
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LLM4DV: USING LARGE LANGUAGE MODELS FOR
HARDWARE TEST STIMULI GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Hardware design verification (DV) is a process that checks the functional equiva-
lence of a hardware design against its specifications, improving hardware reliability
and robustness. A key task in the DV process is the test stimuli generation, which
creates a set of conditions or inputs for testing. These test conditions are often
complex and specific to the given hardware design, requiring substantial human
engineering effort to optimize. This leads to a significant challenge in automated
and efficient testing for arbitrary hardware designs. We seek a solution that takes
advantage of large language models (LLMs). LLMs have already shown promising
results for improving hardware design automation, but remain under-explored for
hardware DV. In this paper, we propose an open-source benchmarking framework
named LLM4DV that efficiently orchestrates LLMs for automated hardware test
stimuli generation. Our analysis evaluates six different LLMs involving six prompt-
ing improvements over eight hardware designs and provides insight for future work
on LLMs development for efficient automated DV.

1 INTRODUCTION

Large Language Models (LLMs) (Yang et al., 2020; int, 2020; Touvron et al., 2023) have gained
significant attention in recent years due to their language generation and comprehension capabilities
on tasks such as language translation (Feng et al., 2020), question answering (Yang et al., 2020),
and sentiment analysis (Liu et al., 2021). Recently, there has been interest in exploiting LLMs
to improve hardware design generation (Blocklove et al., 2023; Fu et al., 2023; Lu et al., 2024).
Arguably, hardware design verification (DV), which checks the correctness of hardware designs,
ranks among the most crucial and time-consuming tasks in hardware development. Hardware DV is
often time-consuming, usually taking up to 60%-70% of the development time (Shin, 2024), and
requires significant human guidance and expertise due to the complexity of both hardware design
and its corresponding testing requirements (Shin, 2022).

On the other hand, existing work on LLMs has been studied for software testing. For example, Codex
(Chen et al., 2021) can produce functionally correct bodies of code from natural language docstring
descriptions. LLaMA 2 (Touvron et al., 2023), an LLM using instruction tuning and Reinforcement
Learning with Human Feedback (RLHF) (Christiano et al., 2017; Stiennon et al., 2020) for fine-tuning,
emerges impressive generalization and external tool usage ability. However, these approaches are
not directly applicable due to the following two challenges. First, unlike software programming
languages, there is a scarcity of high-quality, open-source hardware designs and testing code available
online for training LLMs. This limitation is critical because Hardware Description Languages (HDLs)
possess distinct semantics that differ fundamentally from software programming languages. These
unique characteristics make HDLs considerably more challenging for LLMs to interpret and learn
from, as the models cannot simply transfer their knowledge from conventional programming contexts
without substantial modifications. Second, the testing space for a hardware design design is typically
large, leading to a scalability problem. Existing approaches on hardware DV require human guidance
to reduce search space, such as adding heuristics to guide tests of a particular hardware design. This
raises an important question: can LLMs effectively minimize the amount of human effort involved
in hardware DV?

In this work, we specifically focus on hardware test stimuli generation, which generates test inputs for
hardware DV. In the DV process shown in the right of Figure 1, the test stimuli generation stands out
as the most labor-intensive phase, often requiring iterative trial-and-error. A good stimuli discovers

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

test
stimulus

current
coverage

Missed-bin
Sampler

Dialogue Restarting
Scheduler

Query Scheduler

dialogue history

LLM

dialogue
schedule

query
schedule

prompt Stimulus
Extractor

text
response

5

Prompt
Generator

6
7 4

9
8

Device-Under-Test
(DUT)

Golden Model

internal state

Comparator

Coverage Monitor

Hardware Testbench

1
2

3

expected
output

actual
output

Our Contributions

Figure 1: An overview of LLM4DV framework. The right part shows a traditional DV process. DV
engineers need to manually interact with the DV process by tailoring various stimulus and observing
the coverage. Such a manual process is often iterative. The left part highlights our contributions,
which adds the stimulus generation agent for automated guidance.

new hardware states during testing, increasing the test coverage; while a bad stimuli only tests existing
states, leaving the coverage the same. Finding good stimuli becomes particularly arduous when
encountering hard-to-hit points within the coverage plan. In order to find a path to LLM solutions,
we present a novel benchmarking framework named LLM4DV (Large Language Model for Design
Verification), that utilizes LLMs for test stimuli generation, and make the following contributions:

• We introduce and construct LLM4DV, a framework that employs prompted LLMs to generate
test stimuli for hardware DV. Our complete workflow facilitates a plug-and-play flow for users
to experiment various LLMs, hardware designs and test coverage plans. We show automated DV
requires a complex prompting strategy and also propose six prompt enhancements to establish
strong baselines for the LLM4DV framework. We believe this provides an attractive testbed for
experimenting the agentic behavior of LLMs.

• We design and construct three DUT modules: a Primitive Data Prefetcher Core, an Ibex Instruction
Decoder, and an Ibex CPU. We also select five open-source designs, obtaining a varied set of DUTs
with different testing difficulties that are supplied within the LLM4DV flow for users.

• We evaluate LLM4DV using these eight DUT modules and introduce a set of evaluation metrics.
We show that LLMs, with optimized prompt enhancements, achieve coverage rates (a primary
metric for measuring verification effectiveness) ranging from 89.74% to 100% in a realistic setting.
We open-source LLM4DV alongside these modules to allow both the machine learning and
hardware design communities to experiment with their ideas.

The rest of the paper is organized as follows. Section 2 provides a background of traditional hardware
DV processes. Section 3 reviews related work in the field of LLM-assisted software testing and
digital hardware design. Section 4 describes LLM4DV in detail. Section 5 evaluates the effectiveness
of several LLMs inside the framework.

2 BACKGROUND

A traditional hardware DV process is illustrated in the right of Figure 1. For each hardware design,
also known as device-under-test (DUT), the hardware designer provides a functionally equivalent
golden model in software to the DUT (Witharana et al., 2022). The DV process takes a set of inputs,
or test stimuli, and sends them to both the DUT and its golden model (1⃝), leading to two sets of
results. The results are then compared between the DUT and its golden model (2⃝). If the results are
identical, the DUT behaves correctly in the hardware states triggered by the current test stimulus,
leading to a coverage of verified states. In order to progressively expand the testing coverage, a DV
process typically tests the DUT iteratively on a large set of stimuli defined by the hardware designer
in advance. These stimuli aim to cover a wide range of scenarios and use cases that the hardware
might encounter in real-world applications, which are defined in the coverage plan in the form of
coverage bins. A coverage bin is a specific condition or scenario that the verification environment
tracks to determine whether a particular aspect of the design has been exercised or tested. A number
of bins are defined in a coverage plan for each value of interest. For simplicity, all coverage points

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparison to related work applying LLMs in the field of digital hardware.

Name Task Number of models Testing space

RTLFixer(Tsai et al., 2023) Verilog syntax correction 1 212 syntax errors
NSPG(Meng et al., 2023) Repairing security-relevant bugs in Verilog 4 10 designs (10 bugs)
ChipNeMo(Liu et al., 2023) Bug analysis and summarisation 3 30 bugs
Kande et al.(Kande et al., 2023) Generating security assertions 4 10 designs (10 assertions)
Thakur et al.(Thakur et al., 2023) Generating Verilog code 6 17 problems
RTLLM (Lu et al., 2023) Generating Verilog code 4 30 designs

LLM4DV Stimulus generation for functional verification 5 8 designs (3883 coverage bins)

Table 2: Comparison to related work with non-LLM hardware testing techniques

Features (Fine and Ziv, 2003a) (Braun et al., 2004) (Baras et al., 2009) (Fine et al., 2005)

Models Bayesian Bayesian Bayesian Bayesian
Encoding model MAP MAP MAP MAP
Retraining Yes Yes Yes Yes

Features (Gal et al., 2021) (Gal et al., 2020) (Vasudevan et al., 2021) Ours

Models DNN DNN GNN LLM
Encoding model gradient-based gradient-based gradient-based text
Retraining Yes Yes Yes No

are considered to only include a single coverage bin in this work. The coverage monitor (3⃝) inspects
the DUT’s inputs, outputs, and internal states; determines whether there are hits of coverage bins;
updates the current coverage and returns it to the stimulus generation agent for the next stimulus.
The procedure in the right of Figure 1 typically follows an iterative approach, often executed tens of
thousands of times, in which a human DV engineer applies various stimuli to achieve comprehensive
coverage specified in the coverage plan.

Effective test stimuli generation has been a major challenge in meeting 100% coverage (Witharana
et al., 2022). For a simple design, verification can be done with individual directed tests, in which
test stimuli (inputs for the DUT) are manually generated. For more complex designs, a large number
of stimuli is required for exercising as much of the design’s functionality as possible. Traditionally,
constrained-random testing (CRT) has been used to generate vast random but valid test stimuli
and to attempt to “hit” the bins. However, CRT is inefficient to hit as many bins as human effort
for hardware states with complicated conditions. Still, it remains the case that extensive human
engineering involvement is required for the test stimuli design process.

3 RELATED WORK

While the application of LLMs on hardware design verification has been brought to focus only
recently, test code generation for software engineering with LLMs has been well-studied and achieved
remarkable performance (Chen et al., 2022; Schäfer et al., 2023; Lukasczyk and Fraser, 2022). Chen
et al. (Chen et al., 2022) utilize LLM to suggest potential implementations and corresponding test
cases for a function. They provide the LLM with the signature and a description of the function and
select the best solution based on functionality agreement. Schäfer et al. (Schäfer et al., 2023) propose
a pipeline to generate unit tests for existing code, which iteratively refines the prompt to generate
better tests. These studies show promising results on software code, while we shift focus to using
LLM to reason HDLs and hardware design specifications, leading to a different setting and more
sophisticated procedure.

