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Abstract001

Finetuning language models (LMs) is crucial002
for adapting the models to downstream data and003
tasks. However, full finetuning is usually costly.004
Existing work, such as parameter-efficient fine-005
tuning (PEFT), often focuses on how to fine-006
tune but neglects the issue of where to finetune.007
As a pioneering work on reducing the cost of008
backpropagation (at the layer level) by answer-009
ing where to finetune, we conduct a seman-010
tic analysis of the LM inference process. We011
first propose using transition traces of the latent012
representation to compute deviations (or loss).013
Then, using a derived formula of scaling law,014
we estimate the gain of each layer in reducing015
deviation (or loss). Further, we narrow down016
the scope for finetuning, and also, study the017
cost-benefit balance of LM finetuning. We per-018
form extensive experiments across well-known019
LMs and datasets. The results show that our020
approach is effective and efficient, and outper-021
forms the existing baselines. Our approach is022
orthogonal to other techniques on improving023
finetuning efficiency, such as PEFT methods,024
offering practical values on LM finetuning.025

1 Introduction026

With the rapid advancements and notable perfor-027

mance of language models, their application has ex-028

tended to numerous downstream tasks (Bommasani029

et al., 2021). Fine-tuning techniques are pivotal030

in augmenting the capabilities of language mod-031

els (Raffel et al., 2019; Ouyang et al., 2022). For032

example, CODE LLAMA is a code-specialized LM033

and is finetuned on 100B tokens of Python code034

for a language-specialized variant (Touvron et al.,035

2023; Rozière et al., 2023). The Python variant036

provides better capabilities in code understanding037

and generation, since Python is most popular in038

programming (Carbonnelle, 2024; TIOBE, 2024).039

Compared to their smaller pretrained predeces-040

sors, finetuning large LMs offers both advantages041

and disadvantages. On one hand, the vast number042

of model parameters triggers the emergent abilities 043

of large LMs (Wei et al., 2022), leading to superior 044

performance across a variety of tasks, which serves 045

as an excellent foundation for domain-specific fine- 046

tuning. On the other hand, the extensive parameter 047

size presents challenges for downstream finetuning. 048

For instance, large LMs require greater memory 049

costs and higher computational costs in finetuning. 050

The challenge is on finding the correlation be- 051

tween performance and efficiency of LM finetun- 052

ing. There have been developed techniques such as 053

model quantization and PEFT methods to improve 054

efficiency (Rokh et al., 2022; Han et al., 2024). 055

Model quantization reduces the precision of the 056

model and data to reduce the burden of storage 057

and computation. However, the performance of 058

LM finetuning may be damaged to some extent. 059

PEFT methods introduce additional parameters to 060

learn the updates in LM finetuning, and then merge 061

the updates into the LM. They reduce the memory 062

costs but cannot save the computational cost. Over- 063

all, there has been relatively little work exploring 064

the correlation between model performance and 065

computational efficiency, that is, whether the per- 066

formance of LM finetuning can be improved while 067

saving computation cost. To mitigate the gap, we 068

propose utilizing the semantics in LM latent space 069

to specify the layers that are more in need of fine- 070

tuning being trainable, and freeze other layers. 071

Our intuition is that, by interpreting the LM’s 072

functionality as a transition of semantics and com- 073

paring it with a set of special latent representations, 074

we can estimate the gains of each layer in reducing 075

deviations. The deviations can be used to evaluate 076

the convergence degree of model layers, and fur- 077

ther, as the evidence to decide which layers shall 078

be trainable. Based on empirical experience and 079

theoretical analysis, the deviations in semantic tran- 080

sitions greatly decide the effects of LM finetuning. 081

By freezing model layers with the maximum gains 082

in reducing deviation and shortening the process 083
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of backpropagation, the computation cost may be084

