{n_v \times d_v}$, where n_v denotes the number of visual tokens and d_v is the dimensionality of each token. A connector module, as illustrated in Figure 1, projects these visual latents into the LLM’s embedding space: $h_{X_0} = \mathcal{C}(l_{X_0}) \in \mathbb{R}^{n_v \times d_h}$, where d_h denotes the dimensionality of LLM’s embedding. The resulting visual embeddings h_v are then concatenated with text embeddings h_t , forming a multimodal input sequence.

Our framework, as depicted in Figure 1, builds upon frontier MLLMs by introducing two new components:

- **Context-Aware Vision Head:** This vision head is integrated into the backbone. By leveraging previous visual features in the context, it generates context-aware visual latents from the internal hidden states of the backbone, reflecting the model’s evolving mental images.
- **Pretrained Sketch Decoder:** The decoder operates independently of the MLLM and serves as a visualizer. By aligning the feature space of pretrained vision encoder with the latent space of pretrained VAE, it can translate the generated visual latents into sketch-style images.

With the Vision Head, the model can interleave textual and visual latent generation during the autoregressive generation of multimodal reasoning traces. Meanwhile, the Sketch Decoder serves as a visualization module, converting these internal latents into sketches. Together, our Latent Sketchpad supports interpretable and flexible multimodal reasoning.

2.2 CONTEXT-AWARE VISION HEAD

To interleave visual and textual reasoning within the the autoregressive generation, we introduce a Context-Aware Vision Head. While the hidden state of the MLLM backbone provides prior

162 context information, fine-grained visual details may become attenuated during long-range multimodal
 163 reasoning. To address this, the Vision Head explicitly perform visual generation by leveraging both:
 164

- 1) *Global Context*: the latents of all preceding images, serving as long-range visual memory.
- 2) *Local Context*: the partial latents already produced within the current image, capturing
 166 short-term visual continuity.

167 Through the Vision Head, the resulting context-enriched visual latents can be projected into the
 168 language embedding space for continued autoregressive generation. Besides, they can also be decoded
 169 by our pretrained Sketch Decoder to produce interpretable sketch images.

170 **Auto-regressive Visual Latent Generation.** The visual generation process begins with a special
 171 <start_of_image> token, indicating the start of a new image. Following this signal, the model
 172 enters an auto-regressive loop to generate the visual latents l_{X_k} for image X_k , one token at a time.
 173 When generating the t th image token, as illustrated in Figure 2 (a), the Vision Head first collects
 174 hidden states from global context $\{h_{X_j}^{(\text{last})}\}_{j=0}^{k-1}$ and local context $\{h_{X_k,i}^{(\text{last})}\}_{i=1}^t$. Then all these hidden
 175 states are projected into visual latent space as $\{l'_{X_j}\}_{j=0}^{k-1}$ and $\{l'_{X_k,i}\}_{i=0}^t$, respectively.

177 Let $L_{X_k}^{\text{global}} = [l'_{X_0}, l'_{X_1}, \dots, l'_{X_{k-1}}]$ denote the global context latents, and $L_{X_k,t}^{\text{local}} = [l'_{X_k,0:t-1}, l'_{X_k,t}]$
 178 represent the local context latents. Here $l'_{X_k,0:t-1}$ are the visual latents from previous steps within X_k
 179 and $l'_{X_k,t}$ is the current latent at t . To incorporate contextual knowledge into current latent generation,
 180 the Vision Head performs causal cross-attention on $L_{X_k}^{\text{local}}$ and $L_{X_k}^{\text{global}}$, as illustrated in Figure 2 (a).
 181 Specifically, each token in the local context attends only to tokens preceding it across the entire
 182 sequence, thereby retrieving relevant visual cues from previously generated segments. This causal
 183 structure ensures that visual latents are generated in an autoregressive manner, with each image token
 184 conditioned on prior context. Subsequently, a causal self-attention is applied over the current image's
 185 local context latents $L_{X_k}^{\text{local}}$, ensuring coherence within the current image.

187 The resulting context-enriched latent, $l_{X_k,t}^*$, is then projected back into the language embedding
 188 space to auto-regressively predict the next token. This process iterates until a fixed number n_v of
 189 visual tokens are generated, forming the complete latent sequence $l_{X_k}^* = \{l_{X_k,i}^*\}_{i=0}^{n_v-1}$. The visual
 190 generation concludes with the <end_of_image> token, after which text generation continues.

191 **Loss.** To supervise the Vision Head, we apply a latent-level regression loss between the predicted
 192 context-enriched latent $l_{X_k}^*$ and the target latent l_{X_k} . The target latent l_{X_k} is extracted from the
 193 image in the intermediate visual thought using the pretrained vision encoder of MLLMs, providing a
 194 ground-truth latent representation for supervision. The loss can be instantiated using various similarity
 195 or distance measures (e.g., cosine similarity or L1 distance):

$$\mathcal{L}_{\text{reg}} = \mathcal{D}(l_{X_k}^*, l_{X_k}), \quad (1)$$

196 where $\mathcal{D}(\cdot, \cdot)$ denotes a generic latent regression criterion.

199 **Training.** The Vision Head is trained from scratch using the regression loss \mathcal{L}_{reg} , while keeping all
 200 parameters of the MLLM frozen. This training scheme isolates the learning of visual latent generation
 201 from the backbone, thereby preserving the original reasoning capacity of the MLLM.

203 2.3 PRETRAINED SKETCH DECODER

205 To support transparent and interpretable multimodal reasoning, we introduce a pretrained Sketch
 206 Decoder that converts pretrained visual features into human-interpretable sketches.

207 **Latent-to-Pixel Projection.** The Sketch Decoder is designed as a standalone visualization module,
 208 capable of decoding visual features obtained from pretrained ViT based vision encoder. As illustrated
 209 in Figure 2(b), the core component of the Sketch Decoder is a learnable alignment network (Pan
 210 et al., 2024), which is implemented as a Transformer-based architecture comprising an encoder and a
 211 decoder. It projects the visual latents into the latent space of a pretrained VAE. Specifically, since
 212 ViT features and VAE latent representations reside in distinct semantic spaces, the AlignerNet serves
 213 as a mapping function, transforming the visual tokens into latent vectors. For example, a sequence
 214 of visual latents l_{X_k} is projected by the AlignerNet into VAE-compliant latent codes \hat{z} . These
 215 transformed codes are subsequently fed into a frozen VAE decoder to generate the corresponding
 pixel-space image X_k .

216 **Loss.** Given a training image \mathbf{x} and its foreground mask $\mathbf{m} \in \{0, 1\}^{H \times W}$, we first obtain target
 217 latent posterior $q(\mathbf{z} \mid \mathbf{x})$ from the frozen VAE encoder E_{VAE} . Meanwhile, the vision encoder extracts
 218 visual tokens, which are processed by AlignerNet to predict the parameters (μ, σ) of a Gaussian
 219 distribution $q'(\hat{\mathbf{z}}) = \mathcal{N}(\mu, \sigma^2)$. The latent $\hat{\mathbf{z}} \sim q'$ is then decoded by the frozen VAE decoder D_{VAE}
 220 to produce a reconstruction $\hat{\mathbf{x}} = D_{\text{VAE}}(\hat{\mathbf{z}})$. Together, these losses ensure alignment at both pixel and
 221 latent levels:

$$\mathcal{L} = \mathcal{L}_{\text{rec}} + \mathcal{L}_{\text{latent}} + \mathcal{L}_{\text{emb}}, \quad (2)$$

222 where: $\mathcal{L}_{\text{rec}} = \text{Focal}(\hat{\mathbf{x}}, \mathbf{x}, \mathbf{m})$ is a focal reconstruction loss designed to put extra emphasis on fore-
 223 ground pixels where $m_{ij} = 1$; $\mathcal{L}_{\text{latent}} = \text{NLL}_{\mathcal{N}}(\mu, \sigma; \mathbf{z})$ is the negative log-likelihood loss (Tschan-
 224 nen et al., 2024) that encourages the predicted latent distribution to approximate the ground-truth
 225 posterior; $\mathcal{L}_{\text{emb}} = \frac{1}{N} \sum_{i=1}^N \|\mathbf{e}_i - \hat{\mathbf{e}}_i\|_2^2$ is a mse loss between predicted and target patch embeddings.
 226

227 **Training.** We employ the decoder of SDXL-VAE (Podell et al., 2023) and use its encoder to provide
 228 target latent posterior during training. The transformer-based sketch decoder is trained from scratch,
 229 with both vision encoder and VAE model frozen. During pretraining, we use the Quick, Draw!
 230 dataset (Jongejan et al., 2016), which comprises 50 million sketch-style images across 345 categories.
 231

232 3 EXPERIMENTS

233 3.1 EXPERIMENTAL SETUPS

234 **Data.** To evaluate complex multimodal reasoning capabilities, we construct a MAZEPLANNING
 235 dataset. It comprises 47.8K mazes of size from 3×5 to 5×5 for training, each accompanied by
 236 interleaved text-and-image reasoning sequences. Additionally, we provide a test set of 500 mazes
 237 within the same size range, further divided into an easy set ($< 4 \times 5$) and a hard set (4×5 and 5×5) based
 238 on their size. Detailed dataset statistics and construction procedures are provided in the Appendix A.
 239

