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ABSTRACT

Hardware design verification (DV) is a process that checks the functional equiva-
lence of a hardware design against its specifications, improving hardware reliability
and robustness. A key task in the DV process is the test stimuli generation, which
creates a set of conditions or inputs for testing. These test conditions are often
complex and specific to the given hardware design, requiring substantial human
engineering effort to optimize. This leads to a significant challenge in automated
and efficient testing for arbitrary hardware designs. We seek a solution that takes
advantage of large language models (LLMs). LLMs have already shown promising
results for improving hardware design automation, but remain under-explored for
hardware DV. In this paper, we propose an open-source benchmarking framework
named LLM4DV that efficiently orchestrates LLMs for automated hardware test
stimuli generation. Our analysis evaluates six different LLMs involving six prompt-
ing improvements over eight hardware designs and provides insight for future work
on LLMs development for efficient automated DV.

1 INTRODUCTION

Large Language Models (LLMs) (Yang et al., 2020; int, 2020; Touvron et al., 2023) have gained
significant attention in recent years due to their language generation and comprehension capabilities
on tasks such as language translation (Feng et al., 2020), question answering (Yang et al., 2020),
and sentiment analysis (Liu et al., 2021). Recently, there has been interest in exploiting LLMs
to improve hardware design generation (Blocklove et al., 2023; Fu et al., 2023; Lu et al., 2024).
Arguably, hardware design verification (DV), which checks the correctness of hardware designs,
ranks among the most crucial and time-consuming tasks in hardware development. Hardware DV is
often time-consuming, usually taking up to 60%-70% of the development time (Shin, 2024), and
requires significant human guidance and expertise due to the complexity of both hardware design
and its corresponding testing requirements (Shin, 2022).

On the other hand, existing work on LLMs has been studied for software testing. For example, Codex
(Chen et al., 2021) can produce functionally correct bodies of code from natural language docstring
descriptions. LLaMA 2 (Touvron et al., 2023), an LLM using instruction tuning and Reinforcement
Learning with Human Feedback (RLHF) (Christiano et al., 2017; Stiennon et al., 2020) for fine-tuning,
emerges impressive generalization and external tool usage ability. However, these approaches are
not directly applicable due to the following two challenges. First, unlike software programming
languages, there is a scarcity of high-quality, open-source hardware designs and testing code available
online for training LLMs. This limitation is critical because Hardware Description Languages (HDLs)
possess distinct semantics that differ fundamentally from software programming languages. These
unique characteristics make HDLs considerably more challenging for LLMs to interpret and learn
from, as the models cannot simply transfer their knowledge from conventional programming contexts
without substantial modifications. Second, the testing space for a hardware design design is typically
large, leading to a scalability problem. Existing approaches on hardware DV require human guidance
to reduce search space, such as adding heuristics to guide tests of a particular hardware design. This
raises an important question: can LLMs effectively minimize the amount of human effort involved
in hardware DV?

In this work, we specifically focus on hardware test stimuli generation, which generates test inputs for
hardware DV. In the DV process shown in the right of Figure 1, the test stimuli generation stands out
as the most labor-intensive phase, often requiring iterative trial-and-error. A good stimuli discovers
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Figure 1: An overview of LLM4DV framework. The right part shows a traditional DV process. DV
engineers need to manually interact with the DV process by tailoring various stimulus and observing
the coverage. Such a manual process is often iterative. The left part highlights our contributions,
which adds the stimulus generation agent for automated guidance.

new hardware states during testing, increasing the test coverage; while a bad stimuli only tests existing
states, leaving the coverage the same. Finding good stimuli becomes particularly arduous when
encountering hard-to-hit points within the coverage plan. In order to find a path to LLM solutions,
we present a novel benchmarking framework named LLM4DV (Large Language Model for Design
Verification), that utilizes LLMs for test stimuli generation, and make the following contributions:

• We introduce and construct LLM4DV, a framework that employs prompted LLMs to generate
test stimuli for hardware DV. Our complete workflow facilitates a plug-and-play flow for users
to experiment various LLMs, hardware designs and test coverage plans. We show automated DV
requires a complex prompting strategy and also propose six prompt enhancements to establish
strong baselines for the LLM4DV framework. We believe this provides an attractive testbed for
experimenting the agentic behavior of LLMs.

• We design and construct three DUT modules: a Primitive Data Prefetcher Core, an Ibex Instruction
Decoder, and an Ibex CPU. We also select five open-source designs, obtaining a varied set of DUTs
with different testing difficulties that are supplied within the LLM4DV flow for users.

• We evaluate LLM4DV using these eight DUT modules and introduce a set of evaluation metrics.
We show that LLMs, with optimized prompt enhancements, achieve coverage rates (a primary
metric for measuring verification effectiveness) ranging from 89.74% to 100% in a realistic setting.
We open-source LLM4DV alongside these modules to allow both the machine learning and
hardware design communities to experiment with their ideas.

The rest of the paper is organized as follows. Section 2 provides a background of traditional hardware
DV processes. Section 3 reviews related work in the field of LLM-assisted software testing and
digital hardware design. Section 4 describes LLM4DV in detail. Section 5 evaluates the effectiveness
of several LLMs inside the framework.

2 BACKGROUND

A traditional hardware DV process is illustrated in the right of Figure 1. For each hardware design,
also known as device-under-test (DUT), the hardware designer provides a functionally equivalent
golden model in software to the DUT (Witharana et al., 2022). The DV process takes a set of inputs,
or test stimuli, and sends them to both the DUT and its golden model ( 1⃝), leading to two sets of
results. The results are then compared between the DUT and its golden model ( 2⃝). If the results are
identical, the DUT behaves correctly in the hardware states triggered by the current test stimulus,
leading to a coverage of verified states. In order to progressively expand the testing coverage, a DV
process typically tests the DUT iteratively on a large set of stimuli defined by the hardware designer
in advance. These stimuli aim to cover a wide range of scenarios and use cases that the hardware
might encounter in real-world applications, which are defined in the coverage plan in the form of
coverage bins. A coverage bin is a specific condition or scenario that the verification environment
tracks to determine whether a particular aspect of the design has been exercised or tested. A number
of bins are defined in a coverage plan for each value of interest. For simplicity, all coverage points
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Table 1: Comparison to related work applying LLMs in the field of digital hardware.

Name Task Number of models Testing space

RTLFixer(Tsai et al., 2023) Verilog syntax correction 1 212 syntax errors
NSPG(Meng et al., 2023) Repairing security-relevant bugs in Verilog 4 10 designs (10 bugs)
ChipNeMo(Liu et al., 2023) Bug analysis and summarisation 3 30 bugs
Kande et al.(Kande et al., 2023) Generating security assertions 4 10 designs (10 assertions)
Thakur et al.(Thakur et al., 2023) Generating Verilog code 6 17 problems
RTLLM (Lu et al., 2023) Generating Verilog code 4 30 designs

LLM4DV Stimulus generation for functional verification 5 8 designs (3883 coverage bins)

Table 2: Comparison to related work with non-LLM hardware testing techniques

Features (Fine and Ziv, 2003a) (Braun et al., 2004) (Baras et al., 2009) (Fine et al., 2005)

Models Bayesian Bayesian Bayesian Bayesian
Encoding model MAP MAP MAP MAP
Retraining Yes Yes Yes Yes

Features (Gal et al., 2021) (Gal et al., 2020) (Vasudevan et al., 2021) Ours

Models DNN DNN GNN LLM
Encoding model gradient-based gradient-based gradient-based text
Retraining Yes Yes Yes No

are considered to only include a single coverage bin in this work. The coverage monitor ( 3⃝) inspects
the DUT’s inputs, outputs, and internal states; determines whether there are hits of coverage bins;
updates the current coverage and returns it to the stimulus generation agent for the next stimulus.
The procedure in the right of Figure 1 typically follows an iterative approach, often executed tens of
thousands of times, in which a human DV engineer applies various stimuli to achieve comprehensive
coverage specified in the coverage plan.