reduced and meanwhile, the finetuning effects can085

be improved. Computational-efficient finetuning086

via layer-freezing is orthogonal with existing tech-087

niques, including model quantization and PEFT088

methods, so can combine with these techniques to089

achieve more efficient performance.090

In this paper, we realize computation-efficient091

model finetuning by proposing an effective and092

reliable layer-freezing approach, referred to as093

Semantic-Aware Layer-Freezing (SALF). First, on094

the shoulder of vocabulary-defined semantics (Gu095

et al., 2024), we study the phenomenon of semantic096

transition in LMs. By deriving the scaling law of097

LM pretraining to LM finetuning, we estimate the098

gains of reducing deviations in each model layer;099

Next, our layer-freezing approach finds the model100

layer whose gains is the maximum and only fine-101

tune the shallower layers; Last, to support a flexible102

cost-benefit tradeoff in LM finetuning, we propose103

a deep-to-shallow policy for layer-freezing to fulfill104

the given budget. We also propose better budget105

plans for the cost-benefit tradeoff.106

We evaluate our approach in fine-tuning diverse107

datasets on a wide range of modern LMs. Based108

on the results, our semantic-based layer-freezing109

approach performs better than the baselines. Com-110

bined with budget plans, our approach can further111

reduce the computation cost and improve the perfor-112

mance. We discuss the insights of efficient finetun-113

ing from the perspective of semantics and conclude114

the findings in finetuning LMs. The replication115

repository is attached as supplementary material.116

Our contributions are as follows:117

• We propose using semantic transition to de-118

scribe the process of LM inference, and the119

derived formula of scaling law to estimate the120

capability of model layers, and further study121

the cost-benefit tradeoff in LM finetuning;122

• We emphasize the importance of knowing123

where to finetune, through which we can124

improve the performance of LM finetuning125

and save the computation cost. We propose126

semantic-based layer-freezing as a solution;127

• We conclude some findings on the behavior128

of LMs, which can contribute to future work129

in finetuning and analyzing LMs. Also, we130

propose planning the budget for a better cost-131

benefit tradeoff of LM finetuning.132

2 Preliminaries 133

2.1 Semantic Field in LM Latent Space 134

Based on vocabulary-defined semantics, the seman- 135

tics of latent representations can be regarded as the 136

overlapping impact of “semantic fields” (Gu et al., 137

2024). The semantic field is similar to the field term 138

in physics, such as electric field, where the electric 139

strength relies on the distance to the center of the 140

field (the electric pole). The corresponding proba- 141

bilities on the vocabulary of a representation can be 142

directly computed with its locations in the semantic 143

fields in the latent space, as shown in Figure 1. In 144

contrast, in common practice, the representations in 145

last-layer latent space will undergo a dimensional 146

change to be computed as logits, and then be nor- 147

malized as the probabilities on the vocabulary. The 148

dimensional change causes entanglement of seman- 149

tics, and exacerbates the computation complexity. 150

Figure 1: Vocabulary-defined semantics is demonstrated
with a LM, whose vocabulary is a collection of colorful
labels: (1) in the latent space (left), large color dots are
the corresponding semantic bases of vocabulary labels.
The small dark dot is the latent representation of a given
data. The similarities of the data with semantic bases
are regarded as logits; (2) on the vocabulary (right), the
logits are normalized as probabilities, and the argmax
label is orange. Consistently, the nearest semantic basis
to the latent representation is the orange one.

The semantics of LM latent space is decided by 151

the semantic fields (Gu et al., 2024). For each label 152

in the vocabulary, there is a corresponding semantic 153

field in the latent space. The pole of a semantic field 154

is called semantic basis, representing an unmixed 155

and purest meaning. If representations are closer 156

to a semantic basis, they tend to share the meaning 157

of that semantic basis. The semantic meaning of a 158

representation in the latent space is decided by the 159

overlapping impact of multiple semantic fields. 160

The computation of semantic bases is simple. At 161

the LM input side, we multiply onehot embedding 162

e⃗ by the embedding matrix Wi to obtain the se- 163

mantic basis r⃗i = e⃗ ·Wi. At the LM output side, 164

due to the opposite operation direction between the 165

embeddings and the representations, we turn to use 166
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the pseudoinverse of the LM-head matrix W+
o . We167

multiply onehot embedding e⃗ by the pseudoinverse168

matrix to obtain the semantic basis r⃗o = e⃗ ·W+
o .169

Since LM vocabulary is required in the computa-170

tions, semantic bases only exist in the embedding171

latent space and the last-layer latent space.172

2.2 Semantic-based Loss Computation173

Based on the local isotropy of LM latent space (Cai174

et al., 2021), the logits in LM training and inference175

can be computed via similarity measurement (with176

semantic basis), instead of matrix multiplication177

(with LM-head matrix). The logits computed in178

this way is termed as "similarity-based logits" (Gu179

et al., 2024). It proves to have the same effects as180

the common practice of logits computation, and181

shows advantages in disentangling the semantics.182

Algorithm 1 Semantic Cross-Entropy Loss

Require: N semantic bases b⃗i; ground truth label
l; last-layer latent repr r⃗

Ensure: optimization target loss
logits← init_1d_tensor(N)
for i← 0 to N do

logits[i] ← cosine_similarity(r⃗, b⃗i)
end for
loss ← cross_entropy_loss(logits, l)

In LM finetuning, the logits will be used in loss183

computation. Taking the cross-entropy loss as an184

example, we compute the similarities between the185

given latent representation with semantic bases as186

similarity-based logits, and then compute with the187

ground truth for the loss, as shown in Algorithm 1.188

In terms of numerical calculations, when comput-189

ing in the last-layer latent space, it is equivalent to190

the logits computed via matrix multiplication.191

Algorithm 2 Semantic Cosine-Distance Loss

Require: l-th semantic base b⃗i (for ground truth
label l); last-layer latent repr r⃗

Ensure: optimization target loss
loss ← 1 - cosine_similarity(r⃗, b⃗l)

Further, leveraging the disentanglement effects192

of similarity-based logits, we can compute the loss193

merely with the corresponding ground truth. In the194

loss computation, the latent representation is only195

computed with one semantic basis solely, instead196

of with all semantic bases, as shown in Algorithm 2.197

In terms of effect, it optimizes the latent represen-198

tation to make it steer towards the corresponding 199

semantic basis. The cosine-distance loss is better 200

in computation cost, and its computation shows an 201

intuitive geometric meaning in the latent space. 202

3 Computation-Efficient Fine-Tuning 203

Figure 2: Our SALF approach is demonstrated with a
LM with 4 layers (so there are 5 latent spaces). The
rectangles with dark bars are the deviations, and the
rectangles with cross hatching are the gains in reducing
deviations. In LM finetuning, SALF uses a semantic-
based analysis to compute the deviations in each laent
space, and then uses a derived formula of the scaling
law to estimate the gains of each model layer. SALF
will find the layer with the maximum gain and only fine-
tune the shallower layers. In the illustration, layer 2 is
chosen and the first two layers are frozen, so only layer
3 and layer 4 will be finetuned. The layers and spaces
marked in gray color means their gains and deviations
will remains unchanged in LM finetuning.

SALF, short for Semantic-Aware Layer-Freezing. 204

It is a novel layer-freezing technique to speedup 205

the finetuning of language models. The core idea 206

is dropping the unnecessary computation in LM 207

backward-pass. Due to the chain rule in loss back- 208

propagation, the computation on deeper layers re- 209

quires the computation in shallower layers. That is, 210

SALF realize a computation-efficient LM finetun- 211

ing by freezing the first a few layers. To guarantee 212

that the layer-freezing will not damage the fine- 213

tuning effects, even improve the finetuning effects, 214

we proposed a semantic-based analysis on LM in- 215

ference and a derived formula of scaling law to 216

estimate the convergence of layers. An illustration 217

of our SALF approach is shown in Figure 2. We 218

also introduce strategies of assigning data samples 219

for a given budget, to obtain a good cost-benefit 220

balance of layer-freezing in LM finetuning. 221

3.1 Transitions on Semantics 222

In next-token prediction, the last token in the given 223

input is used as the medium to compute the next 224

token, denoted as medium token. Influenced by 225

3



Figure 3: The transition of semantics is illustrated with a 4-layer LM, whose vocabulary is a collection of colorful
labels. The green dot is the medium token (input-side semantic basis) and the blue dot is the ground truth (output-side
semantic basis). The solid/dashed black curves (transition trace) represent the semantic transition of the medium
token, defined by the dark dots (latent representations) in each latent space. The solid/dashed green lines (semantic
deviation) indicate the differences between the latent representations and the ground truth, and they differ before
and after LM finetuning: Comparing solid green lines (before finetuning) with dashed green lines (after finetuning),
the semantic deviation in each layer is reduced. Through LM finetuning, the latent representation in last-layer
semantically approach to the ground truth, and the argmax label become from red to blue.

