
Nature Genetics | Volume 57 | April 2025 | 949–961 949

nature genetics

https://doi.org/10.1038/s41588-024-02053-6Article

Predicting RNA-seq coverage from  
DNA sequence as a unifying model  
of gene regulation
 

Johannes Linder    1  , Divyanshi Srivastava1, Han Yuan1, Vikram Agarwal    2 & 
David R. Kelley    1 

Sequence-based machine-learning models trained on genomics data 
improve genetic variant interpretation by providing functional predictions 
describing their impact on the cis-regulatory code. However, current tools 
do not predict RNA-seq expression profiles because of modeling challenges. 
Here, we introduce Borzoi, a model that learns to predict cell-type-specific 
and tissue-specific RNA-seq coverage from DNA sequence. Using statistics 
derived from Borzoi’s predicted coverage, we isolate and accurately 
score DNA variant effects across multiple layers of regulation, including 
transcription, splicing and polyadenylation. Evaluated on quantitative 
trait loci, Borzoi is competitive with and often outperforms state-of-the-art 
models trained on individual regulatory functions. By applying attribution 
methods to the derived statistics, we extract cis-regulatory motifs  
driving RNA expression and post-transcriptional regulation in normal 
tissues. The wide availability of RNA-seq data across species, conditions  
and assays profiling specific aspects of regulation emphasizes the  
potential of this approach to decipher the mapping from DNA sequence to 
regulatory function.

A long-standing goal in genetics is to accurately predict the effect of 
modifying each of the three billion nucleotides in the human genome 
with respect to gene-regulatory activity, ranging from chromatin acces-
sibility and transcriptional activation to splicing and polyadenylation. 
Such predictions would dramatically improve researchers’ ability to 
interpret pathogenic mutations and prioritize functional variants at 
loci implicated in genome-wide association studies (GWAS), or even 
improve GWAS itself through functionally informed discovery and 
fine mapping1–3.

Machine-learning models trained to predict function from DNA 
sequences have been successful at characterizing regulatory syn-
tax and interpreting genetic variant effects. Thus far, such models 
have focused on assays in which measured activity is proportional 
to local sequencing read counts. For example, transcription factor 
(TF) chromatin immunoprecipitation with sequencing (ChIP–seq) 

or DNase I hypersensitivity site sequencing (DNase-seq) and assay 
for transposase-accessible chromatin with sequencing (ATAC–seq) 
reads indicate a TF binding event or accessible DNA at the site where 
the reads align. This allows for accurate predictions using relatively 
short surrounding regions of sequence, typically 500–2,000 bp4–10.

By contrast, the most popular sequencing assay, RNA sequencing 
(RNA-seq), does not have this property; RNA-seq reads aligned across a 
transcript will depend on a much larger region of sequence containing 
the gene’s exons and relevant cis-regulatory elements. A read aligned to 
the 3′ end of a gene may be hundreds of thousands of nucleotides away 
from its promoter and enhancers that influence the magnitude of signal 
from the assay. Furthermore, RNA-seq coverage patterns integrate 
multiple layers of gene regulation; namely, transcription, splicing, 
termination or polyadenylation and RNA stability. These properties 
make the prediction of RNA-seq coverage from sequence challenging.
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operation, allowing every pair of positions to exchange information. 
From this point, we make use of a U-net architecture to increase the 
resolution back to 32 bp29,30. For each sequence length expansion (and 
resolution increase), we upsample the position vectors from the atten-
tion blocks and combine them with the corresponding feature map of 
equal size produced by the initial convolution tower (see Methods).  
To transition from embeddings representing 128 bp to those repre-
senting 32 bp, we perform this block twice, upsampling by a factor of 
two each time.

We chose to work with uniformly processed RNA-seq from 
ENCODE, providing 866 human and 279 mouse datasets measured 
across diverse biosamples, including cell lines, adult human tissues and 
developing mice31,32. We also included two to three replicates for each 
Genotype-Tissue Expression (GTEx) tissue processed by the recount3 
project33–35. To help the model identify salient regulatory elements, 
we paired these data with the thousands of training datasets from the 
Enformer model, including CAGE, DNase-seq, ATAC–seq and ChIP–seq 
tracks (Methods). To assess model performance variance and enable 
ensembling, we trained four randomly initialized replicate models. We 
evaluated performance on a set of randomly held-out sequences from 
the human genome and orthologous mouse regions.