Effective test stimuli generation has been a major challenge in meeting 100% coverage (Witharana
et al., 2022). For a simple design, verification can be done with individual directed tests, in which
test stimuli (inputs for the DUT) are manually generated. For more complex designs, a large number
of stimuli is required for exercising as much of the design’s functionality as possible. Traditionally,
constrained-random testing (CRT) has been used to generate vast random but valid test stimuli
and to attempt to “hit” the bins. However, CRT is inefficient to hit as many bins as human effort
for hardware states with complicated conditions. Still, it remains the case that extensive human
engineering involvement is required for the test stimuli design process.

3 RELATED WORK

While the application of LLMs on hardware design verification has been brought to focus only
recently, test code generation for software engineering with LLMs has been well-studied and achieved
remarkable performance (Chen et al., 2022; Schäfer et al., 2023; Lukasczyk and Fraser, 2022). Chen
et al. (Chen et al., 2022) utilize LLM to suggest potential implementations and corresponding test
cases for a function. They provide the LLM with the signature and a description of the function and
select the best solution based on functionality agreement. Schäfer et al. (Schäfer et al., 2023) propose
a pipeline to generate unit tests for existing code, which iteratively refines the prompt to generate
better tests. These studies show promising results on software code, while we shift focus to using
LLM to reason HDLs and hardware design specifications, leading to a different setting and more
sophisticated procedure.

In hardware design verification, assertion-based verification (ABV) is also widely adopted together
with code coverage, functional coverage, and validation using generated test patterns (Witharana
et al., 2022). ABV inserts assertions into the DUT HDL source to detect violations of predefined
design properties. However, ABV requires test patterns (i.e. input test stimuli) to activate given
assertions and therefore reveal vulnerabilities. For simulation-based ABV approaches, traditional test
generation that uses random or constrained-random tests cannot guarantee to activate assertions with
complex conditions in a reasonable time. In order to speedup ABV, Pal et al. (Pal et al., 2008) propose
bias random test generation. They consider the DUT as a black box and restrict test generation to
only input/output signals. Ferro et al. (Ferro et al., 2008) used combinatorial testing, which provides
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Table 3: A list of hardware DUTs and their golden models provided by the LLM4DV benchmark set.

Names Descriptions

Primitive Data Prefetcher Core∗ Detects stride patterns in a series of integers. Limited logical reasoning abilities are required to achieve
high coverage.

Ibex CPU Instruction Decoder∗ Decodes RISC-V Instruction codes. Detailed knowledge about the RISC-V ISA is needed to achieve
full coverage.

Ibex CPU∗ A RISC-V CPU core. Detailed knowledge about the RISC-V ISA, as well as familiarity with CPU
architecture is needed to achieve full coverage. A brief description of relevant instructions, as well
as the format of R-, S-, and J-type instructions is given to the agents in the initial prompt to enhance
performance.

Asynchronous FIFO (Pretet) A dual clock FIFO used to exchange data between clock domains. Coverage bins are straightforward,
but the LLM has to control inputs to two clock domains simultaneously.

AMPLE Prefetcher Weight Bank (Gimenes) A component of AMPLE, a graph neural network accelerator. It is responsible for fetching data from
memory, storing it in a FIFO, and outputting it in a diagonal form. There is a direct link between each
possible input combination and a corresponding coverage bin, no significant reasoning abilities are
needed to achieve high coverage.

AMPLE Prefetcher Fetch Tag (Gimenes) Another component of AMPLE. Similar to the weight bank, its basic purpose is to fetch data from
memory. However, it contains not entirely independent queues that need to be managed simultaneously.
The device is simple, but there is no clear link between input combinations and coverage bins, requiring
significant reasoning abilities.

SDRAM Controller (Horne) A very simple SDRAM controller. The LLM may need to be pre-trained with knowledge about SDRAM
control signals, or needs to infer them from the device’s source code (if given) to achieve full coverage.

MIPS CPU (TrivialMIPS) A MIPS CPU core. Detailed knowledge about the MIPS ISA, as well as familiarity with CPU
architecture is needed to achieve full coverage. Similar to the Ibex CPU, a brief description of relevant
instructions, as well as the format of R-, I-, and J-type instructions is given to the agents in the initial
prompt to enhance performance.

a set of combinations of user-selected values, to select test stimuli most suitable to cover corner cases.
Tong et al. (Tong et al., 2009) propose a method that searches for compact assertion-based automata
for failure and acceptance nodes before test generation. Simulation-based test generation has also
been incorporated with formal method-based test generation. Lyu and Mishra (Lyu and Mishra, 2020)
utilized concolic testing to activate assertions. They consider assertions as branches, search through
the branch statement tree with heuristics to efficiently obtain a path, and generate test stimuli to
cover the obtained branch targets. These methods, however, are subjected to complexity explosion
problems (Witharana et al., 2022) and fail to effectively make use of the user’s knowledge about
the design. We overcome this issue by utilizing LLM’s pre-trained knowledge to reason about the
given coverage plan and guide the test stimuli generation. Other advanced testing techniques, such
as coverage-directed generation and mutating tests (Fine and Ziv, 2003b; Guzey and Wang, 2007;
Laeufer et al., 2018), have been studied to improve the performance of CRT. These works may guide
test generation by LLMs to achieve better results but face challenges in the integration out of the
scope of this paper. Our LLM4DV framework provides an initial platform and baselines for their
evaluation in future works. @Reviewer 1C9a: Further works that approach test generation with
non-LLM machine learning methods are summarized in Table 2.

Recently, the application of LLMs for hardware design and verification purposes has started to
gain traction (Zhong et al., 2023). Table 1 provides a summary of recent benchmarks that focus on
applying LLMs within this domain. In particular, there are currently no benchmarks that evaluate the
stimuli generation capabilities of LLMs. Among the recent contributions, RTLFixer (Tsai et al., 2023)
enables the automated correction of Verilog syntax errors. In contrast, NSPG (Meng et al., 2023) is
designed to extract security properties by analyzing hardware documentation. ChipNeMo (Liu et al.,
2023) has been assessed on tasks related to bug summarization and analysis. Additionally, Kande
et al. (Kande et al., 2023) proposed a methodology for automatically generating SystemVerilog
assertions (SVAs) using LLMs to enhance hardware security. Meanwhile, Thakur et al. (Thakur et al.,
2023) and RTLLM (Lu et al., 2023) have explored the generation of Register Transfer Level (RTL)
code using LLMs. While it is challenging to directly compare the scale of these benchmarks with that
of LLM4DV due to the different abilities assessed, it should be noted that LLM4DV’s scope of 3883
coverage bins across 8 devices, tested with six different off-the-shelf models, represents a significant
contribution to the field.

4 LLM4DV BENCHMARKS

Our experiments use an LLM in the test stimuli generation process, together with a testbench
containing a DUT to form the complete LLM4DV framework. The following subsections describe the
basic DV framework, the prompt templates for the LLM, and six prompting improvements. Figure 1
gives a general picture of the prompt templates and prompting improvements.
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Table 4: A list of input options and output evaluation metrics for the proposed LLM4DV framework.

Names Descriptions

Input
Options

DUT The target DUT to be tested.
Model The LLM used for stimulus generation.
Prompting Configurations The prompting strategy used for stimulus generation.
Coverage Plan The coverage plan specified for the target DUT.

Evaluation
Metrics

Max Coverage Maximum recorded number of coverage bins (defined by the coverage plan) covered. A higher number
indicates better performance.

Effective Message Count The minimum number of messages an LLM produces across several trials in an experiment achieving
maximum coverage; a lower count indicates better performance.

Average Message Count Average number of query messages per experiment ± standard deviation of messages. As the usage of
LLMs is costly, a faster convergence to maximum coverage is preferred.