the embeddings of other tokens and the parameters226

in model layers, the medium token will undergo a227

layer-by-layer transition on its semantic meaning,228

denoted as semantic transition. LM finetuning has229

effects on semantic transition, and the differences230

before and after finetuning are illustrated in Fig-231

ure 3. We define the involved concepts as below.232

Transition Trace. For a given sequence of n tokens,233

t1, t2, ..., tn, assume a m-layer LM will predict the234

next token tn+1, the representation of tn undergoes235

a semantic transition from semantic meaning i to j.236

The latent representation in each layer is denoted237

as f0, f1, f2, ..., fm (f0 is the onehot embedding,238

equals to i; while fm is the last-layer representation,239

equals to j), so the semantic transition defined by240

these representations is a transition trace.241

Transition Deviation. For a semantic transition of242

a m-layer LM, the deviation of the latent represen-243

tation in the k-th layer to the semantic basis of the244

ground truth, called semantic deviations, denoted245

as dk. It can be measured such as using cosine sim-246

ilarity, that is, dk = cosine(fk, v⃗). In terms of the247

computation, the semantic deviations is equivant to248

the semantic cosine-distance loss. The deviations249

can also be measured with other metrics.250

The semantic deviations before and after fine-251

tuning differ. Theoretically and empirically, LM252

finetuning tends to reduce the deviations. For a253

given medium token, in LM finetuning, the transi-254

tion trace will approach the semantic basis of the255

corresponding ground truth. The approach will be256

reflected in the deviation in each layer. By probing257

the situation of each layer, the semantic deviation258

will be reduced as well. That means, the latent259

representation will approach the semantic basis of 260

the corresponding ground truth. 261

Further, semantic deviations can be regarded as 262

the evaluation metrics of the capability of model 263

layers. In the latent space of the LM last-layer, the 264

representation of the medium token is intended to 265

be close enough to the semantic basis (namely the 266

ground truth). If the latent representations in the 267

middle layers are close to the semantic basis of the 268

corresponding ground truth, then the latent repre- 269

sentations in the last layer are likely to be close 270

to the semantic basis as well. Therefore, leverag- 271

ing the semantic deviations, model layers can be 272

finetuned selectively. 273

3.2 Layer-level Convergence Estimation 274

We propose an intuitive method to measure the 275

performance of each model layer leveraging scaling 276

laws. Scaling laws refer to empirical relationships 277

that describe how the model performance improves 278

with increasing resources, including data amount, 279

model size, and convergence degree (which is often 280

revealed as the computational power). 281

According to the compute-optimal scaling law 282

of LM pretraining (Hoffmann et al., 2022), the 283

training loss follows a parametric function of the 284

information entropy of training data E, the number 285

of model parameters N and the amount of data 286

tokens D. The function is shown as Equation (1). 287

In terms of the definition, the second term a
Nα is 288

the ideal capability of the model, and third term 289
b

Dβ is the finite optimization on the data. 290

L̂pretrain ≜ E +
a

Nα
+

b

Dβ
(1) 291
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By performing a slight derivation on the def-292

inition of the scaling law, the relationships be-293

tween the finetuning loss (of the data for finetuning)294

and resources (used in LM pretraining) can be de-295

scribed as shown in Equation (2). The first term296

L0(E
′) is the loss when interpreting the informa-297

tion entropy of the given data. It only depends on298

the embedding process and the LM-head, exclud-299

ing all model layers, since the information entropy300

is converted to predictable tokens by LM vocabu-301

lary. The second term C(N,D) is the capability of302

models in finetuning, which is the degree closing303

to the convergence. It is a function of data amount304

D and model size N , corresponding to the latter305

two terms in Equation (1). In the derived formula,306

the first term remains stable, while the second term307

will be larger as the finetuning goes on. It indicates308

an improved convergence, leading to a smaller loss.309

L̂finetune ≜ L0(E
′)− C(N,D) (2)310

Targeting to a given model, the capability of311

different layers can be estimated and compared.312

For a m-layer LM, where layers are denoted as313

l1, l2, ..., lm, we define “virtual submodel” as the314

truncated models starting from the deepest layer.315

The k-th virtual submodel, denoted as vk, is com-316

posed of l1, l2, ..., lk (as well as the embedding317

layer and the LM-head). Meanwhile, the loss of all318

m virtual submodels can be computed in one-time319

of LM forward-pass, so the capability of vk can320

be computed as Cvk ≜ L0 − Lk. Further, we can321

compare the capability of model layers. The loss322

gain of lk, denoted as Glk , indicates the capabil-323

ity difference between vk and vk−1, so we have324

Glk ∝ Cvk − Cvk−1
. Since L0 the remains same,325

the loss gain can be reduced as Glk ∝ Lk−1 − Lk.326

When the gain of lk is positive, the capability of vk327

is better than vk−1. A larger gain indicate stronger328

improvement between neighboring submodels.329

3.3 Semantic-Aware Layer-Freezing330

In next-token prediction, via LM finetuning, the331

last-layer latent representation of the medium token332

is close enough to the ground truth. The finetuning333

process can be explained as divide-and-conquer:334

If the latent representation is closer to the virtual335

one in the k-th layer, then they tend to be closer as336

well in the (k + 1)-th layer. By making the latent337

representation close enough to the semantic basis338

of the ground truth in each layer, the representation339

in the last-layer tends to be close to the ground340

truth as well. 341

Based on the explanation, we propose a layer- 342

freezing method to accelerate finetuning. The idea 343

is simple: instead of finetuning from the first-layer, 344

we find the layer where the deviation is the least 345

and then finetune from there to the last-layer. We 346

call the layer having the least deviation as end-of- 347

freezing layer, short as eof-layer. The deeper layers 348

will be frozen so only the eof-layer and shallower 349

layers are trainable, as shown in Algorithm 3. 350

Algorithm 3 Semantic-Aware Layer-Freezing

Require: model, datum
1: # (a) compute deviations of latent spaces
2: deviations← empty list
3: latent_reprs← model(datum)
4: semantic_bases← VDS(model)
5: for id← 0 to layer_num+1 do
6: deviation← compute_deviation(