In hardware design verification, assertion-based verification (ABV) is also widely adopted together
with code coverage, functional coverage, and validation using generated test patterns (Witharana
et al., 2022). ABV inserts assertions into the DUT HDL source to detect violations of predefined
design properties. However, ABV requires test patterns (i.e. input test stimuli) to activate given
assertions and therefore reveal vulnerabilities. For simulation-based ABV approaches, traditional test
generation that uses random or constrained-random tests cannot guarantee to activate assertions with
complex conditions in a reasonable time. In order to speedup ABV, Pal et al. (Pal et al., 2008) propose
bias random test generation. They consider the DUT as a black box and restrict test generation to
only input/output signals. Ferro et al. (Ferro et al., 2008) used combinatorial testing, which provides

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 3: A list of hardware DUTs and their golden models provided by the LLM4DV benchmark set.

Names Descriptions

Primitive Data Prefetcher Core∗ Detects stride patterns in a series of integers. Limited logical reasoning abilities are required to achieve
high coverage.

Ibex CPU Instruction Decoder∗ Decodes RISC-V Instruction codes. Detailed knowledge about the RISC-V ISA is needed to achieve
full coverage.

Ibex CPU∗ A RISC-V CPU core. Detailed knowledge about the RISC-V ISA, as well as familiarity with CPU
architecture is needed to achieve full coverage. A brief description of relevant instructions, as well
as the format of R-, S-, and J-type instructions is given to the agents in the initial prompt to enhance
performance.

Asynchronous FIFO (Pretet) A dual clock FIFO used to exchange data between clock domains. Coverage bins are straightforward,
but the LLM has to control inputs to two clock domains simultaneously.

AMPLE Prefetcher Weight Bank (Gimenes) A component of AMPLE, a graph neural network accelerator. It is responsible for fetching data from
memory, storing it in a FIFO, and outputting it in a diagonal form. There is a direct link between each
possible input combination and a corresponding coverage bin, no significant reasoning abilities are
needed to achieve high coverage.

AMPLE Prefetcher Fetch Tag (Gimenes) Another component of AMPLE. Similar to the weight bank, its basic purpose is to fetch data from
memory. However, it contains not entirely independent queues that need to be managed simultaneously.
The device is simple, but there is no clear link between input combinations and coverage bins, requiring
significant reasoning abilities.

SDRAM Controller (Horne) A very simple SDRAM controller. The LLM may need to be pre-trained with knowledge about SDRAM
control signals, or needs to infer them from the device’s source code (if given) to achieve full coverage.

MIPS CPU (TrivialMIPS) A MIPS CPU core. Detailed knowledge about the MIPS ISA, as well as familiarity with CPU
architecture is needed to achieve full coverage. Similar to the Ibex CPU, a brief description of relevant
instructions, as well as the format of R-, I-, and J-type instructions is given to the agents in the initial
prompt to enhance performance.

a set of combinations of user-selected values, to select test stimuli most suitable to cover corner cases.
Tong et al. (Tong et al., 2009) propose a method that searches for compact assertion-based automata
for failure and acceptance nodes before test generation. Simulation-based test generation has also
been incorporated with formal method-based test generation. Lyu and Mishra (Lyu and Mishra, 2020)
utilized concolic testing to activate assertions. They consider assertions as branches, search through
the branch statement tree with heuristics to efficiently obtain a path, and generate test stimuli to
cover the obtained branch targets. These methods, however, are subjected to complexity explosion
problems (Witharana et al., 2022) and fail to effectively make use of the user’s knowledge about
the design. We overcome this issue by utilizing LLM’s pre-trained knowledge to reason about the
given coverage plan and guide the test stimuli generation. Other advanced testing techniques, such
as coverage-directed generation and mutating tests (Fine and Ziv, 2003b; Guzey and Wang, 2007;
Laeufer et al., 2018), have been studied to improve the performance of CRT. These works may guide
test generation by LLMs to achieve better results but face challenges in the integration out of the
scope of this paper. Our LLM4DV framework provides an initial platform and baselines for their
evaluation in future works. @Reviewer 1C9a: Further works that approach test generation with
non-LLM machine learning methods are summarized in Table 2.

Recently, the application of LLMs for hardware design and verification purposes has started to
gain traction (Zhong et al., 2023). Table 1 provides a summary of recent benchmarks that focus on
applying LLMs within this domain. In particular, there are currently no benchmarks that evaluate the
stimuli generation capabilities of LLMs. Among the recent contributions, RTLFixer (Tsai et al., 2023)
enables the automated correction of Verilog syntax errors. In contrast, NSPG (Meng et al., 2023) is
designed to extract security properties by analyzing hardware documentation. ChipNeMo (Liu et al.,
2023) has been assessed on tasks related to bug summarization and analysis. Additionally, Kande
et al. (Kande et al., 2023) proposed a methodology for automatically generating SystemVerilog
assertions (SVAs) using LLMs to enhance hardware security. Meanwhile, Thakur et al. (Thakur et al.,
2023) and RTLLM (Lu et al., 2023) have explored the generation of Register Transfer Level (RTL)
code using LLMs. While it is challenging to directly compare the scale of these benchmarks with that
of LLM4DV due to the different abilities assessed, it should be noted that LLM4DV’s scope of 3883
coverage bins across 8 devices, tested with six different off-the-shelf models, represents a significant
contribution to the field.

4 LLM4DV BENCHMARKS

Our experiments use an LLM in the test stimuli generation process, together with a testbench
containing a DUT to form the complete LLM4DV framework. The following subsections describe the
basic DV framework, the prompt templates for the LLM, and six prompting improvements. Figure 1
gives a general picture of the prompt templates and prompting improvements.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 4: A list of input options and output evaluation metrics for the proposed LLM4DV framework.

Names Descriptions

Input
Options

DUT The target DUT to be tested.
Model The LLM used for stimulus generation.
Prompting Configurations The prompting strategy used for stimulus generation.
Coverage Plan The coverage plan specified for the target DUT.

Evaluation
Metrics

Max Coverage Maximum recorded number of coverage bins (defined by the coverage plan) covered. A higher number
indicates better performance.

Effective Message Count The minimum number of messages an LLM produces across several trials in an experiment achieving
maximum coverage; a lower count indicates better performance.

Average Message Count Average number of query messages per experiment ± standard deviation of messages. As the usage of
LLMs is costly, a faster convergence to maximum coverage is preferred.

4.1 LLM4DV FRAMEWORK

In this work, the proposed LLM4DV framework automates the DV process by exploiting LLMs for
test stimuli generation, shown in the left of Figure 1. Compared to traditional DV processes that use
user-defined test stimuli, the stimulus generation agent uses an LLM to provide a test stimulus in
each timestep. This reduces human involvement in the hardware DV loop and effectively guides tests
to increase coverage rates.

In each generation cycle, the prompt generator produces a prompt based on a template (7⃝) and the
current coverage feedback from the coverage monitor. LLM4DV allows customization of prompts
inside a dialogue, this means each query message can receive different prompts, as managed by the
query scheduler (5⃝) shown in Figure 1. This is explained in Section 4.3.

The LLM takes in the prompt and generates a natural language response, from which the test stimulus
values are extracted and sent to the DV flow in the right of Figure 1. The DV framework then produces
current coverage which is considered as input for the LLM-based stimulus generation agent (8⃝)
shown in Figure 1. The processes of test stimuli generation and hardware testbench simulation are
executed in parallel asynchronously. Specifically, a buffer is placed between the stimulus generation
agent interfaces to balance the rate of the test stimuli generation and consumption. In every timestep
when the stimulus generation agent is requested for a test stimulus, it takes out the oldest value in its
stimulus buffer; if the buffer is empty, the agent starts a new generation cycle, in which the LLM
takes in a new request and a list of new stimuli will be added to the buffer.

In LLM4DV, each DV process is viewed as a “trial”, where there would be multiple dialogues made
in a single trial, as illustrated in Figure 1, which are controlled by the dialogue scheduler (6⃝). A trial
stops in one of the following three states, and the agent is considered “exhausted”. When reaching
such a state, it becomes ineffective or inefficient to expand testing coverage and the pipeline stops.
First, full coverage is reached, where all coverage bins have been hit. Second, no new coverage is
extended within a number of trials, where our implementation by default specifies that the stimulus
generation agent cannot hit any bins within 25 responses. Finally, the coverage expansion speed is
low, where our implementation by default specifies that the stimulus generation agent hits fewer than
three bins within 40 responses. @Reviewer 9kfb: Algorithm 1 provides the exact implementation of
the pipeline. The exact states can be specified by users as input to the framework, and here we use
the particular setups above for fair evaluation across DUTs, LLMs and prompting methods.1 Within
the LLM4DV framework, we explore six prompting strategies and improvements over a set of LLMs
and DUTs. We describe our evaluation method in Section 4.