4.1 LLM4DV FRAMEWORK

In this work, the proposed LLM4DV framework automates the DV process by exploiting LLMs for
test stimuli generation, shown in the left of Figure 1. Compared to traditional DV processes that use
user-defined test stimuli, the stimulus generation agent uses an LLM to provide a test stimulus in
each timestep. This reduces human involvement in the hardware DV loop and effectively guides tests
to increase coverage rates.

In each generation cycle, the prompt generator produces a prompt based on a template ( 7⃝) and the
current coverage feedback from the coverage monitor. LLM4DV allows customization of prompts
inside a dialogue, this means each query message can receive different prompts, as managed by the
query scheduler ( 5⃝) shown in Figure 1. This is explained in Section 4.3.

The LLM takes in the prompt and generates a natural language response, from which the test stimulus
values are extracted and sent to the DV flow in the right of Figure 1. The DV framework then produces
current coverage which is considered as input for the LLM-based stimulus generation agent ( 8⃝)
shown in Figure 1. The processes of test stimuli generation and hardware testbench simulation are
executed in parallel asynchronously. Specifically, a buffer is placed between the stimulus generation
agent interfaces to balance the rate of the test stimuli generation and consumption. In every timestep
when the stimulus generation agent is requested for a test stimulus, it takes out the oldest value in its
stimulus buffer; if the buffer is empty, the agent starts a new generation cycle, in which the LLM
takes in a new request and a list of new stimuli will be added to the buffer.

In LLM4DV, each DV process is viewed as a “trial”, where there would be multiple dialogues made
in a single trial, as illustrated in Figure 1, which are controlled by the dialogue scheduler ( 6⃝). A trial
stops in one of the following three states, and the agent is considered “exhausted”. When reaching
such a state, it becomes ineffective or inefficient to expand testing coverage and the pipeline stops.
First, full coverage is reached, where all coverage bins have been hit. Second, no new coverage is
extended within a number of trials, where our implementation by default specifies that the stimulus
generation agent cannot hit any bins within 25 responses. Finally, the coverage expansion speed is
low, where our implementation by default specifies that the stimulus generation agent hits fewer than
three bins within 40 responses. @Reviewer 9kfb: Algorithm 1 provides the exact implementation of
the pipeline. The exact states can be specified by users as input to the framework, and here we use
the particular setups above for fair evaluation across DUTs, LLMs and prompting methods.1 Within
the LLM4DV framework, we explore six prompting strategies and improvements over a set of LLMs
and DUTs. We describe our evaluation method in Section 4.

4.2 EVALUATION SETUP

The proposed LLM4DV benchmark contains eight DUT modules, as listed in Table 3. Three of the
devices were developed by the authors, and the other five are open-source designs. These DUTs
are selected because they are commonly seen in most representative computer architectures such
as CPUs, GPUs and other hardware accelerators. Detailed information about the DUTs is provided
in Appendix A.4. We use six different commercially available LLMs: GPT-3.5 Turbo, Llama v2
70B Chat, Claude 3 Sonnet, CodeLlama 70B Instruct, Llama 3 70B Instruct, and Claude 3.5 Sonnet.
To evaluate the effectiveness of these LLMs, we observe the testing performance based on three

1See Algorithm 1 for exact implementation, and Appendix A.2 for a justification of these hyperpramters.
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Algorithm 1 Basic DV Pipeline
stimulus← 0
coverage← {}
while coverage rate < 100% and not (∆ coverage in 25 messages = 0 or ∆ coverage in 40 messages < 3 do

while stimulus_buffer not empty and coverage rate < 100% do
stimulus← stimulus_buffer.pop()
testbench.input(stimulus)
coverage←coverage_monitor.compute_coverage(testbench)

end while
prompt← prompt_generator.generate(coverage)
response← LLM.generate(prompt)
stimuli← extractor.extract(response)
stimulus_buffer.extend(stimuli)
while stimulus_buffer is empty do

prompt← prompt_generator.regenerate(coverage)
response← LLM.generate(prompt)
stimuli← extractor.extract(response)
stimulus_buffer.extend(stimuli)

end while
end while

evaluation metrics, as listed in the lower part of Table 4. We have limited each trial to 700 messages.
The design choices of these parameters are explained in Appendix A.1.

4.3 GENERAL PROMPTING STRATEGIES

We provide a Coverage-Feedback Template to generate prompts for the LLM. When constructing it,
we utilize prompt engineering techniques including 1) System message: it is included at the beginning
of every prompt, and is used to prime the model with context, instructions, or other information
relevant to the use case; 2) Start with clear instructions; 3) Repeat instructions at the end; 4) Add
clear syntax: punctuation, headings, and section markers; 5) Specifying the output structure.

Coverage-Feedback Prompt Template The Coverage-feedback prompt template contains templates
for the system message, initial query, and iterative queries.

• The system message clarifies the expected response format and specify other requirements.

• The initial query is the first user query message in a dialogue. It contains three parts: 1) Task
introduction: a description of what is included in this prompt and what the LLM will be asked to
do; 2) Coverage plan summary: a description of cover bins of the coverage plan; and 3) Initial
question: a one-line instruction.

• The iterative queries are the user messages following the first assistant (LLM) response. Each
contains three parts:

1. Result summary: a general feedback which:
- if the previous assistant response was gibberish (i.e. contains mostly nonsense words) or

didn’t follow the output format, the result summary repeats the output format requirement;
- otherwise if the previous assistant response failed to hit any new bins, the result summary

points that out and ask for a new list of stimuli;
- if the previous assistant responses hit some bins, the result summary points that out and ask

for a new list of stimuli.
2. Differences: a list of uncovered bins.
3. Iterative question: a one-line instruction, repeating the output format requirement if previous

response was gibberish or didn’t follow the output format.

4.4 FOUR GENERIC PROMPTING IMPROVEMENTS

In our experiments, we develop two improvements necessary for making the framework executable
and two improvements that increase its performance on most cases, which can be effectively employed
regardless of the nature of the DUT and coverage plan. Details see Appendix A.3.
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Missed-bin Sampling This optimization is 4⃝ in Figure 1, and is later used in the query scheduler. In
most generation cycles in a trial, there would be hundreds to thousands bins uncovered. The iterative
queries can’t include all of them because the prompt’s length would exceed the LLM’s input token
number limit. Meanwhile, exposing too many uncovered bins to the LLM confuses the LLM on
which mistakes should it resolve first.

We propose missed-bin sampling, which samples a number of bins from all uncovered bins to be
included in the differences part of iterative queries. Our experiment finds that more random sampling
methods encourage the agent to cover bins with stricter hitting conditions, and more stable sampling
methods make the agent more efficient in hitting the easier bins.

We define three sampling methods (1) Pure Random Sampling, which randomly samples seven bins
from all uncovered bins. (2) Coverpoint Type-based Sampling, which samples from “easier bins” and
“harder bins” respectively. (3) Mixed Coverpoint Type-based and Pure Random Sampling, which
switches between previous two whenever the agent becomes inefficient with current strategy.

Best-iterative-message Sampling The LLM needs previous query messages in the dialogue to learn
about what has happened. However, as the dialogue grows, the length of input may exceed the
LLM’s input limit. One solution is summarizing previous query message, which helps generalizing
concepts in the dialogue but loses details, which is crucial in our task. On the other hand, sampling
from previous messages acceptably loses some generality meanwhile preserves key details, including
the bin description and positive examples (i.e responses that successfully hit many bins) useful for
covering corner cases. These strategies are used in our Query Scheduler in 5⃝.

We propose four sampling methods (I) Recent Responses, where we keep the initial query (and its
response), and three most recent iterative queries (and their responses). (II) Successful Responses,
where we randomly keep three that hit the largest number of bins. (III) Mixed Recent and Successful
Responses, where we keep two most successful and one most recent query. (IV) Successful Difficult
Responses, which is similar to Successful Responses but each “harder bin” counts as 2.5 bins.