latent_reprs[id],semantic_bases)
7: deviations.add(deviation)
8: end for
9: # (b) compute gains of model layers

10: layer_gains← empty list
11: for id← 0 to layer_num do
12: gain← deviations[id] -

deviations[id+1]
13: layer_gains.add(gain)
14: end for
15: # (c) freeze layers and backpropagate
16: eof_layer← argmax(layer_gains)
17: freeze_layers(range(eof_layer))
18: backpropagate(model, datum)

For a given dataset, the computation cost of back- 351

propagation is decided by the depth of eof-layers, 352

we can count the depths to know the cost-saving 353

of layer-freezing. To the opposite, we can have a 354

budget plan and force the depths of eof-layers to 355

fulfill the budget. In this way, we can control the 356

cost-saving by planning the depth of eof-layers. 357

3.4 Budget for Layer-Freezing 358

To balance the effectiveness and cost of model fine- 359

tuning, we incorporate a budget to determine the 360

extent of layer-freezing based on specific require- 361

ments (see Appendix A). This budget represents 362

the number of model layers to fine-tune for a given 363

dataset. It controls the efficiency of LM finetuning, 364

for example, we tend to give a low budget for LM 365

finetuning if we want a high efficiency. 366
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Budget Plan. Similar to the common practice of367

finetuning half layers, we design budget plans to368

control the cost-benefit tradeoff. For a given model369

of m layers, we make the amount of data, that is as-370

signed to finetuning layers between the eof_layer371

to the last layer, following the relative proportion372

of the growth sequence: (1) Following geometric373

growth, we take the growth ratio as 2. Then, the374

amount of data assigned for finetuning follows the375

relative proportion of 1, 2, 4, ..., 2m−1; (2) Follow-376

ing arithmetic growth, we make the initial term377

the common difference between terms. Then, the378

amount of data assigned for finetuning follows the379

relative proportion of 1, 2, 3, ...,m− 1.380

Budget Infilling. For a given dataset, if the bud-381

get cannot be infilled completely with the data, the382

infilling order will affect the cost-benefit tradeoff.383

We introduce two practices for budget infilling: (1)384

Breadth-First (BF) fills eof-layers in the deep lay-385

ers, and then shallower layers; (2) Depth-First (DF)386

fills eof-layers in all layers evenly, until layers are387

infilled successively from deep to shallow. We illus-388

trated with a model having four layers, following389

geometric growth, as shown in Figure 4.390

Figure 4: The order of budget infilling for a 4-layer
model is: first red, then orange, then green, and finally
blue shares. In breadth-first infilling, the color of shares
is decided by layer. First let eof-layers be in first-layer
until the layer is full (red); then let them be in second-
layer until full (orange); then be in third-layer (green);
and finally be in last-layer (blue). In depth-first infilling,
the color of shares is decided by the position in layers.
First let eof-layers be in first-share of all layers, from
deep to shallow layers; then let them be in second-share
of all layers; and then repeat the practice in the third
share, forth share, until the budget of each layer is satis-
fied in the proper order (red, orange, green, and blue).

4 Experiments and Results391

4.1 Setup392

Datasets. We use 5 established datasets, covering393

the common natural language tasks: emotion recog-394

nition: CARER (Saravia et al., 2018); similarity395

CARER MRPC SST5 TREC WebSS

Class Num. 6 2 5 6 8

Data Num.
Train 16,000 4,076 8,544 5,452 10,060
Test 2,000 1,725 2,210 500 2,280

Avg. Prompt Length 25.6 61.0 28.0 17.1 27.8

Table 1: Stats of natural language datasets.

Qwen2 Gemma2 Llama3

0.5B 1.5B 7B 2B 9B 8B

Model Size 0.49B 1.54B 7.62B 2.61B 9.24B 8.03B

Head Num. 14 12 28 8 16 32

Layer Num. 24 28 28 26 42 32

Dimension 896 1,536 3,584 2,304 3,584 4,096

Vocabulary 151,936 152,064 256,000 128,256

Table 2: Stats of Qwen2, Gemma2, and Llama3 models.

detection: MRPC (Dolan and Brockett, 2005); sen- 396

timent analysis: SST5 (Socher et al., 2013); and 397

general text classification: TREC (Voorhees and 398

Tice, 2000) and WebSS (Phan et al., 2008). The 399

statistics of datasets are shown in Table 1. 400

Models. We use the recently released LLMs, includ- 401

ing Qwen2 (0.5B-7B) (Yang et al., 2024), Gemma2 402

(2B-9B) (Riviere et al., 2024), and the state-of- 403

the-art Llama-3 (8.0B) 1. They are performant in 404

massive comparisons with other competitors, and 405

leading in the popularity statstics (especially, most 406

downloads per month) in the hugging-face website 407
2. The details are available in Table 2. 408

