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Sequence-based machine-learning models trained on genomics data
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improve genetic variant interpretation by providing functional predictions
describing theirimpact on the cis-regulatory code. However, current tools
donot predict RNA-seq expression profiles because of modeling challenges.
Here, we introduce Borzoi, a model that learns to predict cell-type-specific
and tissue-specific RNA-seq coverage from DNA sequence. Using statistics

derived from Borzoi’s predicted coverage, we isolate and accurately

score DNA variant effects across multiple layers of regulation, including
transcription, splicing and polyadenylation. Evaluated on quantitative
trait loci, Borzoi is competitive with and often outperforms state-of-the-art
models trained on individual regulatory functions. By applying attribution
methods to the derived statistics, we extract cis-regulatory motifs

driving RNA expression and post-transcriptional regulation in normal
tissues. The wide availability of RNA-seq data across species, conditions
and assays profiling specific aspects of regulation emphasizes the
potential of this approach to decipher the mapping from DNA sequence to
regulatory function.

Along-standing goal in genetics is to accurately predict the effect of
modifying each of the three billion nucleotides in the human genome
withrespect to gene-regulatory activity, ranging from chromatin acces-
sibility and transcriptional activation to splicing and polyadenylation.
Such predictions would dramatically improve researchers’ ability to
interpret pathogenic mutations and prioritize functional variants at
lociimplicated in genome-wide association studies (GWAS), or even
improve GWAS itself through functionally informed discovery and
fine mapping'™.

Machine-learning models trained to predict function from DNA
sequences have been successful at characterizing regulatory syn-
tax and interpreting genetic variant effects. Thus far, such models
have focused on assays in which measured activity is proportional
to local sequencing read counts. For example, transcription factor
(TF) chromatin immunoprecipitation with sequencing (ChIP-seq)

or DNase I hypersensitivity site sequencing (DNase-seq) and assay
for transposase-accessible chromatin with sequencing (ATAC-seq)
reads indicate a TF binding event or accessible DNA at the site where
the reads align. This allows for accurate predictions using relatively
short surrounding regions of sequence, typically 500-2,000 bp*™°.
By contrast, the most popular sequencing assay, RNA sequencing
(RNA-seq), does not have this property; RNA-seq reads aligned acrossa
transcript willdepend onamuch larger region of sequence containing
the gene’s exons and relevant cis-regulatory elements. Aread aligned to
the 3’end of agene may be hundreds of thousands of nucleotides away
fromits promoter and enhancers thatinfluence the magnitude of signal
from the assay. Furthermore, RNA-seq coverage patterns integrate
multiple layers of gene regulation; namely, transcription, splicing,
termination or polyadenylation and RNA stability. These properties
make the prediction of RNA-seq coverage from sequence challenging.
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Previous models have only attempted to work with RNA-seq after
summarizing gene expressioninasingle statistic. By processingalarge
region centered on the transcription start site (TSS), several models
can predict normalized gene counts' ™", This approach depends on
accurate TSS annotation and ignores isoform complexity. Other mod-
els predict cap analysis of gene expression (CAGE), which measures
expressionatthe 5’end of capped RNA (representing the TSS) and does
not capture coverage at individual exons. Similarly, sequence-based
models of post-transcriptional regulation rely on genome annota-
tions and transformed measurements extracted from RNA-seq to
isolate each regulatory mechanism (for example, percent spliced-in for
splicing)'**. However, such metrics inevitably struggle to describe
complex splicing outcomes, unannotated de novo events or the intri-
cate and sometimes competitive relationship between transcription,
splicing and (intronic) polyadenylation® 2,

Modeling RNA-seq coverage directly would have several benefits.
First, RNA-seq s far richer than previously modeled assays. Although
modeling multiple regulatory layers simultaneously is more challeng-
ing, it contains great promise; cross-talk between layers is common
and their simultaneous consideration may improve models for each
regulatory process. Thus far, models (for example, those trained on
ChIP or ATAC) have mainly focused on one regulatory layer. Second,
there are large amounts of RNA-seq data available, describing a wide
variety of celland tissue states across many species. Models trained on
data from multiple species have been shown toimprove performance’,
but chromatin profiling and the CAGE gene expression assays have been
performed on far fewer species than RNA-seq.

Given that mammalian genes often span hundreds of thousands
of nucleotides, effective RNA-seq modeling requires working with
very large sequences and algorithms that propagate information
across large distances. Recent work on the Enformer model using
self-attention has demonstrated a path toward achieving this goal®.
Therefore, we set out to model RNA-seq and additional epigenetic
assays’ coverage across diverse samples as a function of the underly-
ing DNA sequence, without prior knowledge of gene annotation. We
developed amodel, named Borzoi, that effectively learns several layers
ofgeneregulation. By applying attribution methods to predicted cover-
age patterns of individual RNA-seq experiments presentinthe training
data, Borzoi derives the primary cell-type-specific or state-specific
TF motifs and a genome-wide map of nucleotide influence on gene
structure and expression. Our modelimproved performance relative
to Enformer on downstream tasks to identify distalenhancers and pre-
dictgenetic variant effects on gene expression, anditintroduced new
capabilities to predict variant effects on splicing and polyadenylation
that match or exceed the state of the art. We anticipate that this toolkit
willaccelerate progress to determine mechanisms by which the many
unsolved human genetic associations affect traits.

Results
RNA-seq model design
RNA-seqis abase-resolution readout of transcribed and usually pro-
cessed RNAs. Thus, modeling RNA-seq coverage at base resolution
would be ideal. However, the long span of mammalian genes means
that we must also work with very long sequences to cover all exons
and relevant regulatory elements. Computational limitations cre-
ate atrade-off between these two considerations. We lean toward
using longer sequences at the expense of some resolution, choos-
ing 524 kb sequences for which we predict coverage in 32 bp bins.
Training examples are extracted in tiled 524 kb windows spanning
the human and mouse genome, thus containing genes at variable
locations per window.

Our neural network model, called Borzoi, is illustrated in Fig. 1a.
We use the core Enformer architecture, whichincludes a tower of con-
volution and subsampling blocks followed by a series of self-attention
blocks operating at 128 bp resolution®?%, Self-attention is a critical

operation, allowing every pair of positions to exchange information.
From this point, we make use of a U-net architecture to increase the
resolution back to 32 bp?**°. For each sequence length expansion (and
resolutionincrease), we upsample the position vectors from the atten-
tionblocks and combine them with the corresponding feature map of
equal size produced by the initial convolution tower (see Methods).
To transition from embeddings representing 128 bp to those repre-
senting 32 bp, we perform this block twice, upsampling by a factor of
two each time.

We chose to work with uniformly processed RNA-seq from
ENCODE, providing 866 human and 279 mouse datasets measured
across diverse biosamples, including cell lines, adult human tissues and
developing mice®"*2, We also included two to three replicates for each
Genotype-Tissue Expression (GTEXx) tissue processed by the recount3
project™ . To help the model identify salient regulatory elements,
we paired these data with the thousands of training datasets from the
Enformer model, including CAGE, DNase-seq, ATAC-seq and ChIP-seq
tracks (Methods). To assess model performance variance and enable
ensembling, we trained four randomly initialized replicate models. We
evaluated performance onaset of randomly held-out sequences from
the human genome and orthologous mouse regions.

Borzoiaccurately predicts RNA-seq and other assays

Despite the challenges involved with modeling RNA-seq coverage from
only underlying DNA sequence, Borzoi predicts exon-intron coverage
patterns with striking concordance for even long genes with many
exons, asexemplified in Fig. 1b by the 190 kb gene INSR. Test set predic-
tions matched RNA-seq coverage withamean Pearson’s R value of 0.74
across human samples when using one model replicate. Pearson’s R
increased to 0.75when averaging the predictions across the full ensem-
ble (Fig. 1c). Performance is difficult to compare directly to Enformer
owingtodifferencesindata processing (Methods). Nevertheless, test
accuracies on overlapping datasets are broadly similar (Extended Data
Fig. 1la-e) with two exceptions: the average Pearson’s R is lower than
Enformer for DNase and higher for CAGE.

To study predictions at the gene level, we aggregate and log,-
normalize coverage in exon-overlapping bins. When comparing pre-
dicted to measured gene-level coverage values, we observe amean
Pearson’s R of 0.87 across held-out genes (0.86 per model replicate)
(Fig. 1d and Supplementary Fig. 1a-d). After quantile-normalizing
the predictions across experiments and subtracting each gene’s
mean expression (so that the value represents the residual expres-
sion beyond the mean), we observe a mean Pearson’s R of 0.58
(0.55 per replicate) (Fig. 1e), indicating that the model explains
a significant amount of variation observed between tracks (such
as tissue-specific and cell-type-specific differences). Finally, we
note that Borzoi accurately predicts variation within the transcript
structure; evaluated on the top 20% of test set genes with the high-
est variance in coverage across the span of exons and introns, the
average Pearson’s R value between predicted and measured RNA
coverage (at the bin level) was 0.88 across all genes and samples
(Supplementary Fig. 1e).

Inthe Supplementary Information, we show that the model relies
on well-known regulatory features to make predictions and that the
model’s attention matrices comprehensively capture gene structure
(Extended DataFig. 2 and Supplementary Fig. 2).

Inference of tissue-specific expression and isoform usage

Gene expression is amulti-faceted process governed by numerous
regulatory steps, including transcription initiation, splicing and
polyadenylation, and these steps may exhibit tissue-specific effects.
To study Borzoi’s ability to make tissue-specific predictions, we
focused onasetof five GTEx tissues: whole blood, liver, brain, muscle
and esophagus. We first noted that Borzoi could accurately predict
tissue-specific gene expression coverage on held-out test genes
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Fig.1|Borzoi: a neural network for predicting RNA-seq coverage from
sequence. a, The Borzoi neural network architecture consists of anumber of
convolution and downsampling layers followed by a stack of self-attention
layers with relative positional encodings operating at 128 bp resolution, similar
to the Enformer architecture. The output is then repeatedly upsampled and
put through additional convolution layers with matched U-net connections

to predict at 32 bp resolution. Connections with ‘+'symbols represent a
combination of the outputs of a previous layer with the inputs of a new layer
through residual convolution. b, RNA-seq coverage prediction for the held-out
test gene INSR (GTEx ‘adipose tissue’), obtained by averaging the predictions

of four model replicates. The ‘squashed’ scale refers to the transformed scale
applied to the training data (Methods). ¢, Bin-level Pearson correlation on
held-out test dataacross coverage tracks when predicting CAGE, RNA-seq,
DNase-seq or ChIP-seq (n = number of coverage tracks). Predictions were
averaged across four model replicates. d, Gene-level Pearson correlation when
comparing the predicted to measured sum of RNA coverage across exons
(n=number of sequencing experiments). e, Gene-level Pearson correlation after
quantile-normalizing the RNA coverage tracks and subtracting the average gene
expression across tracks (n = number of sequencing experiments).

(for example, the blood-specific gene ADGREI visualized in Fig. 2a;
seealso Supplementary Fig.3a,b). We compared the predicted and
measured fold change in gene-level coverage of one tissue relative
tothe average coverage of the four other tissues, observing a Spear-
man’s R range from 0.52 to 0.75 when using the ensemble of four
model replicates (Fig. 2b).

Genes often have alternative TSSs, which are differentially used
across tissues®* >, For example, SGKI harbors an upstream TSS that
is highly expressed in brain but not blood (Fig. 2¢c; see Extended Data
Fig.3aforadditional examples). We computed TSS usage ratios for the
5’-most and 3’-most TSSs from our ensembled predictions (Methods)
and found correlations with experimental measurements (Spear-
man’s R = 0.85; Supplementary Fig. 3c), FANTOMS TSS usage propor-
tions (Supplementary Fig. 3d) and tissue-specific TSS usage ratio fold
changes (Spearman’s R = 0.29-0.50 on held-out genes; Fig. 2d and
Supplementary Fig. 3e).

The 3’ untranslated region (UTR) harborsregulatory regions called
polyadenylation signals (PASs), which can generate multiple isoforms
with distinct 3’ ends through alternative polyadenylation (APA)***'. For
example, RWDDI exhibits biased usage of the distal-most PAS in brain*?
(Fig. 2e; see Extended Data Fig. 3b for additional examples). Predicted
tissue-pooled distal-to-proximal polyadenylation coverage ratios
of held-out genes were highly correlated with measurements from
GTEX (Spearman’s R = 0.81; Supplementary Fig. 3f) and PolyADB v.3
(refs.43,44) (Supplementary Fig. 3g). Predicted tissue-specific cover-
age ratio fold changes showed moderate correlation with measured
fold changes between GTEx tissues (Spearman’s R = 0.23-0.41; Fig. 2f
and Supplementary Fig. 3h).

Inthe Supplementary Information, we show that although Borzoi
competitively identifies splice junctions from matched negatives, the
model has not learned to predict alternative splicing across tissues well
(Extended DataFig. 4; see Discussion).

Borzoi identifies regulatory motifs driving RNA expression
Borzoienables direct characterization of tissue-specific cis-regulatory
TF motifs by applying attribution methods to the predicted RNA-seq
coverage statistics*°°. Focusing on the five GTEx tissues analyzed
inthe previous section, we selected 1,000 genes for each tissue with
maximal transcript per million (TPM) fold change relative to other
tissues and computed tissue-specific aggregated exon coverage gradi-
ents per gene. These saliency scores describe the contribution of each
nucleotide tothe predicted expression. As an example, gradients at the
position of maximal liver-specific saliency for gene CFHR2 highlight
motifhits for CEBPA/Band HNF4A/G (Fig. 3a). We found that the gradi-
entscoreswere broadly similar across replicates and closely matched
in-silico saturation mutagenesis (ISM) (Supplementary Fig. 4).