Dialogue Restarting LLMs sometimes behave stubbornly, repeating mistakes they made previously.
We introduce a dialogue restarting scheduler ( 6⃝) to resolve this problem. When the LLM hits less
than three new bins within t responses, we clear the dialogue record and restart from the system
message and initial query. We define four dialogue restarting schedules (a) Normal Tolerance, where
t = 7. (b) Low Tolerance, where t = 4. (c) High Tolerance, where t = 10. (d) Coverage Rate-based
Tolerance, where t = 4 in the beginning and t = 7 after reaching certain coverage rate threshold.

Best-iterative-message Buffer Reset When the dialogue record is reset, the buffer for best iterative
messages in Best-iterative-message sampling can also be cleared or kept. These two strategies display
a trade-off between “effectively forgetting past mistakes” and “learning about the task faster after
restart”. This reset is also then incorporated in the dialogue restarting scheduler ( 6⃝).

We define three resetting plans for the best-iterative-message buffer, (i) Clearing best-messages. (ii)
Keeping best-messages. (iii) Stable-restart Keeping best-messages: keeping the buffer on restarts, but
not using it for the first four responses after restarts.

We have employed distinct notations to denote the available options for these prompting enhancements.
This enables us to encode specific combinations, such as Claude-3 1 I a i, indicating that the first
option is selected for all the aforementioned prompting strategies.

4.5 TWO SITUATIONAL PROMPTING IMPROVEMENTS

We have developed two additional prompting improvements, which can be effectively deployed
depending on the nature of the DUT and the coverage plan.

Providing the DUT Code By including the DUT source code in the initial message and incoporate this
change in the query scheduler ( 5⃝), we try to enhance the model’s performance with context-specific
information that is intrinsic to the device’s operational logic and architecture. By parsing the HDL
code, the LLM may directly correlate specific features and functions with the corresponding coverage
bins, ensuring that the generated stimuli are not only syntactically correct but also semantically
aligned with the DUT’s functional requirements. However, due to bounded context windows, this
technique may only be employed for devices with limited source code length.
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Figure 2: Performance improvement due to the employment of the four generic prompting strategies
on the IBEX CPU, using Claude 3 Sonnet.
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Figure 3: Performance improvement due to few-shot prompting on the IBEX CPU.

Few-shot Prompting As task-specific fine-tuning is outside the scope of this study, we instead aim
to use few-shot prompting to improve coverage metrics. By including in the initial prompt a few
examples of stimuli generating bin hits in the query scheduler ( 5⃝), the LLMs may adapt to the
context of hardware verification, and assimilate some information about the DUT. To avoid skewing
the experimental results, this has only been employed in cases where the coverage plan includes a
significant amount of coverage bins.

5 RESULTS AND ANALYSIS

Using the Generic Prompting Strategies We ran our experiments on Intel Xeon CPUs using LLM
APIs hosted on a platform named OpenRouter. The total cost for OpenRouter was USD334. For
each reported result three experiments were performed. In Section 4.4, we introduced these four
generic prompting techniques, each accompanied by several configurations: missed-bin sampling
(choices (1)-(3)), best-iterative-message sampling (choices (I)-(IV)), dialogue restarting (choices
(a)-(d)), and best-iterative-message buffer reset (choices (i)-(iii)). Figure 2 shows coverage rate
gains when correctly employing the four strategies. The naive approach is considered to be the
simplest configuration: (1) Random Sampling, (I) Recent Responses, (a) Normal Tolerance, and (i)
Clearing best-messages. Through extensive experimentation across different configurations detailed
in Appendix A.6, the best configuration was identified as (2) Coverpoint Type-based Sampling, (II)
Successful Responses, (a) Normal Tolerance, and (iii) Stable-restart Keeping best-messages. While
the naive configuration only achieved 51.53% coverage, the chosen strategy reached 66.84%, an
increase of 15.31%. In all further experiments, this generic prompting configuration is used.

Providing the DUT Code The varying effects of providing the DUT’s HDL source code to different
LLMs are shown in Table 6 in our Appendix. Out of the 20 LLM-DUT pairs, only in 9 cases can
we observe an increase in performance when providing the DUT source code. In all other cases,
degradation occurs in terms of both maximum achieved coverage rates and trial lengths. This is likely
due to the limited context size of the LLM agents. Whether this prompting strategy leads to benefits
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Table 5: Best results achieved for each LLM-DUT pair. In all cases, the generic prompting strategy
described in Section 5 was used. Additionally, experiments marked with ∗ used few-shot prompting,
and experiments marked with † included the DUT source code in the initial prompt. We highlight the
best results for each DUT. Note that trials were limited to 700 messages.

Primitive Data
Prefetcher Core

Asynchronous
FIFO

AMPLE Prefetcher
Weight Bank

AMPLE Prefetcher
Fetch Tag

gpt-3-turbo
Max coverage 1016 (98.26%)∗ 10 (100%) 324 (100%)† 10 (100%)
Eff. msg. count 350 16 36 2
Avg. msg. count 509.0 ± 129.4 19.7±3.9 37.7±1.2 22.0±14.1

llama-2-70b-chat
Max coverage 431 (41.68%)∗ 10 (100%)† 324 (100%) 10 (100%)†

Eff. msg. count 700 1 36 22
Avg. msg. count 470.7±189.9 10.5±7.9 41.3±7.5 27.7±6.0

claude-3-sonnet
Max coverage 801 (77.47%)∗ 10 (100%) 324 (100%) 10 (100%)
Eff. msg. count 700 1 36 8
Avg. msg. count 676.3±33.5 1.0 36.0 19.3±8.0

codellama-70b-instruct
Max coverage 82 (7.93%)∗ 10 (100%) 324 (100%) 6 (60.00%)†

Eff. msg. count 154 1 44 34
Avg. msg. count 102.0±50.3 3.7±3.1 52.3±8.5 28.3±4.0

llama-3-70b-instruct
Max coverage 710 (68.67%)∗ 10 (100%)† 324 (100%) 10 (100%)†

Eff. msg. count 700 1 26 15
Avg. msg. count 700.0 1.3±0.5 32.7±4.7 20.0±3.6

claude-3.5-sonnet
Max coverage 1022 (98.84%)∗ 10 (100%) 324 (100%) 9 (90%)
Eff. msg. count 321 1 36 25
Avg. msg. count 329.3±32.3 1.0 36.7±0.6 25.0

Formal verification Max coverage 1030 (99.61%) 10 (100%) 3 (0.93%) 10 (100%)

CRT Max coverage 0 (0%) 10 (100%) 324 (100%) 10 (100%)

SDRAM
Controller

Ibex CPU
Instruction Decoder Ibex CPU MIPS CPU

gpt-3-turbo
Max coverage 7 (100%) 1466 (69.58%)∗ 39 (19.90%)∗ 84 (43.08%)∗

Eff. msg. count 7 700 102 211
Avg. msg. count 22.3±11.0 432.0±228.3 88.0±21.2 111.0±72.8

llama-2-70b-chat
Max coverage 6 (85.71%)† 402 (19.08%)∗ 22 (11.22%)∗ 68 (34.87%)∗

Eff. msg. count 32 186 26 55
Avg. msg. count 28.3±2.6 125.7±61.1 33.3±10.4 45.7±13.2

claude-3-sonnet
Max coverage 7 (100%)† 1512 (71.76%)∗ 141 (71.94%)∗ 159 (81.54%)∗

Eff. msg. count 2 700 315 299
Avg. msg. count 2.3±0.5 700.0 287±19.9 277.7±35.2

codellama-70b-instruct
Max coverage 7 (100%)† 417 (19.79%)∗ 25 (12.76%)∗ 91 (46.67%)∗

Eff. msg. count 8 182 31 142
Avg. msg. count 29.3±15.1 126.3±57.6 34.3±6.9 113.7±20.4

llama-3-70b-instruct
Max coverage 7 (100%) 1135 (53.89%)∗ 94 (47.96%)∗ 98 (50.26%)∗

Eff. msg. count 1 700 172 175
Avg. msg. count 2.3±1.2 700 180.3±20.9 141±24.1

claude-3.5-sonnet
Max coverage 7 (100%)† 2006 (95.21%)∗ 196 (100%)∗ 175 (89.74%)∗
Eff. msg. count 2 651 31 176
Avg. msg. count 2.0 683.7±28.3 37.0±5.29 174.7±41.0

Formal verification Max coverage 7 (100%) 2106 (99.95%) 100% 100%

CRT Max coverage 7 (100%) 1154 (54.77%) 30 (15.31%) 28 (14.36%)

depends on the specific LLM agent and DUT, so the decision to employ it needs to be decided on a
case-by-case basis.