240 **Models.** We employ Gemma3-12B and Qwen2.5-VL-7B as our backbone, enhanced with Latent
 241 Sketchpad and fine-tuned on MAZEPLANNING to support interleaved text-image generation. Both
 242 models are evaluated under two reasoning modes: text-only CoT and multimodal CoT. To enable
 243 this, we adopt a unified fine-tuning scheme that equips a single model to operate in both modes.
 244 During training, all images except the initial input are randomly masked with a fixed probability
 245 (0.5), exposing the model to a mixture of purely textual reasoning steps and interleaved text-image
 246 sequences. This allows a single checkpoint to naturally support both text-only and multimodal
 247 reasoning at inference time. Visual generation is supported by our Context-Aware Vision Head, which
 248 is trained with the backbone frozen, making it plug-and-play without compromising the pretrained
 249 reasoning capacity of MLLMs. We also evaluate several proprietary models including GPT-4o, o1,
 250 o4-mini, and o3-pro (tool)¹. Full implementation details are provided in the Appendix B.
 251

252 **Evaluation Metrics.** We extract the model-predicted action sequences by pattern matching the
 253 content enclosed between the `<actions>` and `</actions>` tags. We employ two complementary
 254 evaluation metrics: (1) *Success Rate (SR)* measures the proportion of test cases in which the model
 255 generates a complete and correct action sequence. (2) *Progress Rate (PR)* quantifies the ratio of
 256 consecutively correct actions, reflecting how far the model progresses before making its first mistake.
 257

258 3.2 EXPERIMENTAL RESULTS

259 We evaluate Latent Sketchpad on two representative MLLMs and provide the results together with
 260 proprietary models in Table 1. Each model equipped with Latent Sketchpad is compared against its
 261 own backbone under a consistent training protocol, ensuring fair comparison. The complete results
 262 across diverse training configurations and maze sizes are provided in Appendix C.4.
 263

264 **Proprietary models struggles with complex and dynamic multimodal reasoning tasks.** As shown
 265 in Table 1, the results show that even strong proprietary models (e.g., o4-mini, o3-pro) achieve less
 266 than 20% success rate on our MAZEPLANNING. In addition, their progress rates remain below
 267 50%, underscoring the difficulty proprietary models face in complex and dynamic multimodal
 268

269 ¹o3-pro (tool) refers to the version with access to external tools.

270 Table 1: Experimental results on MAZEPLANNING. *o3-pro (tool)* refers to the version with access
 271 to external tools. The Latent Sketchpad integrated with GPT-4o is trained with all Qwen2.5-VL
 272 weights frozen. The absolute improvement Δ of models equipped with Latent Sketchpad (*+LS*) are
 273 highlighted in blue. and denote text-only output and interleaved text-image output.

Model		Output	Success Rate(%)			Progress Rate(%)		
			Easy	Hard	Average	Easy	Hard	Average
<i>Proprietary</i>	o1	T	21.00	6.50	15.20	40.72	27.95	35.61
	o4-mini	T	28.33	6.50	19.60	49.88	32.61	42.97
	o3-pro (tool)	T	24.33	9.50	18.40	46.03	35.08	41.65
	GPT-4o	T	11.00	5.00	8.60	32.44	28.12	30.71
	+ LS (ours)	, T	+5.67	+1.00	+3.80	+10.69	+6.61	+9.06
<i>Fine-tuned</i>	Gemma3	T	85.67	46.50	70.00	95.22	76.09	87.57
	+ LS (ours)	, T	+2.67	+1.50	+2.20	+0.86	+0.05	+0.53
	Qwen2.5-VL	T	65.67	33.00	52.60	88.32	70.91	81.35
	+ LS (ours)	, T	+0.33	+0.50	+0.40	+0.35	+0.44	+0.39

287
 288
 289 reasoning. These failures primarily stem from the model’s inability to track evolving spatial states
 290 (detailed in Appendix C.2.1), underscoring the limitations of these models in complex reasoning tasks.
 291 Notably, when GPT-4o is equipped with our Latent Sketchpad, the generated visual traces provide
 292 complementary spatial cues that effectively guide its reasoning, yielding significant improvements
 293 in both success and progress rates. In particular, it achieves performance comparable to dedicated
 294 reasoning models and even surpasses o1 on progress rate.

295 **Latent Sketchpad demonstrates promising plug-and-play capability.** A key advantage of Latent
 296 Sketchpad lies in its modular architecture: the Vision Head can be trained independently and attached
 297 to MLLMs without altering their parameters. This preserves the backbone’s original reasoning
 298 ability while seamlessly augmenting it with visual generation. Empirical results show that Latent
 299 Sketchpad can be attached to MLLMs without noticeable degradation in reasoning performance,
 300 while simultaneously enabling the generation of visual traces that support multimodal reasoning.
 301 Specifically, Latent Sketchpad yields measurable improvements on Gemma3 and preserves the already
 302 strong performance of Qwen2.5-VL, demonstrating its effectiveness without compromising reasoning
 303 ability. These results underscore Latent Sketchpad’s promising plug-and-play capability.

304 **Latent Sketchpad exhibits broad applicability across different MLLMs.** Our experiments
 305 demonstrate that Latent Sketchpad seamlessly adapts to diverse pretrained backbones, including
 306 Gemma3 and Qwen2.5-VL. Despite their architectural differences, Latent Sketchpad consistently
 307 enables these models to externalize internal visual features as explicit reasoning traces, thereby
 308 enhancing interpretability and extending their multimodal reasoning capacity. This highlights Latent
 309 Sketchpad as a generally applicable enhancement for diverse MLLMs.

312 4 DISCUSSION AND ANALYSIS

313 4.1 GENERALIZATION AND COMPATIBILITY OF THE PRETRAINED SKETCH DECODER

314 To assess the generalization ability of our pretrained Sketch Decoder, we evaluate its zero-shot
 315 reconstruction performance on unseen samples from the MAZEPLANNING test set. As shown in
 316 Figure 3 (a), the decoder achieves consistently high SSIM (Structural Similarity) scores across
 317 three representative vision encoders (OpenCLIP, Qwen2.5-VL, and Gemma3), demonstrating strong
 318 generalization. Notably, these encoders differ significantly in pretraining schemes: Qwen2.5-VL’s
 319 encoder employs window attention and is trained from scratch, while Gemma3 adopts a SigLIP-
 320 initialized encoder, highlighting our Sketch Decoder’s compatibility with diverse ViT-based vision
 321 encoders. In addition, qualitative examples (Figure 3 (b)) further present the decoder’s ability to
 322 reconstruct sketches with high structural fidelity. Additional examples are provided in Appendix C.5.
 323

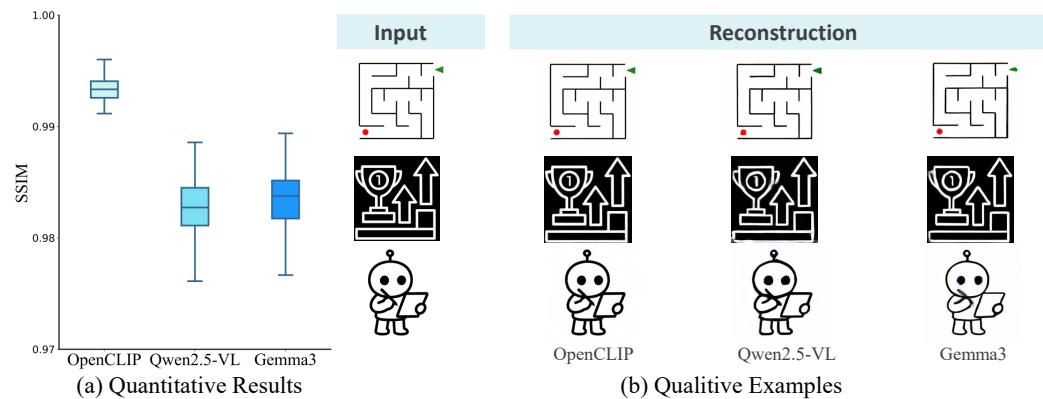


Figure 3: Illustration of generalization and compatibility of the pretrained Sketch Decoder. (a) Quantitative reconstruction results (SSIM) across different vision encoders (OpenCLIP, Qwen2.5-VL and Gemma3) on unseen samples from MAZEPLANNING. (b) Qualitative examples of reconstructed sketches from visual latents produced by each encoder.

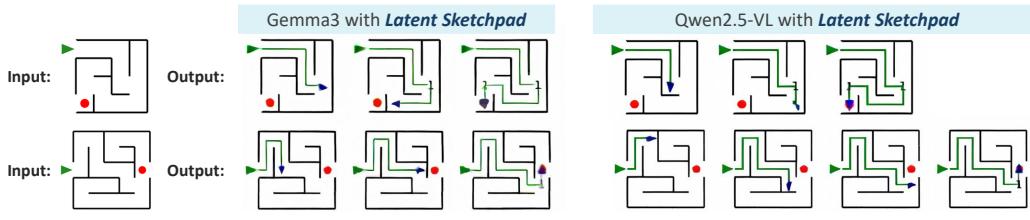


Figure 4: Qualitative analysis illustrating visualizations from Latent Sketchpad-enhanced Gemma3 and Qwen2.5-VL on in-distribution mazes. More examples are provided in Appendix C.6.