Next, for each set of 1,000 tissue-specific genes, we selected
the corresponding gradients and subtracted the average gradient
of all other tissues, obtaining residual tissue-specific scores. We ran
TF-MoDISco, a de novo motif clustering tool®, for all five tissue gene
sets and aligned motif clusters to their most likely database match
using the Tomtom MEME suite and HOCOMOCO (v.11)°*>**, A selection
of top-scoring motifs are shown alongside their saliency distribu-
tions across genes in Fig. 3b (see also Supplementary Fig. 5a,b). We
detect well-known regulators for each tissue, such as SPI1/B and IRF4/8
for blood, HNF4A/G and HNF1A for liver, SOX9 and REST for brain
and MYOD1 and MEF2D for muscle. Motifs shared between tissues
generally tend to regulate distinct loci (Fig. 3b, inset). We similarly
recapitulate known regulatory motifs for esophagus and K562
(Supplementary Fig. 5c-e).

Finally, we aggregated the difference in gradient saliency foreach
pair of tissues among seqlets matching each TF, obtaining ascalar score
that describes the importance of a particular TF in one tissue relative
to another. These scores were highly correlated with observed TPM
fold changes for the corresponding TFs (Fig. 3c and Supplementary
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Fig. 2| Predicting tissue-specific patterns of RNA-seq coverage in normal
tissues. a, Example of tissue-specific gene expression predictions using Borzoi
infive GTEx tissues for the blood-specific gene ADGRE1. The predicted and
measured coverage of each RNA-seq experiment is aggregated in the bins that
overlap exons (blue shaded regions; ‘max’ and ‘sum’ indicate maximum and total
coverage). Exon annotations are shown below each coverage track (GENCODE
v.41). b, Comparison of predicted and measured fold change between the
aggregated coverage in a given tissue and the average coverage of the four other
tissues for held-out test genes (n=1,940). Blue and red dots represent replicate
and ensemble model performance, respectively. Bar height represents average
correlation. Inset, predictions for blood (color bar indicates Gaussian kernel

density estimate). ¢, Example of alternative TSS isoform predictions for gene
SGKI1.TSS usage is estimated as a coverage ratio between bins overlapping each
alternative start site (the ratio is annotated above each track). d, Comparison of
predicted and measured TSS coverage ratio fold change, calculated between the
coverage ratios (COVR) of agiven tissue and the average coverage ratio of the
remaining four tissues (n =337 held-out genes with at least two TSSs). e, Example
of 3’ UTR APA isoform predictions for gene RWDDI. Distal site usage is estimated
as the coverage ratio of bins overlapping the distal-most and proximal-most
polyadenylation sites. f, Comparison of predicted and measured fold change
between APA coverage ratios of a given tissue and the remaining four tissues
(n=994 held-out genes with at least two sites).

Fig. 5f,g). For example, Spearman’s R reached 0.77 when comparing
TF saliency in blood and muscle. Note that a repressor element such
as REST should be off-diagonal in comparison to brain, so we do not
expectaperfect correlation.

Improved context use for gene expression prediction
We next assessed Borzoi’s ability to identify and prioritize distal
enhancer-geneinteractions, whichis critical to cell and tissue-specific
regulation®*". For each target gene, we computed input gradients of the
aggregated exon coverage prediction in K562 RNA-seq samples, high-
lighting regulatory elements that drive the gene’s expression prediction.
Statistics derived from the gradient saliencies, averaged across the model
ensemble, were compared to measurements from high-throughput
CRISPR screens®™ %%, Compared to Enformer”, Borzoi can score sites
that are up to twice as far away from the gene, 262 kb, and we make use
of exon annotations rather than TSS annotations, which are generally
morerobusttoalternativeisoforms. Fig.4a,b displays the gradient attri-
butions for genes HBE1 and MYC, in which Borzoi correctly identifies
both proximal (distance to TSS, <20,000 bp) and distal (distance to
TSS, >200,000) enhancers, although false positives are also present.
When comparing Borzoi, Enformer and a distance-to-TSS baseline
ontheirability to classify measured positive from negative enhancer—
geneinteractionsindata from previous works®**, we find that Borzoi
has superior average precision (AUPRC) and area under the receiver
operating characteristic curve (AUROC) at all distances (Fig. 4c and

Extended Data Fig. 5a). Similar results are obtained on the data from
Gasperinietal. (2019)°® (Fig. 4d and Extended DataFig. 5b). Inline with
recent work®, we find a general decreasing trend in average predicted
percent expression change with TSS distance for both positive and
negative examples (Supplementary Fig. 6a). We study coverage pat-
ternsacross the transcriptin more detail in Supplementary Fig. 6b-e.
Through ablation experiments, we find that including training data
such as DNase-seq and ATAC-seq in addition to RNA-seq improves
performance (Supplementary Fig. 7a-c).

To further demonstrate the model’s reliance on abroader genomic
context for its predictions, we analyzed expression data of seven dis-
tinct promoters that had been integrated into thousands of genomic
positions by the TRIP assay®”®. We predicted activity scores from
multiple classes of coverage tracks, including DNase, histone modifi-
cations, CAGE and RNA-seq (Supplementary Fig. 8a,b and Methods).
In general, the scores derived from DNase tracks were most concord-
ant with the measured expression levels (Fig. 4e and Supplementary
Fig. 8c; 20-fold cross-validation, Spearman’s R = 0.58 for promoter
ARHGEF9). These predictions were better correlated with expression
than LMNB1DamlID-seq, which measures nuclear laminainteractions
and constitutes a strong baseline.

Borzoi prioritizes genetic variants that influence expression
Accurately predicting the influence of genetic variants on gene expres-
sionis crucial for understanding the regulatory mechanisms of genetic
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Fig. 3| Identifying transcriptional cis-regulatory motifs through tissue-
specific attribution. a, Gradient attributions at the mode of maximum saliency
for five GTEx tissues for liver-specific gene CFHR2 (mean ensemble saliency). All
sequence logos have identically scaled y axes (min and max are displayed in the
top right corner). Probable motif hits and their position weight matrices (PWMs)
from HOCOMOCO (v.11) are shown. Annotated Tomtom £ values represent the
significance of the motif match. Inset, comparison of nucleotide-level saliencies
for liver and muscle coverage tracks. b, A selection of motif clusters identified by
MoDISco from gradient saliencies corresponding to four GTEx tissues. Shown
are the MoDISco PWMs, the best-matching PWMs from HOCOMOCO and the
distributions of tissue-specific gradient saliencies for seqlets belonging to a

Top hits from GTEx muscle

given cluster (n =number of seqlets). P values are computed using a two-sided
Wilcoxon test between the gradient saliencies of the tissue with the largest

and second largest 95th percentile of values. P values ranged from 0.075 for
CEBPA/B/D (notsignificant) to 5.7 x 107°% for SPI1/B. The E values represent the
significance of motif matches as computed by Tomtom. Bottom left, comparison
of seqlet saliencies for putative CEBPA/B/D between whole blood and liver.
Each dot s colored by the measured difference in log(TPM) for the target gene.
¢, Comparison between the average difference in gradient saliency of seqlets
belonging to motif clusters for pairs of GTEx tissues and the difference in
measured log(TPM) for the corresponding TF genes. The median TPMs of genes
belonging to the same TF subfamily (HOCOMOCO) were averaged.
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Fig. 4| Predicting the impact of context and distal regulatory elements on
gene expression. a, Exon-aggregated gradient saliency for HBEI across the

524 kb input (curves for four model replicates). CRE regions that are measured to
regulate (green) or not regulate (red) HBEI are annotated. Input-gated gradients
fora192 bp window centered on the most distal enhancer are shown at the
bottom (min and max are displayed in the top right corner). b, Exon-aggregated
gradients for MYC. ¢, Average precision (AUPRC) when using a statistic computed
from the Borzoi or Enformer gradients within alocal window around each CRE
locus to classify whether it regulates the target gene (measurements froma
previous publication®®). The number of positives and total number of

examples are displayed below each distance bin. The total number of examples

Site - TSS distance (bp)

Predicted DNase count (log)

is (<15K) n =144, (15K-45K) n = 277, (45K-98K) n = 500 and (98K-262K) n =1,220.
95% confidence intervals were estimated from 1,000-fold bootstrapping.

d, AUPRCs when using Borzoi or Enformer gradients to classify regulating and
non-regulating CREs in data from Gasperini etal. (2019)**. The total number

of examplesis (<15K) n=1,230, (15K-45K) n = 2,445, (45K-98K) n = 4,058 and
(98K-262K) n =10,051. 95% confidence intervals were estimated from 1,000-fold
bootstrapping. e, Left, predicted vs measured expression levels of TRIP reporter
constructs based on Borzoi DNase coverage in K562 (promoter, ARHGEF9).
Color corresponds to DamID LMNB1 measurements. Right, average Spearman’s
R (20-fold cross-validation (CV)) when predicting TRIP expression based on
different scores.

associationsinhuman populations. Here, we evaluated Borzoi’s ability
to distinguish fine-mapped GTEX expression quantitative trait loci
(eQTLs) fromaset of matched negatives, controlling for TSS distance'.
As an example, Fig. 5a shows RNA-seq coverage predictions for the
gene SHTNIin GTEx whole blood, for both the reference sequence
and an altered sequence substituting the alternative allele of single
nucleotide polymorphism (SNP) rs1905542. We also show the measured
coverage in GTEx individuals harboring each allele. Borzoi correctly
predicts the upregulation of SHTN1 expression owing to the creation
of a CEBP binding motif®~* (see Supplementary Fig. 9aand Extended
DataFig. 6a,b for additional examples).

Borzoi predicts coverage across a large sequence region from
which a variant effect score must be distilled. For RNA-seq tracks, we
compute either the log fold-change sum or L2 norm of differential
coverage across exons (Methods). Using Borzoi’s ensemble with an
L2 scorewas superior to Enformer and its original sum aggregation at
discriminating eQTLs (mean AUROC = 0.794 vs 0.747 across tissues;
Fig. 5b,c). Borzoi still outperformed Enformer when using a single
model (AUROC = 0.788) or when switching to the original sum statistic
(AUROC =0.772). Borzoi also exhibits greater Spearman correlation

than Enformer when comparing effect size predictionsto fine-mapped
eQTL coefficients (mean R =0.334 across tissues vs R=0.227; Fig. 5d
and Supplementary Fig. 9b,c). Borzoi outperforms Enformer with
even a single model (mean R = 0.292). In ablation experiments, we
found that training on DNase-seq and ATAC-seq data in addition to
RNA-seq, as well as mouse data, substantially improved predictions
(Supplementary Fig. 9d). We further evaluated the model’s ability to
prioritize true eGenes among other genes surrounding an eQTL (Sup-
plementary Fig. 9e). The model performed, at best, marginally better
than a TSS distance baseline.

To further test the utility of Borzoi-derived variant scores, we
investigated the degree to which the model can distinguish common
variation, whichis generally benign, from amatched set of singletons
(rare variants observed in a single individual), which are relatively
enriched for pathogenicity, in the GnomAD database’”*. For com-
parison, we considered CADD (v.1.6) scores”’°. Restricted to ENCODE
candidate cis-regulatory elements, Borzoi and CADD exhibited equal
discriminative power (mean AUROC = 0.55; Fig. 5e and Supplementary
Fig.9f). Combining their scores resulted in the highest accuracy (mean
AUROC =0.57).
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Fig. 5| Borzoi predictions of variant effects align with eQTL results and
negative selection. a, Example eQTL rs1905542. Shown are the predicted
RNA-seqwholeblood coverage tracks for the reference (blue) and alternate
(red) alleles, as well as the measured, aggregated RNA-seq coverage in whole
blood for 32 homozygous carriers of the reference allele and 32 heterozygous
or homozygous carriers of the alternate allele. Exon-overlapping bins are
shaded light blue. Exon-aggregated coverage for each allele and their ratio are
annotated. ISM maps are shown at the bottom with equally scaled y axes, along
with probable motif hits and Tomtom motif £ values. b, AUROC per GTEx tissue
when using Borzoi or Enformer to classify fine-mapped eQTLs from distance-
matched negatives. Each model’s mean AUROC is annotated. ¢, Comparison of
tissue-specific GTEx eQTL classification performance as a function of distance

to the TSS. Each violin plot shows the median AUPRC, interquartile range and
1.5x interquartile range as whiskers. P values are computed using a two-sided
Wilcoxon test (n =49 tissues). d, Left, comparison of Spearman’s R between
predicted and observed GTEx eQTL effect sizes, using either Borzoi or Enformer
with the differential log sum coverage statistic (‘'SUM’; Methods). Each model’s
mean Spearman’s R value is annotated. Right, predicted vs observed eQTL effect
sizesin whole blood for Borzoi. e, Left, ROC obtained when classifying singleton
variants from common variation (AF > 0.05) from gnomAD. Right, Mean AUROC
witherror barsindicating the 95% confidence interval, estimated from1,000-
fold bootstrapping (tenfold cross-validation). All variants were sampled from
ENCODE candidate cis-regulatory elements (cCREs). AUROC scores are displayed
inthelegend.

Inthe Supplementary Information, we show that Borzoi exhibits
competitive performance compared to Enformer when predicting
non-coding regulatory mutations in promoters and enhancers as
measured by massively parallel reporter assays (MPRAs) (Supplemen-
tary Fig.10).