Few-shot Prompting The LLMs were given specific examples of stimulus-coverage bin hit pairs in
experiments where the coverage plan includes more than 20 bins. The specific number of examples
was chosen empirically depending on the variety of coverage bins, but in all cases between 5 and 10.
Figure 3 compares the performance of all six LLMs when tested on the Ibex CPU, where dashed lines
represent trials with few-shot prompting enabled. The models reach completion at varying message
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counts due to the stop condition outlined in Section 4.1. The prompting guides the model to verify
the design more efficiently. In all the cases, significant improvement is observed in terms of coverage
rates observed, when few-shot prompting is applied. Among these LLMs, Claude 3.5 shows the best
results, where both zero-shot and few-shot approaches reached full coverage.

Final Results Table 5 presents the best results achieved for each LLM-DUT pair, compared with
naive CRT and formal methods serving. In the CRT methodology, we generate 100,000 combinations
within the valid input range without additional constraints. The formal baseline utilizes the cover
mode of the SymbiYosys tool (SymbiYosys), where all bins of the coverage plans correspond to
specific SystemVerilog cover statements, and each formal verification run is limited to a 48-hour
timeout.

Across all DUTs, each configuration demonstrates that LLM4DV can either match or exceed the
coverage rates achieved via naive CRT. This signifies not only the adaptability of LLMs to varied
hardware testing contexts but also their potential to streamline certain aspects of verification by
reducing reliance on extensive random input generation. Formal methods only work well when the
design states are small. Particularly, the AMPLE Prefetcher Weight Bank only achieves a coverage
lower than 1%, because it contains large storage queues, which introduces a large number of feasible
states to represent values in all possible orders. In fact, the number of states grows exponentially with
queue size, leading to a “state space explosion”, despite the simplicity of the design.

In Table 4, our evaluation metrics encompass not just the maximum coverage rate but also the
maximum and average message counts. This comprehensive evaluation becomes particularly valuable
when maximum coverage attained is 100%, which could happen with less complex DUTs. Maximum
and average message counts allow for assessing the efficiency of LLMs in achieving this state of
success. Practically speaking, this aspect is beneficial as a more expedient DV cycle is normally
desirable.

Among the LLM models tested, Claude 3.5 Sonnet stands out, especially in handling more complex
tasks such as those associated with CPU architectures. This model’s superior performance in scenarios
involving the Ibex and MIPS CPU may indicate a more nuanced understanding of CPU operations,
likely stemming from richer pre-training that possibly included diverse computational and hardware-
related datasets. Claude 3.5 Sonnet’s effectiveness in these settings could suggest that its training
included exposure to architectural nuances specific to CPUs, enhancing its ability to generate more
relevant and coverage-effective test stimuli. Nevertheless, it still falls short of the 100% mark achieved
by the formal tool. This suggests that while LLMs can handle complex scenarios to a degree, they
may lack the deep, specialized knowledge or the ability to effectively navigate the vast state spaces
that high-complexity DUTs entail.

The consistently high coverage achieved by all LLM models in testing lower complexity DUTs,
such as the Asynchronous FIFO and SDRAM Controller, demonstrates the proficiency of LLMs
in handling straightforward scenarios. This high performance is mirrored by the baseline formal
tool, indicating that LLMs are competent and can rival traditional verification methods in simpler
verification contexts. Claude 3 Sonnet, for instance, maintains 100% coverage across simpler DUTs,
suggesting excellent efficiency in generating relevant test cases with minimal extraneous inputs. The
efficiency of test generation, as reflected by the message count metrics, provides another dimension
of evaluation. Models like Claude 3 Sonnet, which generally require fewer messages to achieve high
coverage, indicate a more targeted and efficient approach to test case generation. In contrast, models
requiring a higher number of messages, such as Llama-2-70b-chat and Codellama-70b-Instruct, may
be generating less precise or less effective test stimuli, indicating inefficiencies that could translate to
increased testing time and resource consumption in practical applications.

6 DISCUSSION

Gimmick or Trend? The computer architecture and hardware design community is now starting
to see debates regarding the effectiveness of LLMs for automated chip design, questioning whether
their use is merely a gimmick or represents a future trend. Our particular take on this problem is that
there is a need to set up open datasets and benchmarks for different problems in chip design, so that
the effectiveness and potential use of LLMs can be fully understood and quantified. Our work fits
exactly in this category, and we target, in our opinion, the most human labor-intensive part (in terms
of engineering) of the chip design process. Our baseline results have demonstrated that LLMs can
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achieve satisfactory coverage rates on straightforward designs, but they struggle with more complex
ones, suggesting that LLMs do hold promise within the specific context of automated hardware DV.

Data Asymmetry and LLM4DV as Downstream Evaluation Owing to the fundamental difference
between programming languages used in software and hardware engineering, existing LLMs are
presumably more adept with software programming languages like Python and may lack a deep un-
derstanding of the semantics of hardware description languages (HDLs). For instance, the StarCoder
model’s training data comprises various programming languages, yet SystemVerilog and Verilog
represent only about 5% of that data (Li et al., 2023). In the meantime, we see the provided LLM4DV
flow presents an excellent opportunity to evaluate the capability of LLMs to function as agents for
complex tasks, making it an ideal downstream evaluation task.

Enabling Future DV Research with LLMs The LLM4DV framework serves as a standard exper-
imentation platform to explore and evaluate DV work. The framework provides an interface for
researchers to orchestrate LLMs and input their own prompts for future DV research. For example,
advanced approaches, such as coverage-directed generation and mutating tests (Fine and Ziv, 2003b;
Guzey and Wang, 2007; Laeufer et al., 2018), could be integrated into the LLM prompts for better
coverage. These directions face research challenges that are beyond the scope of this work, but
LLM4DV offers an infrastructure on which to build them and baseline results for evaluation.

7 CONCLUSION

@Reviewer 1C9a: We evaluate LLM4DV using these eight DUT modules and introduce a set of
evaluation metrics. Our results show that unoptimized LLMs perform comparably to random guesses
in achieving coverage. However, with optimized prompt enhancements, LLMs can achieve coverage
rates (a primary metric for measuring verification effectiveness) ranging from 89.74% to 100% in a
realistic setting. While these numbers do not surpass those of established formal verification methods,
this opens avenues for future research in this direction. We open-source LLM4DV alongside these
modules to allow both the machine learning and hardware design communities to experiment with
their ideas.
We introduce LLM4DV, an open-source benchmark framework designed to efficiently coordinate
LLMs for automated hardware test stimuli generation. LLM4DV facilitates integration with diverse
DUTs, coverage plans, and LLMs. Our framework has been tested with a range of DUTs and LLMs,
and we have developed a set of prompting enhancements that establish solid baselines in the bench-
mark. Our results illustrate that while these LLMs perform well with simple DUTs, their effectiveness
is limited when dealing with more complex designs. This still suggests that LLMs have the potential
to overcome common challenges in DV research, such as state space explosion and input specificity,
while our framework and benchmarks provide a foundation for exploring and evaluating future DV
research. The natural language interface and explainability of LLMs can better integrate domain
knowledge into the DV process. We expect that LLM4DV will unlock new research prospects for
hardware designers and also serve as a valuable downstream task for assessing LLMs’ capabilities
for ML researchers.
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Figure 4: Infinite-message experiments on the Primitive Data Prefetcher Core module. Each line
represents the trial reaching the maximum coverage on a configuration, and the dots on it show
dialogue restarting points.