4.2 EVALUATION SETUP

The proposed LLM4DV benchmark contains eight DUT modules, as listed in Table 3. Three of the
devices were developed by the authors, and the other five are open-source designs. These DUTs
are selected because they are commonly seen in most representative computer architectures such
as CPUs, GPUs and other hardware accelerators. Detailed information about the DUTs is provided
in Appendix A.4. We use six different commercially available LLMs: GPT-3.5 Turbo, Llama v2
70B Chat, Claude 3 Sonnet, CodeLlama 70B Instruct, Llama 3 70B Instruct, and Claude 3.5 Sonnet.
To evaluate the effectiveness of these LLMs, we observe the testing performance based on three

1See Algorithm 1 for exact implementation, and Appendix A.2 for a justification of these hyperpramters.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Basic DV Pipeline
stimulus← 0
coverage← {}
while coverage rate < 100% and not (∆ coverage in 25 messages = 0 or ∆ coverage in 40 messages < 3 do

while stimulus_buffer not empty and coverage rate < 100% do
stimulus← stimulus_buffer.pop()
testbench.input(stimulus)
coverage←coverage_monitor.compute_coverage(testbench)

end while
prompt← prompt_generator.generate(coverage)
response← LLM.generate(prompt)
stimuli← extractor.extract(response)
stimulus_buffer.extend(stimuli)
while stimulus_buffer is empty do

prompt← prompt_generator.regenerate(coverage)
response← LLM.generate(prompt)
stimuli← extractor.extract(response)
stimulus_buffer.extend(stimuli)

end while
end while

evaluation metrics, as listed in the lower part of Table 4. We have limited each trial to 700 messages.
The design choices of these parameters are explained in Appendix A.1.

4.3 GENERAL PROMPTING STRATEGIES

We provide a Coverage-Feedback Template to generate prompts for the LLM. When constructing it,
we utilize prompt engineering techniques including 1) System message: it is included at the beginning
of every prompt, and is used to prime the model with context, instructions, or other information
relevant to the use case; 2) Start with clear instructions; 3) Repeat instructions at the end; 4) Add
clear syntax: punctuation, headings, and section markers; 5) Specifying the output structure.

Coverage-Feedback Prompt Template The Coverage-feedback prompt template contains templates
for the system message, initial query, and iterative queries.

• The system message clarifies the expected response format and specify other requirements.

• The initial query is the first user query message in a dialogue. It contains three parts: 1) Task
introduction: a description of what is included in this prompt and what the LLM will be asked to
do; 2) Coverage plan summary: a description of cover bins of the coverage plan; and 3) Initial
question: a one-line instruction.

• The iterative queries are the user messages following the first assistant (LLM) response. Each
contains three parts:

1. Result summary: a general feedback which:
- if the previous assistant response was gibberish (i.e. contains mostly nonsense words) or

didn’t follow the output format, the result summary repeats the output format requirement;
- otherwise if the previous assistant response failed to hit any new bins, the result summary

points that out and ask for a new list of stimuli;
- if the previous assistant responses hit some bins, the result summary points that out and ask

for a new list of stimuli.
2. Differences: a list of uncovered bins.
3. Iterative question: a one-line instruction, repeating the output format requirement if previous

response was gibberish or didn’t follow the output format.

4.4 FOUR GENERIC PROMPTING IMPROVEMENTS

In our experiments, we develop two improvements necessary for making the framework executable
and two improvements that increase its performance on most cases, which can be effectively employed
regardless of the nature of the DUT and coverage plan. Details see Appendix A.3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Missed-bin Sampling This optimization is 4⃝ in Figure 1, and is later used in the query scheduler. In
most generation cycles in a trial, there would be hundreds to thousands bins uncovered. The iterative
queries can’t include all of them because the prompt’s length would exceed the LLM’s input token
number limit. Meanwhile, exposing too many uncovered bins to the LLM confuses the LLM on
which mistakes should it resolve first.

We propose missed-bin sampling, which samples a number of bins from all uncovered bins to be
included in the differences part of iterative queries. Our experiment finds that more random sampling
methods encourage the agent to cover bins with stricter hitting conditions, and more stable sampling
methods make the agent more efficient in hitting the easier bins.

We define three sampling methods (1) Pure Random Sampling, which randomly samples seven bins
from all uncovered bins. (2) Coverpoint Type-based Sampling, which samples from “easier bins” and
“harder bins” respectively. (3) Mixed Coverpoint Type-based and Pure Random Sampling, which
switches between previous two whenever the agent becomes inefficient with current strategy.

Best-iterative-message Sampling The LLM needs previous query messages in the dialogue to learn
about what has happened. However, as the dialogue grows, the length of input may exceed the
LLM’s input limit. One solution is summarizing previous query message, which helps generalizing
concepts in the dialogue but loses details, which is crucial in our task. On the other hand, sampling
from previous messages acceptably loses some generality meanwhile preserves key details, including
the bin description and positive examples (i.e responses that successfully hit many bins) useful for
covering corner cases. These strategies are used in our Query Scheduler in 5⃝.

We propose four sampling methods (I) Recent Responses, where we keep the initial query (and its
response), and three most recent iterative queries (and their responses). (II) Successful Responses,
where we randomly keep three that hit the largest number of bins. (III) Mixed Recent and Successful
Responses, where we keep two most successful and one most recent query. (IV) Successful Difficult
Responses, which is similar to Successful Responses but each “harder bin” counts as 2.5 bins.

Dialogue Restarting LLMs sometimes behave stubbornly, repeating mistakes they made previously.
We introduce a dialogue restarting scheduler (6⃝) to resolve this problem. When the LLM hits less
than three new bins within t responses, we clear the dialogue record and restart from the system
message and initial query. We define four dialogue restarting schedules (a) Normal Tolerance, where
t = 7. (b) Low Tolerance, where t = 4. (c) High Tolerance, where t = 10. (d) Coverage Rate-based
Tolerance, where t = 4 in the beginning and t = 7 after reaching certain coverage rate threshold.

Best-iterative-message Buffer Reset When the dialogue record is reset, the buffer for best iterative
messages in Best-iterative-message sampling can also be cleared or kept. These two strategies display
a trade-off between “effectively forgetting past mistakes” and “learning about the task faster after
restart”. This reset is also then incorporated in the dialogue restarting scheduler (6⃝).

We define three resetting plans for the best-iterative-message buffer, (i) Clearing best-messages. (ii)
Keeping best-messages. (iii) Stable-restart Keeping best-messages: keeping the buffer on restarts, but
not using it for the first four responses after restarts.

We have employed distinct notations to denote the available options for these prompting enhancements.
This enables us to encode specific combinations, such as Claude-3 1 I a i, indicating that the first
option is selected for all the aforementioned prompting strategies.

4.5 TWO SITUATIONAL PROMPTING IMPROVEMENTS

We have developed two additional prompting improvements, which can be effectively deployed
depending on the nature of the DUT and the coverage plan.

Providing the DUT Code By including the DUT source code in the initial message and incoporate this
change in the query scheduler (5⃝), we try to enhance the model’s performance with context-specific
information that is intrinsic to the device’s operational logic and architecture. By parsing the HDL
code, the LLM may directly correlate specific features and functions with the corresponding coverage
bins, ensuring that the generated stimuli are not only syntactically correct but also semantically
aligned with the DUT’s functional requirements. However, due to bounded context windows, this
technique may only be employed for devices with limited source code length.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

0%

20%

40%

60% ∆ = 15.3%

Message Count

C
ov

er
ag

e
R

at
e

Naive (Claude-3 1 I a i)
Improved (Claude-3 2 II a iii)

Figure 2: Performance improvement due to the employment of the four generic prompting strategies
on the IBEX CPU, using Claude 3 Sonnet.

10 20 60 100 250 500

0%

50%

100%

Message Count

C
ov

er
ag

e
R

at
e

GPT-3 Few Shot GPT-3
Claude3 Few Shot Claude3
Claude3.5 Few Shot Claude3.5
Llama2 Few Shot Llama2
CodeLlama Few Shot CodeLlama
Llama3 Few Shot Llama3

Figure 3: Performance improvement due to few-shot prompting on the IBEX CPU.

Few-shot Prompting As task-specific fine-tuning is outside the scope of this study, we instead aim
to use few-shot prompting to improve coverage metrics. By including in the initial prompt a few
examples of stimuli generating bin hits in the query scheduler (5⃝), the LLMs may adapt to the
context of hardware verification, and assimilate some information about the DUT. To avoid skewing
the experimental results, this has only been employed in cases where the coverage plan includes a
significant amount of coverage bins.

5 RESULTS AND ANALYSIS

Using the Generic Prompting Strategies We ran our experiments on Intel Xeon CPUs using LLM
APIs hosted on a platform named OpenRouter. The total cost for OpenRouter was USD334. For
each reported result three experiments were performed. In Section 4.4, we introduced these four
generic prompting techniques, each accompanied by several configurations: missed-bin sampling
(choices (1)-(3)), best-iterative-message sampling (choices (I)-(IV)), dialogue restarting (choices
(a)-(d)), and best-iterative-message buffer reset (choices (i)-(iii)). Figure 2 shows coverage rate
gains when correctly employing the four strategies. The naive approach is considered to be the
simplest configuration: (1) Random Sampling, (I) Recent Responses, (a) Normal Tolerance, and (i)
Clearing best-messages. Through extensive experimentation across different configurations detailed
in Appendix A.6, the best configuration was identified as (2) Coverpoint Type-based Sampling, (II)
Successful Responses, (a) Normal Tolerance, and (iii) Stable-restart Keeping best-messages. While
the naive configuration only achieved 51.53% coverage, the chosen strategy reached 66.84%, an
increase of 15.31%. In all further experiments, this generic prompting configuration is used.

Providing the DUT Code The varying effects of providing the DUT’s HDL source code to different
LLMs are shown in Table 6 in our Appendix. Out of the 20 LLM-DUT pairs, only in 9 cases can
we observe an increase in performance when providing the DUT source code. In all other cases,
degradation occurs in terms of both maximum achieved coverage rates and trial lengths. This is likely
due to the limited context size of the LLM agents. Whether this prompting strategy leads to benefits

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Best results achieved for each LLM-DUT pair. In all cases, the generic prompting strategy
described in Section 5 was used. Additionally, experiments marked with ∗ used few-shot prompting,
and experiments marked with † included the DUT source code in the initial prompt. We highlight the
best results for each DUT. Note that trials were limited to 700 messages.