Functional polyadenylation variant interpretation

Anotherimportant class of disease variants alters 3’ mRNA processing”’.
Wefirst probed Borzoi’s predicted coverage in 3’ UTRs with attribution
methods to understand which sequence features affect the predicted
shape (Fig. 6a). Motifs for well-known polyadenylation regulators (for
example, CFIm, CPSF, CstF) emerge from the attribution scores of the
predicted distal polyadenylationratio (Fig. 6b). Although we generally

donot find determinants of mRNA half-lifein the 3’ UTR attributions,
we doobserveacorrelationbetween codon-aggregated gradient salien-
cies of gene exon coverage and MPRA measurements from a previous
publication’ (Pearson’ R = 0.59) (Supplementary Fig. 11a). We also
note that window-shuffled ISMis amorereliable attribution method in
3’ UTRs because of buffering effects (Supplementary Fig. 11b).

We next investigated Borzoi’s ability to distinguish between
fine-mapped 3’ QTLs from the eQTL catalog’®° (polyadenylation
QTLs (paQTLs); n=1,058) and a set of expression-matched negatives,
controlling for PAS distance. We calculated variant effect scores as
the maximal absolute change in predicted coverage ratio between
any 3’ cleavage junction from tissue-pooled GTEx tracks. We focused
on tissue-pooled predictions because the limited number of QTLs
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Fig. 6| Predicting APA and 3’ polyadenylation QTLs. a, Predicted and measured
RNA-seq coverage across the distal PAS of SRSF11 (GTEx pooled tissue).
Calculation of polyadenylation-centric coverage ratios (COVR) isillustrated in
the figure. Attribution scores based on gradient saliency, ISM and ISM shuffle are
shown at the bottom (min and max displayed in the right corner). b, MoDISco
PWMs of well-known APA regulators, obtained from pooled GTEx coverage

ratio gradients calculated for the Gasperini gene set™. ¢, Predicted RNA-seq
coverage (GTEx pooled) for variant rs114880747, along with measured coverage
intwo individuals with the reference allele and two heterozygous individuals
(threetissues). The log ratio between the variant and reference COVR statistics
is annotated in the plot. Attribution scores (bottom; plotted with equal y scale)

suggest gain of a CstF motif. d, Predicted and measured coverage inindividuals
without and with variant rs80168986 (two individuals, three tissues each).
Attribution scores (bottom) suggest gain of an HNRNPA1 motif. e, AUPRC when
classifying fine-mapped GTEx paQTLs based on predicted RNA-seq coverage ratio
statistics (tissue pooled), plotted as a function of decreasing distance threshold
to the nearest 3’ UTR PAS. Each dot represents a permutation test (n =100;
dashed line, mean; Methods). f, paQTL classification AUPRC comparing variant
predictions of Borzoi, APARENT2 and APARENT2+PolyADB. Each dot represents
apermutation test (n=100; dashed line, mean). g, Mean paQTL classification
AUPRC of 100 permutations, plotted as a function of decreasing distance
threshold to the nearest PAS. ‘A2+S+Borzoi’ represents an ensemble of all models.

prohibited a tissue-specific analysis. Coverage predictions for two
paQTLs are shown in Fig. 6¢-d (and Supplementary Fig. 11c,d). Com-
pared to RNA-seq tracks of GTEx individuals harboring the alternative
allele, Borzoi correctly predicts the change insite usage caused by each
variant. Extended Data Fig. 7a shows more examples.

The variant effect scores derived from the predicted RNA-seq
tracks discriminated paQTLs from the matched negatives witha mono-
tonicincreaseinaccuracy at closer distances to the nearest PAS (Fig. 6e;
AUPRC = 0.64-0.74). Compared to variant scores predicted by the
APARENT2 model?, Borzoi was consistently more accurate (Fig. 6f).
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Fig. 7| Classifying sQTLs and intronic paQTLs from RNA-seq coverage
predictions. a, Predicted and measured RNA-seq coverage across an exonin

the SRSF11 gene (GTEx pooled tissue). Calculation of exon-to-intron coverage
statistics (COVR)isillustrated in the figure. Attribution scores based on gradient
saliency, ISM and ISM shuffle are shown below (min and max displayed in the right
corner). b, PWMs of putative splicing regulators, obtained by running MoDISco
on pooled GTEx coverage ratio gradients. ¢, Predicted RNA-seq coverage (GTEx
tissue testis) for variant rs55695858, along with measured coverage in testis for
fiveindividuals with the reference allele and five heterozygous individuals (the

10K 2K 500 200 100 50
Max distance to nearest splice site (bp)

sQTLissignificantin testis). The log ratio between the variant and reference
COVR statistics is annotated in the plot. Attribution scores are shown below
(yaxes plotted with equal scale). d, Comparison between the variant effect
predictions of Borzoi, Pangolin and an ensemble of both models at the task

of classifying fine-mapped splicing QTLs from GTEX, at different distance
thresholds from anannotated splice junction. Each dot represents the AUPRC
metric of each model for a given GTEx tissue (median AUPRC drawn as a dashed
line). e, Average AUPRC for Pangolin, Borzoi and their ensemble as a function of
decreasing distance threshold to the nearest splice junction.

However, the performance gap decreased when scaling APARENT2’s
predictions by the reference isoform percent from PolyADB, suggest-
ing that contextis animportant determinant. We further compared to
a3’ UTR-wide ensemble of APARENT2 and Saluki** (Methods). Borzoi
performsbetter atlonger distances (dAAUPRC > 0.050 at 2,000 bp) with
amore comparable performance closer to the PAS (dAAUPRC = 0.025
at 50 bp) (Fig. 6g). At closer distances, the average rank of all model
predictions (Borzoi, APARENT2 and Saluki) surpasses either model’s
individual performance.

Functional splicing variant interpretation

Repeating the analyses of the previous section for RNA splicing, we
defined a splice-centric attribution score based on the predicted
exon-to-intron coverage ratio spanning asplice junction (Fig. 7a). When
running MoDISco on gradients from tissue-pooled exon-to-intron

coverage ratios for genes from the Gasperini set*®, we found known
splice-regulatory motifs (Fig. 7b). Buffering effects were less prob-
lematic when interpreting repeat-like splicing motifs with ISM (Sup-
plementary Fig.12a).

We curated fine-mapped splicing QTLs (sQTLs) from the eQTL cat-
alogand constructed expression-matched and splice distance-matched
negatives (n = 4,105)%. This relatively large set of variants allowed for a
tissue-specific analysis. Variant effect scores were calculated from the
predictions as the maximum absolute difference in relative coverage
across bins withinthe gene span. RNA-seq coverage predictions foran
example sQTL (rs55695858) are shown in Fig. 7c (see Supplementary
Fig. 12b and Extended Data Fig. 8a,b for more examples), along with
measured coverage for five GTEx individuals with or without the alter-
native allele. The variant weakens an alternative 3’ splice site, which
upregulates extension of the corresponding exon. When comparing
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Borzoi to Pangolin® for the task of classifying the causal sQTLs from
matched negatives, Pangolin has a slight advantage (Fig. 7d-e and
Supplementary Fig.12c; dAUPRC = 0.01, evaluated on all SNPs within
distances of<10,000 bp from an annotated splice site). Most far-away
SNPs are de novo splice-gain mutations and are relatively easy for Pan-
golinto classify based onthelocal predicted effect at the variant allele,
whereas Borzoi’s splice-gain predictions appear less well-calibrated. By
contrast, Borzoiis better at distances closer to the junction (Fig. 7d-e;
dAUPRC = 0.02, evaluated on variants <200 bp from an annotated
junction). Importantly, the average rank prediction of both models is
superior to either model alone (AAUPRC > 0.02).

Intronic polyadenylation variant interpretation

Candidate polyadenylation sites frequently occur in introns, result-
ing in competition between the PAS and the enveloping splice junc-
tions. In this case, the intron is either spliced out or retained and
polyadenylated*®®!. Curious as to whether Borzoi has learned about
this competition between distinct regulatory functions, we fil-
tered the paQTLs from the eQTL catalog for SNPs that were closer
to intronic polyadenylation sites than 3’ UTR sites and constructed
new expression-controlled negatives that were matched for intronic
polyadenylation distance. Borzoi predicts fine-mapped causal intronic
paQTLswell, withanaverage AUPRC of 0.725 (Extended Data Fig. 9a,b
and Supplementary Fig.13a).

Discussion

In this paper, we propose a new sequence-based machine-learning
model, Borzoi, thatlearns to predict sequencing coverage from a vast
set of RNA-seq experiments. Borzoi enables variant scoring and inter-
pretation through multiple layers of regulation, including transcrip-
tion, splicing and polyadenylation, and demonstrates competitive
performance to state-of-the-art models in classifying fine-mapped
QTLs. When averaging predictions across an ensemble of model repli-
cates, Borzoi’s performance improved further. By applying sequence
attribution methods to statistics derived from the predicted coverage
tracks, Borzoi provides tissue-specific interpretations of enhancers
driving RNA expression and post-transcriptional regulation within
the transcript. Through a number of ablation studies, we discovered
that training on DNase-seq and ATAC-seq datain addition to RNA-seq
consistently improved test set accuracies compared to training on
RNA-seq alone and delivered better concordance with eQTL measure-
ments and enhancer-gene linking data. This observation suggests
thatrecent multiome datasets, which measure both accessibility and
expression in single cells, would be valuable as joint training data.
Variant prediction quality was only marginally affected by whether
ornotthe variant occursingenomic sequences seen during training,
meaningthat geneticsresearchers canignore this factor when using
the model.

Challenges to modeling RNA-seq coverage remain, and Borzoi is
far from perfect in predicting these data. For example, although dif-
ferential 5’ (TSS) and 3’ (APA) isoforms of held-out genes were predicted
accurately across tissues, most tissue-specific splicing events were
not captured well by the model, which rather tended to predict the
average RNA-seq shape. Furthermore, we did not find sequence ele-
ments related to mRNA half-life in Borzoi’s sequence attributions®*,
Disentangling these layers of regulation is particularly difficult in the
presence of sequencingbias. For example, reads aligning with greater
density at the 3’ end of transcripts®** and other confounders (for
example, GC bias) caused false positives as we attempted to classify
alternatively used splice sites based on predicted coverage. We also
emphasize theimportance of choosing appropriate attribution meth-
odstointerpret the model. Although input gradients and ISM produced
high-quality attributions for splice junctions and enhancer-promoter
regions, we found that window-shuffled ISM worked better for 3’ UTRs
owing to buffering effects.

For researchers intending to use Borzoi in their genetic variant
analyses, we recommend using the gene-centric variant effect scores
derivedin this paper to prioritize variants with respect to a particular
target gene. These scores include (1) predicted exon-aggregated cov-
erage log fold change of the target gene (for abundance differences),
(2) predicted maximum difference in coverage log ratio between any
3’ cleavage site (for polyadenylation differences) and (3) predicted
maximum normalized difference in any coverage bin within the gene
body (for splicing differences). If target genes are unknown a priori,
we recommend using a gene-agnostic statistic, such as the one based
on total L2 norm, to quantify potential changes in coverage patterns
across the entire output window.

In future work, we envision several directions for improvement.
We believe that adding training data from additional assays based on
RNA-seq will further improve model quality; for example, crosslink-
ing and immunoprecipitation sequencing to measure RNA-binding
proteins®®, ribosomal profiling to measure translation®*® and
time-series measuring mRNA half-lives®**°. Similarly, we anticipate
that training on experiments in which regulatory proteins have been
perturbed will improve model performance in general and enable
causalinference by tying particular regulators to sequence motifs”%
Data quantity is a critical factor in successful machine learning and
we believe that adding RNA-seq from more mammals is a viable path
toincreasing training data and model quality®*. Relatedly, training on
individual human genomes with matched RNA-seq data from popula-
tion sequencing efforts like GTEx** may help further improve variant
effect predictions’*, Finally, we are eager to incorporate new efficient
attention modules to boost the receptive field to megabase scale and
predict at finer resolution®.

In summary, we developed a neural network model for predict-
ing RNA coverage from sequence and demonstrated its performance
on multiple variant interpretation tasks. Direct modeling of RNA-seq
opens the door to studying a wide range of experimental assays,
increasing our ability to understand the impact of genetic variation
ongene-regulatory processes.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods
The experiments conducted in this study did not require approval from
aspecific ethics board.

Training data

The training data for this analysis consisted of a large set of human
and mouse RNA-seq experiments. To help the model use important
sequence features for making its RNA coverage predictions, we also
included the experimental assays studied by the Enformer and Basenji
models in the training data®", This includes a curated set of human
and mouse CAGE assays from the FANTOMS consortium, which we rea-
soned would help the model relate TSS usage and strength to RNA-seq
coverage between multiple (alternative) TSSs’*?%, as well as DNase-seq
and ChIP-seq from ENCODE and the Epigenomics Roadmap*+*° and
pseudo-bulk single-cell ATAC-seq data from CATlas'°'”", which focuses
the model towards distal regulatory elements. We processed the data
slightly differently relative to prior analyses””. First, we aggregated
the aligned read counts here at 32 bp resolution. Second, we split the
CAGE-aligned reads by strand, requiring that the model predict both
the forward and anti-sense coverage.