A APPENDIX

A.1 DESIGN CHOICES IN PARAMETER SETTINGS

Since the benchmark suite involves chaining multiple rounds of dialogue between the LLM and the
testbench framework, we have done a comprehensive evaluation/ablation of the hyperparameters
involved to facilitate this agentic behaviour. The majority of these hyperparameters stem from the
various prompting engineering techniques/optimizations involved. In fact, many of these prompting
techniques are in existing protocols or usage guides on LLMs (Microsoft; OpenAI).

Maximum message number (700): We ran a set of “infinite-message experiments” on the Primitive
Data Prefetcher Core and Ibex CPU Instruction Decoder, where the maximum response number
is much larger than the average exhaustion threshold. As illustrated in the results in Figure 4 and
5, the coverage values of all runs plateau after at most 500 messages, hence we set the maximum
message number to 700 for a safety margin.

Trial termination condition (no hits in 25 messages or fewer than 3 hits in 40 messages): This
prevents over-using the resources when the agent is “exhausted”. Extensive tests have demonstrated
that LLMs struggle to score additional hits after 25 non-scoring messages or to show significant
performance improvement if recording fewer than 3 hits in 40 messages. Typically, we regard this
as a “low activity measure” beyond which we ask the model to stop.

Number of preceding messages (3 responses): This was determined by considering both the con-
text length restrictions of current LLMs and the typical length of prompts and responses. Maintaining
three prompts and responses usually ensures that the maximum context length is not exceeded while
retaining as much of the previous dialogue as possible.

Dialogue restarting tolerance (t = 4, 7, 10): We decide to restart the whole dialogue when the “low
activity measure (< 3 hits)” is observed in t continuous message queries, since we empirically
observe that LLMs’ responses can be trapped into local minima. t values are chosen as a compre-
hensive range in the suitable range below the trial termination condition (since we’d expect to see
multiple dialogue restarts before trial termination), with our ablation experiments showing t = 7
stably performs the best.

Number of few-shot examples: For few-shot prompting, different coverage plans have different
“types” of bins. These types are outlined in Appendix A.4. Few-shot prompting is most efficient
when one example is given for each bin type. In practice, the number of few-shot samples equals to
the bin types for that specific coverage plan.
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Figure 5: Infinite-message experiments on the Ibex CPU Instruction Decoder module. Each line
represents the trial reaching the maximum coverage on a configuration, and the dots on it show
dialogue restarting points.

A.2 HYPERPRAMETER SETUP

As outlined in the main text, LLM4DV incorporates a stop condition where if the stimulus generation
agent fails to target any bins within 25 responses, or targets fewer than three bins after 40 responses,
we consider the agent “exhausted," meaning it is no longer effective or efficient in covering new bins,
and the pipeline is halted. These thresholds were determined empirically based on trials with the
Primitive Data Perefetcher Core (the simplest Device Under Test) and the Ibex Decoder, alongside
experiments involving GPT-3.5.

A.3 DETAILS OF GENERIC PROMPTING IMPROVEMENTS

This section describes the design choices of our four prompting improvements.

A.3.1 MISSED-BIN SAMPLING

We define three sampling methods:

• (1) Pure Random Sampling: randomly samples seven bins from all uncovered bins.

• (2) Coverpoint Type-based Sampling: we categorize all bins into “easier bins” and “harder
bins” based on their difficulties to be covered, and order them based on their names; when
sampling, we always take the first two uncovered bins, then either randomly sample five
bins from all uncovered bins if there are no “easier bins” left, or sample three “easier bins”
and two “harder bins”.

• (3) Mixed Coverpoint Type-based and Pure Random Sampling: when the coverage ratio
is below 20%, it keeps using Coverpoint Type-based Sampling; when the coverage ratio is
larger than 20%, it switches between Coverpoint Type-based Sampling and Pure Random
Sampling whenever the current sampling method hits less than three new bins within four
responses. The number of 20% is obtained empirically.

A.3.2 BEST-ITERATIVE-MESSAGE SAMPLING

We define four sampling methods:

• (I) Recent Responses: keeps the initial query (and its response), and three most recent
iterative queries (and their responses).
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Figure 6: Coverage-feedback prompt template and four prompting improvements. We highlight the
different design options possible for the four prompting improvements (DUT source code, Few-shot
examples, Best-Iterative-Message Sampling, Dialogue Restarting Plans, Missed-Bin Sampling and
Best-Iterative-Message Buffer Resetting Plan).

• (II) Successful Responses: keeps the initial query and three iterative queries with responses
that hit maximum number of bins; if multiple maximums exist, uniformly samples three of
them.

• (III) Mixed Recent and Successful Responses: keeps the initial query, two most successful
iterative queries, and one most recent iterative query.

• (IV) Successful Difficult Responses: similar to successful responses, but each “harder bin”
as in Appendix X counts as 2.5 bins.

A.3.3 DIALOGUE RESTARTING

We define four restarting plans:

• (a) Normal Tolerance: restarts the dialogue if the LLM hits less than three bins within 7
responses.

• (b) Low Tolerance: restarts the dialogue if the LLM hits less than three bins within 4
responses.

• (c) High Tolerance: restarts the dialogue if the LLM hits less than three bins within 10
responses.

• (d) Coverage Rate-based Tolerance: uses Low Tolerance when the coverage ratio is below
20%, and Normal Tolerance afterwards. The number of 20% is intentionally set as the same
value as in Mixed Coverpoint Type-based and Pure Random Sampling in Appendix A.3.

A.3.4 BEST-ITERATIVE-MESSAGE BUFFER RESETTING

We define three resetting plans for the best-iterative-message buffer:

• (i) Clearing best-messages: clears the buffer on dialogue restarts.

• (ii) Keeping best-messages: keeps the buffer on dialogue restarts

18
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• (iii) Stable-restart Keeping best-messages: keeps the buffer on dialogue restarts, but not
using it for the first four responses after restarts.

A.4 DETAILS OF DUTS

This section explains the eight DUT modules used and their coverage plans respectively.

A.4.1 PRIMITIVE DATA PREFETCHER CORE

The Primitive Data Prefetcher Core takes in 32-bit integers and detects whether there’s a stride pattern
in it. This module requires relatively high mathematical reasoning capability for the LLM.

Our coverage plan contains 1034 bins of the following types:

• Single-stride bins: counts when 16 consecutive integers a0, a1, . . . , a15 satisfy ai+1−ai = c
for some constraint −16 ≤ c ≤ 15.

• Double-stride bins: counts when 16 consecutive integers satisfy an alternative stride width
pattern, formally a2i+2 − a2i+1 = c1 and a2i+1 − a2i = c2 for some −16 ≤ c1, c2 ≤ 15
and c1 ̸= c2.

• Misc bins: including

– Single-stride positive/negative ocerflow bins: a single stride pattern with c < −16
(negative overflow) or c > 15 (positive overflow).

– Double-stride pp/pn/np/nn overflow bins: a double stride pattern with c1 and c2 posi-
tively / negatively overflow respectively.

– No-stride-to-single/double: counts when 16 integers satisfying no stride pattern are
followed by 16 integers with single / double stride pattern.

– Single/double-to-double/single: counts when 16 integers satisfying single / double
stride pattern are followed by 16 integers with double / single stride pattern.

A.4.2 ASYNC FIFO

The Async FIFO is a simple dual clock FIFO, commonly used to transfer data between clock domains.
The agent is able to write data using one side, and read data using the other. The simulation is set up
so that the write clock has a period of 10ns, while the read clock has a period of 13ns.