Borzoi accurately predicts RNA-seq and other assays
Despite the challenges involved with modeling RNA-seq coverage from 
only underlying DNA sequence, Borzoi predicts exon–intron coverage 
patterns with striking concordance for even long genes with many 
exons, as exemplified in Fig. 1b by the 190 kb gene INSR. Test set predic-
tions matched RNA-seq coverage with a mean Pearson’s R value of 0.74 
across human samples when using one model replicate. Pearson’s R 
increased to 0.75 when averaging the predictions across the full ensem-
ble (Fig. 1c). Performance is difficult to compare directly to Enformer 
owing to differences in data processing (Methods). Nevertheless, test 
accuracies on overlapping datasets are broadly similar (Extended Data 
Fig. 1a–e) with two exceptions: the average Pearson’s R is lower than 
Enformer for DNase and higher for CAGE.

To study predictions at the gene level, we aggregate and log2- 
normalize coverage in exon-overlapping bins. When comparing pre-
dicted to measured gene-level coverage values, we observe a mean 
Pearson’s R of 0.87 across held-out genes (0.86 per model replicate) 
(Fig. 1d and Supplementary Fig. 1a–d). After quantile-normalizing 
the predictions across experiments and subtracting each gene’s 
mean expression (so that the value represents the residual expres-
sion beyond the mean), we observe a mean Pearson’s R of 0.58 
(0.55 per replicate) (Fig. 1e), indicating that the model explains 
a significant amount of variation observed between tracks (such 
as tissue-specific and cell-type-specific differences). Finally, we 
note that Borzoi accurately predicts variation within the transcript 
structure; evaluated on the top 20% of test set genes with the high-
est variance in coverage across the span of exons and introns, the 
average Pearson’s R value between predicted and measured RNA 
coverage (at the bin level) was 0.88 across all genes and samples 
(Supplementary Fig. 1e).

In the Supplementary Information, we show that the model relies 
on well-known regulatory features to make predictions and that the 
model’s attention matrices comprehensively capture gene structure 
(Extended Data Fig. 2 and Supplementary Fig. 2).

Inference of tissue-specific expression and isoform usage
Gene expression is a multi-faceted process governed by numerous 
regulatory steps, including transcription initiation, splicing and 
polyadenylation, and these steps may exhibit tissue-specific effects. 
To study Borzoi’s ability to make tissue-specific predictions, we 
focused on a set of five GTEx tissues: whole blood, liver, brain, muscle 
and esophagus. We first noted that Borzoi could accurately predict 
tissue-specific gene expression coverage on held-out test genes 

Previous models have only attempted to work with RNA-seq after 
summarizing gene expression in a single statistic. By processing a large 
region centered on the transcription start site (TSS), several models 
can predict normalized gene counts11–13. This approach depends on 
accurate TSS annotation and ignores isoform complexity. Other mod-
els predict cap analysis of gene expression (CAGE), which measures 
expression at the 5′ end of capped RNA (representing the TSS) and does 
not capture coverage at individual exons. Similarly, sequence-based 
models of post-transcriptional regulation rely on genome annota-
tions and transformed measurements extracted from RNA-seq to 
isolate each regulatory mechanism (for example, percent spliced-in for  
splicing)14–23. However, such metrics inevitably struggle to describe 
complex splicing outcomes, unannotated de novo events or the intri-
cate and sometimes competitive relationship between transcription, 
splicing and (intronic) polyadenylation24–26.

Modeling RNA-seq coverage directly would have several benefits. 
First, RNA-seq is far richer than previously modeled assays. Although 
modeling multiple regulatory layers simultaneously is more challeng-
ing, it contains great promise; cross-talk between layers is common 
and their simultaneous consideration may improve models for each 
regulatory process. Thus far, models (for example, those trained on 
ChIP or ATAC) have mainly focused on one regulatory layer. Second, 
there are large amounts of RNA-seq data available, describing a wide 
variety of cell and tissue states across many species. Models trained on 
data from multiple species have been shown to improve performance9, 
but chromatin profiling and the CAGE gene expression assays have been 
performed on far fewer species than RNA-seq.