We collected 867 human and 278 mouse RNA-seq coverage tracks
from ENCODE. This set includes samples from a diverse set of tissues
and cell types, with measurements spanning the developmental spec-
trum for both human and mouse. The tracks available for download
represent normalized coverage from the STAR alignment program
of uniquely mapping reads'”’. Most experiments used a protocol to
enable stranded analysis, creating a forward and anti-sense coverage
track. We trained Borzoi to directly predict these continuous coverage
values in 32 bp genomic bins. Owing to the relatively large dynamic
range of RNA-seq, we normalized each coverage track by exponenti-
ating its bin values by 3/4. If bin values were still larger than 384 after
exponentiation, we applied an additional square-root transformto the
residual value. These operations effectively limit the contribution that
very highly expressed genes can impose on the model training loss.
The formulabelow summarizes the transform applied to the /" bin for
tissue t of target tensory:

(squashed) _ | (3/4)

Y = {yj,t if yﬁ/“) < 384, otherwise 384 + yﬁ/ Y _ 384}

We refer to this set of transformations as ‘squashed scale’ in the
main text. The parameters were chosen such that most genes had bin
values of <1,000 (a reasonably large maximum value that is handled
well by standard tensorflow data types). For most downstream tasks,
for example, when calculating log fold changes from predicted val-
ues because of a mutation, we first undo the normalization by apply-
ing inverse transforms to the predictions (thus operating in ‘count’
space). One exceptionis when visualizing reference predictions of test
sequences, in which all transforms except the residual exponentiation
at384areinverted, assmall amounts of noise near the threshold would
otherwise be amplified.

We supplemented the training data with 89 tracks from GTEx
whole-tissue samples®, uniformly processed by the recount3 pro-
ject** (GTExv.8release). recount3 clustered the 49 GTEx tissues into
30 meta-tissues, combining highly related physiological regions
(such as regions of the brain). For each meta-tissue, we chose a
subset of samplestoinclude as training data by performing k-means
clustering on the gene expression profiles of all samples with k=3
(although several meta-tissues collapsed to k = 2). For each cluster,
we chose to include the sample with the minimum average dis-
tance to all cluster members. These data were processed without
consideration of strand information in recount3, which means
the GTEXx training tracks are non-stranded whereas most other
RNA-seqtracks are stranded. For these tracks, we scaled the aligned
fragment counts by the inverse of their average length to weight

each fragment as a single event, in addition to the exponentiation
transform described above.

We fragmented the human (hg38) and mouse (mm10) chromo-
somes and randomly divided these fragments into eight roughly evenly
sized partitions, pairing orthologous regions into the same partition.
One partition was held out for validation and another for testing, and
the remainder of the data (-75%) was used for training. Note that all
coverage measurements of all experimental assays (RNA, DNase, CAGE,
ATAC, ChIP) are held out (and not seen by the model) whenever a par-
ticular 524 kb sequence window is not in the training set.

Model

The model is based on the Enformer network architecture but intro-
duces anumber of simplifications and enhancements to optimize for
RNA-seq prediction®. Supplementary Fig. 14 shows the full architec-
ture. Enformer comprises two main stages. First, repeated applica-
tion of a convolution block that achieves a twofold reduction of the
sequence length extracts local sequence patterns until each position
inthe sequence represents 128 bp. Second, repeated application of a
self-attention (or transformer) block enables long-range interaction
and exchange between every pair of sequence positions” . Enformer
acceptsal96 kbinput sequence and predicts coverage data aggregated
at128 bp resolution.

RNA-seq is a base-resolution readout of transcribed RNAs. We
believed thatitwasimportant tobothincrease the sequence lengthand
decrease the prediction resolution to model RNA-seq well. Mammalian
genes regularly exceed a full span of >100 kb, and if the 5" or 3’ end of
ageneextends outside of the training sequence window (such that its
promoter and other regulatory signals are not capturedin the receptive
field of the network), it will probably obstruct learning. Conversely,
mammalian exons regularly cover fewer than 128 bp, and modeling
the coverage patterns around these exons at such a coarse resolution
canobstructsplicesite learning. However, computational limitations
make these joint objectives challenging. Therefore, we aimed for a
compromise of 524 kb input sequences, predicting at 32 bp resolution.

Halting the convolution and pooling blocksin the vanilla Enformer
architecture at 32 bp would mean that the self-attention blocks pro-
cessed 16,384-length sequences. These blocks require quadratic mem-
ory complexity, which exceeds the capability of contemporary GPU/
TPU hardware without complicated optimizations. Therefore, we chose
toremainat128 bp resolution for the self-attention blocks. To predict at
32 bpresolution, we instead make use of U-net upsampling techniques
from theimage segmentation and object detection literature**°, which
solve an analogous problem of determining image-level content and
communicating it back down to pixel resolution annotations. In brief,
the output embeddings predicted by the self-attentionblocks at128 bp
resolution are upsampled two times by duplicating the embedding
vector at each position. We then apply point-wise convolutions to
match the number of channels to those of the original convolution
tower output (preceding the self-attention blocks) at 64 bp resolution.
Finally, we add the upsampled feature map from the self-attention
blocks and the intermediate feature map from the convolution tower
and apply aseparable convolution with awidth of three. This workflow
is repeated once more using the intermediate feature map with 32 bp
resolution from the convolution tower.

As this architecture is still very computationally expensive,
we simplified several Enformer components. First, we used max pooling
instead of attention pooling, which requires an additional convolution
but generally only minimally boosts performance. Second, we apply
only asingle convolution with awidth of fivein each block of the initial
convolution tower, forgoing the second convolution added in with a
residual connection used by Enformer. Third, we reduced the number
of self-attention blocks from 11 to 8 to reduce memory usage. Fourth,
we used only central mask relative position embeddings given that
additional distance functions minimally affected performance.
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Training

We trained the model in a multi-task setting to predict coverage for
all assays from one species, with a species-specific head attached to
the shared model trunk. During training, we alternated human and
mouse training batches by dynamically swapping in the correspond-
ing species-specific head. To avoid less accurate predictions on the
sequence boundaries (owing to asymmetric visibility), we cropped
from each side tofocus the loss computation on the center196,608 bp.
We used a Poisson loss function but decomposed the loss analogous to
BPnet to separate magnitude and shape terms’. Having independent
Poisson distributions at each sequence position is mathematically
equivalent to a single Poisson distribution representing their sum,
followed by allocating the counts to sequence positions using a mul-
tinomial distribution. Thus, we apply a Poisson loss on the sum of the
observed and predicted coverage and a multinomial loss on the nor-
malized observed and predicted coverage across the sequence length.
This decomposition allows us to weight the multinomial shape loss by
agreater amount (five times), which we found boosts performance.

Using TensorFlow (v.2.11), backpropagation of this model on a
524 kb sequence maxes out the 40 GB of RAM of a standard NVIDIA
A100 GPU. Each model instance was trained using the Adam optimizer
with abatchsize of two, split across two GPUs for ~25 days, and training
stopped when the validation set accuracy plateaued.

We trained four replicate models with randomweight initialization
and sequence training order. We constructed an ensemble predictor
from these four replicates that generally performed better than any
individual model. Note that for all analyses in Figs.1and 2 in which we
evaluate model performance, we do so strictly on fragments fromthe
held-out test set. In subsequent analyses (for example, variant effect
predictioninFig. 5), we make no distinction between train or test splits
ofhg38. This technically means that the ensemble is applied to genomic
lociseen during training. We argue that these are still unbiased analy-
ses, as the evaluations are done on out-of-domain measurements not
trained on (for example, the alternative alleles of fine-mapped QTLs
and their estimated effects were not part of the training data).

Model ablation experiments
Instances of the Borzoi model were trained on smaller subsets of the
original training datato assess the contribution of various data modali-
ties to final performance. We varied whether or not the model was
trained on mouse data in addition to human experiments, whether
or not the model was trained on additional assays (for example,
DNase-seq, ATAC-seq, ChIP-seq and CAGE) in addition to the core
RNA-seqmodality and whether or not the model used a U-net compo-
nent to increase the output resolution. Owing to the large number of
combinations, it was difficult to acquire a sufficient set of NVIDIA A100
GPUs that would allow training themas full-sized Borzoi modelsinarea-
sonable amount of time. Therefore, we reduced their size (393,192 bp
input length, -30 million trainable parameters, four self-attention
heads per layer) such that we could fit them with abatch size of two on
either NVIDIARTX 4090 GPUs or NVIDIA TITAN RTX GPUs. We trained
two cross-validation folds per ablation condition, choosing a different
held-outvalidationand test set from the eight genomic hg38 or mm10
partitions per fold. We trained four folds for the baseline condition
(withallfeaturesincluded). Training lasted 30-90 days, depending on
condition, and was stopped when the validation accuracy saturated.
The following model instances were trained: [‘Multispecies’]
Training data - CAGE, DNase-, ATAC-, ChIP- and RNA-seq in human
(hg38) and mouse (mm10). Architecture changes - N/A (baseline
model). [‘Multispecies (No U-net)’] Training data - CAGE, DNase-,
ATAC-, ChIP-and RNA-seqin humanand mouse. Architecture changes -
U-net removed. Trained at 128 bp output resolution. [‘Multispecies
(D/A/RNA)’] Training data - DNase-, ATAC- and RNA-seq in human
and mouse. Architecture changes - N/A. [‘Multispecies (RNA)’] Train-
ing data - RNA-seq in human and mouse. Architecture changes - N/A.

[‘Human’] Training data - CAGE, DNase-, ATAC-, ChIP-and RNA-seq in
human. Architecture changes - N/A. [‘'Human (D/A/RNA)’] Training
data - DNase-, ATAC- and RNA-seq in human. Architecture changes -
N/A. [‘'Human (GTEx RNA)’] Training data - GTEx RNA-seq (human).
Architecture changes - N/A. [‘K562’] Training data - CAGE, DNase-,
ChIP- and RNA-seq in K562 cells. Architecture changes - N/A. ['‘K562
(D/A/RNA)’] Training data - DNase-, and RNA-seq in K562 cells. Archi-
tecture changes - N/A.[‘K562 (RNA)’] Training data - RNA-seq in K562
cells. Architecture changes - N/A.

Enformer comparison

Our research objective was to extend this modeling framework to new
data (thatis, RNA-seq) and not to exceed Enformer performance onthe
setof overlappingtracks, whichincludes CAGE, DNase, ATAC and ChIP
assays. Several modeling decisions make comparisons between Borzoi
and Enformer imperfect. First, working with larger sequences required
reprocessing the genome so that the held-out test set of Borzoi does
not exactly match that of Enformer. Second, we aggregated the data
at32 bpresolution, whereas Enformer works with128 bp, thus altering
the distribution of bin values. Third, we split the aligned reads from
the CAGE datasets by strand. Nevertheless, we examined test accura-
cies for Borzoi versus Enformer (v.3.0) on these overlapping datasets
and found them to be broadly similar despite these modifications
(Extended DataFig.1a-d).

Tissue-specific expression, TSS and APA predictions

We evaluated three different statistics derived from the predicted GTEx
RNA-seq coverage tracks to quantify (tissue-specific) gene expres-
sion, alternative TSS usage and APA isoform abundance (Fig. 2). Gene
expression is quantified as the sum of predicted coverage overlap-
ping exonic bins. Alternative TSS usage is quantified by taking the
maximum coverage among the nine bins immediately downstream
of each annotated TSS in GENCODE (v.41) (maximum given that the
exon may be shorter than nine bins) and computing the ratio between
the 3’-mostand 5’-most TSSs of each gene. Only TSSs that were within
50 bp ofanannotated TSS in FANTOM5 were included”. APA site usage
is quantified by calculating the ratio of average coverage between the
four bins immediately upstream of the distal-most PAS and the four
bins upstream of the proximal-most PAS, based on polyadenylation
sites annotated in PolyADB*.

Examplesvisualized in Fig. 2 and Extended Data Fig. 3 were chosen
asfollows: (1) differentially expressed examples were selected from the
geneswiththelargest measured fold change between exon-aggregated
coverage in the target tissue and the average coverage in the four
othertissues, based onthe GTEXRNA-seq data; (2) tissue-specific TSS
examples were selected from the set of genes with largest measured
differential TSS usage according to tissue-matched FANTOMS CAGE
data;and (3) tissue-specific APA examples were selected from the genes
with the largest measured fold change in coverage ratio in the target
tissue with respect to the average coverage ratio in the four other tis-
sues. Toreduce therisk of picking genes in which the perceived APA is
drivenby 3’biasinthe GTEXRNA-seq data, we required that the genes
also exhibited differential distal polyadenylationin cell-type-matched
experiments from the PolyASite 2.0 database*. All example genes were
picked fromthe held-out test set, and coverage was predicted using the
four-replicate ensemble.

Input sequence attribution

To visualize important features in the input sequence (such as TF or
RNA-binding protein motifs) and quantify their contribution to the
prediction (their saliency score), we apply anumber of different attri-
bution methods, each with their own strengths and limitations. In
summary, we either use methods based on gradient saliency, which
are computationally efficient for single outputs but tend to be noisier
owing to moving off the one-hot coding simplex, or in-silico
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mutagenesis, which often give better-calibrated attributions for all
outputs, but are too computationally expensive to run on long
sequences. The shared goal of these methods is to estimate the contri-
bution of each nucleotide in the input with respect to scalar statistics
derived from the predicted coverage tracks, resulting in a matrix
s € R24288x4 of saliency scores for each coverage track. In this study,
we focus solely oninterpreting Borzoi’s RNA-seq tracks. Furthermore,
by computing distinct summary statistics from the predicted RNA
coverage tracks, we dynamically isolate distinct regulatory mecha-
nismsintheattribution scores; namely, transcription, polyadenylation
and splicing.