4.2 VISUALIZATION QUALITY IN DOWNSTREAM REASONING TASK

Qualitative Analysis. Figure 4 illustrates examples of visual thoughts generated by Latent Sketchpad-enhanced Gemma3 and Qwen2.5-VL on in-distribution test set. As shown in the figure, while the visualizations rendered via our Sketch Decoder may appear lower in perceptual quality, such as the arrows or digits, they exhibit great structural stability. This can be attributed to the Context-Aware Vision Head, which allows semantic context to dynamically guide the visual trajectory and enforce structural consistency throughout the planning process. More examples are provided in Appendix C.6.

Quantitative Analysis. To evaluate the quality of generated visual traces, we introduce two metrics:

- Layout Consistency Rate (LCR): whether the generated images preserve the spatial configuration of the maze, including the start point, end point, and wall placements
- Visual Success Rate (VSR): Assesses whether a valid path from the start to the goal is successfully drawn within the correct maze layout.

As summarized in Table 2,

our Latent Sketchpad consistently performs well across different MLLMs. We highlight two key findings from these results: (1) **Latent Sketchpad preserves visual contextual consistency.** Across both models, Latent Sketchpad achieves notably high LCR, reflecting its stronger ability to maintain spatial structure throughout reasoning steps. This contextual stability enables MLLMs to plan valid paths, as evidenced by the correlation between layout consistency and VSR. (2) **Latent Sketchpad shows potential to support reasoning through visual generation.** For Gemma3 equipped with Latent Sketchpad, the VSR reaches 75.6%, substantially higher than the baseline SR of 70%. Therefore, as illustrated in Table 1, its performance is enhanced

Table 2: Quantitative results of visualization quality on MAZEPLANNING. First and Last refer to the first and final visualizations within a complete reasoning sequence, respectively.

	Layout Consistency Rate (%)			Visual Success Rate (%)
	First	Last	Overall	
Gemma3+LS	99.40	99.20	99.34	75.60
Qwen2.5-VL+LS	99.80	98.60	98.77	66.60

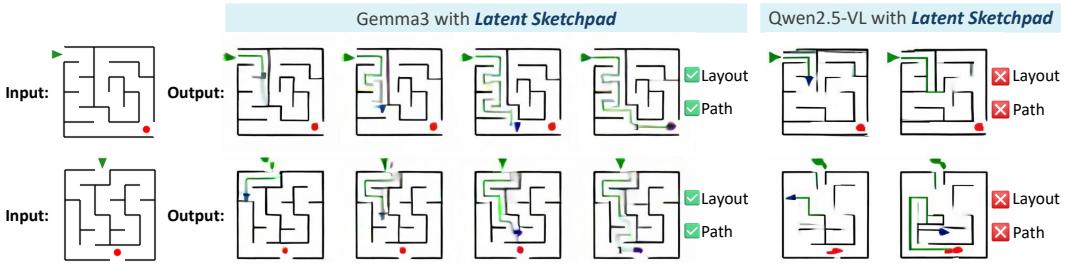


Figure 5: Visualizations from Latent Sketchpad on Gemma3 and Qwen2.5-VL in the OOD test set.

Table 3: Performance on the OOD test set of MAZEPLANNING.

	SR (%)	PR (%)
Qwen2.5-VL	5.50	32.16
Gemma3	8.00	38.76
Gemma3+LS	10.00	39.39

Table 4: Ablation results across different components.

	SR (%)	PR (%)	VSR (%)
Gemma3 w/o adaptation	9.40	33.04	-
Gemma3+LS	72.20	88.10	75.60
- w/o augmentation	54.20	77.47	68.20
- w/ cosine \mathcal{L}_{reg}	71.40	87.65	73.80

by the generated visual traces (70% to 72.2%). A consistent trend is also observed on Qwen2.5-VL, further confirming the ability of Latent Sketchpad to facilitate reasoning through visual generation.

4.3 FURTHER ANALYSIS

Out-of-Distribution Generalization. To further assess the generalization ability of Latent Sketchpad, we construct an OOD test set consisting of 200 mazes of size 6x6. Although fine-tuned Gemma3 and Qwen2.5-VL achieve strong performance on the in-distribution test set, their results drop sharply on the OOD set, as shown in Table 3. When equipped with Latent Sketchpad, Gemma3 shows improved robustness: it generates correct visual thoughts that yield performance gains (Table 3), with examples illustrated in Figure 5 and failure cases in Figure 11. However, Qwen2.5-VL fine-tuned with our limited data does not yet exhibit clear generalization with Latent Sketchpad. This is mainly due to Qwen2.5-VL constructs visual tokens by concatenating four encoded features before projection, in contrast to Gemma3, which pools them directly. This design produces a higher-dimensional input and demands substantially more data for generalization.

Performance Across Maze Sizes

As maze size increases, the evaluated models exhibit a notable decline in performance. As shown in Figure 6, this trend holds consistently across both proprietary models and Gemma3 equipped with our Latent Sketchpad. While our method maintains a higher success rate than the baselines across all maze scales, the increased spatial complexity in larger mazes presents a greater challenge for accurate planning.

4.4 ABLATIONS

We conduct a series of ablation studies to investigate the effects of modality alignment, data augmentation strategy, and different choices of regression loss on model performance.

Effect of Connector Adaptation. We investigate the impact of connector adaptation on model performance by analyzing whether the visual representations are updated during training. Taking Gemma3 as an example, freezing the connector severely impairs spatial understanding. The model often confuses directions such as left and right, leading to notable performance degradation as shown in the first row of Table 4. We also observe similar trends on Qwen2.5-VL. These findings highlight the critical role of connector adaptation during downstream task fine-tuning.

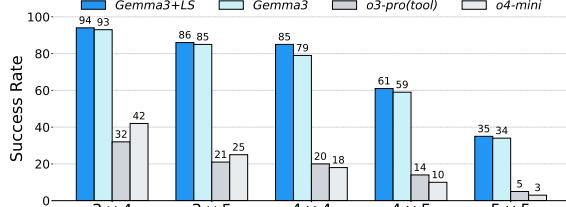


Figure 6: Performance Variation with Maze Size

432 **Data Augmentation Improves Visual Accuracy and Task Performance.** To increase robustness,
 433 we introduce an augmentation strategy on the intermediate visual thoughts in the input of each
 434 training sample (detailed in Appendix B.4). The images are repeatedly reconstructed through our
 435 Sketch Decoder before being encoded, generating semantically equivalent but pixel-level perturbed
 436 views. This augmentation strategy preserves spatial semantics while injecting appearance variability,
 437 encouraging the model to focus on spatial structures. As shown in Table 4, the proposed augmentation
 438 improves the accuracy of visual thoughts and leads to higher task success rates.

439 **Choice of Regression Loss.** We compare L1 loss and cosine similarity as regression objectives for
 440 training the Vision Head. Empirically, we find that L1 loss consistently outperforms cosine similarity
 441 across all evaluation metrics. This suggests that directly minimizing element-wise distance in latent
 442 space better preserves the spatial and semantic fidelity in Latent Sketchpad.
 443

444 5 RELATED WORK

445 **Multimodal Reasoning.** Recent studies have enhanced multimodal reasoning with visual inputs
 446 through Chain-of-Thought (CoT) prompting (Wei et al., 2022) or the use of external tools such
 447 as cropping and zooming (Zheng et al., 2025; Su et al., 2025b; Wu et al., 2025a; Fu et al., 2025),
 448 enabling more fine-grained visual perception during the reasoning process. These methods (Hu et al.,
 449 2024a; Fu et al., 2025) that invoke external tools to edit or manipulate images inevitably rely on
 450 predefined and limited action spaces, restricting their flexibility. Beyond tool-assisted approaches,
 451 methods like MVoT (Li et al., 2025a) and Visual Planning (Xu et al., 2025) generate visual thoughts
 452 natively for step-by-step reasoning, which demonstrate the feasibility and benefits of incorporating
 453 visual information as an additional modality for reasoning, complementing textual cues. While these
 454 methods reason across modalities in a generative manner, they typically rely on unified auto-regressive
 455 models trained for multimodal generation, often operating over discrete token sequences (Team,
 456 2024; Chern et al., 2024). However, how to leverage the pretrained visual features of frontier MLLMs
 457 to generate visual thoughts remains largely underexplored. To address this gap, we propose Latent
 458 Sketchpad, a framework enabling pretrained MLLMs to generate visual latents, integrating visual
 459 thinking directly into its native autoregressive loop.
 460

461 **Latent Reasoning.** Reasoning in large language models is often guided by explicit Chain-of-
 462 Thought (CoT) prompting, where verbalizing intermediate steps improves final accuracy (Wei et al.,
 463 2022). While effective, this approach is fundamentally constrained by the expressiveness of natural
 464 language. To overcome this, recent work on latent reasoning performs multi-step inference directly
 465 within the model’s continuous hidden states, forgoing explicit token generation (Zhu et al., 2025).
 466 These methods, developed primarily for text, typically use architectural modifications for recurrent
 467 computation (Dehghani et al., 2018; Geiping et al., 2025) or training strategies that induce implicit
 468 reasoning steps (Hao et al., 2024; Tack et al., 2025). In multimodal scenarios, latent representation
 469 also helps to alleviate the modality gap by avoiding discretizing the image into visual tokens, with
 470 most previous work focusing on multimodal generation (Pan et al., 2025) instead of reasoning. Yang
 471 et al. (2025b) introduce latent visual tokens to enable multimodal reasoning, but their approach is
 472 still limited to generating one single image as the answer image during the reasoning process. In
 473 contrast, our Latent Sketchpad enables pretrained MLLMs to actively generate and utilize visual
 474 latents interleaved with textual rationales as internal reasoning steps.