Primitive Data
Prefetcher Core

Asynchronous
FIFO

AMPLE Prefetcher
Weight Bank

AMPLE Prefetcher
Fetch Tag

gpt-3-turbo
Max coverage 1016 (98.26%)∗ 10 (100%) 324 (100%)† 10 (100%)
Eff. msg. count 350 16 36 2
Avg. msg. count 509.0 ± 129.4 19.7±3.9 37.7±1.2 22.0±14.1

llama-2-70b-chat
Max coverage 431 (41.68%)∗ 10 (100%)† 324 (100%) 10 (100%)†

Eff. msg. count 700 1 36 22
Avg. msg. count 470.7±189.9 10.5±7.9 41.3±7.5 27.7±6.0

claude-3-sonnet
Max coverage 801 (77.47%)∗ 10 (100%) 324 (100%) 10 (100%)
Eff. msg. count 700 1 36 8
Avg. msg. count 676.3±33.5 1.0 36.0 19.3±8.0

codellama-70b-instruct
Max coverage 82 (7.93%)∗ 10 (100%) 324 (100%) 6 (60.00%)†

Eff. msg. count 154 1 44 34
Avg. msg. count 102.0±50.3 3.7±3.1 52.3±8.5 28.3±4.0

llama-3-70b-instruct
Max coverage 710 (68.67%)∗ 10 (100%)† 324 (100%) 10 (100%)†

Eff. msg. count 700 1 26 15
Avg. msg. count 700.0 1.3±0.5 32.7±4.7 20.0±3.6

claude-3.5-sonnet
Max coverage 1022 (98.84%)∗ 10 (100%) 324 (100%) 9 (90%)
Eff. msg. count 321 1 36 25
Avg. msg. count 329.3±32.3 1.0 36.7±0.6 25.0

Formal verification Max coverage 1030 (99.61%) 10 (100%) 3 (0.93%) 10 (100%)

CRT Max coverage 0 (0%) 10 (100%) 324 (100%) 10 (100%)

SDRAM
Controller

Ibex CPU
Instruction Decoder Ibex CPU MIPS CPU

gpt-3-turbo
Max coverage 7 (100%) 1466 (69.58%)∗ 39 (19.90%)∗ 84 (43.08%)∗

Eff. msg. count 7 700 102 211
Avg. msg. count 22.3±11.0 432.0±228.3 88.0±21.2 111.0±72.8

llama-2-70b-chat
Max coverage 6 (85.71%)† 402 (19.08%)∗ 22 (11.22%)∗ 68 (34.87%)∗

Eff. msg. count 32 186 26 55
Avg. msg. count 28.3±2.6 125.7±61.1 33.3±10.4 45.7±13.2

claude-3-sonnet
Max coverage 7 (100%)† 1512 (71.76%)∗ 141 (71.94%)∗ 159 (81.54%)∗

Eff. msg. count 2 700 315 299
Avg. msg. count 2.3±0.5 700.0 287±19.9 277.7±35.2

codellama-70b-instruct
Max coverage 7 (100%)† 417 (19.79%)∗ 25 (12.76%)∗ 91 (46.67%)∗

Eff. msg. count 8 182 31 142
Avg. msg. count 29.3±15.1 126.3±57.6 34.3±6.9 113.7±20.4

llama-3-70b-instruct
Max coverage 7 (100%) 1135 (53.89%)∗ 94 (47.96%)∗ 98 (50.26%)∗

Eff. msg. count 1 700 172 175
Avg. msg. count 2.3±1.2 700 180.3±20.9 141±24.1

claude-3.5-sonnet
Max coverage 7 (100%)† 2006 (95.21%)∗ 196 (100%)∗ 175 (89.74%)∗
Eff. msg. count 2 651 31 176
Avg. msg. count 2.0 683.7±28.3 37.0±5.29 174.7±41.0

Formal verification Max coverage 7 (100%) 2106 (99.95%) 100% 100%

CRT Max coverage 7 (100%) 1154 (54.77%) 30 (15.31%) 28 (14.36%)

depends on the specific LLM agent and DUT, so the decision to employ it needs to be decided on a
case-by-case basis.

Few-shot Prompting The LLMs were given specific examples of stimulus-coverage bin hit pairs in
experiments where the coverage plan includes more than 20 bins. The specific number of examples
was chosen empirically depending on the variety of coverage bins, but in all cases between 5 and 10.
Figure 3 compares the performance of all six LLMs when tested on the Ibex CPU, where dashed lines
represent trials with few-shot prompting enabled. The models reach completion at varying message

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

counts due to the stop condition outlined in Section 4.1. The prompting guides the model to verify
the design more efficiently. In all the cases, significant improvement is observed in terms of coverage
rates observed, when few-shot prompting is applied. Among these LLMs, Claude 3.5 shows the best
results, where both zero-shot and few-shot approaches reached full coverage.

Final Results Table 5 presents the best results achieved for each LLM-DUT pair, compared with
naive CRT and formal methods serving. In the CRT methodology, we generate 100,000 combinations
within the valid input range without additional constraints. The formal baseline utilizes the cover
mode of the SymbiYosys tool (SymbiYosys), where all bins of the coverage plans correspond to
specific SystemVerilog cover statements, and each formal verification run is limited to a 48-hour
timeout.

Across all DUTs, each configuration demonstrates that LLM4DV can either match or exceed the
coverage rates achieved via naive CRT. This signifies not only the adaptability of LLMs to varied
hardware testing contexts but also their potential to streamline certain aspects of verification by
reducing reliance on extensive random input generation. Formal methods only work well when the
design states are small. Particularly, the AMPLE Prefetcher Weight Bank only achieves a coverage
lower than 1%, because it contains large storage queues, which introduces a large number of feasible
states to represent values in all possible orders. In fact, the number of states grows exponentially with
queue size, leading to a “state space explosion”, despite the simplicity of the design.

In Table 4, our evaluation metrics encompass not just the maximum coverage rate but also the
maximum and average message counts. This comprehensive evaluation becomes particularly valuable
when maximum coverage attained is 100%, which could happen with less complex DUTs. Maximum
and average message counts allow for assessing the efficiency of LLMs in achieving this state of
success. Practically speaking, this aspect is beneficial as a more expedient DV cycle is normally
desirable.

Among the LLM models tested, Claude 3.5 Sonnet stands out, especially in handling more complex
tasks such as those associated with CPU architectures. This model’s superior performance in scenarios
involving the Ibex and MIPS CPU may indicate a more nuanced understanding of CPU operations,
likely stemming from richer pre-training that possibly included diverse computational and hardware-
related datasets. Claude 3.5 Sonnet’s effectiveness in these settings could suggest that its training
included exposure to architectural nuances specific to CPUs, enhancing its ability to generate more
relevant and coverage-effective test stimuli. Nevertheless, it still falls short of the 100% mark achieved
by the formal tool. This suggests that while LLMs can handle complex scenarios to a degree, they
may lack the deep, specialized knowledge or the ability to effectively navigate the vast state spaces
that high-complexity DUTs entail.

The consistently high coverage achieved by all LLM models in testing lower complexity DUTs,
such as the Asynchronous FIFO and SDRAM Controller, demonstrates the proficiency of LLMs
in handling straightforward scenarios. This high performance is mirrored by the baseline formal
tool, indicating that LLMs are competent and can rival traditional verification methods in simpler
verification contexts. Claude 3 Sonnet, for instance, maintains 100% coverage across simpler DUTs,
suggesting excellent efficiency in generating relevant test cases with minimal extraneous inputs. The
efficiency of test generation, as reflected by the message count metrics, provides another dimension
of evaluation. Models like Claude 3 Sonnet, which generally require fewer messages to achieve high
coverage, indicate a more targeted and efficient approach to test case generation. In contrast, models
requiring a higher number of messages, such as Llama-2-70b-chat and Codellama-70b-Instruct, may
be generating less precise or less effective test stimuli, indicating inefficiencies that could translate to
increased testing time and resource consumption in practical applications.

6 DISCUSSION

Gimmick or Trend? The computer architecture and hardware design community is now starting
to see debates regarding the effectiveness of LLMs for automated chip design, questioning whether
their use is merely a gimmick or represents a future trend. Our particular take on this problem is that
there is a need to set up open datasets and benchmarks for different problems in chip design, so that
the effectiveness and potential use of LLMs can be fully understood and quantified. Our work fits
exactly in this category, and we target, in our opinion, the most human labor-intensive part (in terms
of engineering) of the chip design process. Our baseline results have demonstrated that LLMs can

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

achieve satisfactory coverage rates on straightforward designs, but they struggle with more complex
ones, suggesting that LLMs do hold promise within the specific context of automated hardware DV.

Data Asymmetry and LLM4DV as Downstream Evaluation Owing to the fundamental difference
between programming languages used in software and hardware engineering, existing LLMs are
presumably more adept with software programming languages like Python and may lack a deep un-
derstanding of the semantics of hardware description languages (HDLs). For instance, the StarCoder
model’s training data comprises various programming languages, yet SystemVerilog and Verilog
represent only about 5% of that data (Li et al., 2023). In the meantime, we see the provided LLM4DV
flow presents an excellent opportunity to evaluate the capability of LLMs to function as agents for
complex tasks, making it an ideal downstream evaluation task.