Aspreliminaries, let 2 be the Borzoimodel, x € {0, 1}***?%®“be the
one-hot coded input sequence, y = M) € (0, +c0]"***>7*!! be the
(human) coverage predictionand 7 = {¢, ..., t;} be the set of Tindices
of the coverage tracks in y that we want to average over (for example,
to combine all blood-specific tracks) and compute the attribution
scores for. Note that Borzoi’s raw prediction yis based on training data
that had been subjected to various transforms intended to stabilize
training (exponentiating by 3/4, additional exponentiation of residuals
above a target value and re-scaling). Here, we assume that we have
applied theinverse transforms toy such that the tensor can be reason-
ably assumed to reflect counts (also note that these transforms are
differentiable, which means gradient saliency can be propagated
through the inverse operations).

Below are the definitions of three distinct summary statistics used
for expression attribution, polyadenylation attribution and splicing
attribution, respectively:

Log sum of exon coverage (expression attribution). The summary
statistic u € R is computed by aggregating the set of 32 bp bins
B = {by, ...,bg} in y overlapping the exons of the gene of interest (with
optional pseudo count C € R):

u=log <C+ wnx 3 2, J’b,:)

teJ beB

Log ratio of PAS coverage (polyadenylation attribution). The statistic
u € Ris computed by summing coveragein five adjacent binsimmedi-
ately upstream of bin b,,,,, which overlaps the PAS of interest, and
dividing by the coverage of amatched set of bins upstream of bin b,
whereacompeting PASis located (orimmediately downstream of b,
ifthe gene of interest is not subject to APA):

bprox
CHUT)X Xy Xplp, o -5 Vbt
u=log o
C+ U)X Xer Lpmpyy-sYoe

Note that the formula above assumes that the gene is on the
forward (plus) strand. Coverage must be summed from b, +1to
byt 5+1(and from by, +1t0 by + 5+ 1) if the gene is on the minus
strand.

Log ratio of exon-to-intron coverage (splicing attribution). The
statistic ue R is computed by summing coverage in bins
Bexon = Do, ---, be} overlapping the exon and dividing by the sum of
coverage in amatched number of bins Bi,on = {bo, ..., b;} Overlapping
the adjacentintron or, alternatively, a neighboring exon (which occa-
sionally resultedinless noisy attributions whenintronic polyadenyla-
tion sites created non-uniformintronic coverage):

4 — log C+1/T)x ZtEszEBexonyb’t
= C+ U)X Yyer Lpes, Ve

intron’

The summary statistics defined above are used in conjunction
with the following attribution methods:

Gradient x input (gradients). Given summary statistic u(x), the attribu-
tion scores s € R24288x4 are computed by taking the gradient with
respect to input x and subtracting the mean at each position across

nucleotides'®:

4

—ayx Y B0
k=1

(')xi’k

_ au(x)

S
L] axi,j

Whenvisualizing s, we extract the score at positioni correspond-
ing to the reference nucleotidejonly (which s easily implemented by
multiplying with x and aggregating across nucleotides):

4

(vis) _ XX

Si - Esl,j X'xl,j
j=1

ISM. Given astart and end position, py,.. and p..q, in X to compute ISM
over, the attribution scores s € R>>4288x4 are computed as follows:
. (Pend—Pistar ) X4X524,288x4 %
createanewtensor X € {0,1} and leteach matrix x,,,
hold amutated copy of x where the reference nucleotide at position u
issubstituted for nucleotide v. Then compute the ISM scores s as:

§;j = uQ) —u(X;i_p_ )»if Psare < i < Peng> O Otherwise.

When visualizing s, we average the scores across the four
nucleotides:

4
(vis)
siws = (1/4) x Z;Si’f
=

Window-shuffled ISM (ISM shuffle). Given a start and end position,
Pecare ANd png, awindow size Mand anumber of re-shuffles N, the attribu-
tion scores s € R>24288x4 are computed as follows: create tensor
% € {0, 1) PenaPrar XNXS24.288X% 0.6y 2NN (Pena — Pecare) X N COpiES Of input
patternx. For each matrix x,,, (where v denotes one of Nindependent
samples), either dinucleotide-shuffle the local region [u - M/2,
u+Mj/2+1] or replace the reference nucleotides in this region with
uniformly random nucleotides. Dinucleotide shuffling (withM=7and
N=24,or N=_8forlarge window sizes) is performed when computing
enhancer saliency, whereas uniform random substitution (M =5 and
N=24, or N= 8 for large window sizes) is used for promoters, splice
sites and PASs (where salient features are often stretches of repeating
nucleotides). Then compute the attribution scores s as:

Sin = UX) — uX;_p. ) if Psare < < Peng> O Otherwise.
When visualizing s, we average the scores across the N samples:

N
si(VIS) = (l/N) X z Sin
n=1

Tissue-specific motif discovery

We visualized learned tissue-specific cis-regulatory motifs driving RNA
coverage in GTEx tracks through a combination of (1) picking a large
set of (measured) highly tissue-specific genes, (2) computing their
gradient saliencies and normalizing out tissue-shared saliency and
(3) clustering and annotating the saliency scores using TF-MoDISco
(v.0.5.14.1)* and Tomtom MEME suite (v.5.5.2)**, We first downloaded
measured TPMs for GTEx (v.8) (GTEx_Analysis_2017-06-05_ v8 RNASe-
QCv1.1.9_gene_median_tpm.gct.gz). We heuristically cleaned the data
by adding a small pseudo-TPM that was roughly the first percentile
of all values (to avoid zeros), followed by clipping at a value slightly
larger than the 99" percentile per tissue (to avoid extremely large
numbers). Then, for each of the five prospective GTEx tissues whole
blood, liver, brain- cortex, muscle - skeletal and esophagus - muscularis,

Nature Genetics


http://www.nature.com/naturegenetics
https://www.gtexportal.org/home/downloads/adult-gtex/bulk_tissue_expression
https://www.gtexportal.org/home/downloads/adult-gtex/bulk_tissue_expression

Article

https://doi.org/10.1038/s41588-024-02053-6

we computed gene-specific log fold changes of TPM expression for
thetissue of interest relative to the average TPM expression of the four
othertissues. For eachtissue, we sorted the TPM matrix in descending
order of this metric and selected the top 1,000 most differentially
expressed genes, resulting in a total of 5,000 genes.

We computed nucleotide-level attribution scores (input gradients)
with respect to the log of aggregated exon coverage for each of the
5,000 genes, repeating the gradient computation for each of the five
GTEx tissues. Specifically, we matched each GTEx tissue to the corre-
sponding two to three RNA coverage tracks obtained from recount3
that we trained on (for example, for brain - cortex, we computed the
input gradient saliency with respect tothe three GTEx brain meta-tissue
tracks). The gradient computation was repeated for all four model rep-
licates, for both forward-complemented and reverse-complemented
inputsequences, and averaged.

The gradient computation outlined above produces five separate
sets of saliency scores for all 5,000 genes (one set of scores per tissue).
Next, we performed de novo motif discovery for tissue x by slicing out
the 1,000 genes originally selected to be differentially upregulated
in tissue x and running TF-MoDISco on the residual gradient scores
for tissue x. The residual scores were calculated by subtracting the
average gradient of the four other tissues from those of tissue x, thus
dampeningthesaliency of shared regulatory motifs and accentuating
motifs specific to tissue x. Additionally, before running MoDISco, we
first re-weighted the gradients by computing the standard deviation
ateachposition across the four nucleotides, applying a Gaussian filter
(s.d.=1,280; truncate = 2) to the resulting vector of standard devia-
tions and dividing the gradient scores by this smoothed vector. This
operation results in down-weighting of regulatory regions with long
contiguous stretches of large magnitude (often promoter regions) and
up-weights sparser regulatory regions (transcriptional enhancers).
To increase computational efficiency, we extracted the centered-on
131 kb gradient scores (as opposed to the full 524 kb) before calling
MoDISco. TF-MoDISco was executed with the following parameters:
‘revcomp = true’, ‘trim_to_window_size = 24’, ‘initial_flank_to_add =8,
‘sliding_window_size =18, ‘flank_size = 8’ and ‘max_seqlets_per_meta-
cluster =40,000’. Other parameters were kept at their default values.

The five tissue-specific MoDISco result objects were filtered and
pooled as follows: Tomtom MEME was used to match the position
weight matrices of each MoDISco cluster to HOCOMOCO (v.11)** motifs
(each position weight matrix was trimmed by aninformation content
threshold of >0.1). Only matches with £ values of <0.1 were retained. The
match with the lowest P value was chosen as the representative motif
for that cluster. The five MoDISco objects were pooled by matching
clusters with identical HOCOMOCO motifs and merging the seqlet
coordinates, resultingin asingle list of seqlet coordinates for each puta-
tive motif. A scalar tissue-specific saliency score was then computed
foreachseqletbyaveraging theinput-gated gradients overlappingits
coordinates. The distributions of these seqlet-level gradient saliencies
were used to assess the tissue-specificity of each motif.

Replicating the entire analysis with pseudo counts added to the
predicted sum of exon coverage before applying log and computing
gradients resulted in nearly identical results. Replicating the analysis
without running TF-MoDISco on residual attribution scores but rather
using the raw gradients from each tissue-specific coverage track as
input to TF-MoDISco similarly produced negligible differences.

Tissue-pooled splice motif discovery

Splice-regulatory motifs were generated by computing input gra-
dients with respect to the splicing attribution statistic (log ratio of
exon-to-intron coverage) for one randomly chosen exonin each of the
4,778 genes from the Gasperini dataset™, The gradients were computed
with respect to the average predicted coverage taken across all 89 of
Borzoi’s GTEx RNA-seq tracks. The gradients were normalized across
genes as follows: we first computed the standard deviation across the

four nucleotides and found the maximum standard deviation across
all 524,288 positions per gene. We clipped the lower end of the 4,778
maximum deviations at the 25" percentile (to avoid up-weighting
gradients with very low magnitudes) and divided each gene’s gradi-
ent by this number. We tried varying the percentile threshold (from 1
to100) and the results were robust to this parameter (the same motif
clusters were identified with roughly the same number of supporting
seqlets).Finally, to obtain 5’ splice motifs, we extracted a192 bp window
centered on the splice donor from each of the gradients. To obtain 3’
splice motifs, we extracted a192 bp window around the splice acceptor.

TF-MoDISco was executed on the resulting 4,778 x 192 x 4 hypo-
thetical scores, using custom parameter settings that we empirically
found worked better for degenerate RNA-binding protein motifs:
‘revcomp = false’, ‘trim_to_window_size = 8, “initial_flank_to_add =2’,
‘sliding_window_size = 6, ‘flank_size = 2’, ‘max_seqlets_per_metaclus-
ter =40,000’, ‘kmer_len =5, ‘num_gaps = 2’and ‘num_mismatches = 1.

Tissue-pooled polyadenylation motif discovery

Salient motifs related to PASs were obtained in a process similar to
the procedure for splice-regulatory motif discovery. We computed
tissue-pooled gradients with respect to the polyadenylation statistic
(log ratio of PAS coverage) for the distal-most PAS of each gene from
the Gasperini dataset™, The gradients were normalized by the (clipped)
maximum standard deviation per gene. Finally, a192 bp window cen-
tered on the mode of saliency in the 3’ UTR of each gene was used to
extractshortgradientslices. These gradient slices were used as hypo-
thetical scores for TF-MoDISco, which was executed using the same
custom parameters as was used for splice motif discovery.

Attention matrix visualization

We visualized higher-order structures and long-range interactions
learned by Borzoi directly through the attention score matrices of
the self-attention layers. Examples of such higher-order structures
includeintronic and exonicregions, UTRs, promoters and gene spans.
Long-range interactions describe relationships or dependencies
betweenthese structures learned by Borzoi, which would be observed
as off-diagonal intensities in the attention matrix. Such examples
include phenomena in which an intron attends to its nearest exon
junction, a3’ UTR attends to its PASs or gene spans attend to pro-
moters and transcriptional enhancers. After exploring the predicted
attention maps for several different loci, we noticed that higher-order
structures matching GENCODE annotations'®* were generally foundin
the later self-attention layers. However, to mitigate capturing poten-
tial assay-specific or experiment-specific biases and focus on general
knowledge, we decided not to use the two final attention layers and
instead used the two penultimate self-attention layers for all analyses.
We further noted that different attention heads tended to capture
mostly the same trends, leading us to analyze the mean attention of
alleight heads.

Let a}) = softmax (qk; /K +ri;) € RV be the attention matrix
forhead hof layer [, where g;is the i query vector, k;is the " key vector,
r,;isthe positional encoding and Kis the key or query size. We obtain
the final attention matrix to be visualized as an unweighted average of
all heads of the two penultimate layers: (1/16) x 3,_, >';_, @/ . When
zoominginon smaller sections of the attention matrix, we apply asmall
Gaussian filter to smooth out high-frequency noise (¢=0.5, trun-
cate =2.0). Wefurther average the attention matrix over fourindepend-
ent model replicates and reverse-complemented input sequences.
Promoters generally had higher magnitude attention values than
exons, leading us to clip individual entries in the average attention
matrix at 0.005 (each row of 4,096 entries sums to 1.0).