475 **Unified Multimodal Generation.** Following recent advances in multimodal reasoning with textual
 476 outputs (Liu et al., 2024; Team et al., 2025; Bai et al., 2025), unified models capable of multimodal
 477 generation have begun to emerge (Wang et al., 2024; Chern et al., 2024; Wu et al., 2025b; Chen et al.,
 478 2025; An et al., 2025). These models extend output modalities beyond text to include images (Chern
 479 et al., 2024; Chen et al., 2025; An et al., 2024) and more (Zhan et al., 2024; Li et al., 2025b), typically
 480 through a combination of autoregressive modeling and diffusion-based image decoders. Rather than
 481 training a unified multimodal model from scratch, MetaMorph (Tong et al., 2024) introduces VPiT,
 482 which enables pretrained LLMs to understand visual inputs and generate a mixture of discrete text and
 483 continuous visual tokens. However, instead of reasoning, MetaMorph emphasizes image generation
 484 with surface-level semantics, which overlooks the intrinsic visual transitions within interleaved
 485 multimodal reasoning traces. In this work, we bridge that gap with a context-aware vision head by
 486 enabling an MLLM that already understands visual inputs to generate coherent multimodal reasoning
 487 traces without requiring extensive pretraining.

486 6 CONCLUSION

488 We introduce Latent Sketchpad, a simple yet effective framework that equips pretrained MLLMs
 489 with the ability to generate visual features as internal visual thoughts within their autoregressive
 490 reasoning loop. Inspired by the role of mental sketching in human cognition, Latent Sketchpad
 491 introduce a Context-Aware Vision Head to enable MLLMs to generate internal visual representations
 492 for enhanced reasoning, without relying on external tools. Additionally, a separately pretrained
 493 Sketch Decoder can be employed to translate these latent representations into interpretable sketches,
 494 facilitating human understanding and interaction. Extensive experiments show that Latent Sketchpad
 495 extends the reasoning capabilities of frontier MLLMs, enriching them with interpretable visual
 496 traces. Moreover, it shows broad applicability across diverse backbones, highlighting its potential
 497 as a general and plug-and-play enhancement. Our findings highlight the potential of integrating
 498 visual imagination directly into pretrained MLLMs, opening new avenues for more interpretable and
 499 capable multimodal systems.

500 7 REPRODUCIBILITY STATEMENT

502 We have made significant efforts to ensure the reproducibility of our work. The complete source
 503 code, including training and evaluation scripts, is provided in the supplementary materials in an
 504 anonymized form. Furthermore, detailed implementation specifications are presented in Appendix
 505 B, where we carefully describe model configurations, training procedures, and additional technical
 506 details. Together, these resources are intended to facilitate transparent verification and reproduction
 507 of our findings.

509 REFERENCES

511 Ruichuan An, Sihan Yang, Ming Lu, Renrui Zhang, Kai Zeng, Yulin Luo, Jiajun Cao, Hao Liang,
 512 Ying Chen, Qi She, et al. Mc-llava: Multi-concept personalized vision-language model. *arXiv
 513 preprint arXiv:2411.11706*, 2024.

514 Ruichuan An, Sihan Yang, Renrui Zhang, Zijun Shen, Ming Lu, Gaole Dai, Hao Liang, Ziyu Guo,
 515 Shilin Yan, Yulin Luo, et al. Unictokens: Boosting personalized understanding and generation via
 516 unified concept tokens. *arXiv preprint arXiv:2505.14671*, 2025.

517 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 518 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
 519 2025.

520 Raymond Bruyer and Jean-Christophe Scailquin. The visuospatial sketchpad for mental images:
 521 Testing the multicomponent model of working memory. *Acta Psychologica*, 98(1):17–36, 1998.

523 Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
 524 Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
 525 scaling. *arXiv preprint arXiv:2501.17811*, 2025.

526 Ethan Chern, Jiadi Su, Yan Ma, and Pengfei Liu. Anole: An open, autoregressive, native large
 527 multimodal models for interleaved image-text generation. *arXiv preprint arXiv:2407.06135*, 2024.

529 Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
 530 transformers. *arXiv preprint arXiv:1807.03819*, 2018.

531 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
 532 Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. *arXiv
 533 preprint arXiv:2505.14683*, 2025.

534 Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
 535 Zheng, Ke Li, Xing Sun, et al. Mme: A comprehensive evaluation benchmark for multimodal
 536 large language models, 2024. URL <https://arxiv.org/abs/2306.13394>, 2(8), 2024.

538 Xingyu Fu, Minqian Liu, Zhengyuan Yang, John Corring, Yijuan Lu, Jianwei Yang, Dan Roth, Dinei
 539 Florencio, and Cha Zhang. Refocus: Visual editing as a chain of thought for structured image
 understanding. In *The Forty-Second International Conference on Machine Learning*, 2025.

540 Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
 541 Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with latent
 542 reasoning: A recurrent depth approach. *arXiv preprint arXiv:2502.05171*, 2025.

543

544 Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
 545 Tian. Training large language models to reason in a continuous latent space. *arXiv preprint*
 546 *arXiv:2412.06769*, 2024.

547

548 Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith, and
 549 Ranjay Krishna. Visual sketchpad: Sketching as a visual chain of thought for multimodal language
 550 models. *Advances in Neural Information Processing Systems*, 37:139348–139379, 2024a.

551

552 Yushi Hu, Otilia Stretcu, Chun-Ta Lu, Krishnamurthy Viswanathan, Kenji Hata, Enming Luo, Ranjay
 553 Krishna, and Ariel Fuxman. Visual program distillation: Distilling tools and programmatic
 554 reasoning into vision-language models. In *Proceedings of the IEEE/CVF Conference on Computer
 Vision and Pattern Recognition*, pp. 9590–9601, 2024b.

555

556 Jonas Jongejan, Henry Rowley, Takashi Kawashima, Jongmin Kim, and Nick Fox-Gieg. Quick,
 557 Draw! – A.I. Experiment, 2016. URL <https://quickdraw.withgoogle.com/>.

558

559 Chengzu Li, Caiqi Zhang, Han Zhou, Nigel Collier, Anna Korhonen, and Ivan Vulić. Topviewrs:
 560 Vision-language models as top-view spatial reasoners. *arXiv preprint arXiv:2406.02537*, 2024.

561

562 Chengzu Li, Wenshan Wu, Huanyu Zhang, Yan Xia, Shaoguang Mao, Li Dong, Ivan Vulić, and Furu
 563 Wei. Imagine while reasoning in space: Multimodal visualization-of-thought. In *The Forty-Second
 564 International Conference on Machine Learning*, 2025a.

565

566 Shufan Li, Konstantinos Kallidromitis, Akash Gokul, Zichun Liao, Yusuke Kato, Kazuki Kozuka, and
 567 Aditya Grover. Omnidflow: Any-to-any generation with multi-modal rectified flows. In *Proceedings
 568 of the Computer Vision and Pattern Recognition Conference*, pp. 13178–13188, 2025b.

569

570 Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
 571 Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
 572 reasoning large language models. *arXiv preprint arXiv:2502.17419*, 2025c.

573

574 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 575 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.

576

577 Allan Paivio. Dual coding theory: Retrospect and current status. *Canadian Journal of Psychology/Revue canadienne de psychologie*, 45(3):255, 1991.

578

579 Xichen Pan, Li Dong, Shaohan Huang, Zhiliang Peng, Wenhui Chen, and Furu Wei. Kosmos-g:
 580 Generating images in context with multimodal large language models. In *ICLR*, 2024.

581

582 Xichen Pan, Satya Narayan Shukla, Aashu Singh, Zhuokai Zhao, Shlok Kumar Mishra, Jialiang
 583 Wang, Zhiyang Xu, Juhai Chen, Kunpeng Li, Felix Juefei-Xu, Ji Hou, and Saining Xie. Transfer
 584 between modalities with metaqueries. *arXiv preprint arXiv:2504.06256*, 2025.

585

586 David G Pearson. Imagery and the visuo-spatial sketchpad. *Working memory in perspective*, pp.
 587 53–79, 2002.

588

589 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 590 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 591 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

592

593 Alex Su, Haozhe Wang, Weiming Ren, Fangzhen Lin, and Wenhui Chen. Pixel reasoner: In-
 594 centivizing pixel-space reasoning with curiosity-driven reinforcement learning. *arXiv preprint*
 595 *arXiv:2505.15966*, 2025a.

596

597 Zhaochen Su, Linjie Li, Mingyang Song, Yunzhuo Hao, Zhengyuan Yang, Jun Zhang, Guanjie Chen,
 598 Jiawei Gu, Juntao Li, Xiaoye Qu, et al. Openthinkimg: Learning to think with images via visual
 599 tool reinforcement learning. *arXiv preprint arXiv:2505.08617*, 2025b.