Baselines. LIFT is the state-of-the-art in layer-wise 409

LM finetuning on saving the computation cost. It 410

takes a front-to-end selection policy to prioritize 411

the layer to finetune (Zhu et al., 2024). However, 412

it only finetunes one layer each time, which may 413

damage its performance. We relax its restrictions 414

for a stronger baseline by letting more layers be 415

trainable while the computation cost is the same. 416

We mark the vanilla one as LIFT[half], and the 417

enhanced one as LIFT⋆[half]. In addition, we also 418

compare our approach SALF with two common 419

finetuning practices with LoRA: full-layer finetun- 420

ing and half-layer finetuning. The former is to 421

finetune all model layers, while the latter is to fine- 422

tune only the last half model layers. We marked 423

them as LoRA[full] and LoRA[half]. 424

Metrics. For effectiveness, we use F1 score to mea- 425

sure whether the predicted next-token is the ground 426

truth due to the class imbalance in the datasets. 427

F1 score is the harmonic mean of precision and 428

1https://github.com/meta-llama/llama3
2https://huggingface.co/
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LLM Method Dataset Avg.
CARER MRPC SST5 TREC WebSS

Q
w

en
2-

0.
5B

LoRA[full] 0.765 0.454 0.302 0.779 0.837 0.627
LoRA[half] 0.746 0.663 0.335 0.795 0.847 0.677
LIFT[half] 0.241 0.399 0.239 0.701 0.583 0.433
LIFT⋆[half] 0.806 0.755 0.456 0.805 0.891 0.743
SALF[half] 0.807 0.785 0.444 0.941 0.847 0.765

Q
w

en
2-

1.
5B

LoRA[full] 0.835 0.750 0.293 0.787 0.749 0.683
LoRA[half] 0.687 0.769 0.373 0.793 0.856 0.696
LIFT[half] 0.469 0.566 0.318 0.727 0.705 0.557
LIFT⋆[half] 0.823 0.779 0.503 0.808 0.917 0.766
SALF[half] 0.815 0.735 0.520 0.940 0.876 0.777

Q
w

en
2-

7B

LoRA[full] 0.820 0.399 0.075 0.252 0.029 0.315
LoRA[half] 0.794 0.690 0.388 0.796 0.866 0.707
LIFT[half] 0.532 0.739 0.320 0.747 0.699 0.607
LIFT⋆[half] 0.797 0.781 0.534 0.802 0.915 0.766
SALF[half] 0.823 0.831 0.542 0.951 0.852 0.800

G
em

m
a2

-2
B LoRA[full] 0.867 0.494 0.281 0.711 0.771 0.625

LoRA[half] 0.865 0.498 0.243 0.711 0.694 0.602
LIFT[half] 0.328 0.399 0.082 0.505 0.453 0.353
LIFT⋆[half] 0.872 0.518 0.280 0.737 0.797 0.641
SALF[half] 0.877 0.399 0.199 0.734 0.778 0.597

G
em

m
a2

-9
B LoRA[full] 0.801 0.399 0.193 0.706 0.765 0.573

LoRA[half] 0.865 0.399 0.201 0.725 0.741 0.586
LIFT[half] 0.382 0.399 0.187 0.577 0.484 0.406
LIFT⋆[half] 0.862 0.399 0.281 0.729 0.791 0.612
SALF[half] 0.860 0.399 0.190 0.658 0.797 0.581

L
la

m
a3

-8
B

LoRA[full] 0.394 0.399 0.402 0.256 0.029 0.296
LoRA[half] 0.818 0.664 0.338 0.784 0.861 0.693
LIFT[half] 0.590 0.466 0.476 0.779 0.837 0.630
LIFT⋆[half] 0.843 0.468 0.552 0.799 0.900 0.712
SALF[half] 0.872 0.399 0.571 0.945 0.885 0.734

Table 3: F1 Scores of layer-freezing methods (on the
diverse datasets and models).