Fine-mapped eQTL classification and regression tasks
eQTLstudies deliver valuable data for evaluating whether Borzoi iden-
tifies the correct nucleotides driving expression and their sensitivity
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tospecificalternative alleles. We studied GTEx (v.8) eQTL results from
49tissues of varying sample sizes. We made use of summary statistics
and fine-mapping results generated with SuSiE in a previous publica-
tion'. Only fine-mapped causal eQTLs with a posterior causal prob-
ability (PIP) of 0.9 were kept as positives. We focused all analyses
on single nucleotide variants only because insertions and deletions
(indels) introduce technical variance caused by shifted prediction
boundaries, which we aspire to alleviate in future work. To visualize
the measured RNA-seq coverage tracks in individuals with or without
the minor allele(s) of interest, we also made use of whole genome
sequencing genotyping data of GTEx subjects obtained through dbGAP
(http://www.ncbi.nlm.nih.gov/gap).

Inspired by the expression modifier score construction presented
inaprevious work’,inwhich the authors demonstrated that functional
eQTL classification probabilities enable improved fine-mapping, we
evaluated Borzoi and other models at the task of discriminating
fine-mapped causal eQTLs from a negative set chosen to control for
TSS distance. To compare against models with multiple generic out-
puts, we constructed afeature vector based on the model predictions
for each variant and trained a random forest classifier with the eQTL
causal and non-causal labels. We considered a‘SUM’score and an ‘L2’
score to define these SNP features. For both score types, we start by
centering the 524 kb input window on the SNP of interest and predict
coverage y(ref) — M(x(ref))’ y(alt) — M(x(a")) € R16384x7611 forthereference
and variant patterns, respectively. When computing the SUM score
vector u(x") x(V) e R76for the 7,611 distinct Borzoi tracks, we aggre-
gate the difference between coverage predictions y™” and y“ across
the length axisindependently per track:

16,384

w='3 O -5)
I:

FortheL2score vector, we compute the L2 norm ofthe difference
between predictions ™ and y® across the length axisindependently
for each track. Before applying the L2 norm, we first log transform
the coverage track bins to focus on fold change rather than absolute
change. The final metricis calculated as:

16,384 . )
U= (logz(l +yj(§ ) log,(1 +y}fff) )

j=1

TheL2score extracts more information and achieves greater per-
formance on this task for Borzoi. All previous Enformer work uses the
SUMscore, but we observed here thatit also benefits from L2, though
less than Borzoi.

Forthe second task, we evaluated models on their ability to predict
eQTL effect sizes, whichisacritical component of asystem tasked with
predicting gene expression values across a population of individuals.
Given that the Borzoi and Enformer models make use of gene annota-
tion differently to map predictions to genes, we chose to perform a
gene-agnostic analysis for aless biased comparison. Thus, we filtered
the variant set for only those with a consistent sign of the estimated
eQTL effect sizes across genes and chose the effect size with maximum
absolute value as the representative effect size for that particular
fine-mapped SNP. For a subset of GTEx tissues, we were able to select
anappropriately matched CAGE experiment from Enformer’s outputs
and computed the SUM score. For Borzoi, we selected the matching
GTEx tissue RNA-seqoutputand computeda‘logSUM’score, inwhich
we transformed the bin predictions y by log,(y + 1) before taking asum
over the length axis. In supplementary analyses, we performed
gene-specific coefficient analyses using a variant statistic termed
‘logSED’ (‘sum of expression differences’), in which we aggregated
predicted coverage in the bins B = {b,, ..., b} overlapping the exons
of the targetgene, and compared thelog fold change between alternate
and reference alleles: log, (,_, y5) ) - log, (X Y5 )

For the third task, we evaluated Borzoi’s ability to identify the
gene(s) affected by an eQTL from the set of local genes, which is
intended to estimate how accurately the model can prioritize the cor-
rect gene at more general GWAS loci. We downloaded fine-mapped
eQTLcrediblesets and their associated eGenes for 49 GTEx tissues from
the eQTL catalog (release 5)""%. The credible set files were downloaded
from ftp://ftp.ebi.ac.uk/pub/databases/spot/eQTL/credible_sets/ (e.g.
ftp://ftp.ebi.ac.uk/pub/databases/spot/eQTL/credible_sets/GTEx_ge_
adipose_subcutaneous.purity filtered.txt.gz).

Note: These file paths have since changed but historical versions
canbefound at https://github.com/eQTL-Catalogue/eQTL-Catalogue-
resources/blob/00ea8a7abca895f26c3aee74ecel307dc5054ace/
tabix/tabix_ftp_paths.tsv. To download credible sets with the latest
file path table, use column ‘ftp_cs_path’ (e.g. for adipose_subcutane-
ous, download file ftp://ftp.ebi.ac.uk/pub/databases/spot/eQTL/susie/
QTS000015/QTD000116/QTD000116.credible_sets.tsv.gz).

Foreachvariantwithinacredible set, we predicted agene-specific
L2 score, which considers only sequence positions overlapping the
genes’ exons, for allgenes within a360,448 bp sequence window cen-
tered on the variant. For each credible set, we computed asingle score
for eachsurrounding gene by averaging the gene’s score across variants
weighted by their posterior causal probabilities. For each GTEx tissue,
we computed a variant’s L2 score using model predictions for the
matched GTEXRNA-seq tracks. We analyzed only credible sets associ-
ated with protein-coding genes. Owing to theindel challenge described
above, we further removed credible setsin which afine-mapped variant
(PIP>0.1) is an indel. We predicted a credible set’s target gene as the
gene with the highest aggregate PIP-weighted L2 score for that cred-
ible set. As a baseline, we predicted a credible set’s target gene as the
nearest gene. We define ‘nearest gene’ as the gene with the maximum
PIP-weighted inverse distance from the credible set. Maximizing the
PIP-weighted inverse distance outperforms the previously described
approach of minimizing the PIP-weighted distance'®. Notably, asingle
distal credible set variant can inflate the minimum average distance
statistic, resulting in an incorrect eGene prediction, whereas maxi-
mizing the inverse distance does not lead to this problem.

Fine-mapped paQTL classification task

Webenchmarked Borzoi’s ability to predict genetic variants that alter
the relative abundance of mRNA 3’ isoforms using fine-mapped 3’
QTLs (referred to in this paper as polyadenylation QTLs) obtained
from the eQTL catalog via txrevise processing’*®. The file paths to
the fine-mapping results were obtained from https://github.com/
eQTL-Catalogue/eQTL-Catalogue-resources/blob/master/tabix/
tabix_ftp_paths.tsv.

Table rows were filtered by study = ‘GTEx’ and quant_method =
‘txrev’. Theresulting sumstat files (forexample, ‘GTEx_txrev_adipose_
subcutaneous.all.tsv.gz’) were changed to fine-map files (‘GTEx_txrev_
adipose_subcutaneous.purity filtered.txt.gz’) and downloaded from
ftp://ftp.ebi.ac.uk/pub/databases/spot/eQTL/credible_sets/ (e.g.
ftp://ftp.ebi.ac.uk/pub/databases/spot/eQTL/credible_sets/GTEX_
txrev_adipose_subcutaneous.purity filtered.txt.gz).

Note: These file paths have since changed but a historical version of
thefile path table can be found at https://github.com/eQTL-Catalogue/
eQTL-Catalogue-resources/blob/00ea8a7abca895f26c3aee74ecel30
7dc5054ace/tabix/tabix_ftp_paths.tsv. To download credible sets with
thelatest file path table, use column‘ftp_cs_path’ (e.g. for adipose_sub-
cutaneous, download file ftp://ftp.ebi.ac.uk/pub/databases/spot/eQTL/
susie/QTS000015/QTD000119/QTD000119.credible_sets.tsv.gz).

Tobuild negative sets of GTEx SNPs that are not part of any txrevise
credible set, we obtained rows from the file path table where quant_
method = ‘ge’and downloaded the full sumstat files from ftp://ftp.ebi.
ac.uk/pub/databases/spot/eQTL/sumstats/GTEx/ge/ (e.g. ftp://ftp.
ebi.ac.uk/pub/databases/spot/eQTL/sumstats/GTEx/ge/GTEx_ge_adi-
pose_subcutaneous.all.tsv.gz). These file paths have also changed;
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to download sumstat files with the latest file path table, use column
‘ftp_path’ (e.g. for adipose_subcutaneous, download file ftp://ftp.ebi.
ac.uk/pub/databases/spot/eQTL/sumstats/QTS000015/QTD000116/
QTDO0O0O0116.all.tsv.gz).

Fine-mapped causal paQTLs for agiven tissue were obtained from
the corresponding fine-mapping file (‘XYZ.purity filtered.txt.gz’) by
filtering on rows in which molecular_traid_id contained the substring
‘“downstream., the SNP occurred at most 50 bp outside of agene span
(GENCODE v.41), the distance to the nearest annotated 3’ UTR PAS in
PolyADB (v.3)** was at most 10,000 bp and PIP was >0.9. Valid nega-
tives were obtained from the tissue’s sumstat file (‘XYZ.all.tsv.gz’) with
identical gene-span and PAS distancefilters asthe fine-mapped paQTLs.
Negative SNPs had to be either absent from all credible sets or have
PIP < 0.01acrossall GTEx tissues. Finally, we selected one negative SNP
for each fine-mapped causal paQTL by requiring that they have identi-
cal distances to anannotated PAS and that the negative SNP occursina
gene with expression levels that are within (and less than) 1.5-fold the
expression level of the paQTL gene (in the same tissue). This resulted
in 1,058 retained unique fine-mapped causal paQTLs. The following
procedure was used to efficiently search for negative SNPs fulfilling
these requirements for agiven tissue:

Step 1. Discretize and bin the log,(TPM) values of all genes (GTEx
v.8) into buckets of size 0.4 (in log,-space). Step 2. For a given query
gene (and its associated log,(TPM) value), take all candidate genes
that map into the same bucket. Scan this subset of genes for any gene
that contains a distance-matched non-causal SNP. Step 3.If none of the
genes in the bucket are suitable candidates (none have a non-causal
distance-matched SNP), then subtract 0.15 from the query log,(TPM)
value and take all candidate genes that were binned into the new bucket
(if subtracting 0.15 does not change the bucket, skip to Step 4). Scan
thisnew bucket for suitable genes. Step 4. If no suitable gene hasbeen
found, repeat Step 3 but instead add 0.15 rather than subtract 0.15to
the original log,(TPM) value. Scan this (potentially) new bucket for
suitable genes. Step 5. If no suitable gene has been found, exit withan
error (unmatchable).

The maximum log, fold change that two genes can be within and
stillmatchis 0.4 + 0.15= 0.55 (-1.464-fold). With these parameter set-
tings, each bucket contained at least 100 genes, and we never exited
Step Swithanerror.

Note that owing to the relatively small number of fine-mapped
paQTLs, we decided to pool all tissues rather than benchmark sepa-
rately per tissue. Given that many of the positives are shared between
tissues (there are a total of 1,058 unique paQTLs, each occurring in at
least one tissue), we end up with ~2.5x the amount of unique negative
SNPs after merging across tissues. Hence, for the benchmark, we per-
formed 100 permutations of randomly matching one of the multiple
valid negative SNPs (from different tissues) to each corresponding
positive SNP and evaluated performance on each permutation set of
1,058 positives and 1,058 sampled negatives.

Intronic paQTLs (and matched negatives) were extracted from
the same files as above but had to occur in intronic regions and be
closer to an annotated intronic polyadenylation site than any 3’ UTR
polyadenylation site. Negatives were now matched by distance to the
nearestintronic PAS. A total of 567 fine-mapped causalintronic paQTLs
were retained.

Polyadenylation variant effect prediction

We compute polyadenylation-centric variant effect scores from
Borzoi’s predicted RNA coverage tracks as the maximum ratio of
coverage fold change between any annotated 3’ cleavage junction
within the UTR of the same gene as the SNP. Specifically, we center
the 524 kb input window on the SNP, predict coverage tracks
Y0 = (e, y@lD = Ar((@I0) g R16:384x7.611 given the reference and
alternate allele sequences x™"” and x“!" as input and compute the sta-
tistic u(y™",y@v) for coverage track tas follows:

u, = maxf!|log,

( WX Tonr (B0 He V(Est0-1955")
)

3 B B@ 5
(1/(K—k-1)) )X2u=k+l((Zj:;(u)—zty/(.lak))/(z_h;(u)—by}.;e )

Kin the equation above denotes the total number of PASs within the
UTR. B = {b,, ..., by}isthe ordered set of binindicesiny overlapping the
KPASs. The final score used inthe benchmarks was the average statistic
computed fromall of Borzoi’s 89 GTEx coverage tracks. The score was
also averaged over all four model replicates in both forward-
complemented and reverse-complemented input formats.

Comparison to APARENT2 and Saluki
We compare Borzoi’s classification performance to APARENT2 (v.1.0.2)
in two ways. First, we score the reference and alternate PAS sequence
affected by the variant using APARENT2 and simply use the absolute
value of the predicted log odds ratio as the variant effect score. Second,
we use the predicted oddsratiotoscale the tissue-pooled reference PAS
usage (asreported in PolyADB) and use the absolute value of the differ-
ence in PAS usage as the final variant effect score. The latter statistic
effectively dampens the magnitude of variants, which, based on APAR-
ENT2’s prediction, has alarge predicted fold change but, according to
measurements, occur in lowly used PASs (owing to competing PASs).
When comparing performance to an ensemble consisting of both
APARENT2 and Saluki (v.1.0.0) onthe paQTL classification task, we fol-
low the methodology from the APARENT2 paper?. In brief, we curate
the PAS sequences and corresponding mRNA isoforms of each gene
(at most 30) based on annotations from PolyADB and fit a logistic
regression model to predict tissue-pooled distal isoform proportions
(asreported in PolyADB) given both APARENT2'’s PAS scores (at most
30 scalars) and Saluki’s isoform scores (at most 30 vectors of top four
PCA components extracted from the penultimate layer of Saluki) as
input. Using this calibrated ensemble model, we predict the reference
and alternate distal proportions of a gene when inducing a particular
variant (which may affect multiple PAS- and isoform sequences). We
estimate a final odds ratio from the predicted distal proportions and
usethe oddsratio torecalculate the alternate distal proportion based
on the measured reference distal proportion. Finally, we subtract the
alternate distal proportion from the reference proportion and use the
absolute value of this difference as the final variant effect score.