594 Zhaochen Su, Peng Xia, Hangyu Guo, Zhenhua Liu, Yan Ma, Xiaoye Qu, Jiaqi Liu, Yanshu Li,
 595 Kaide Zeng, Zhengyuan Yang, et al. Thinking with images for multimodal reasoning: Foundations,
 596 methods, and future frontiers. *arXiv preprint arXiv:2506.23918*, 2025c.

597

598 Jihoon Tack, Jack Lanchantin, Jane Yu, Andrew Cohen, Ilia Kulikov, Janice Lan, Shibo Hao,
 599 Yuandong Tian, Jason Weston, and Xian Li. Llm pretraining with continuous concepts. *arXiv*
 600 *preprint arXiv:2502.08524*, 2025.

601

602 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. *arXiv preprint*
 603 *arXiv:2405.09818*, 2024.

604

605 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 606 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 607 report. *arXiv preprint arXiv:2503.19786*, 2025.

608

609 Shengbang Tong, David Fan, Jiachen Zhu, Yunyang Xiong, Xinlei Chen, Koustuv Sinha, Michael
 610 Rabbat, Yann LeCun, Saining Xie, and Zhuang Liu. Metamorph: Multimodal understanding and
 611 generation via instruction tuning. *arXiv preprint arXiv:2412.14164*, 2024.

612

613 Michael Tschannen, Cian Eastwood, and Fabian Mentzer. Givt: Generative infinite-vocabulary
 614 transformers. In *European Conference on Computer Vision*, pp. 292–309. Springer, 2024.

615

616 Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
 617 Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
 618 *arXiv preprint arXiv:2409.18869*, 2024.

619

620 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 621 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 622 *neural information processing systems*, 35:24824–24837, 2022.

623

624 Junfei Wu, Jian Guan, Kaituo Feng, Qiang Liu, Shu Wu, Liang Wang, Wei Wu, and Tieniu Tan.
 625 Reinforcing spatial reasoning in vision-language models with interwoven thinking and visual
 626 drawing. *arXiv preprint arXiv:2506.09965*, 2025a.

627

628 Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng Zhu,
 629 Enze Xie, Hongxu Yin, Li Yi, Song Han, and Yao Lu. VILA-u: a unified foundation model integrat-
 630 ing visual understanding and generation. In *The Thirteenth International Conference on Learning*
 631 *Representations*, 2025b. URL <https://openreview.net/forum?id=02haSp0453>.

632

633 Yi Xu, Chengzu Li, Han Zhou, Xingchen Wan, Caiqi Zhang, Anna Korhonen, and Ivan Vulić. Visual
 634 planning: Let’s think only with images. *arXiv preprint arXiv:2505.11409*, 2025.

635

636 Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in
 637 space: How multimodal large language models see, remember, and recall spaces. In *Proceedings*
 638 *of the Computer Vision and Pattern Recognition Conference*, pp. 10632–10643, 2025a.

639

640 Zeyuan Yang, Xueyang Yu, Delin Chen, Maohao Shen, and Chuang Gan. Machine mental imagery:
 641 Empower multimodal reasoning with latent visual tokens. *arXiv preprint arXiv:2506.17218*,
 642 2025b.

643

644 Jun Zhan, Junqi Dai, Jiasheng Ye, Yunhua Zhou, Dong Zhang, Zhigeng Liu, Xin Zhang, Ruibin Yuan,
 645 Ge Zhang, Linyang Li, Hang Yan, Jie Fu, Tao Gui, Tianxiang Sun, Yu-Gang Jiang, and Xipeng
 646 Qiu. AnyGPT: Unified multimodal LLM with discrete sequence modeling. In Lun-Wei Ku, Andre
 647 Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association*
 648 *for Computational Linguistics (Volume 1: Long Papers)*, pp. 9637–9662, Bangkok, Thailand,
 649 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.521.
 650 URL <https://aclanthology.org/2024.acl-long.521/>.

651

652 Huanyu Zhang, Chengzu Li, Wenshan Wu, Shaoguang Mao, Yifan Zhang, Haochen Tian, Ivan Vulić,
 653 Zhang Zhang, Liang Wang, Tieniu Tan, et al. Scaling and beyond: Advancing spatial reasoning in
 654 mllms requires new recipes. *arXiv preprint arXiv:2504.15037*, 2025a.

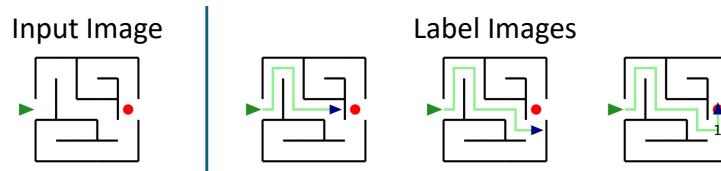
648 YiFan Zhang, Huanyu Zhang, Haochen Tian, Chaoyou Fu, Shuangqing Zhang, Junfei Wu, Feng
649 Li, Kun Wang, Qingsong Wen, Zhang Zhang, et al. Mme-realworld: Could your multimodal llm
650 challenge high-resolution real-world scenarios that are difficult for humans? In *The Thirteenth*
651 *International Conference on Learning Representations*, 2025b.
652
653 Ziwei Zheng, Michael Yang, Jack Hong, Chenxiao Zhao, Guohai Xu, Le Yang, Chao Shen, and Xing
654 Yu. Deepeyes: Incentivizing" thinking with images" via reinforcement learning. *arXiv preprint*
655 *arXiv:2505.14362*, 2025.
656 Rui-Jie Zhu, Tianhao Peng, Tianhao Cheng, Xingwei Qu, Jinfang Huang, Dawei Zhu, Hao Wang,
657 Kaiwen Xue, Xuanliang Zhang, Yong Shan, et al. A survey on latent reasoning. *arXiv preprint*
658 *arXiv:2507.06203*, 2025.
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A MAZEPLANNING**
703704 To facilitate research on visual-language reasoning in complex environments, we construct a maze
705 planning dataset that supports multimodal step-wise inference.
706707 **A.1 DATASET OVERVIEW**
708709 The dataset comprises 47.8K unique mazes for training, each with varying grid sizes. For evaluation,
710 we provide two distinct test sets: (1) an in-distribution (ID) test set of 500 mazes drawn from the same
711 size distribution as the training data, and (2) an out-of-distribution (OOD) test set of 200 larger mazes
712 with a fixed 6×6 grid configuration, designed to assess generalization to more complex scenarios.713 Each maze instance is annotated with a multimodal trajectory that intertwines visual and textual
714 reasoning steps. Unlike traditional grid-based formulations, we define action steps based on decision
715 points to better reflect the natural, flexible reasoning process employed by humans. Specifically, we
716 use the following three abstract action types:717

- 718 • **Go forward:** Move straight until reaching the next decision point (e.g., an intersection or
turn).
- 719 • **Turn left:** Rotate left before moving forward.
- 720 • **Turn right:** Rotate right before moving forward.

721722 To enable dynamic visual grounding during inference—i.e., determining the agent’s current location
723 and verifying the correctness and plausibility of the inferred path—we segment the reasoning process
724 into discrete states. Each state comprises a short sequence of $k \in [4, 6]$ actions, after which a rendered
725 image of the agent’s path so far is generated. The system then validates the inferred state: if the
726 state is deemed valid and coherent, inference proceeds to the next state. To facilitate training, we
727 decompose each maze’s output label in the training set by individual states. During training, each
728 sample is supervised to predict the reasoning process leading to the subsequent state. The complete
729 statistics of our MAZEPLANNING dataset are provided in Table 1.730 **Table 5: Statistics of the MAZEPLANNING dataset.**
731732

Grid Size	3×4	3×5	4×4	4×5	5×5	6×6
Action Length	6.78	7.75	7.92	8.98	10.56	22.96
State Length	1.91	2.25	2.31	2.67	3.12	-
Action Length of Each State	5.04	5.12	5.16	5.24	5.42	-
Train Set Size	5,758	9,559	9,548	9,580	13,355	0
Test Set Size	100	100	100	100	100	200

733734 **A.2 DATASET CURATION**
735738 **Figure 7: Input image and label images for the same sample in Table 6.**
739740 To ensure control over maze complexity and the interpretability of the reasoning process, we syn-
741 synthetically curated all maze samples and their corresponding annotations. Each maze was manually
742 constructed to guarantee a single unique solution path from the start point to the goal. The lay-
743 out of each maze was designed with varying grid sizes and branching patterns to create diverse
744 decision-making scenarios, while maintaining the property of unambiguous solvability.
745746 Based on the unique ground-truth trajectory of each maze, we manually annotated the sequence of
747 actions (e.g. go forward, turn right and turn left) at key decision points. These annotations served as
748

756
757
758
759
760
761

Table 6: Textual reasoning steps for an example of MAZEPLANNING.

762
763
764
765
766
767
768
769
770
771
772
773
774
775

MAZEPLANNING

Input Text:

Given the maze in the input image <image>, determine a valid action sequence to navigate from the starting point (green arrow) to the endpoint (red circle). The black lines represent walls, and the white areas are traversable paths.
Each action in the sequence must be one of the following:

"go forward": Move straight until reaching the next turn or intersection.
"turn left": Rotate left before moving forward.
"turn right": Rotate right before moving forward.