recall, and considers the effects of both false posi-429

tives and false negatives. For efficiency, we use the430

“cost-saving” ratio as a new metric, representing the431

saved computation cost in backpropagation. Large432

ratios mean better effects.433

Pipeline. We conduct LM finetuning experiments434

to compare our approach with other layer-freezing435

practices. Since LIFT is designed to save around436

50% computation cost in backpropagation, we re-437

strict our approach to the same computation cost438

for a fair comparison (on effectiveness). The details439

on the implementation are in Appendix A.440

4.2 Performance Evaluation441

We evaluate the performance of our approach and442

the baselines in LM finetuning: finetune the LMs443

on the training set, and do inference on the test set.444

As shown in Table 3, based on the average F1445

score, on 4 out of 6 models, SALF performs better446

than others, while on the other model, its perfor-447

mance is very close to the best. Compared with448

the common practices LoRA[full] and LoRA[half],449

LIFT shows superiority in the performance while450

our approach SALF shows stable and obvious im-451

provements. Besides, the advantages of SALF vary452

on the datasets. On WebSS, SALF performs the453

best only in the case where the model is Llama3,454

but the performance gap to the best is not obvi- 455

ous. However, SALF cannot show stable improve- 456

ments on MRPC, especially when with Gemma2 457

and Llama3. The reason is that, the class number 458

of the MRPC dataset is only 2, meaning the seman- 459

tic transition is very simple, thereby the deviations 460

in the process may not be very helpful. All meth- 461

ods cannot perform well in SST5 with Gemma2, 462

which may caused by the bad semantic property of 463

Gemma2 models due to multi-query attention. It is 464

consistent with the analysis in (Gu et al., 2024). 465

It is noteworthy that LoRA[full] perform worse 466

than others, and even worse than LoRA[half]. It is 467

counter-intuitive since full-layer finetuning is up- 468

dating all layers and requires a larger computation 469

cost than LoRA[half]. However, in our understand- 470

ing, it may caused by the difference in the effects 471

of deep and shallow model layers. Usually, deep 472

layers learn the macro features while shallow lay- 473

ers learn the micro features (So et al., 2019; Brown 474

et al., 2020). It means, when the learning rate is 475

fixed in LM finetuning, the update in deep layers 476

shall be less frequent than that in shallow layers. 477

It also explains the reason why both LoRA[full] 478

and LoRA[half] perform not as well as LIFT⋆ or 479

SALF: LoRA[full] updates deep layers too often 480

while LoRA[half] updates deep layers too seldom. 481

Meanwhile, the results of the baseline LIFT 482

is not as good as the enhanced implementation 483

LIFT⋆. Their difference is that, the former only 484

makes the eof-layer trainable, while the latter fine- 485

tune all layers between eof-layer to last-layer. It 486

indicates that, merely finetuning deep layers cannot 487

guarantee smaller deviations in the shallow layers, 488

or the deviations require further processing. 489

In Appendix B, we compared the effects of tak- 490

ing different metrics of deviations. Further, we 491

analyzed the advantages of SALF in LM finetun- 492

ing with the illustrations on semantic deviations. 493

5 Analysis on Cost-Benefit Tradeoff 494

We study the performance and cost-benefit trade- 495

off of budget plans and infilling practices to layer- 496

freezing. For example, a geometric-growth budget 497

with breadth-first infilling is denoted as geom[bf]. 498

As shown in Table 4, the budget for cost-benefit 499

tradeoff is useful to both LIFT⋆ and our approach 500

SALF, while our approach still show better per- 501

formance. In comparisons, the arithmetic-growth 502

budget shows similar performance to the geometric- 503

growth budget. Meanwhile, the practice of depth- 504
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first infilling tends to perform better and more sta-505

bly than breadth-first infilling.506

Budget Dataset Avg.
CARER MRPC SST5 TREC WebSS

LIFT⋆[half] 0.843 0.468 0.552 0.799 0.900 0.712
LIFT⋆[arith][bf] 0.817 0.516 0.548 0.798 0.893 0.714
LIFT⋆[arith][df] 0.835 0.581 0.543 0.789 0.906 0.731
LIFT⋆[geom][bf] 0.763 0.729 0.404 0.791 0.876 0.713
LIFT⋆[geom][df] 0.845 0.625 0.559 0.795 0.899 0.745

SALF[half] 0.872 0.399 0.571 0.945 0.885 0.734
SALF[geom][bf] 0.906 0.665 0.586 0.962 0.855 0.795
SALF[geom][df] 0.920 0.711 0.607 0.970 0.921 0.826
SALF[arith][bf] 0.921 0.752 0.391 0.964 0.911 0.788
SALF[arith][df] 0.914 0.751 0.588 0.964 0.914 0.826

Table 4: Accuracy of layer-freezing methods with differ-
ent budget plans and infilling practices (on the diverse
datasets, using Llama3-8B).

As shown in Table 5, compared with geometric-507

growth, the budget of arithmetic-growth saves508

more computation costs. The reason is that, for a509

model of the same number of layers, the arithmetic-510

growth increases slower than the geometric-growth,511

so the budget of the latter is not likely to be fulfilled.512

For geometric-growth, eof-layers can fill in deep513

layers but cannot fill in shallow layers. Also, depth-514

first infilling can save more than the breadth-first515

infilling. The reason is similar, more eof-layers516

tend to be in shallow layers than in deep layers.517

Budget Dataset Avg.
CARER MRPC SST5 TREC WebSS

LoRA[full] 0.000 0.000 0.000 0.000 0.000 0.000
LoRA[half] 0.500 0.500 0.500 0.500 0.500 0.500
LIFT[half] 0.484 0.483 0.484 0.484 0.484 0.484
LIFT⋆[half] 0.484 0.483 0.484 0.484 0.484 0.484
SALF[half] 0.484 0.483 0.484 0.484 0.484 0.484

[geom][bf] 0.374 0.312 0.346 0.328 0.355 0.343
[geom][df] 0.616 0.583 0.601 0.589 0.604 0.598
[arith][bf] 0.614 0.613 0.613 0.609 0.615 0.613
[arith][df] 0.644 0.640 0.644 0.642 0.645 0.643

Table 5: Backpropagation cost-saving of layer-freezing
methods with different budget plans (on the diverse
datasets, using Llama3-8B).

Considering the efficiency and cost-benefit trade-518

off, the budget of arithmetic-growth shows equiva-519

lent performance but saves more computation costs.520

Also, the practice of depth-first infilling is bet-521

ter than breadth-first infilling. Based on the re-522

sults, an arithmetic-growth with depth-first infilling523

saves around 1/3 more computation cost and has a524

slightly better performance. The reason explaining525

why the combination is performant is the same as526

discussed, when the learning rate is fixed in LM527

finetuning, the update in deep layers shall be less528

frequent than that in shallow layers.529

6 Related Work 530

Leveraging the layered structure of neural mod- 531

els, the concept of layer-freezing was proposed 532

decades ago, but mainly for deep belief networks 533

(DBN) (Hinton, 2009). DBN is a stack of directed 534

sigmoid belief network (SBN) (Neal, 1992) and 535

an indirected restricted boltzmann machine (Hin- 536

ton, 2017). The backpropagation is only applied to 537

finetune the restricted boltzmann machine, while 538

the dependencies between other layers are not bidi- 539

rectional. Therefore, progressively training each 540

layer is proposed as a greedy strategy for training 541

DBN (Hinton et al., 2006; Bengio et al., 2006). 542

In the era of language models, there has been 543

little significant work studying layer-freezing for 544

efficient finetuning, while the focus often lies on 545

parameter-efficient, namely reducing the amount 546

of trainable parameters, instead of computation- 547

efficicent (Pan et al., 2024; Zhu et al., 2024). One 548

reason is the complexity and interpretability of lan- 549

guage models. Besides, the correlation between 550

model layers is not intuitive, and the effects of 551

bidirectional dependencies on layer-wise finetun- 552

ing have not been studied. Another reason is that, 553

the prior work on PEFT shows similar effects on 554

reducing the number of trainable parameters, or 555

even making the trainable parameters detachable. 556

7 Conclusion 557

In this paper, we have proposed the novel concept 558

of semantic transition. By defining transition trace 559

to describe the change of semantic meaning of the 560

next token, we explain LM finetuning as the pro- 561

cess of letting the representation gradually steer 562

to the corresponding ground truth in latent space. 563

Meanwhile, based on a derived law of scaling law, 564

we can reasonably estimate and compare the ca- 565

pability of model layers, so to better allocate the 566

computation resources in LM finetuning. Further, 567

we propose layer-freezing to accelerate LM finetun- 568

ing, by finding the layer with the maximum gains 569

of reducing deviation and finetune shallower layers. 570

Based on our results on diverse datasets and mul- 571

tiple models, semantic-aware layer-freezing pro- 572

vides better performance than the state-of-the-art 573

as well as the common practices. Moreover, our 574

work explores the effects of budget plans on the 575

cost-benefit tradeoff for layer-freezing. In return, 576

the effectiveness of our lay-finetuning approach 577

validates the usefulness of semantic transition. 578
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Limitations579