Fine-mapped sQTL classification task

Fine-mapped sQTLs and matched negatives were obtained from the
eQTL catalog’® using the same sumstat and fine-mapping files as
were used for the paQTL classification task. The fine-mapped causal
sQTLs were extracted by filtering on rows in which molecular_trait_id
contained the substring‘contained.. These QTLs were further filtered
on PIP = 0.9 and on a maximum distance of <10,000 bp to an anno-
tated splice junction (GENCODE v.41). A set of expression-matched
and distance-matched negatives were constructed per tissue in an
identical fashionto the paQTL task, with the exception of matching by
nearest distance tosplice junctions. We retained atotal of 4,105 unique
fine-mapped causal sQTL SNPs.

Splicing variant effect prediction

Purely isolating splicing impact from other mechanisms proved chal-
lenging. We focus on a simple statistic that worked well in practice;
namely, the maximum difference in normalized coverage across the
gene span. Specifically, we center the 524 kb input window on the SNP,
predict coverage tracks yP = ar(eN), y@iO = r(x@0) g R16384x7.611

and compute the statistic u(y,y@) for coverage track t as follows:
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The indices b, and b4 refer to the bins in y overlapping the
start and end positions of the gene span. The relatively large number
of fine-mapped causal sQTLs allows for a tissue-specific benchmark
comparison. To that end, for agiven SNP and GTEx tissue, we average
the statistic only over the subset of tracks corresponding to the tissue.

Comparison to Pangolin

We used the pre-packaged command-line utility to score sQTL SNPs
with Pangolin (v.1.0.1)". To make comparisons easier, we modified the
program to output scores with six rather than two decimals. We used
the following command to score the positive and negative vcf files:
pangolin -d 2,000 -m False < sqtl file > .vcf hg38.fa gencode41_basic_
nort_protein.db <out_dir>.

Althoughthis command allows at most a distance of 2,000 bp from
anannotated splicejunction, Pangolin will also score potential de novo
splice gains at the variant position, meaning that the command will
produce variant effect scores for all variants (even those separated by
>2,000 bp fromasplice site). We parsed the command-line output and
matched the geneidentifier of the Pangolin output to the geneinwhich
the SNP occurs. Thefinal variant effect score is calculated as the sum of
the absolute values of the predicted maximum increase and decrease.

Splice site identification task

Identifying splice sites in DNA sequences has formed the basis for a
successful approach tointerpreting the splicing code and prioritizing
pathogenic splicing variants™'°. To evaluate Borzoi’s ability to identify
splice sites, we constructed an analogous classification task and com-
pared it to Pangolin'®. We downloaded the splicing junction counts
for all GTEx samples from recount3 and selected positive examples
from annotated junctions with coverage above the 50" percentile of
aligned read counts. We filtered this set for those that fall in the inter-
section of Pangolin’s and Borzoi’s test sets. For each positive example,
we selected amatching negative site that had the same tri-nucleotide
context, was between 100 bp and 2,000 bp away and lacked evidence
of being a splice junction itself. For Borzoi, we scored each site as the
predicted log ratio of exon-to-intron coverage around the junction,
averaged across samples from the corresponding GTEx tissue. For
Pangolin, we scored eachssite withits predicted splice site probability,
averaged across all tissues.

Classifying rare and common variation from gnomAD

We sampled aset of 14,198 singletons and 14,198 matched common vari-
ants (allele frequency > 5%) from the GnomAD (v.3.1) database (https://
gnomad.broadinstitute.org), withsampling restricted to regions over-
lapping ENCODE candidate cis-regulatory elements. To control for
sequence mutability, we excluded variants within CpG islands and
low-complexity regions. For each singleton sampled, we sampled a
negative example as a matched common variant with the same refer-
enceandalternate allele as the singleton. We also matched the variants’
background DNA contexts, sampling common variants that lie within
the sametri-nucleotide as the singleton. Finally, we removed variants
overlapping gene exons in coding sequences (GENCODE v.41), focus-
ing only on regulatory variants for our evaluation. For all sampled
variants, we used their CADD raw score and CADD phred scores (v.1.6)
fromthe GnomAD (v.3.1) dataset. We trained ridge regression models
to discriminate common variants from singletons and used tenfold
cross-validation to evaluate the models. The CADD-based model uses
the CADD scores as features, whereas the Borzoi-based model uses
the L2 scoresacross all RNA-seq tracks as features, averaged across the
four model replicates. We derived a third (combined) model by aver-
aging predicted variant ranks for the Borzoi-based and CADD-based
models. Forasecond genome-wide benchmark, we sampled uniformly
fromacross the genome instead of restricting the variant sampling to
ENCODE candidate cis-regulatory elements. This resulted in a variant
set containing 17,360 singletons and 17,360 matched common variants.

Predicting TRIP expression

We downloaded TRIPinsertion coordinates and measured expression
levels for seven distinct promoters from the supplementary material
of a previous publication®®. The promoter sequences are listed in
Table S1and theinsertion coordinates (and measurements) are listed
in Data S2 of that paper. To predict the activity of TRIP reporters, we
iterated over each promoter sequence and coordinate, centered the
524 kb input window on the insertion coordinate and inserted the
sequence. When deriving statistics from Borzoi’s RNA-seq or CAGE
predictions, we inserted the entire TRIP reporter into the genomic
location (including the promoter sequence, the GFP CDS, the PAS
and the PiggyBac terminal repeat regions). By contrast, when deriv-
ing statistics from Borzoi’s DNase or histone modification tracks (for
example, H3K4me3) we only inserted the promoter, as these predic-
tions became marginally worse when inserting the full reporter. We
attribute this phenomenon to the PiggyBac transposable elements
flanking the reporter, which Borzoiinherently does not predict well
owing to the clipping of unmappable regions during the original
training data processing.

Giventhe predicted coverage y = M(x) € R¢3**T for the T cover-
age tracks considered (for example, K562 DNase tracks), we calculate
ascalar prediction u(x) € Rby averaging the coverage tracks, aggregat-
ing the signalinalocal window of size W centered at the insertion site
and applying alog, transform:

T w2
u =log, ((1/ T) x Z Z y8,192+j,t)
=1j=—W/2

For CAGE and RNA-seq outputs, we used a 4,096 bp window size
that tightly covered the full reporter construct (and tightly covered the
average signal profile, as exemplified in Supplementary Fig. 8afor pro-
moter ARHGEF98). Although this was technically a sub-optimal choice
(anarrow 128 bp window maximized the average Spearman’s Racross
promoters for RNA-seq; see Supplementary Fig. 8b), the difference
in Spearman’s R was small (for example, <0.02 for ARHGEF98) and a
4,096 bp window size was amore intuitive choice. Similarly, the average
optimal CAGE window size was 8,813 bp, but the 4,096 bp window had
near-identical performance (<0.01differencein average Spearman’s R
across promoter types). For DNase and histone ChIP tracks, weused a
slightly wider 8,192 bp window size as we noticed that the correlation
to measured expression saturated less quickly than CAGE asafunction
of window size (for example, ~0.02 difference in average Spearman’s
R across promoter types when comparing a window size of 4,096 bp
t0 8,192 bp for H3K4me3).

Gene-enhancer prioritization task
We evaluated Borzoi’s ability to link distal regulatory elements to
genes by analyzing experiments in which CRISPRi was used to block
theregulatory element followed by measuring gene expression. These
experiments have been performed on a small set of specifically chosen
genesinwhich expression was measured by various techniques®®* and
alarge set of allexpressed genesin which perturbation and expression
were measured by single-cell RNA-seq (scRNA-seq)*®. These datasets
were analyzed to consider whether each tested regulatory element
significantly altered gene expression, defining a set of binary labels.
The flow/proliferation dataset contains 117 positives out 0of 2,194 tested
within 262 kb of the gene’s TSS. After filtering for genes with >3 ele-
ments tested, the scRNA-seq dataset contains 404 positives 0f 19,104
tested within 262 kb of the gene’s TSS. These numbers shrunk further
on a per-analysis basis after requiring that each enhancer-gene pair
is within the input window of the current set of models evaluatedina
given benchmark.

Forboth Enformer and Borzoi, we scored putative enhancers using
input gradient analysis. For Enformer, we computed the gradient of
the K562 CAGE predictioninthe two128 bp bins centered at the gene’s
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TSS. Computing the gradient using three bins (as in the original paper)
resulted in marginally worse performance. The gradient score statistic
was averaged for genes with multiple TSSs, which performed better
thantaking either the max or sum. For Borzoi, we computed the gradi-
ent of the K562 RNA-seq prediction for all bins overlapping the gene’s
exons in GENCODE (v.41). For each nucleotide, we took the absolute
value of the reference nucleotide gradient. For each regulatory ele-
ment, we computed aweighted average of the nucleotide scores using
Gaussianweights (s.d. =300), centered at the element’s midpoint. This
approachimproved performance for both Enformer and Borzoi com-
paredto asimpler strategy of averaging the absolute-valued gradients
ina2 kbwindow centered on the enhancer. To calibrate scores across
genes with different expression levels, we normalized the scores by the
mean nucleotide score across the entire region.

Theanalysis was repeated using anin-silico perturbation approach
instead of input gradients. The putative enhancers were independently
dinucleotide-shuffled with a 2 kb window. Using Borzoi, each shuffle
was repeated 16 times for both forward and reverse orientations and for
all four model replicates (128 times total). For Enformer, each shuffle
wasrepeated 64 timesin forward and reverse orientations. For Borzoi,
the absolute-valued percent change in exon-aggregated RNA-seq cov-
erage was used as the final statistic. For Enformer, the absolute-valued
percent changein aggregated CAGE signal was used (withintwo or three
output bins). Smaller or larger window sizes only marginally affected
the results (as shown in Supplementary Fig. 7a).

Saturation mutagenesis MPRA benchmark

The saturation mutagenesis experiment froma previous publication
was used to compare Borzoi to Enformer on non-QTL variation data.
Each measured variant wasinduced in the hg38 reference sequence and
centered on when making predictions. For DNase, CAGE and histone
ChIP tracks, variant effects were estimated as the log fold change in
coverage within a4 kb window, whereas scores for RNA-seq were com-
puted as the log fold change in exon-aggregated coverage. The final
predictions were calculated as an unweighted average of (potentially a
subset of) the different assays’ scores. Using anarrow 512 bp window for
aggregation as in the Enformer paper® resulted in worse concordance
with measured effects for some promoters and better concordance
for other promoters. We settled on the wider 4 kb window as it led to
better performance on the majority of promoters. Only promoters and
enhancers with better performance using cell-type-matched outputs
in the Enformer paper were included to simplify the benchmark. The
same cell-type mappings were used except for promoters F9 (K562
instead of HepG2), LDLR (adrenal gland instead of HepG2) and HNF4A,
MSMB, TERT and MYC (adrenal gland RNA-seq instead of HEK293T
RNA-seq). These changes led to better performance for Borzoi and
were reasonable choices with respect to the target genes’ expression
patterns. The same changes were made to Enformer’s mappingsif they
resulted in animprovement.
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Codon stability comparison

Prior work has demonstrated strong relationships between codon
usage and mRNA half-life*>”®, We constructed a Borzoi codon statistic to
compare to those previously measured. For the Gasperini** scRNA-seq
enhancer screen, we computed input gradients for aset of 4,778 genes
forK562 gene expression. We made use of these gradients here to quan-
tify codon contributions to expression. For each reference codon in
these genes, we used the gradients to approximate the predicted effect
of changingitto all alternative codons with asingle base-pair mutation.
We used least squares regression to fit a coefficient for each codon on
this set of possible codon mutations and effects. Finally, we compared
these coefficients to codon stability coefficients computedin previous
work’®as the Pearson correlation between codon frequency and mRNA
half-life in three mammalian cell lines: HeLA, mouse embryonic stem
cellsand CHO cells®.

Statistics and reproducibility

All data from ENCODE, FANTOMS and CATlas matching the target
assay types and passing quality metrics, as established by each respec-
tive source, were included in the training data. Only a subset of GTEx
RNA-seq samples were included; namely, the most representative
samples as determined by expression profile clustering (details above).
No statistical methods were used to predetermine sample size. No data
were otherwise excluded from analyses.