Given that mammalian genes often span hundreds of thousands 
of nucleotides, effective RNA-seq modeling requires working with 
very large sequences and algorithms that propagate information 
across large distances. Recent work on the Enformer model using 
self-attention has demonstrated a path toward achieving this goal13. 
Therefore, we set out to model RNA-seq and additional epigenetic 
assays’ coverage across diverse samples as a function of the underly-
ing DNA sequence, without prior knowledge of gene annotation. We 
developed a model, named Borzoi, that effectively learns several layers 
of gene regulation. By applying attribution methods to predicted cover-
age patterns of individual RNA-seq experiments present in the training 
data, Borzoi derives the primary cell-type-specific or state-specific 
TF motifs and a genome-wide map of nucleotide influence on gene 
structure and expression. Our model improved performance relative 
to Enformer on downstream tasks to identify distal enhancers and pre-
dict genetic variant effects on gene expression, and it introduced new 
capabilities to predict variant effects on splicing and polyadenylation 
that match or exceed the state of the art. We anticipate that this toolkit 
will accelerate progress to determine mechanisms by which the many 
unsolved human genetic associations affect traits.

Results
RNA-seq model design
RNA-seq is a base-resolution readout of transcribed and usually pro-
cessed RNAs. Thus, modeling RNA-seq coverage at base resolution 
would be ideal. However, the long span of mammalian genes means 
that we must also work with very long sequences to cover all exons 
and relevant regulatory elements. Computational limitations cre-
ate a trade-off between these two considerations. We lean toward 
using longer sequences at the expense of some resolution, choos-
ing 524 kb sequences for which we predict coverage in 32 bp bins. 
Training examples are extracted in tiled 524 kb windows spanning 
the human and mouse genome, thus containing genes at variable 
locations per window.

Our neural network model, called Borzoi, is illustrated in Fig. 1a. 
We use the core Enformer architecture, which includes a tower of con-
volution and subsampling blocks followed by a series of self-attention 
blocks operating at 128 bp resolution27,28. Self-attention is a critical 
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(for example, the blood-specific gene ADGRE1 visualized in Fig. 2a; 
see also Supplementary Fig. 3a,b). We compared the predicted and 
measured fold change in gene-level coverage of one tissue relative 
to the average coverage of the four other tissues, observing a Spear-
man’s R range from 0.52 to 0.75 when using the ensemble of four 
model replicates (Fig. 2b).

Genes often have alternative TSSs, which are differentially used 
across tissues36–38. For example, SGK1 harbors an upstream TSS that 
is highly expressed in brain but not blood (Fig. 2c; see Extended Data 
Fig. 3a for additional examples). We computed TSS usage ratios for the 
5′-most and 3′-most TSSs from our ensembled predictions (Methods) 
and found correlations with experimental measurements (Spear-
man’s R = 0.85; Supplementary Fig. 3c), FANTOM5 TSS usage propor-
tions (Supplementary Fig. 3d) and tissue-specific TSS usage ratio fold 
changes (Spearman’s R = 0.29−0.50 on held-out genes; Fig. 2d and 
Supplementary Fig. 3e).

The 3′ untranslated region (UTR) harbors regulatory regions called 
polyadenylation signals (PASs), which can generate multiple isoforms 
with distinct 3′ ends through alternative polyadenylation (APA)39–41. For 
example, RWDD1 exhibits biased usage of the distal-most PAS in brain42 
(Fig. 2e; see Extended Data Fig. 3b for additional examples). Predicted 
tissue-pooled distal-to-proximal polyadenylation coverage ratios 
of held-out genes were highly correlated with measurements from 
GTEx (Spearman’s R = 0.81; Supplementary Fig. 3f) and PolyADB v.3  
(refs. 43,44) (Supplementary Fig. 3g). Predicted tissue-specific cover-
age ratio fold changes showed moderate correlation with measured 
fold changes between GTEx tissues (Spearman’s R = 0.23−0.41; Fig. 2f 
and Supplementary Fig. 3h).

In the Supplementary Information, we show that although Borzoi 
competitively identifies splice junctions from matched negatives, the 
model has not learned to predict alternative splicing across tissues well 
(Extended Data Fig. 4; see Discussion).