Enabling Future DV Research with LLMs The LLM4DV framework serves as a standard exper-
imentation platform to explore and evaluate DV work. The framework provides an interface for
researchers to orchestrate LLMs and input their own prompts for future DV research. For example,
advanced approaches, such as coverage-directed generation and mutating tests (Fine and Ziv, 2003b;
Guzey and Wang, 2007; Laeufer et al., 2018), could be integrated into the LLM prompts for better
coverage. These directions face research challenges that are beyond the scope of this work, but
LLM4DV offers an infrastructure on which to build them and baseline results for evaluation.

7 CONCLUSION

@Reviewer 1C9a: We evaluate LLM4DV using these eight DUT modules and introduce a set of
evaluation metrics. Our results show that unoptimized LLMs perform comparably to random guesses
in achieving coverage. However, with optimized prompt enhancements, LLMs can achieve coverage
rates (a primary metric for measuring verification effectiveness) ranging from 89.74% to 100% in a
realistic setting. While these numbers do not surpass those of established formal verification methods,
this opens avenues for future research in this direction. We open-source LLM4DV alongside these
modules to allow both the machine learning and hardware design communities to experiment with
their ideas.
We introduce LLM4DV, an open-source benchmark framework designed to efficiently coordinate
LLMs for automated hardware test stimuli generation. LLM4DV facilitates integration with diverse
DUTs, coverage plans, and LLMs. Our framework has been tested with a range of DUTs and LLMs,
and we have developed a set of prompting enhancements that establish solid baselines in the bench-
mark. Our results illustrate that while these LLMs perform well with simple DUTs, their effectiveness
is limited when dealing with more complex designs. This still suggests that LLMs have the potential
to overcome common challenges in DV research, such as state space explosion and input specificity,
while our framework and benchmarks provide a foundation for exploring and evaluating future DV
research. The natural language interface and explainability of LLMs can better integrate domain
knowledge into the DV process. We expect that LLM4DV will unlock new research prospects for
hardware designers and also serve as a valuable downstream task for assessing LLMs’ capabilities
for ML researchers.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Zekun Yang, Noa Garcia, Chenhui Chu, Mayu Otani, Yuta Nakashima, and Haruo Takemura. Bert
representations for video question answering. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 1556–1565, 2020.

Openai: Introducing chatgpt. https://openai.com/blog/chatgpt, 2020.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Arivazhagan, and Wei Wang. Language-agnostic
bert sentence embedding. arXiv preprint arXiv:2007.01852, 2020.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for gpt-3? arXiv preprint arXiv:2101.06804, 2021.

Jason Blocklove, Siddharth Garg, Ramesh Karri, and Hammond Pearce. Chip-chat: Challenges and
opportunities in conversational hardware design. In 2023 ACM/IEEE 5th Workshop on Machine
Learning for CAD (MLCAD), pages 1–6. IEEE, 2023.

Yonggan Fu, Yongan Zhang, Zhongzhi Yu, Sixu Li, Zhifan Ye, Chaojian Li, Cheng Wan, and
Yingyan Celine Lin. Gpt4aigchip: Towards next-generation ai accelerator design automation via
large language models. In 2023 IEEE/ACM International Conference on Computer Aided Design
(ICCAD), pages 1–9. IEEE, 2023.

Yao Lu, Shang Liu, Qijun Zhang, and Zhiyao Xie. Rtllm: An open-source benchmark for design rtl
generation with large language model. In 2024 29th Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 722–727. IEEE, 2024.

Hongsup Shin. Efficient bug discovery with machine learning for hardware verifica-
tion. https://community.arm.com/arm-research/b/articles/posts/
efficient-bug-discovery-with-machine-learning-for-hardware-verification,
2024.

Hongsup Shin. Data-centric machine learning pipeline for hardware verification. In 2022 IEEE 35th
International System-on-Chip Conference (SOCC), pages 1–2. IEEE, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Jared Kaplan Henrique Ponde de Oliveira Pinto,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code. arXiv preprint arXiv:2107.03374, 2021.

12

https://openai.com/blog/chatgpt
https://community.arm.com/arm-research/b/articles/posts/efficient-bug-discovery-with-machine-learning-for-hardware-verification
https://community.arm.com/arm-research/b/articles/posts/efficient-bug-discovery-with-machine-learning-for-hardware-verification

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in Neural Information Processing
Systems, 30, 2017.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008–3021, 2020.

Hasini Witharana, Yangdi Lyu, Subodha Charles, and Prabhat Mishra. A survey on assertion based
hardware verification. ACM Computing Surveys (CSUR), 54(11s):1–33, 2022.

YunDa Tsai, Mingjie Liu, and Haoxing Ren. Rtlfixer: Automatically fixing rtl syntax errors with
large language models. arXiv preprint arXiv:2311.16543, 2023.

Xingyu Meng, Amisha Srivastava, Ayush Arunachalam, Avik Ray, Pedro Henrique Silva, Rafail
Psiakis, Yiorgos Makris, and Kanad Basu. Unlocking hardware security assurance: The potential
of llms. arXiv preprint arXiv:2308.11042, 2023.

Mingjie Liu, Teodor-Dumitru Ene, Robert Kirby, Chris Cheng, Nathaniel Pinckney, Rongjian Liang,
Jonah Alben, Himyanshu Anand, Sanmitra Banerjee, Ismet Bayraktaroglu, Bonita Bhaskaran,
Bryan Catanzaro, Arjun Chaudhuri, Sharon Clay, Bill Dally, Laura Dang, Parikshit Deshpande,
Siddhanth Dhodhi, Sameer Halepete, Eric Hill, Jiashang Hu, Sumit Jain, Ankit Jindal, Brucek
Khailany, George Kokai, Kishor Kunal, Xiaowei Li, Charley Lind, Hao Liu, Stuart Oberman,
Sujeet Omar, Ghasem Pasandi, Sreedhar Pratty, Jonathan Raiman, Ambar Sarkar, Zhengjiang Shao,
Hanfei Sun, Pratik P Suthar, Varun Tej, Walker Turner, Kaizhe Xu, and Haoxing Ren. Chipnemo:
Domain-adapted llms for chip design. arXiv preprint arXiv:2311.00176, 2023.

Rahul Kande, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Shailja Thakur, Ramesh
Karri, and Jeyavijayan Rajendran. Llm-assisted generation of hardware assertions. arXiv preprint
arXiv:2306.14027, 2023.

Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Hammond Pearce, Benjamin Tan, Ramesh Karri,
Brendan Dolan-Gavitt, and Siddharth Garg. Benchmarking large language models for automated
verilog rtl code generation. 2023 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1–6, 2023.

Yao Lu, Shang Liu, Qijun Zhang, and Zhiyao Xie. Rtllm: An open-source benchmark for design
rtl generation with large language model. 2024 29th Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 722–727, 2023.

S. Fine and A. Ziv. Coverage directed test generation for functional verification using bayesian
networks. In Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451),
pages 286–291, 2003a. doi: 10.1145/775832.775907.

M. Braun, S. Fine, and A. Ziv. Enhancing the efficiency of bayesian network based coverage directed
test generation. In Proceedings. Ninth IEEE International High-Level Design Validation and Test
Workshop (IEEE Cat. No.04EX940), pages 75–80, 2004. doi: 10.1109/HLDVT.2004.1431241.

Dorit Baras, Laurent Fournier, and Avi Ziv. Automatic boosting of cross-product coverage using
bayesian networks. In Hana Chockler and Alan J. Hu, editors, Hardware and Software: Verification
and Testing, pages 53–67, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-
01702-5.

S. Fine, A. Freund, I. Jaeger, Y. Naveh, A. Ziv, and Y. Mansour. Harnessing machine learning to
improve the success rate of stimuli generation. In Tenth IEEE International High-Level Design
Validation and Test Workshop, 2005., pages 112–118, 2005. doi: 10.1109/HLDVT.2005.1568823.

Raviv Gal, Eldad Haber, Brian Irwin, Marwa Mouallem, Bilal Saleh, and Avi Ziv. Using deep neural
networks and derivative free optimization to accelerate coverage closure. In 2021 ACM/IEEE 3rd
Workshop on Machine Learning for CAD (MLCAD), pages 1–6, 2021. doi: 10.1109/MLCAD52597.
2021.9531234.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Raviv Gal, Eldad Haber, and Avi Ziv. Using dnns and smart sampling for coverage closure accelera-
tion. In 2020 ACM/IEEE 2nd Workshop on Machine Learning for CAD (MLCAD), pages 15–20,
2020. doi: 10.1145/3380446.3430627.

Shobha Vasudevan, Wenjie (Joe) Jiang, David Bieber, Rishabh Singh, hamid shojaei, C. Richard
Ho, and Charles Sutton. Learning semantic representations to verify hardware designs. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Ad-
vances in Neural Information Processing Systems, volume 34, pages 23491–23504. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/c5aa65949d20f6b20e1a922c13d974e7-Paper.pdf.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
Codet: Code generation with generated tests. arXiv preprint arXiv:2207.10397, 2022.

Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. An empirical evaluation of using large
language models for automated unit test generation. IEEE Transactions on Software Engineering,
2023.

Stephan Lukasczyk and Gordon Fraser. Pynguin: Automated unit test generation for python. 2022
IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), page 168–172, 2022.

Bhaskar Pal, Ansuman Banerjee, Arnab Sinha, and Pallab Dasgupta. Accelerating assertion coverage
with adaptive testbenches. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 27(5):967–972, 2008.

Luca Ferro, Laurence Pierre, Yves Ledru, and Lydie du Bousquet. Generation of test programs for
the assertion-based verification of tlm models. 2008 3rd International Design and Test Workshop,
page 237–242, 2008.