Computational experiments and statistical tests were conducted
asindicatedinrelevantsections. The experiments were not randomized
and the authors were not blinded to outcome assessment. Confidence
intervals of performance metrics were obtained by bootstrapping or
permutation tests.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The processed Borzoi training data (including one-hot coded
sequences and coverage tracks) are available for download at ‘gs://
borzoi-paper/data’ (Google Cloud Storage). Gene annotations were
obtained from https://www.gencodegenes.org (v.41). Human varia-
tiondatawere obtained from gnomAD (v.3.1) (https://gnomad.broad-
institute.org). Annotations of polyadenylation sites were obtained
from PolyADB (v.3.2) (https://exon.apps.wistar.org/polya_db/v3) and
PolyASite (v.2.0) (https://polyasite.unibas.ch/atlas). CRISPRi data were
obtained from Nasser etal. (2021)* and from GEO accession GSE120861
for the Gasperini etal. (2019)*® data. DNase-seq, ChIP-seqand RNA-seq
data were downloaded and processed from ENCODE (https://www.
encodeproject.org); see the ENCODE portal for details and statistics
on the RNA-seq experiments. Processed RNA-seq samples for GTEx
individuals were downloaded from recount3 (https://rna.recount.
bio). CAGE data were downloaded from FANTOMS (https://fantom.
gsc.riken.jp/5). ATAC-seq datawere downloaded from CATlas (http://
catlas.org/catlas_hub). All experiments used for training, including
their uniqueidentifiers, are enumerated for humansamples at https://
storage.googleapis.com/seqnn-share/borzoi/hg38/targets.txt and
for mouse samples at https://storage.googleapis.com/seqnn-share/
borzoi/mm1l0/targets.txt. Fine-mapped eQTLs were obtained from
the supplementary material of Wang et al. (2021)". Fine-mapped eQTL
credible sets and other QTLs (sQTLs and paQTLs) were downloaded
from the eQTL catalog (https://www.ebi.ac.uk/eqtl). The positive
(fine-mapped causal) and negative eQTL, sQTL and paQTL sets used
inthis study are available at ‘gs://borzoi-paper/qtl/’ (Google Cloud Stor-
age). TRIP datawere downloaded from the supplementary material of
Leemans et al. (2019)°5,

Code availability

The coderepository for training RNA-seq deep learning models, includ-
ing example code to use the model as well as scripts for variant scoring,
isavailable under the Apache 2.0 opensourcelicense at https://github.
com/calico/borzoi'”. Pre-trained Borzoi model weights are available
through GitHub. A separate GitHub repository (also licensed under
Apache 2.0 open source) contains code relevant to the analyses and
results presented in the manuscript, located at https://github.com/

calico/borzoi-paper',
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Extended Data Fig. 1| Additional test set evaluations and comparisons to
Enformer. (a) - (d) Performance comparison between Borzoi and Enformer on
held-out genomic (human) sequences when tasked with inferring (a) ChIP-seq
TF, (b) ChIP-seq Histone, (c) DNase-seq, or (d) CAGE coverage. Each dotin the
scatter plot represents the Pearson correlation between predicted and observed
bin-level coverage values. The mean Pearson R of each model is annotated in

the plot. The top row of plots displays performance when comparing Borzoi’s
predictions to measurements at the original 32bp resolution, while the middle
row of plots shows the result of aggregating the predicted and measured bins

to 128bp resolution before computing Pearson R. Additionally, the published
version of Enformer was fine-tuned on human assays without mouse dataasa
final step, while Borzoi was not. The bottom row of plots compares Borzoi at
128bp resolution to Enformer before fine-tuning, which is comparable to how
Borzoi was trained. (e) Distribution of Pearson correlation metrics, for Enformer
(green) or Borzoi (red), when comparing predicted to observed bin-level

coverage values on held-out data. Bars with darker/lighter shades correspond
to train/test performances respectively. Each bar displays the mean correlation
across experiments, and the intervals mark the 5th and 95th percentiles. Only
tracks shared by both models are included for CAGE (n=638), DNase (n=546),
TF-(n=1,203) and Histone (n =1,634) ChIP. A total of 1,543 tracks were included
for Borzoi’s RNA-seq bar. For Enformer, the results of the published (fine-tuned)
version of the model are shown alongside the performance metrics before
fine-tuning. For Borzoi, performance metrics for a single replicate (‘repl 0’) and
the ensemble (‘ens’) are shown at 32bp resolution. (f) Distribution of Pearson
correlation metrics for RNA-seq tracks when making bin-level, gene-level, or
quantile-normalized and mean-subtracted (gene-level) predictions on the held-
out test set. Results are shown for each individual Borzoi replicate (blue; ‘0’-'3’)
or the fullensemble (red; ‘e’). Each bar displays the mean correlation, and the
intervals mark the 5th and 95th percentiles. Bin-/ gene-level bars are estimated
from 1,543 and 955 distinct (stranded) tracks / experiments respectively.
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Extended Data Fig. 2 | Attention matrix visualization. (a) Attention weight
matrix averaged across all 8 heads of the final transformer layers, shown for
example region chr1:69993520-70517808. Average predicted RNA-seq coverage
for 89 GTEx samples is shown above the attention heatmap. Ensembl gene
models and H3K4me3 tracks are shown below. Exon junctions (blue stars) and
polyadenylation signals (red stars) are annotated in the plot. Genes and their
bounding boxes are also annotated (green =forward strand, blue =reverse
strand). (b)-(d) Enlarged view of the attention weight matrix for the SRSF11gene,
highlighting (b) a promoter region (and alternative TSS), (c) several introns
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and exons, and (d) the 3’ UTR. Gradient saliencies (‘Grad x Inp’) of either the
output coverage tracks (‘Cov’, within the brown boxes) or the attention matrix
(‘Att’, within the blue boxes) are displayed below each vignette. The regions
highlighted in the saliency logos are either dinucleotide-shuffled (promoter) or
mutated (exon and 3’ UTR) and the resulting coverage predictions are depicted
above each logo (blue =reference, red = variant). The altered attention matrices
due to the mutations are also shown in (c) and (d). Exon junctions (blue stars) and
polyadenylation signals (red stars) are annotated in the plots. FANTOMS5 CAGE
peaks/counts are annotated below the heatmap and sequence logoin (b).
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Extended Data Fig. 3| Example coverage predictions for genes that exhibit
differential isoformusage. (a) Predicted and measured RNA-seq coverage
patterns for pairs of GTEx tissues exhibiting differential TSS usage, for two
example genes: ARHGEF18 (GTEx whole blood vs brain) and TACC1 (whole

blood vs muscle). Exon-overlapping bins are shaded light-blue, TSSs and pA

sites are drawn as dashed lines, and ‘max’ refers to the maximumbin valuein the
exonicregions (ina-b). TSS usage is estimated as a coverage ratio between bins
overlapping each alternative start site (the ratio is annotated above each track).
The examples were selected by searching for test genes with largest measured
fold change in TSS usage between each pair of tissues, where measured usage was
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estimated from FANTOMS TSS counts (Methods). (b) Predicted and measured
coverage in GTEx tissues whole blood and brain for two test genes with increased
coverage over the distal polyadenylation signal in brain compared to blood:
PRR5L and MARCH6. Distal usage is estimated as a coverage ratio between bins
overlapping the distal site relative to the proximal site (the ratio is annotated
above each track). The genes were chosen from the set of genes with maximal fold
change of distal-to-proximal coverage ratio in brain. Their brain-specific distal
polyadenylation bias were verified in bulk 3-sequencing data obtained from the
database PolyASite 2.0 (Methods).
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Extended DataFig. 4| Splice site detection and alternative splicing examples.
(a) Predicted and measured RNA-seq coverage across an exon in the SRSF11
gene (GTEx pooled-tissue), centered onits splice donor. Each coverage trackis
independently normalized. Calculation of exon-to-intron coverage statistics
(COVR)isillustrated in the figure. Exon-overlapping bins are shaded light-blue,
and junctions are drawn with dashed lines. (b) Comparison between Borzoi’s
predicted exon-to-intron coverage ratio statistic and Pangolin’s predicted

splice usage when classifying annotated splice donors/acceptors from matched
negatives in the reference genome. Average precision (AUPRC) is displayed
separately for each type of splice junction (AG - Acceptor, GT/GC - Donor) and
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each dot corresponds to a GTEx tissue. (c) Average precision when using Borzoi
to classify annotated splice junctions, calculated separately for protein-coding
and long non-coding RNA. (d) Predicted and measured RNA-seq coverage across
analternative splicing event in the SLC25A3 gene for GTEx tissues whole blood
and muscle (both predictions and measurements are pooled across 3 tissue-
specific samples for blood and muscle). Each coverage track isindependently
normalized. Exon-overlapping bins are shaded light-blue, and junctions are
drawn with dashed lines (ind - e). (e) Predicted and measured blood- and muscle
RNA-seq coverage across an alternative splicing event in the PKM1gene (coverage
tracks are pooled across 3 samples per tissue).
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Extended Data Fig. 5| Prioritizing gene-enhancer pairs from CRISPR
perturbation data. (a) Area under the receiver operating characteristic

curve (AUROC) when using a statistic computed from the Borzoi or Enformer
gradient saliencies to classify whether or not a given CRE locus regulates a target
gene (measurements from Fulco et al., 2016,2019 and Klann et al., 2017, and
others)®"®. The baseline performance (blue bars) corresponds to using only TSS
distance when performing the classification. The number of positives and total
number of examples are displayed below each distance bin. The total number of
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examples are: (<15K) n=144, (15K - 45K) n=277, (45K - 98K) n =500, (98K - 262K)
n=1,220.95% confidence intervals were estimated from 1,000-fold bootstrapping.
(b) AUROCs when using the Borzoi or Enformer gradient scores to classify
regulating / non-regulating CRE loci in the data from Gasperini et al. (2019)*. The
total number of examples are: (<15K) n=1,230, (15K - 45K) n = 2,445, (45K - 98K)
n=4,058, (98K - 262K) n=10,051. 95% confidence intervals were estimated from
1,000-fold bootstrapping.
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Extended Data Fig. 6 | Variant interpretation of fine-mapped eQTLs.
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whenintroducing variant rs72670481. Exon-overlapping bins are shaded light-
blue. Exon-aggregated coverage for the alternate and reference alleles, and
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6individuals with the reference allele and 6 hetero- or homozygous individuals
for the alternative allele is displayed below the predictions, along with attribution
scores computed in alocal window centered on the variant. The attributions
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gene. The sequence logo y-axes are equally scaled for both the reference and
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alternate alleles (min/ max annotated in the right corner). Likely motif hits are
displayed below the sequence logos (the E-values represent the significance of
the motif match, as computed by Tomtom). (b) Predicted RNA-seq coverage
(GTEx tissue whole blood) for variant rs3890144, along with measured coverage
in8individuals with the reference allele and in 8 individuals who are either
hetero- or homozygous for the alternative allele. Attribution scores inawindow
centered on the variant, calculated with respect to EPHB4 coverage, displayed at
the bottom (equally scaled y-axes for the reference and alternate allele; min / max
annotated in the right corner). Likely motifs and Tomtom E-values shown below
the sequence logos.
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Extended Data Fig. 7 | Variant interpretation of fine-mapped paQTLs.

(a) Predicted RNA-seq coverage (GTEx tissue-pooled) for variant rs74327114 in
the FBXO9 gene, along with measured coverage inlindividual with the reference
allele and 1 heterozygous individual (averaged across two tissues each). Exon-
overlappingbins are shaded light-blue, and pA sites are drawn with black dashed
lines. The log ratio between the coverage ratio (COVR) statistics computed for

the alternate and reference alleles is annotated in the plot. Attribution scores

of the predicted COVR statistic, computed using three separate methods, are
displayed to the right and indicate loss of an extra hexamer motif, resulting in
moderate reduction in polyadenylation efficiency. The sequence logo y-axes are
equally scaled for both the reference and alternate alleles (min/ max annotated in
theright corner).
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Extended Data Fig. 8| Variant interpretation of fine-mapped sQTLs.

(a) Predicted RNA-seq coverage (GTEx tissue whole blood) for variant rs1882553
using Borzoi, along with measured coverage in 32 individuals with the reference
allele and 32 hetero- or homozygous individuals for the alternative allele (whole
blood samples). Exon-overlapping bins are shaded light-blue. The log ratio
between the coverage ratio (COVR) statistics computed for the alternate and
reference alleles is annotated in the plot (in a - b). Attribution scores (bottom)
are computed with respect to the predicted log ratio of exon-to-intron coverage,
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comparing three methods (equally scaled y-axes for the reference and alternate
allele, displayed in reverse-complemented form; min/ max annotated in the

right corner). (b) Predicted RNA-seq coverage (GTEx tissue adipose) for variant
rs10411704, along with measured coverage in 20 individuals with the reference
allele and 20 hetero- or homozygous individuals for the alternative allele
(adipose samples). Attribution scores of the predicted exon-to-exon log coverage
ratio are displayed at the bottom (equally scaled y-axes for the reference and
alternate allele; min/ max annotated in the right corner).
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Extended Data Fig. 9| Variantinterpretation of fine-mapped intronic paQTLs.
(a) Predicted RNA-seq coverage (GTEx tissue nerve) for variant rs3830026 and
measured coverage in 16 individuals with the reference allele and 16 individuals
who are hetero- or homozygous for the alternative allele (the QTL is significant in
nerve samples). Exon-overlapping bins are shaded light-blue. The computation
of polyadenylation- and splice-centric coverage ratio (COVR) statistics is
illustrated. The log ratio between the splice-centric COVR statistics computed for
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the alternate and reference alleles is annotated in the plot. Bottom: Attribution
scores of the exon-to-intron coverage ratio (COVR Splice) and the exon-to-exon
coverage ratio (COVR PolyA), plotted in reverse-complement with equally scaled
y-axes for the reference and alternate allele (min/ max annotated in the right
corner of each sequence logo). (b) Average AUPRC when using Borzoi to classify
fine-mapped intronic paQTLs (tissue-pooled). Each dot represents a permutation
test and the dashed line shows the mean (n=100; Methods).
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