In this paper, we proposed semantic transition as580

a new perspective on the LMs’ functionality, be-581

sides, estimate and compare the capability of model582

layers. We suggest using the gains of reducing devi-583

ations in semantic transition to reduce the computa-584

tion cost of LM finetuning, while maintaining and585

even improving the performance of LM finetuning.586

In our understanding, our approach is leveraging587

the derived formula of scaling law to estimate and588

compare the capability of model layers. However,589

the capability cannot be strictly seen as the con-590

vergence degree, namely the expected benefits of591

finetuning a certain model layer. Besides, freez-592

ing the layer with the maximum gains of reducing593

deviation and finetune shallower layers is an em-594

pirical wise practice, there is no proof saying it is595

optimal. Meanwhile, in a high-dimensional latent596

space, the representations tends to be orthogonal597

to each other (Vershynin, 2018). Therefore, using598

the cosine distance between latent representation599

and the semantic basis as the deviation may not the600

optimal practice. There possibly exists potential601

evidence to support other better choices.602

The semantic transition is based to the similarity603

measurement between latent representations and604

semantic bases. The theoretical support is the local605

isotropy of LM latent space (Cai et al., 2021), there-606

fore for the language models whose latent space607

cannot fulfill local isotropy in terms of semantics608

(even though they seem not exist, to the best of our609

knowledge), our approach may not stand.610
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reduces the memory requirements in LM finetuning915

with slight performance loss.916

The experiments are conducted via a single run,917

with the global random-seed 42. The computation918

is based on a single Nvidia V100 (32 GB), and the919

computation budget is around 2200 GPU hours.920

A.2 License and Terms921

We understand and respect the licenses used in our922

experiments, including the Apache-2.0 license for923

Qwen2 models and Gemma2 models, as well as924

the Llama3 community license for Llama3 models925
4. We confirm that our use of existing artifacts was926

consistent with their intended use.927

A.3 SALF Algorithm with Budget928

By introducing the budget for LM finetuning, our929

semantic-based layer-freezing approach can fulfill930

the intended computation cost. Then, to guarantee931

improved performance, we propose the SALF al-932

gorithm with the budget consideration, as shown in933

Algorithm 4.934

The intent of the code is intuitive: first, compute935

the deviations to find the eof-layer for each data;936

then, arrange the data with the similar eof-layers937

into the budget; last, gradually narrow down the938

scope of finetuning (freezing more model layers),939

and use the arranged data to backpropagate the loss.940

For the sake of the sequential access restriction of941

data-loader, the algorithm is described with the942

for-loops and the repeated iterations. In the im-943

plementation, we can choose to use random access944

and caching techniques to remove the for-loops and945

reduce the number of iterations.946

B More Analysis947

B.1 Differences between Parameter-Efficiency948

and Computation-Efficiency949

Different from PEFT methods proposed for bet-950

ter parameter-efficiency, our approach SALF (as951

well as the baseline LIFT) is a layer-freezing952

method proposed for better computation-efficiency.953

The focus of parameter-efficiency is reducing the954

memory cost of finetuning, while in contrast, the955

focus of computation-efficiency is reducing the956

computation cost of backpropagation. For newly-957

emerging topics, including knowledge editing (Yao958

et al., 2023), representation engineering (Zou et al.,959

2023), and language model repair (Gu et al., 2023),960

4https://llama.meta.com/llama3/license/

Algorithm 4 SALF w/ Budgets

Require: model, data, budgets
1: tabu_data← empty list
2: for layer← 0 to layer_num do
3: # (a) freeze layers from deep to shallow
4: freeze_layers(range(layer))
5: # Backpropagation of Matching Data
6: for datum in data do
7: # (b) check whether to jump the loop
8: if budgets[layer] == 0 then
9: break

10: end if
11: if datum in tabu_data then
12: continue
13: end if
14: # (c) execute line 1-16 in Algorithm 3
15: eof_layer← SALF(model, datum)
16: if eof_layer > layer then
17: continue
18: end if
19: # (d) backpropagate
20: backpropagate(model, datum)
21: budgets[layer] -= 1
22: tabu_data.append(datum)
23: end for
24: # Backpropagation of Remaining Data
25: sampled_data← random_sample(

data, filter=tabu_data,
amount=budgets[layer])

26: finetune(model, sampled_data)
27: budgets[layer]← 0
28: tabu_data.extend(sampled_data)
29: end for
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computation-efficiency is critical in realizing the961