Jason G. Tong, Marc Boule, and Zeljko Zilic. Airwolf-tg: A test generator for assertion-based
dynamic verification. 2009 IEEE International High Level Design Validation and Test Workshop,
page 106–113, 2009.

Yangdi Lyu and Prabhat Mishra. Automated test generation for activation of assertions in rtl models.
2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), page 223–228, 2020.

Shai Fine and Avi Ziv. Coverage directed test generation for functional verification using bayesian
networks. In Proceedings of the 40th annual Design Automation Conference, pages 286–291,
2003b.

Onur Guzey and Li-C Wang. Coverage-directed test generation through automatic constraint extrac-
tion. In 2007 IEEE International High Level Design Validation and Test Workshop, pages 151–158.
IEEE, 2007.

Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik Sen. Rfuzz: Coverage-
directed fuzz testing of rtl on fpgas. In 2018 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 1–8. IEEE, 2018.

Ruizhe Zhong, Xingbo Du, Shixiong Kai, Zhentao Tang, Siyuan Xu, Hui-Ling Zhen, Jianye Hao,
Qiang Xu, Mingxuan Yuan, and Junchi Yan. Llm4eda: Emerging progress in large language
models for electronic design automation. arXiv preprint arXiv:2401.12224, 2023.

Damien Pretet. Asynchronous dual clock fifo. https://github.com/dpretet/async_
fifo.

Pedro Gimenes. Ample: Accelerated message passing logic engine. https://github.com/
pgimenes/ample.

Stafford Horne. Sdram memory controller. https://github.com/stffrdhrn/
sdram-controller.

TrivialMIPS. Nontrivialmips. https://github.com/trivialmips/nontrivial-mips.

14

https://proceedings.neurips.cc/paper_files/paper/2021/file/c5aa65949d20f6b20e1a922c13d974e7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c5aa65949d20f6b20e1a922c13d974e7-Paper.pdf
https://github.com/dpretet/async_fifo
https://github.com/dpretet/async_fifo
https://github.com/pgimenes/ample
https://github.com/pgimenes/ample
https://github.com/stffrdhrn/sdram-controller
https://github.com/stffrdhrn/sdram-controller
https://github.com/trivialmips/nontrivial-mips

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

SymbiYosys. Front-end for yosys-based formal verification flows. https://github.com/
YosysHQ/sby.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Microsoft. https://learn.microsoft.com/en-us/azure/ai-services/
openai/concepts/advanced-prompt-engineering?pivots=
programming-language-chat-completions.

OpenAI. https://platform.openai.com/docs/guides/prompt-engineering.

15

https://github.com/YosysHQ/sby
https://github.com/YosysHQ/sby
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/advanced-prompt-engineering?pivots=programming-language-chat-completions
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/advanced-prompt-engineering?pivots=programming-language-chat-completions
https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/advanced-prompt-engineering?pivots=programming-language-chat-completions
https://platform.openai.com/docs/guides/prompt-engineering

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Message number

C
ov

er
ag

e

0

200

400

600

800

1000

100 200 300 400 500

Prefetcher 1 [(1), (I), (a), -]

Prefetcher 1 restart

Prefetcher 2 [(2), (I), (a), -]

Prefetcher 2 restart

Prefetcher 3 [(2), (II), (a), (i)]

Prefetcher 3 restart

Prefetcher 4 [(2), (II), (a), (ii)]

Prefetcher 4 restart

Prefetcher 5 [(2), (II), (a), (iii)]

Prefetcher 5 restart

Prefetcher 6 [(2), (IV), (a), (iii)]

Prefetcher 6 restart

Prefetcher 7 [(2), (IV), (a), (iii)] +

Prefetcher 7 restart

Figure 4: Infinite-message experiments on the Primitive Data Prefetcher Core module. Each line
represents the trial reaching the maximum coverage on a configuration, and the dots on it show
dialogue restarting points.

A APPENDIX

A.1 DESIGN CHOICES IN PARAMETER SETTINGS

Since the benchmark suite involves chaining multiple rounds of dialogue between the LLM and the
testbench framework, we have done a comprehensive evaluation/ablation of the hyperparameters
involved to facilitate this agentic behaviour. The majority of these hyperparameters stem from the
various prompting engineering techniques/optimizations involved. In fact, many of these prompting
techniques are in existing protocols or usage guides on LLMs (Microsoft; OpenAI).

Maximum message number (700): We ran a set of “infinite-message experiments” on the Primitive
Data Prefetcher Core and Ibex CPU Instruction Decoder, where the maximum response number
is much larger than the average exhaustion threshold. As illustrated in the results in Figure 4 and
5, the coverage values of all runs plateau after at most 500 messages, hence we set the maximum
message number to 700 for a safety margin.

Trial termination condition (no hits in 25 messages or fewer than 3 hits in 40 messages): This
prevents over-using the resources when the agent is “exhausted”. Extensive tests have demonstrated
that LLMs struggle to score additional hits after 25 non-scoring messages or to show significant
performance improvement if recording fewer than 3 hits in 40 messages. Typically, we regard this
as a “low activity measure” beyond which we ask the model to stop.

Number of preceding messages (3 responses): This was determined by considering both the con-
text length restrictions of current LLMs and the typical length of prompts and responses. Maintaining
three prompts and responses usually ensures that the maximum context length is not exceeded while
retaining as much of the previous dialogue as possible.

Dialogue restarting tolerance (t = 4, 7, 10): We decide to restart the whole dialogue when the “low
activity measure (< 3 hits)” is observed in t continuous message queries, since we empirically
observe that LLMs’ responses can be trapped into local minima. t values are chosen as a compre-
hensive range in the suitable range below the trial termination condition (since we’d expect to see
multiple dialogue restarts before trial termination), with our ablation experiments showing t = 7
stably performs the best.

Number of few-shot examples: For few-shot prompting, different coverage plans have different
“types” of bins. These types are outlined in Appendix A.4. Few-shot prompting is most efficient
when one example is given for each bin type. In practice, the number of few-shot samples equals to
the bin types for that specific coverage plan.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Message number

C
ov

er
ag

e

0

500

1000

1500

2000

200 400 600 800

Ibex Decoder 1 [(3), (IV), (d), (iii)]

Ibex Decoder 1 restart

Ibex Decoder 2 [(2), (IV), (d), (iii)]

Ibex Decoder 2 restart

Ibex Decoder 3 [(3), (IV), (a), (iii)]

Ibex Decoder 3 restart

Ibex Decoder 4 [(2), (IV), (a), (iii)]

Ibex Decoder 4 restart

Ibex Decoder 5 [(3), (IV), (d), (ii)]

Ibex Decoder 5 restart

Figure 5: Infinite-message experiments on the Ibex CPU Instruction Decoder module. Each line
represents the trial reaching the maximum coverage on a configuration, and the dots on it show
dialogue restarting points.

A.2 HYPERPRAMETER SETUP

As outlined in the main text, LLM4DV incorporates a stop condition where if the stimulus generation
agent fails to target any bins within 25 responses, or targets fewer than three bins after 40 responses,
we consider the agent “exhausted," meaning it is no longer effective or efficient in covering new bins,
and the pipeline is halted. These thresholds were determined empirically based on trials with the
Primitive Data Perefetcher Core (the simplest Device Under Test) and the Ibex Decoder, alongside
experiments involving GPT-3.5.

A.3 DETAILS OF GENERIC PROMPTING IMPROVEMENTS

This section describes the design choices of our four prompting improvements.

A.3.1 MISSED-BIN SAMPLING

We define three sampling methods:

• (1) Pure Random Sampling: randomly samples seven bins from all uncovered bins.

• (2) Coverpoint Type-based Sampling: we categorize all bins into “easier bins” and “harder
bins” based on their difficulties to be covered, and order them based on their names; when
sampling, we always take the first two uncovered bins, then either randomly sample five
bins from all uncovered bins if there are no “easier bins” left, or sample three “easier bins”
and two “harder bins”.

• (3) Mixed Coverpoint Type-based and Pure Random Sampling: when the coverage ratio
is below 20%, it keeps using Coverpoint Type-based Sampling; when the coverage ratio is
larger than 20%, it switches between Coverpoint Type-based Sampling and Pure Random
Sampling whenever the current sampling method hits less than three new bins within four
responses. The number of 20% is obtained empirically.

A.3.2 BEST-ITERATIVE-MESSAGE SAMPLING

We define four sampling methods:

• (I) Recent Responses: keeps the initial query (and its response), and three most recent
iterative queries (and their responses).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 6: Coverage-feedback prompt template and four prompting improvements. We highlight the
different design options possible for the four prompting improvements (DUT source code, Few-shot
examples, Best-Iterative-Message Sampling, Dialogue Restarting Plans, Missed-Bin Sampling and
Best-Iterative-Message Buffer Resetting Plan).

• (II) Successful Responses: keeps the initial query and three iterative queries with responses
that hit maximum number of bins; if multiple maximums exist, uniformly samples three of
them.

• (III) Mixed Recent and Successful Responses: keeps the initial query, two most successful
iterative queries, and one most recent iterative query.

• (IV) Successful Difficult Responses: similar to successful responses, but each “harder bin”
as in Appendix X counts as 2.5 bins.

A.3.3 DIALOGUE RESTARTING

We define four restarting plans:

• (a) Normal Tolerance: restarts the dialogue if the LLM hits less than three bins within 7
responses.

• (b) Low Tolerance: restarts the dialogue if the LLM hits less than three bins within 4
responses.

• (c) High Tolerance: restarts the dialogue if the LLM hits less than three bins within 10
responses.