During the reasoning process, clearly mark each confirmed action using the format

<actions>confirmed action</actions>.

Label Text:

Now, let's reason through the next 9 steps.

At the maze's starting point, a left turn corner presents itself, marking the initial curve in the path. Continuing along, a right turn corner is encountered, leading to another turn in the corridor. Subsequently, another right turn corner directs the path further along the maze. Finally, a left turn corner appears, guiding the way deeper into the labyrinth. Taking into account the visible layout of the maze, the next steps should be to move forward into the maze, then turn left and proceed forward, followed by a right turn and advance, another right turn and move forward, and finally a left turn to continue further into the maze.

The actions of this part are <actions>go forward, turn left, go forward, turn right, go forward, turn right, go forward, turn left, go forward</actions>

<image>

Let's continue.

Now, let's reason through the next 4 steps.

The path begins with a right turn corner, seamlessly transitioning into a new section of the maze. Continuing through this segment leads to a left turn corner, indicating another change in direction. Considering the structure of this maze section, the appropriate movement sequence is to first turn right and proceed forward, then make a left turn and continue moving forward, exploring deeper into the maze.

The actions of this part are <actions>turn right, go forward, turn left, go forward</actions>

<image>

Let's keep going.

Now, let's reason through the next 2 steps.

The path reaches the 1st junction, where the left path leads directly to the exit. Considering the structure of this maze section, the appropriate movement sequence is to turn left and proceed forward to reach the exit immediately.

The actions of this part are <actions>turn left, go forward</actions>

<image>

The inference process has concluded.

805
806
807
808
809

810 Table 7: Hyper-parameters of fine-tuning different models with various settings.
811

Hyper-Parameters	Liquid _T	Liquid	Gemma3	LS of Gemma3	Qwen2.5-VL	LS of Qwen2.5-VL
Random Seed	42	42	42	42	42	42
Epochs	13	13	2	5	2	5
Learning Rate	0.0001	0.0001	0.0001	0.0001	0.0001	0.0005
Global Batch Size	128	128	128	128	128	128

817 Table 8: Model version of proprietary models.
818

	GPT-4o	o1	o4-mini	o3-pro
Model Version	2024-11-20	2024-12-17	2025-04-16	2025-06-10

823 the foundation for generating the multimodal reasoning sequences. To simulate natural, human-like
824 step-by-step reasoning, we employed GPT-4o to synthesize rich textual descriptions for each sample.
825 Given the ground-truth action sequence, GPT-4o was prompted to produce coherent reasoning
826 narratives that align with the intended visual path, effectively integrating spatial reasoning, language
827 generation, and task context. The resulting data instances thus comprise tightly coupled image-text
828 sequences, designed to reflect realistic and interpretable reasoning workflows. An illustrative example
829 of this multimodal reasoning process is provided in Table 6 and Figure 7.
830

831 B IMPLEMENTATION DETAIL

832 B.1 MODELS

833 The Context-Aware Vision Head consists of 2 layers of cross-attention, followed by 8 layers of
834 self-attention. And the Sketch Decoder follows a standard encoder-decoder transformer architecture,
835 which comprises 12 encoder layers and 12 decoder layers.
836

837 All the employed proprietary models are hosted on the Azure platform, with model version outlined
838 in Table 7. We fine-tune both Qwen2.5-VL² and Gemma3³ on our MAZEPLANNING dataset.
839 Additionally, we also employ a discrete-token based unified MLLM Liquid⁴ for finetuning.
840

841 To support both text-only and multimodal chain-of-thought (CoT) reasoning within a unified frame-
842 work, we design a fine-tuning scheme as follows. We fine-tune Gemma3-12B and Qwen2.5-VL-7B on
843 a single source of reasoning trajectories from the MAZEPLANNING dataset, which contain interleaved
844 text and image states. During training, all images except the initial input are randomly masked with
845 a fixed probability (0.5). This strategy exposes the model to a mixture of purely textual reasoning
846 steps and interleaved text-image sequences, allowing a *single* checkpoint to naturally operate in
847 both text-only and multimodal modes at inference time. Visual generation is enabled through our
848 Context-Aware Vision Head. This component is trained independently of the backbone. In this way,
849 we preserve the original reasoning ability of the pretrained backbone while augmenting it with the
850 capacity to generate visual thoughts.
851

852 During Inference, we do not modify the decoding process for text-only CoT. For multimodal CoT,
853 however, we automatically insert a special token <start_of_image> during generation, which
854 triggers the model to interleave textual and visual features. Specifically, on the MAZEPLANNING
855 dataset, we append <start_of_image> immediately after each </actions> token, thereby
856 enabling the model to generate the subsequent visual state.
857

858 B.2 HYPER-PARAMETER

859 Table 7 shows the hyper-parameters for training Liquid, Qwen2.5-VL and Gemma3. All models were
860 trained on MI300X GPUs. Table 7 provides the details of GPU configurations and hyperparameters
861

862 ²<https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct>

863 ³<https://huggingface.co/google/gemma-3-12b-it>

864 ⁴https://huggingface.co/Junfeng5/Liquid_V1_7B

Table 9: Example of prompt template.

Prompt Template

Given the maze in the input image <image>, determine a valid action sequence to navigate from the starting point (green arrow) to the endpoint (red circle). The black lines represent walls, and the white areas are traversable paths.

Each action in the sequence must be one of the following:

- "go forward": Move straight until reaching the next turn or intersection.
- "turn left": Rotate left before moving forward.
- "turn right": Rotate right before moving forward.

During the reasoning process, clearly mark each confirmed action using the format <actions>confirmed action</actions>.

for various experimental settings. The backbone of Gemma3 and Qwen2.5-VL are both finetuned for 2 epoch. As detailed in Appendix C.4, we have explored different training setting for the connector. Furthermore, for the training of the Latent Sketchpad or the Sketch Decoder, all loss weights were set to 1.0.

All the employed proprietary models are hosted on the Azure platform, with model version outlined in Table 7.

B.3 PROMPTING TEMPLATES

Table 9 shows an example of prompting templates and responses with different system variants.

B.4 LATENT RECONSTRUCTION AUGMENTATION

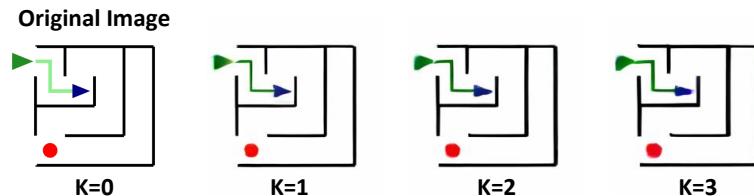


Figure 8: Step-wise reconstruction of the input image over k iterations.

As described in Appendix A, the input of each training sample may include intermediate visual thoughts generated by the model. To improve the robustness of visual representations, we apply Latent Reconstruction Augmentation during training. Specifically, we repeatedly pass each input visual thought through the vision encoder and the pretrained decoder for up to k rounds ($k \in [0, 3]$), reconstructing the image from its latent features in each step. This process preserves the semantic content while introducing minor perturbations in appearance, effectively encouraging the model to focus on stable spatial structures. The final reconstructed sketch is then used as the input image for training. Examples of this multi-step reconstruction are illustrated in Figure 8.

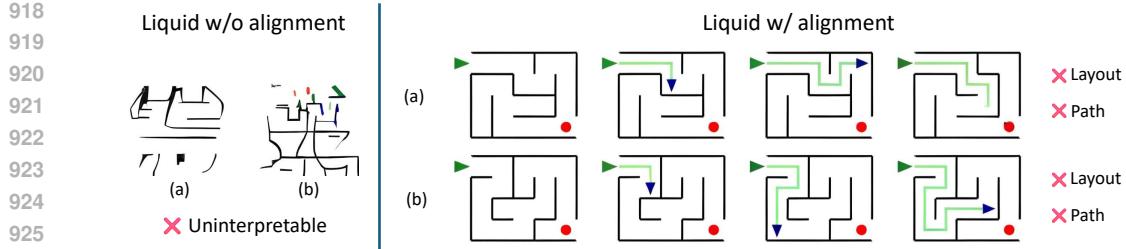


Figure 9: Failure cases from Liquid with and without modality alignment.

C ADDITIONAL EXPERIMENTS AND DISCUSSION

C.1 EXPERIMENTS ON LIQUID

C.1.1 IMPACT OF MODALITY ALIGNMENT

To investigate the impact of modality alignment during training, we compare two configurations of the Liquid model: one with the image embedding layer frozen (i.e., no alignment), and one with the image embedding layer unfrozen and trained jointly (i.e., with alignment). As shown in the left part of Figure 9, when the image embedding layer remains frozen, the model fails to establish meaningful correspondences between visual and textual modalities. This results in severely degraded outputs—uninterpretable images characterized by chaotic.

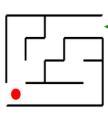
In contrast, enabling modality alignment by unfreezing the image embedding layer leads to a significant improvement in semantic coherence. As illustrated in the right part of Figure 9, the generated images become more structured and visually plausible, often matching the intended high-level semantics of the task.