Our coverage plan contains 10 bins:

• full_read_wrap: the read pointer wraps to 0.

• gray_read_wrap: the MSB of the read pointer toggles.

• underflow: a read operation is requested while the FIFO is empty

• empty: the FIFO is empty

• read_while_write: on read clock edge a read operation is performed, while a write operation
is being requested as well

• full_write_wrap: the write pointer wraps to 0.

• gray_write_wrap: the MSB of the write pointer toggles.

• overflow: a write operation is requested while the FIFO is full

• full: the FIFO is full

• write_while_read: on write clock edge a write operation is performed, while a read operation
is being requested as well

A.4.3 AMPLE PREFETCHER WEIGHT BANK

AMPLE is a GNN FPGA accelerator. The Prefetcher Weight Bank is a small part of the accelerator,
responsible for fetching the matrix of weights required to run inference on a fully-connected layer.
For the purposes of this investigation, this design can be viewed as a large FIFO. The output of
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the device are the contents of the FIFO, which are sent diagonally (i.e. one unit of data is sent
from the first row, then from both the first and second, then first, second and third etc.). The two
inputs accessed by the LLM agent defines "dimensions" of the output - the maximum number of
rows accessed simultaneously, and the number of units of data sent from each row. There is a clear
correlation between input values and coverage bins, no significant reasoning is required to achieve
full coverage.

Our coverage plan contains 324 bins of the following types:

• in_i: i*16 units of data loaded on each row. Only multiples of 16 can be loaded on each row.
If a number that is not divisible by 16 is provided, it will be rounded up by the device.

• out_j: j number of rows loaded with valid data
• combined_features_i_j: i*16 units of data loaded on each row and j number of rows loaded

with valid data

A.4.4 AMPLE PREFETCHER FETCH TAG

AMPLE is a GNN FPGA accelerator. The Prefetcher Fetch Tag is a small part of the accelerator,
responsible for fetching the adjacency list, messages and scale factors for a given "node". It includes
three queues, an "adjacency queue", a "message queue", and a "scale factor queue". The LLM agent
can allocate the Fetch Tag to a node, deallocate it, or load data on one of the queues.

Our coverage plan contains 10 bins:

• adj_dealloc: the DUT is instructed to load the "adjacency queue", but the DUT was not
allocated a "nodeslot"

• mess_dealloc: the DUT is insctructed to load the "message queue", but the DUT was not
allocated a "nodeslot"

• scale_dealloc: the DUT is insctructed to load the "scale factor queue", but the DUT was not
allocated a "nodeslot"

• adj_nomatch: the DUT is insctructed to load the "adjacency queue", but the "nodeslot"
provided for this command does not match the "nodeslot" allocated to the DUT

• mess_nomatch: the DUT is insctructed to load the "message queue", but the "nodeslot"
provided for this command does not match the "nodeslot" allocated to the DUT

• scale_nomatch: the DUT is insctructed to load the "scale factor queue", but the "nodeslot"
provided for this command does not match the "nodeslot" allocated to the DUT

• mess_fetch_adj_nopartial: the DUT is insctructed to load the "message queue", and there is
no overflow on the "adjacency queue"

• mess_fetch_adj_partial: the DUT is insctructed to load the "message queue", and there is
overflow on the "adjacency queue"

• mess_seen: data is loaded on the "message queue"
• scale_seen: data is loaded on the "scale queue"

A.4.5 SDRAM CONTROLLER

This SDRAM controller is a simple device that manages the interface to a synchronous dynamic
random-access memory (SDRAM), handling tasks such as memory access, data organization, and
timing to optimize performance and efficiency.

Our coverage plan contains 7 bins:

• precharge: deactivate (close) the current row of all banks
• auto_refresh: refresh one row of each bank, using an internal counter. All banks must be

precharged.
• command_inhibit: command inhibit (no operation)
• load_mode_register: configure the DRAM chip
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• activate: open a row for read and write commands

• read: read data from the currently active row

• write: write data to the currently active row

A.4.6 IBEX INSTRUCTION DECODER

The Ibex Instruction Decoder is an instruction decoder for 32-bit RISC-V instruction codes. This
module involves almost no mathematical reasoning but requires knowledge about RISC-V knowledge.

Our coverage plan contains 2107 bins of the following types:

• ALU operation bins: counts when an instruction represents one of 26 pre-defined ALU
operations such as ADD, ADDI, XOR, LW, etc.

• Register port bins: counts when an instruction uses the port of the specific register. There are
32 registers, and each has two read ports and one write port, which are used when the register
file is taken as the first source, second source, and the destination register, respectively.

• Cross coverage bins: the Cartesian product of ALU operation bins and register port bins.
Counts when an instruction satisfies both bins simultaneously (some of the product, such as
ADDI and read_port_A of any register, are invalid and not included in the coverage plan).

A.4.7 IBEX CPU

The Ibex CPU is a full RISC-V CPU. In every cycle the agent provides a stimulus of a list of
instructions. Instructions are provided in a sequential manner to the CPU, regardless of the program
counter.

Our coverage plan contains 196 bins of the following types:

• Operation bins: for each of pre-defined ten R-type operations, three S-type instruction, and
one J-type instruction (JAL), we consider the following four bins:

– seen: counts when an instruction performs the operation;
– zero_dst: if available, counts when the instruction performs the operation, with the

destination register (rd) as zero (reg #0);
– zero_src: if available, counts when the instruction performs the operation, with one of

the source registers (rs) as zero (reg #0);
– same_src: if available, counts when the instruction performs the operation, taking the

same register as source registers (rs).

• Jump bins: for the JAL operation, we consider forward and backward jumps respectively.

• Hazard bins: for each pair of the pre-defined operations, we consider a simplified read-
afterwrite (RaW) hazard, which counts when the later instruction reads from a register that
the previous instruction is writing to.

A.4.8 MIPS CPU

This device is a full MIPS CPU. Similar to the Ibex CPU, every cycle the agent provides a stimulus
of a list of instructions. Instructions are provided in a sequential manner to the CPU, regardless of the
program counter.

Our coverage plan contains 195 bins of the following types:

• Operation bins: for each of pre-defined ten R-type operations, three I-type instruction, and
one J-type instruction (JAL), we consider the following four bins:

– seen: counts when an instruction performs the operation;
– zero_dst: if available, counts when the instruction performs the operation, with the

destination register (rd) as zero (reg #0);
– zero_src: if available, counts when the instruction performs the operation, with one of

the source registers (rs) as zero (reg #0);
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– same_src: if available, counts when the instruction performs the operation, taking the
same register as source registers (rs).

• Jump bins: for the JAL operation, we consider forward and backward jumps respectively.
• Hazard bins: for each pair of the pre-defined operations, we consider a simplified read-

afterwrite (RaW) hazard, which counts when the later instruction reads from a register that
the previous instruction is writing to.

A.5 EXAMPLE PROMPTS AND RESPONSES

Figure 7 demonstrates several prompts and responses on the Primitive Data Prefetcher Core module.
The agent (USER) introduces the task and coverage plan in the initial message, and then provides
coverage feedback in iterative messages. The LLM (ASSISTANT) generates textual responses
according to the description and feedback.

A.6 COMPARISON OF GENERIC PROMPTING IMPROVEMENTS

Due to the cost of money and time for LLM API requests and experiment running, we compare
configurations of the stimulus generation agent by their performances using the most promising
model (Claude 3 Sonnet) on one of the most complex DUTs (the Ibex CPU). We call the model
with parameters as temperature = 0.4, top_p = 1 and max_gen_tokens = 600. These parameters are
decided empirically.

All configurations were tested three times. Figure 8 shows the experiment run that achieved maximum
coverage for each configuration. The best configuration can be identified as (2) Coverpoint Type-
based Sampling, (II) Successful Responses, (a) Normal Tolerance, and (iii) Stable-restart Keeping
best-messages, producing a coverage rate of 66.84%.