• (d) Coverage Rate-based Tolerance: uses Low Tolerance when the coverage ratio is below
20%, and Normal Tolerance afterwards. The number of 20% is intentionally set as the same
value as in Mixed Coverpoint Type-based and Pure Random Sampling in Appendix A.3.

A.3.4 BEST-ITERATIVE-MESSAGE BUFFER RESETTING

We define three resetting plans for the best-iterative-message buffer:

• (i) Clearing best-messages: clears the buffer on dialogue restarts.

• (ii) Keeping best-messages: keeps the buffer on dialogue restarts

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• (iii) Stable-restart Keeping best-messages: keeps the buffer on dialogue restarts, but not
using it for the first four responses after restarts.

A.4 DETAILS OF DUTS

This section explains the eight DUT modules used and their coverage plans respectively.

A.4.1 PRIMITIVE DATA PREFETCHER CORE

The Primitive Data Prefetcher Core takes in 32-bit integers and detects whether there’s a stride pattern
in it. This module requires relatively high mathematical reasoning capability for the LLM.

Our coverage plan contains 1034 bins of the following types:

• Single-stride bins: counts when 16 consecutive integers a0, a1, . . . , a15 satisfy ai+1−ai = c
for some constraint −16 ≤ c ≤ 15.

• Double-stride bins: counts when 16 consecutive integers satisfy an alternative stride width
pattern, formally a2i+2 − a2i+1 = c1 and a2i+1 − a2i = c2 for some −16 ≤ c1, c2 ≤ 15
and c1 ̸= c2.

• Misc bins: including

– Single-stride positive/negative ocerflow bins: a single stride pattern with c < −16
(negative overflow) or c > 15 (positive overflow).

– Double-stride pp/pn/np/nn overflow bins: a double stride pattern with c1 and c2 posi-
tively / negatively overflow respectively.

– No-stride-to-single/double: counts when 16 integers satisfying no stride pattern are
followed by 16 integers with single / double stride pattern.

– Single/double-to-double/single: counts when 16 integers satisfying single / double
stride pattern are followed by 16 integers with double / single stride pattern.

A.4.2 ASYNC FIFO

The Async FIFO is a simple dual clock FIFO, commonly used to transfer data between clock domains.
The agent is able to write data using one side, and read data using the other. The simulation is set up
so that the write clock has a period of 10ns, while the read clock has a period of 13ns.

Our coverage plan contains 10 bins:

• full_read_wrap: the read pointer wraps to 0.

• gray_read_wrap: the MSB of the read pointer toggles.

• underflow: a read operation is requested while the FIFO is empty

• empty: the FIFO is empty

• read_while_write: on read clock edge a read operation is performed, while a write operation
is being requested as well

• full_write_wrap: the write pointer wraps to 0.

• gray_write_wrap: the MSB of the write pointer toggles.

• overflow: a write operation is requested while the FIFO is full

• full: the FIFO is full

• write_while_read: on write clock edge a write operation is performed, while a read operation
is being requested as well

A.4.3 AMPLE PREFETCHER WEIGHT BANK

AMPLE is a GNN FPGA accelerator. The Prefetcher Weight Bank is a small part of the accelerator,
responsible for fetching the matrix of weights required to run inference on a fully-connected layer.
For the purposes of this investigation, this design can be viewed as a large FIFO. The output of

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

the device are the contents of the FIFO, which are sent diagonally (i.e. one unit of data is sent
from the first row, then from both the first and second, then first, second and third etc.). The two
inputs accessed by the LLM agent defines "dimensions" of the output - the maximum number of
rows accessed simultaneously, and the number of units of data sent from each row. There is a clear
correlation between input values and coverage bins, no significant reasoning is required to achieve
full coverage.

Our coverage plan contains 324 bins of the following types:

• in_i: i*16 units of data loaded on each row. Only multiples of 16 can be loaded on each row.
If a number that is not divisible by 16 is provided, it will be rounded up by the device.

• out_j: j number of rows loaded with valid data
• combined_features_i_j: i*16 units of data loaded on each row and j number of rows loaded

with valid data

A.4.4 AMPLE PREFETCHER FETCH TAG

AMPLE is a GNN FPGA accelerator. The Prefetcher Fetch Tag is a small part of the accelerator,
responsible for fetching the adjacency list, messages and scale factors for a given "node". It includes
three queues, an "adjacency queue", a "message queue", and a "scale factor queue". The LLM agent
can allocate the Fetch Tag to a node, deallocate it, or load data on one of the queues.

Our coverage plan contains 10 bins:

• adj_dealloc: the DUT is instructed to load the "adjacency queue", but the DUT was not
allocated a "nodeslot"

• mess_dealloc: the DUT is insctructed to load the "message queue", but the DUT was not
allocated a "nodeslot"

• scale_dealloc: the DUT is insctructed to load the "scale factor queue", but the DUT was not
allocated a "nodeslot"

• adj_nomatch: the DUT is insctructed to load the "adjacency queue", but the "nodeslot"
provided for this command does not match the "nodeslot" allocated to the DUT

• mess_nomatch: the DUT is insctructed to load the "message queue", but the "nodeslot"
provided for this command does not match the "nodeslot" allocated to the DUT

• scale_nomatch: the DUT is insctructed to load the "scale factor queue", but the "nodeslot"
provided for this command does not match the "nodeslot" allocated to the DUT

• mess_fetch_adj_nopartial: the DUT is insctructed to load the "message queue", and there is
no overflow on the "adjacency queue"

• mess_fetch_adj_partial: the DUT is insctructed to load the "message queue", and there is
overflow on the "adjacency queue"

• mess_seen: data is loaded on the "message queue"
• scale_seen: data is loaded on the "scale queue"

A.4.5 SDRAM CONTROLLER

This SDRAM controller is a simple device that manages the interface to a synchronous dynamic
random-access memory (SDRAM), handling tasks such as memory access, data organization, and
timing to optimize performance and efficiency.

Our coverage plan contains 7 bins:

• precharge: deactivate (close) the current row of all banks
• auto_refresh: refresh one row of each bank, using an internal counter. All banks must be

precharged.
• command_inhibit: command inhibit (no operation)
• load_mode_register: configure the DRAM chip

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

• activate: open a row for read and write commands

• read: read data from the currently active row

• write: write data to the currently active row

A.4.6 IBEX INSTRUCTION DECODER

The Ibex Instruction Decoder is an instruction decoder for 32-bit RISC-V instruction codes. This
module involves almost no mathematical reasoning but requires knowledge about RISC-V knowledge.

Our coverage plan contains 2107 bins of the following types:

• ALU operation bins: counts when an instruction represents one of 26 pre-defined ALU
operations such as ADD, ADDI, XOR, LW, etc.

• Register port bins: counts when an instruction uses the port of the specific register. There are
32 registers, and each has two read ports and one write port, which are used when the register
file is taken as the first source, second source, and the destination register, respectively.

• Cross coverage bins: the Cartesian product of ALU operation bins and register port bins.
Counts when an instruction satisfies both bins simultaneously (some of the product, such as
ADDI and read_port_A of any register, are invalid and not included in the coverage plan).

A.4.7 IBEX CPU

The Ibex CPU is a full RISC-V CPU. In every cycle the agent provides a stimulus of a list of
instructions. Instructions are provided in a sequential manner to the CPU, regardless of the program
counter.

Our coverage plan contains 196 bins of the following types:

• Operation bins: for each of pre-defined ten R-type operations, three S-type instruction, and
one J-type instruction (JAL), we consider the following four bins:

– seen: counts when an instruction performs the operation;
– zero_dst: if available, counts when the instruction performs the operation, with the

destination register (rd) as zero (reg #0);
– zero_src: if available, counts when the instruction performs the operation, with one of

the source registers (rs) as zero (reg #0);
– same_src: if available, counts when the instruction performs the operation, taking the

same register as source registers (rs).

• Jump bins: for the JAL operation, we consider forward and backward jumps respectively.

• Hazard bins: for each pair of the pre-defined operations, we consider a simplified read-
afterwrite (RaW) hazard, which counts when the later instruction reads from a register that
the previous instruction is writing to.

A.4.8 MIPS CPU

This device is a full MIPS CPU. Similar to the Ibex CPU, every cycle the agent provides a stimulus
of a list of instructions. Instructions are provided in a sequential manner to the CPU, regardless of the
program counter.

Our coverage plan contains 195 bins of the following types:

• Operation bins: for each of pre-defined ten R-type operations, three I-type instruction, and
one J-type instruction (JAL), we consider the following four bins:

– seen: counts when an instruction performs the operation;
– zero_dst: if available, counts when the instruction performs the operation, with the

destination register (rd) as zero (reg #0);
– zero_src: if available, counts when the instruction performs the operation, with one of

the source registers (rs) as zero (reg #0);

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

– same_src: if available, counts when the instruction performs the operation, taking the
same register as source registers (rs).

• Jump bins: for the JAL operation, we consider forward and backward jumps respectively.
• Hazard bins: for each pair of the pre-defined operations, we consider a simplified read-

afterwrite (RaW) hazard, which counts when the later instruction reads from a register that
the previous instruction is writing to.

A.5 EXAMPLE PROMPTS AND RESPONSES

Figure 7 demonstrates several prompts and responses on the Primitive Data Prefetcher Core module.
The agent (USER) introduces the task and coverage plan in the initial message, and then provides
coverage feedback in iterative messages. The LLM (ASSISTANT) generates textual responses
according to the description and feedback.