C.1.2 UNSTABLE LAYOUT CONSISTENCY

As illustrated in the right part of Figure 9, the model tends to alter the underlying maze layout itself. This structural inconsistency violates task constraints, as the generated solution no longer corresponds to the original maze, rendering the prediction incorrect despite its visual clarity. Such instability may stem either from the limited capacity of the base model or from the inherent brittleness of discrete token-based encoding.

C.2 ERROR ANALYSIS

C.2.1 PROPRIETARY MODELS



Reasoning through the corridors from the entrance (green arrow) to the goal (red circle):

- ✓ 1. From the entrance you are facing left (west) along the top corridor. You can move straight until the path is blocked by the first vertical wall. <actions>go forward</actions>
- ✓ 2. At that wall there is an opening that lets you head downward. <actions>turn left</actions>
- ✓ 3. Now facing downward (south), follow the vertical corridor until you reach the first horizontal passage. <actions>go forward</actions>
- ✓ 4. That passage runs to your right. <actions>turn right</actions>
- ✓ 5. Facing west, advance along this short horizontal corridor until it ends at another vertical opening. <actions>go forward</actions>
- ✓ 6. Take that opening to continue downward. <actions>turn left</actions>
- ✓ 7. Still facing south, move straight to the bottom corridor. <actions>go forward</actions>
- ✓ 8. The bottom corridor heads to your right; turn into it. <actions>turn right</actions>
- ✗ 9. Finally, proceed straight along the bottom corridor until you reach the red circle at the far left. <actions>go forward</actions>

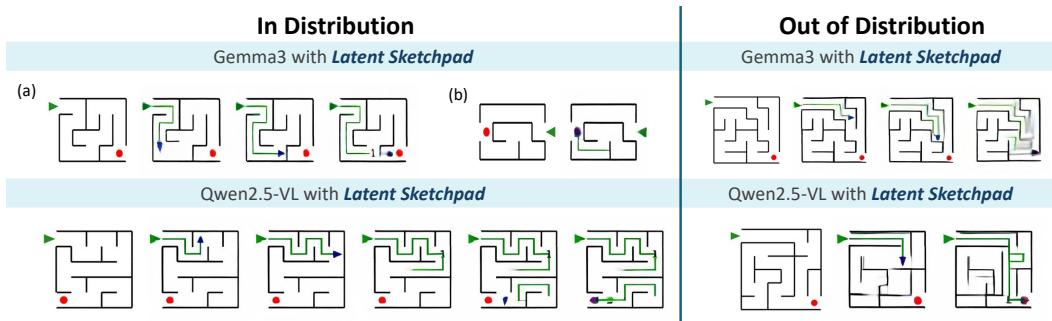
Figure 10: Failure cases of o3-pro (tool).

Despite the recent success of proprietary reasoning models in a wide range of complex tasks, their performance on our MAZEPLANNING benchmark reveals notable limitations, which is presented in Table 1. As illustrated in Figure 10, even o3-pro, a powerful reasoning model that supports external tool usage during inference, fails to solve certain maze navigation tasks. A key failure mode we observe is the model’s inability to reliably localize itself during reasoning, especially in multi-step scenarios that require consistent visual tracking across states. Most models are able to correctly follow

972
973
974 Table 10: Task performance of the original Gemma3 and our fine-tuned Gemma3*.
975
976
977

Model	Standard-Size Maze ($\leq 5 \times 5$)		Extended-Size Maze (6×6)	
	Success Rate (%)	Progress Rate (%)	Success Rate (%)	Progress Rate (%)
Gemma3	5.80	24.15	0.50	11.76
Gemma3*	70.00	87.57	8.00	38.76

978
979
980 the initial steps. However, as the reasoning progresses and the agent moves deeper into the maze, these
981 models often lose track of their spatial location, leading to compounding errors in path prediction and
982 ultimately an incorrect final plan. These failures highlight a fundamental gap in current proprietary
983 systems: while they excel at executing external tools and producing fluent responses, they often lack
984 internal visual thought, a coherent internal representation of spatial progress and accumulated visual
985 knowledge throughout a reasoning sequence. In contrast, our proposed Latent Sketchpad explicitly
986 maintains and updates such an internal visual memory, enabling dynamic localization and more
987 accurate path planning.

988
989 C.2.2 LATENT SKETCHPAD
9901001
1002 Figure 11: Failure cases of Latent Sketchpad.
1003

1004 To better understand the limitations of our proposed Latent Sketchpad framework, we conduct a
1005 qualitative error analysis under both in-distribution (ID) and out-of-distribution (OOD) settings.

1006 In the ID setting, although the model performs well in most cases, we observe occasional failures
1007 where the predicted path exhibits spatial violations. As illustrated in the left part of Figure 11, the
1008 agent may generate trajectories that cut through maze walls or suddenly teleport to distant locations
1009 without following a physically valid path. These discontinuities often lead to incorrect final plans,
1010 despite the individual actions appearing locally coherent.

1011 Furthermore, under the OOD setting (larger and unseen mazes), the model encounters a different
1012 failure mode. For Gemma3, this manifests as a gradual degradation of visual sketches, eventually
1013 causing the model to lose track of its position within the maze. In contrast, Qwen2.5-VL exhibits
1014 a different limitation: due to its vision encoder producing features four times larger than those of
1015 Gemma3, our limited fine-tuning data is insufficient to ensure generalization. As a result, Qwen2.5-
1016 VL fails to preserve maze layouts reliably and struggles to generate valid navigation paths.

1017 These observations reveal two distinct types of failure: structural violations in familiar settings and
1018 cumulative degradation in novel environments, both of which point to potential avenues for future
1019 improvement in spatial consistency and robustness to distribution shifts.

1020
1021 C.3 PERFORMANCE OF GEMMA3 ON MAZEPLANNING
1022

1023 As shown in Table 10, the base Gemma3 model exhibits limited performance on MAZEPLANNING,
1024 indicating insufficient capability for complex spatial reasoning. To address this, we first fine-tune the
1025 model using text-only data to build a foundational understanding. This step alone yields a substantial
performance improvement, confirming the effectiveness of text-only supervision in enhancing baseline

1026 Table 11: Success Rate of different system variants on MAZEPLANNING
1027

Grid Size	3×4	3×5	4×4	4×5	5×5	Overall
GPT-4o	6.00	8.00	2.00	4.00	3.00	4.60
o1	31.00	16.00	16.00	11.00	2.00	15.20
o4-mini	42.00	25.00	18.00	10.00	3.00	19.60
o3-pro	32.00	21.00	20.00	14.00	5.00	18.40
Liquid_T	55.00	49.00	43.00	31.00	13.00	38.20
Liquid	91.00	72.00	75.00	52.00	29.00	63.80

1036 Table 12: Progress Rate of different system variants on MAZEPLANNING
1037

Grid Size	3×4	3×5	4×4	4×5	5×5	Overall
GPT-4o	23.75	22.50	21.39	20.10	16.14	20.78
o1	47.76	37.00	37.40	33.46	22.44	35.61
o4-mini	59.02	48.44	42.18	36.97	28.25	42.97
o3-pro	49.21	43.97	44.92	40.60	29.56	41.65
Liquid_T	74.51	70.32	68.25	60.98	43.63	63.54
Liquid	97.64	89.17	90.90	81.19	64.44	84.67

1045
1046 reasoning abilities. It also establishes a suitable backbone for directly equipping our Latent Sketchpad,
1047 enabling plug-and-play visual reasoning without requiring full model retraining.

1048 We do not report results on Qwen2.5-VL in this setting, as its weaker instruction-following capability
1049 prevents us from obtaining consistent and meaningful outputs.

1052 C.4 TASK PERFORMANCE

1054 To provide a comprehensive comparison across different model configurations, we report the task
1055 performance of all system variants on mazes of varying sizes. The results of proprietary models and
1056 Liquid are presented in Table 11 (success rate) and Table 12 (progress rate).

1057 In addition, we conducted experiments under three connector tuning configurations for each model:
1058 (i) connector frozen throughout fine-tuning, (ii) connector unfrozen for one epoch, and (iii) connector
1059 unfrozen for two epochs. Our observations indicate that the two backbones exhibit distinct conver-
1060 gence behaviors, as illustrated in Table 13 and Table 14. When the connector remains frozen, both
1061 Qwen2.5-VL and Gemma-3 perform poorly. Allowing one epoch of connector tuning substantially
1062 improves Qwen2.5-VL, which adapts quickly, whereas Gemma3 still underperforms. In this regime,
1063 LS does not yield noticeable improvements on Gemma3 compared to Qwen2.5-VL, as the base model
1064 itself has not reached a sufficiently strong level of task performance.

1065 When the connector is unfrozen for two epochs, Qwen2.5-VL achieves a strong performance, leaving
1066 limited headroom for further gains. In this case, adding Latent Sketchpad results in a visual success
1067 rate of 82.6, which is comparable to the text-only reasoning baseline (82.4) and thus brings little
1068 additional benefit. In contrast, Gemma3 benefits significantly from Latent Sketchpad under the same
1069 setting. With the visual success rate reaches 75.6, which is higher than its text-only baseline (70), the
1070 task performance of Latent Sketchpad enhanced Gemma3 increases to 72.2.