A.7 PERFORMANCE WITH AND WITHOUT THE DUT’S SOURCE CODE PROVIDED

Table 6 shows the performance of the LLM models with and without the DUT’s source code provided
for four designs.

A.8 RUNTIME COMPARISON OF LLM4DV AND THE FORMAL TOOL

Table 7 shows the runtime comparison of the best trials for each LLM-DUT pair and the formal tool.
Both the LLM4DV trials and the formal verification runs were performed on the same machine. Time
is reported in seconds.
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Table 6: Performance of the LLM models with and without the DUT’s source code provided on
simpler designs where providing source code is viable. We highlight the best results in each case.

Models Configurations Testing
Metrics

Asynchronous
FIFO

SDRAM
Controller

AMPLE Prefetcher
Weight Bank

AMPLE Prefetcher
Fetch Tag

gpt-3-turbo

Without DUT code
Max coverage 10 (100%) 7 (100%) 324 (100%) 10 (100%)

Eff. msg. count 16 7 36 2
Avg. msg. count 19.7±3.9 22.3±11.0 50.7±19.3 22.0±14.1

With DUT code
Max coverage 10 (100%) 7 (100%) 324 (100%) 9 (90%)

Eff. msg. count 19 30 36 32
Avg. msg. count 24.0±7.1 30.7±2.5 37.7±1.2 36.7±3.3

llama-2-70b-chat

Without DUT code
Max coverage 10 (100%) 5 (71.43%) 324 (100%) 9 (90%)

Eff. msg. count 3 28 36 29
Avg. msg. count 8.3±6.2 32.3±4.8 41.3±7.5 30.3±1.2

With DUT code
Max coverage 10 (100%) 6 (85.71%) 324 (100%) 10 (100%)

Eff. msg. count 1 32 48 22
Avg. msg. count 10.5±7.9 28.3±2.6 65.7±18.4 27.7±6.0

claude-3-sonnet

Without DUT code
Max coverage 10 (100%) 7 (100%) 324 (100%) 10 (100%)

Eff. msg. count 1 6 36 8
Avg. msg. count 1.0 6.7±0.9 36.0 19.3±8.0

With DUT code
Max coverage 10 (100%) 7 (100%) 324 (100%) 10 (100%)

Eff. msg. count 1 2 36 8
Avg. msg. count 1.7±0.9 2.3±0.5 37.3±1.9 19.7±8.3

codellama-70b-instruct

Without DUT code
Max coverage 10 (100%) 7 (100%) 324 (100%) 6 (60.00%)

Eff. msg. count 1 20 44 47
Avg. msg. count 3.7±3.1 32.0±8.5 52.3±8.5 40.3±10.9

With DUT code
Max coverage 10 (100%) 7 (100%) 324 (100%) 6 (60%)

Eff. msg. count 1 8 47 34
Avg. msg. count 13.3±9.2 29.3±15.1 52.7±5.4 28.3±4.0

llama-3-70b-instruct

Without DUT code
Max coverage 10 (100%) 7 (100%) 324 (100%) 10 (100%)

Eff. msg. count 2 1 26 22
Avg. msg. count 7.7±7.3 2.3±1.2 32.7±4.7 25.0±2.2

With DUT code
Max coverage 10 (100%) 7 (100%) 324 (100%) 10 (100%)

Eff. msg. count 1 1 28 15
Avg. msg. count 1.3±0.5 3.0±1.6 30.7±3.1 20.0±3.6

Table 7: Runtime comparison of the best trials for each LLM-DUT pair and the formal tool. Time is
shown in seconds, achieved coverage rate is shown in the brackets. Note that the formal tool was
given a timeout of 172800s (48 hours).

Primitive Data
Prefetcher Core

Asynchronous
FIFO

AMPLE Prefetcher
Weight Bank

AMPLE Prefetcher
Fetch Tag

gpt-3-turbo 3312 (98.26%) 213 (100%) 1016 (100%) 30 (100%)

llama-2-70b-chat 10459 (41.68%) 76 (100%) 927 (100%) 156 (100%)

claude-3-sonnet 7753 (77.47%) 9 (100%) 761 (100%) 42 (100%)

codellama-70b-instruct 2456 (7.93%) 18 (100%) 854 (100%) 329 (60%)

llama-3-70b-instruct 12651 (68.67%) 14 (100%) 732 (100%) 142 (100%)

Formal verification 1477 (99.61%) 51 (100%) 172800 (0.93%) 61 (100%)

SDRAM
Controller

Ibex CPU
Instruction Decoder Ibex CPU MIPS CPU

gpt-3-turbo 30 (100%) 3601 (69.58%) 503 (19.9%) 1053 (43.08%)

llama-2-70b-chat 252 (85.71%) 2447 (19.08%) 394 (11.22%) 940 (34.87%)

claude-3-sonnet 19 (100%) 3359 (71.76%) 2511 (71.94%) 4021 (81.54%)

codellama-70b-instruct 77 (100%) 1981 (19.79%) 472 (12.76%) 4758 (46.67%)

llama-3-70b-instruct 24 (100%) 7881 (53.89%) 3186 (47.996%) 8794 (50.26%)

Formal verification 16 (100%) 1010 (99.95%) 1087 (100%) 3181 (100%)
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SYSTEM：
Please output a list of (positive or negative) integers only, [...]
Output format: [a, b, c, ...].

USER 1:
You will receive a description of bins (i.e. test cases) of a testbench for a hardware [...]
----------
Now, we want to test the DUT with a list of integers as its input [...] Here's the description of the bins
that we care about:
------
BINS DESCRIPTION
- The list contains segments (i.e. subsequences) of int.
- Each segment is of length 18.
- A segment follows a single-stride pattern with a stride width x if: the differences between two
adjacent integers are always x.
[...]
- For each of the following bins, the list contains at least one segment that satisfies it:
---
   - stride_1_seen - One bin per possible stride width between the minimum and maximum stride
width, where the segment follows a single-stride pattern of the stride width.
   - stride_2_seen - One bin per pair of possible stride widths between the minimum and maximum
stride width, where the segment follows a double-stride pattern of the stride width pair.
  [...]
---
------
----------
Following the bins description, generate a list that contains segments of integers, which covers the
described bins as much as you can.

ASSISTANT 1:
To generate a list that
covers the described bins,
we can start by [...]

Here is a possible solution:

```python
import random

def
generate_segment_single_
stride(stride_width):
segment = []
[...]

USER 2:
The values you provided failed to cover all the bins.
You will see the result coverage of your previous response(s),
and then generate another list of integers to cover the
unreached bins (i.e. test cases)
Here are some of the unreached bins:
------
UNREACHED BINS
- Single-stride pattern segment of stride width 0 is unreached.
- Single-stride pattern segment of stride width 1 is unreached.
- Single-stride pattern segment of stride width -16 is
unreached.
[...]
------
Please regenerate a segment of length 18 for each of these
unreached bins according to the BINS DESCRIPTION.

ASSISTANT 2:
Apologies for the oversight. Here are the
segments to cover the unreached bins:

Segment for single-stride pattern segment of
stride width 0:
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Segment for single-stride pattern segment of
stride width 1:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17]
Segment for single-stride pattern segment of
stride width -16:
[0, -16, -32, -48, -64, -80, -96, -112, -128, -144,
-160, -176, -192, -208, -224, -240, -256, -272]
[...]

Generated a Python
program rather than

test stimuli

Generated effective
test stimuli

Figure 7: Example prompts and responses on the Primitive Data Prefetcher Core module. The purple
box is the system message. The green box is an initial query, containing a coverage plan summary
(orange). The blue box is an interactive query, containing differences i.e. coverage feedback (red).
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Figure 8: Experiments on the Ibex CPU module. Each line represents the trial reaching the maximum
coverage on a configuration. The configurations in legends are illustrated in Figure 6.
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