A.6 COMPARISON OF GENERIC PROMPTING IMPROVEMENTS

Due to the cost of money and time for LLM API requests and experiment running, we compare
configurations of the stimulus generation agent by their performances using the most promising
model (Claude 3 Sonnet) on one of the most complex DUTs (the Ibex CPU). We call the model
with parameters as temperature = 0.4, top_p = 1 and max_gen_tokens = 600. These parameters are
decided empirically.

All configurations were tested three times. Figure 8 shows the experiment run that achieved maximum
coverage for each configuration. The best configuration can be identified as (2) Coverpoint Type-
based Sampling, (II) Successful Responses, (a) Normal Tolerance, and (iii) Stable-restart Keeping
best-messages, producing a coverage rate of 66.84%.

A.7 PERFORMANCE WITH AND WITHOUT THE DUT’S SOURCE CODE PROVIDED

Table 6 shows the performance of the LLM models with and without the DUT’s source code provided
for four designs.

A.8 RUNTIME COMPARISON OF LLM4DV AND THE FORMAL TOOL

Table 7 shows the runtime comparison of the best trials for each LLM-DUT pair and the formal tool.
Both the LLM4DV trials and the formal verification runs were performed on the same machine. Time
is reported in seconds.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 6: Performance of the LLM models with and without the DUT’s source code provided on
simpler designs where providing source code is viable. We highlight the best results in each case.

Models Configurations Testing
Metrics

Asynchronous
FIFO

SDRAM
Controller

AMPLE Prefetcher
Weight Bank

AMPLE Prefetcher
Fetch Tag

gpt-3-turbo

Without DUT code
Max coverage 10 (100%) 7 (100%) 324 (100%) 10 (100%)

Eff. msg. count 16 7 36 2
Avg. msg. count 19.7±3.9 22.3±11.0 50.7±19.3 22.0±14.1

With DUT code
Max coverage 10 (100%) 7 (100%) 324 (100%) 9 (90%)

Eff. msg. count 19 30 36 32
Avg. msg. count 24.0±7.1 30.7±2.5 37.7±1.2 36.7±3.3

llama-2-70b-chat

Without DUT code
Max coverage 10 (100%) 5 (71.43%) 324 (100%) 9 (90%)

Eff. msg. count 3 28 36 29
Avg. msg. count 8.3±6.2 32.3±4.8 41.3±7.5 30.3±1.2

With DUT code
Max coverage 10 (100%) 6 (85.71%) 324 (100%) 10 (100%)

Eff. msg. count 1 32 48 22
Avg. msg. count 10.5±7.9 28.3±2.6 65.7±18.4 27.7±6.0

claude-3-sonnet

Without DUT code
Max coverage 10 (100%) 7 (100%) 324 (100%) 10 (100%)

Eff. msg. count 1 6 36 8
Avg. msg. count 1.0 6.7±0.9 36.0 19.3±8.0

With DUT code
Max coverage 10 (100%) 7 (100%) 324 (100%) 10 (100%)

Eff. msg. count 1 2 36 8
Avg. msg. count 1.7±0.9 2.3±0.5 37.3±1.9 19.7±8.3

codellama-70b-instruct

Without DUT code
Max coverage 10 (100%) 7 (100%) 324 (100%) 6 (60.00%)

Eff. msg. count 1 20 44 47
Avg. msg. count 3.7±3.1 32.0±8.5 52.3±8.5 40.3±10.9

With DUT code
Max coverage 10 (100%) 7 (100%) 324 (100%) 6 (60%)

Eff. msg. count 1 8 47 34
Avg. msg. count 13.3±9.2 29.3±15.1 52.7±5.4 28.3±4.0

llama-3-70b-instruct

Without DUT code
Max coverage 10 (100%) 7 (100%) 324 (100%) 10 (100%)

Eff. msg. count 2 1 26 22
Avg. msg. count 7.7±7.3 2.3±1.2 32.7±4.7 25.0±2.2

With DUT code
Max coverage 10 (100%) 7 (100%) 324 (100%) 10 (100%)

Eff. msg. count 1 1 28 15
Avg. msg. count 1.3±0.5 3.0±1.6 30.7±3.1 20.0±3.6

Table 7: Runtime comparison of the best trials for each LLM-DUT pair and the formal tool. Time is
shown in seconds, achieved coverage rate is shown in the brackets. Note that the formal tool was
given a timeout of 172800s (48 hours).

Primitive Data
Prefetcher Core

Asynchronous
FIFO

AMPLE Prefetcher
Weight Bank

AMPLE Prefetcher
Fetch Tag

gpt-3-turbo 3312 (98.26%) 213 (100%) 1016 (100%) 30 (100%)

llama-2-70b-chat 10459 (41.68%) 76 (100%) 927 (100%) 156 (100%)

claude-3-sonnet 7753 (77.47%) 9 (100%) 761 (100%) 42 (100%)

codellama-70b-instruct 2456 (7.93%) 18 (100%) 854 (100%) 329 (60%)

llama-3-70b-instruct 12651 (68.67%) 14 (100%) 732 (100%) 142 (100%)

Formal verification 1477 (99.61%) 51 (100%) 172800 (0.93%) 61 (100%)

SDRAM
Controller

Ibex CPU
Instruction Decoder Ibex CPU MIPS CPU

gpt-3-turbo 30 (100%) 3601 (69.58%) 503 (19.9%) 1053 (43.08%)

llama-2-70b-chat 252 (85.71%) 2447 (19.08%) 394 (11.22%) 940 (34.87%)

claude-3-sonnet 19 (100%) 3359 (71.76%) 2511 (71.94%) 4021 (81.54%)

codellama-70b-instruct 77 (100%) 1981 (19.79%) 472 (12.76%) 4758 (46.67%)

llama-3-70b-instruct 24 (100%) 7881 (53.89%) 3186 (47.996%) 8794 (50.26%)

Formal verification 16 (100%) 1010 (99.95%) 1087 (100%) 3181 (100%)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

SYSTEM：
Please output a list of (positive or negative) integers only, [...]
Output format: [a, b, c, ...].

USER 1:
You will receive a description of bins (i.e. test cases) of a testbench for a hardware [...]

Now, we want to test the DUT with a list of integers as its input [...] Here's the description of the bins
that we care about:

BINS DESCRIPTION
- The list contains segments (i.e. subsequences) of int.
- Each segment is of length 18.
- A segment follows a single-stride pattern with a stride width x if: the differences between two
adjacent integers are always x.
[...]
- For each of the following bins, the list contains at least one segment that satisfies it:

 - stride_1_seen - One bin per possible stride width between the minimum and maximum stride
width, where the segment follows a single-stride pattern of the stride width.
 - stride_2_seen - One bin per pair of possible stride widths between the minimum and maximum
stride width, where the segment follows a double-stride pattern of the stride width pair.
 [...]

Following the bins description, generate a list that contains segments of integers, which covers the
described bins as much as you can.

ASSISTANT 1:
To generate a list that
covers the described bins,
we can start by [...]

Here is a possible solution:

```python
import random

def
generate_segment_single_
stride(stride_width):
segment = []
[...]

USER 2:
The values you provided failed to cover all the bins.
You will see the result coverage of your previous response(s),
and then generate another list of integers to cover the
unreached bins (i.e. test cases)
Here are some of the unreached bins:
------
UNREACHED BINS
- Single-stride pattern segment of stride width 0 is unreached.
- Single-stride pattern segment of stride width 1 is unreached.
- Single-stride pattern segment of stride width -16 is
unreached.
[...]
------
Please regenerate a segment of length 18 for each of these
unreached bins according to the BINS DESCRIPTION.

ASSISTANT 2:
Apologies for the oversight. Here are the
segments to cover the unreached bins:

Segment for single-stride pattern segment of
stride width 0:
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
Segment for single-stride pattern segment of
stride width 1:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17]
Segment for single-stride pattern segment of
stride width -16:
[0, -16, -32, -48, -64, -80, -96, -112, -128, -144,
-160, -176, -192, -208, -224, -240, -256, -272]
[...]

Generated a Python
program rather than

test stimuli

Generated effective
test stimuli

Figure 7: Example prompts and responses on the Primitive Data Prefetcher Core module. The purple
box is the system message. The green box is an initial query, containing a coverage plan summary
(orange). The blue box is an interactive query, containing differences i.e. coverage feedback (red).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

10 20 100 500

0%

20%

40%

60%

Message Count

C
ov

er
ag

e
R

at
e

1 I a i
1 IV a iii
2 II a iii
2 II b i
2 II c iii
2 IV a iii
3 II b iii
3 IV a ii

Figure 8: Experiments on the Ibex CPU module. Each line represents the trial reaching the maximum
coverage on a configuration. The configurations in legends are illustrated in Figure 6.

25


	Introduction
	Background
	Related Work
	LLM4DV Benchmarks
	LLM4DV Framework
	Evaluation Setup
	General Prompting Strategies
	Four Generic Prompting Improvements
	Two Situational Prompting Improvements

	Results and Analysis
	Discussion
	Conclusion
	Appendix
	Design Choices in Parameter Settings
	Hyperprameter Setup
	Details of Generic Prompting Improvements
	Missed-bin sampling
	Best-iterative-message sampling
	Dialogue restarting
	Best-iterative-message buffer resetting

	Details of DUTs
	Primitive Data Prefetcher Core
	Async FIFO
	AMPLE Prefetcher Weight Bank
	AMPLE Prefetcher Fetch Tag
	SDRAM Controller
	Ibex Instruction Decoder
	Ibex CPU
	MIPS CPU

	Example prompts and responses
	Comparison of generic prompting improvements
	Performance with and without the DUT’s source code provided
	Runtime comparison of LLM4DV and the formal tool