flexibility and adaptability.962

Compared with full-parameter finetuning, PEFT963

methods cannot guarantee computation-efficiency.964

The computation cost of finetuning cover the cost965

of forward-inference and back-propagation. The966

forward-inference cost cannot be reduced, so any967

methods for better computation-efficiency must968

deal with the back-propagation cost. Then, based969

on the chain rule of calculus to compute gradi-970

ents, which is the mathematical foundation of back-971

propagation, if the gradients of the k-th layer are972

needed, the gradient computation of any shallower973

layers (whose layer index is larger than k) cannot974

be skiped. Therefore, PEFT methods like LORA975

are not computation-efficient since they cannot re-976

duce the cost of back-propagation. For the same977

reason, layer-freezing is intuitive and reliable in978

guaranteeing the computation-efficiency.979

B.2 Metrics for Computing deviations980

SALF represents a common practice to detect how981

the model capability improves across different lay-982

ers. That is, probing the latent representations at983

the model layers, and using them for logits compu-984

tation as an estimation for LM interpretability.985

When computing the deviations in LM infer-986

ence, there are alternatives to the used semantic987

cosine-distance loss. We check the case where988

letting the cross-entropy loss be the deviation mea-989

surement, denoted as SALF[half][ce]. Since cross-990

entropy loss is do computation with all ground991

truths, not merely with the corresponding one, as992

did by cosine-distance loss, the former one involves993

more constraints than the latter one. It indicates that994

SALF[half][ce] will be slower in convergence, and995

further explains why this variant cannot perform996

as well as SALF[half] when training for the same997

epoch. Based on our analysis, they tend to have998

similar performance when doing model finetuning999

for an unlimited number of epochs until conver-1000

gence. In our understanding, a less constrained1001

loss function indicates a more straightforward con-1002

vergence process, and therefore tends to perform1003

better in LM finetuning. Since the cross-entropy1004

loss is commonly used in logits computation, the1005

advantages of SALF indicates that, cosine-distance1006

loss is a notable alternative for its better efficiency.1007

Meanwhile, we experimented with a variant us-1008

ing the customized metric: SALF[half][rank] mea-1009

sures the ranking of the ground truth in the output1010

probabilities. Theorically, in LM finetuning, the1011

Variant Dataset Avg.
CARER MRPC SST5 TREC WebSS

SALF[half] 0.872 0.399 0.571 0.945 0.885 0.734
SALF[half][ce] 0.213 0.595 0.419 0.952 0.835 0.603
SALF[half][rank] 0.086 0.753 0.455 0.946 0.876 0.623

Table 6: F1 scores of layer-freezing variants (on the
diverse datasets, using Llama3-8B).

ranking of the ground truth shall keep increase until 1012

becoming the first. As shown in Table 6, it fails 1013

to realize the equivalent performances to SALF. 1014

Based on our analaysis, it is caused by the small 1015

output space and the large model size. For exam- 1016

ple, Llama3-8B has 32 model layers while the class 1017

number of datasets are smaller than 10, so the devia- 1018

tions tend to be very small, so do the gains in reduc- 1019

ing the deviations. The variant SALF[half][rank] 1020

cannot be numerically sensitive, since its deviations 1021

tend to remain unchanged in neighboring layers 1022

and the gains cannot express useful information. 1023

In contrast, the cosine-distance loss is numerically 1024

sensitive, and focuses on cosine similarity with the 1025

corresponding ground truth. 1026

B.3 Semantic Effects of LM Finetuning 1027

To study the effects of our SALF approach to LM 1028

finetuning, we illustrate the deviation changes in 1029

LM finetuning of two settings: one is making all 1030

layers trainable, corresponding to LoRA[full], as 1031

shown in Figure 5; while the other one is taking 1032

our approach for layer freezing, corresponding to 1033

SALF[half], as shown in Figure 6. 1034

In the illustrations, the deviations are in the range 1035

of [0, 2], since it is derived from the cosine simi- 1036

larity. Besides, in a high-dimensional latent space, 1037

the representations tend to be orthogonal to others 1038

(including the semantic bases) (Vershynin, 2018), 1039

so when the deviations are smaller than 1, it means 1040

the corresponding data representations are steering 1041

towards the ground truth, then the corresponding 1042

LM predictions may be correct. Otherwise, if the 1043

deviations are larger than 1, then the corresponding 1044

LM predictions are not likely to be correct. 1045

By comparing the illustrated two situations of 1046

the blue shapes, we conclude the advantages of 1047

our semantic-based layer-freezing approach to LM 1048

finetuning as: our approach can avoid the side ef- 1049

fects of LM finetuning to deep layers, and tends 1050

to make the semantic deviations in shallow layers 1051

small. Taking the illustrated situation of the red 1052

shapes as a reference, we believe that the first ad- 1053

vantage (on the side effects to the deep layers) may 1054
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Figure 5: Violin plot of the deviations of each layer in LM finetuning, where the crossbars represent the mean of
deviations, when making all model layers trainable (on the CARER dataset, using Llama3-8B). The phenomena
include: (1) The red crossbars usually lie at lower positions than the blue crossbars (in the first 27 layers). It means,
the deviation changes by LM finetuning are negative in most layers. (2) The blue shapes are flattened in the last
few layers (from the 25-th layer to the last-layer) but some areas in the shapes lie at higher positions. It means, the
distribution of the deviations in the last layers is forming multiple peaks, no longer centered in only one peak, and
lots of data show higher deviations; (3) The differences between red and blue are large and show a reversal (first red
is better, then blue is better) in the first and last few layers. It means, the deviation changes by LM finetuning are
significant, which are worse in the deeper layers but better in the shallower layers.

Figure 6: Violin plot of the deviations of each layer in LM finetuning, where the crossbars represent the mean of
deviations, when taking semantic-based layer-freezing (on the CARER dataset, using Llama3-8B). The phenomena
include: (1) The red crossbars usually lie at the same positions as the blue crossbars (in the first 27 layers). It means,
the deviation changes by LM finetuning are very small in most layers. (2) The blue shapes are flattened in the last
few layers (from the 25-th layer to the last-layer) but almost all areas in the shapes lie at lower positions. It means,
the distribution of the deviations in the last layers is forming multiple peaks, no longer centered in only one peak,
and almost all data show lower deviations; (3) The differences between red and blue are only getting large (blue is
better) in the last few layers. It means, the deviation changes by LM finetuning are positive and highly targeted,
which are mainly in the shallower layers.
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be the cause of the second advantage (on the small1055

deviations in shallow layers). It explains why our1056

approach lead to small deviations in shallow layers,1057

and also, it emphasizes the importance of reducing1058

the deviations in deep layers. Further, the causation1059

explains how to achieve better performance while1060

reducing the computation cost in LM finetuning.1061

In addition, based on the illustrations, we see the1062

accumulated effects of our approach in reducing1063

the deviations in the last few model layers, where1064

the blue shapes gradually move to lower positions,1065

which indicates lower deviations of the data and1066

the higher likelihood of correct LM predictions.1067
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