1072 C.5 ADDITIONAL QUALITATIVE EXAMPLES OF RECONSTRUCTION

1074 As illustrated in Figure C.5, we present additional qualitative reconstruction results on unseen sketch-
1075 style samples. These examples span a variety of structural layouts and visual abstractions, and
1076 consistently demonstrate the decoder’s ability to recover key geometric and semantic patterns from
1077 the visual latent space. While minor degradations in fine-grained line reconstruction and color fidelity
1078 are observed, the current performance is sufficient for supporting visual reasoning within the Latent
1079 Sketchpad. Future work may further enhance visual fidelity to expand applicability in tasks requiring
finer perceptual precision.

1080
1081
1082 Table 13: Success Rate of different system variants on MAZEPLANNING
1083
1084
1085
1086
1087

	Connector	3×4	3×5	4×4	4×5	5×5	Overall
Gemma3	Frozen	10.00	17.00	12.00	5.00	3.00	9.40
Gemma3	1 epoch	52.00	30.00	21.00	23.00	8.00	26.80
Gemma3+LS	1 epoch	51.00	30.00	24.00	21.00	7.00	26.60
Gemma3	2 epoch	93.00	85.00	79.00	59.00	34.00	70.00
Gemma3+LS	2 epoch	94.00	86.00	85.00	61.00	35.00	72.20
Qwen2.5-VL	Frozen	27.00	17.00	18.00	12.00	2.00	15.20
Qwen2.5-VL	1 epoch	79.00	64.00	54.00	45.00	21.00	52.60
Qwen2.5-VL+LS	1 epoch	79.00	63.00	56.00	45.00	22.00	53.00
Qwen2.5-VL	2 epoch	98.00	96.00	95.00	79.00	44.00	82.40
Qwen2.5-VL+LS	2 epoch	98.00	94.00	94.00	81.00	43.00	82.00

1093
1094 Table 14: Progress Rate of different system variants on MAZEPLANNING
1095
1096

	Connector	3×4	3×5	4×4	4×5	5×5	Overall
Gemma3	Frozen	34.54	44.05	37.80	27.79	21.01	33.04
Gemma3	1 epoch	65.94	55.84	51.11	48.40	33.64	50.98
Gemma3+LS	1 epoch	65.11	54.56	51.84	47.93	32.68	50.42
Gemma3	2 epoch	98.21	95.74	91.72	84.71	67.47	87.57
Gemma3+LS	2 epoch	98.78	95.19	94.27	85.20	67.08	88.10
Qwen2.5-VL	Frozen	53.19	48.65	42.92	39.85	21.38	41.20
Qwen2.5-VL	1 epoch	92.72	87.06	85.17	78.90	62.91	81.35
Qwen2.5-VL+LS	1 epoch	92.92	86.93	86.16	78.22	64.47	81.74
Qwen2.5-VL	2 epoch	99.46	98.26	98.61	93.44	77.98	93.55
Qwen2.5-VL+LS	2 epoch	99.46	97.39	98.14	93.85	77.33	93.23

1107
1108 C.6 VISUALIZATIONS1109
1110 We additionally provide visualizations of the visual latents produced by the Latent Sketchpad on
1111 the MAZEPLANNING tasks, as presented in Figure 13. These examples, decoded via our pretrained
1112 Sketch Decoder, illustrate how the model leverages visual thoughts to organize spatial information and
1113 guide step-by-step decision making. The results demonstrate that even without photorealistic detail,
1114 the generated sketches capture sufficient structural cues to support accurate multimodal reasoning.1115
1116 C.7 DISCUSSION ON TRANSFERABILITY TO GENERAL TASKS1117
1118 While our primary experiments focus on the MAZEPLANNING dataset, the proposed Latent Sketchpad
1119 framework is conceptually extensible to a wide range of multimodal reasoning tasks. MAZEPLAN-
1120 NING was chosen as an initial testbed because it provides both a challenging reasoning environment
1121 and controllable visual supervision, allowing us to rigorously validate the feasibility of native visual
1122 thought generation. However, the underlying mechanism is not tied to a specific domain. For general
1123 multimodal reasoning benchmarks such as MathVista or MMMU, our design philosophy emphasizes
1124 compatibility without compromise: the Latent Sketchpad can be attached to frontier VLMs to enable
1125 visual generation only when needed, while preserving their strong performance on conventional
1126 textual or perceptual reasoning tasks. In practice, this allows the model to handle simple reasoning
1127 through text alone and invoke the sketchpad for complex spatial or multi-step reasoning challenges.
1128 We view this adaptive integration as a promising direction for future research.

1129 D THE USE OF LARGE LANGUAGE MODELS

1130
1131 Large language models (LLMs) were used as general-purpose tools in this work. Specifically, LLMs
1132 assisted in (i) constructing reasoning trajectories for the MAZEPLANNING dataset and (ii) polishing
1133 the writing to improve clarity and readability.

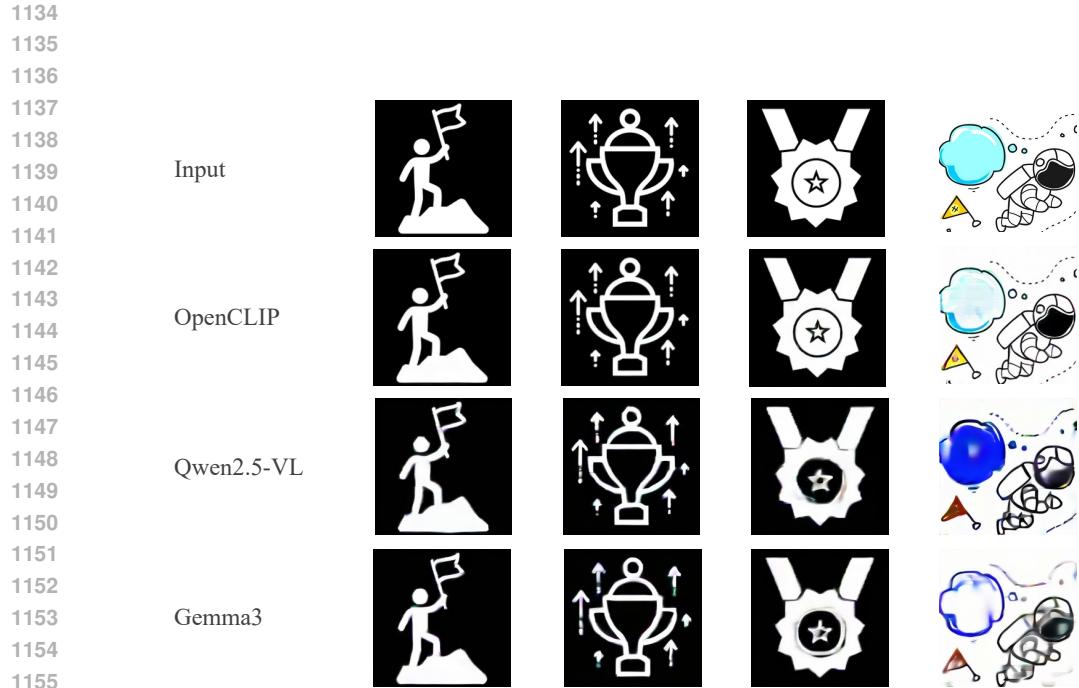


Figure 12: Additional qualitative examples of reconstructed sketches of Sketch Decoder.

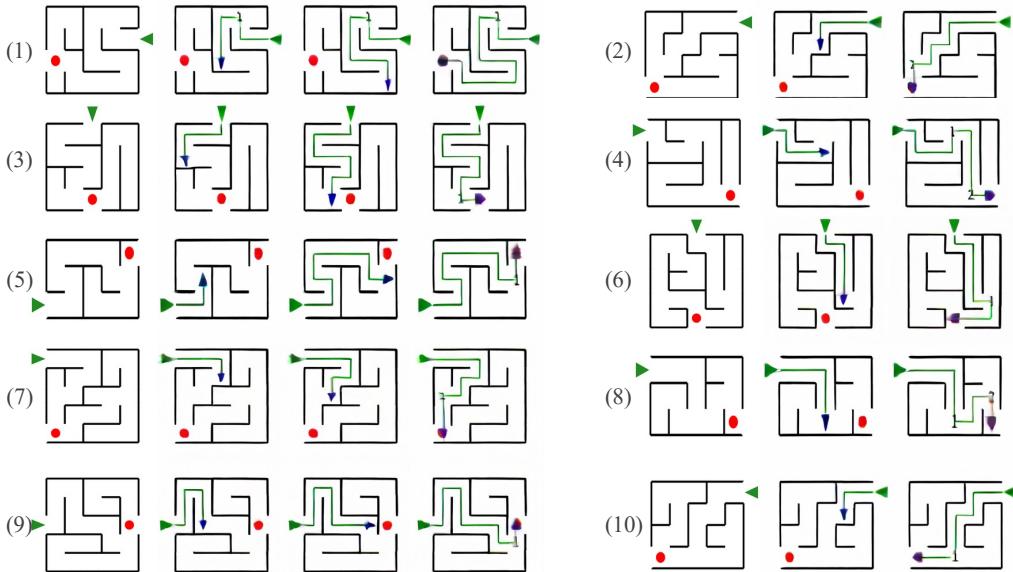


Figure 13: Examples of visual thoughts produced by Latent Sketchpad.