Borzoi identifies regulatory motifs driving RNA expression
Borzoi enables direct characterization of tissue-specific cis-regulatory 
TF motifs by applying attribution methods to the predicted RNA-seq 
coverage statistics45–50. Focusing on the five GTEx tissues analyzed 
in the previous section, we selected 1,000 genes for each tissue with 
maximal transcript per million (TPM) fold change relative to other 
tissues and computed tissue-specific aggregated exon coverage gradi-
ents per gene. These saliency scores describe the contribution of each 
nucleotide to the predicted expression. As an example, gradients at the 
position of maximal liver-specific saliency for gene CFHR2 highlight 
motif hits for CEBPA/B and HNF4A/G (Fig. 3a). We found that the gradi-
ent scores were broadly similar across replicates and closely matched 
in-silico saturation mutagenesis (ISM) (Supplementary Fig. 4).

Next, for each set of 1,000 tissue-specific genes, we selected 
the corresponding gradients and subtracted the average gradient 
of all other tissues, obtaining residual tissue-specific scores. We ran 
TF-MoDISco, a de novo motif clustering tool51, for all five tissue gene 
sets and aligned motif clusters to their most likely database match 
using the Tomtom MEME suite and HOCOMOCO (v.11)52,53. A selection 
of top-scoring motifs are shown alongside their saliency distribu-
tions across genes in Fig. 3b (see also Supplementary Fig. 5a,b). We 
detect well-known regulators for each tissue, such as SPI1/B and IRF4/8 
for blood, HNF4A/G and HNF1A for liver, SOX9 and REST for brain 
and MYOD1 and MEF2D for muscle. Motifs shared between tissues  
generally tend to regulate distinct loci (Fig. 3b, inset). We similarly 
recapitulate known regulatory motifs for esophagus and K562  
(Supplementary Fig. 5c–e).

Finally, we aggregated the difference in gradient saliency for each 
pair of tissues among seqlets matching each TF, obtaining a scalar score 
that describes the importance of a particular TF in one tissue relative 
to another. These scores were highly correlated with observed TPM 
fold changes for the corresponding TFs (Fig. 3c and Supplementary 
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Fig. 1 | Borzoi: a neural network for predicting RNA-seq coverage from 
sequence. a, The Borzoi neural network architecture consists of a number of 
convolution and downsampling layers followed by a stack of self-attention 
layers with relative positional encodings operating at 128 bp resolution, similar 
to the Enformer architecture. The output is then repeatedly upsampled and 
put through additional convolution layers with matched U-net connections 
to predict at 32 bp resolution. Connections with ‘+’ symbols represent a 
combination of the outputs of a previous layer with the inputs of a new layer 
through residual convolution. b, RNA-seq coverage prediction for the held-out 
test gene INSR (GTEx ‘adipose tissue’), obtained by averaging the predictions 

of four model replicates. The ‘squashed’ scale refers to the transformed scale 
applied to the training data (Methods). c, Bin-level Pearson correlation on 
held-out test data across coverage tracks when predicting CAGE, RNA-seq, 
DNase-seq or ChIP–seq (n = number of coverage tracks). Predictions were 
averaged across four model replicates. d, Gene-level Pearson correlation when 
comparing the predicted to measured sum of RNA coverage across exons 
(n = number of sequencing experiments). e, Gene-level Pearson correlation after 
quantile-normalizing the RNA coverage tracks and subtracting the average gene 
expression across tracks (n = number of sequencing experiments).
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Fig. 5f,g). For example, Spearman’s R reached 0.77 when comparing 
TF saliency in blood and muscle. Note that a repressor element such 
as REST should be off-diagonal in comparison to brain, so we do not 
expect a perfect correlation.

Improved context use for gene expression prediction
We next assessed Borzoi’s ability to identify and prioritize distal 
enhancer–gene interactions, which is critical to cell and tissue-specific 
regulation54–57. For each target gene, we computed input gradients of the 
aggregated exon coverage prediction in K562 RNA-seq samples, high-
lighting regulatory elements that drive the gene’s expression prediction. 
Statistics derived from the gradient saliencies, averaged across the model 
ensemble, were compared to measurements from high-throughput 
CRISPR screens58–62. Compared to Enformer13, Borzoi can score sites 
that are up to twice as far away from the gene, 262 kb, and we make use 
of exon annotations rather than TSS annotations, which are generally 
more robust to alternative isoforms. Fig. 4a,b displays the gradient attri-
butions for genes HBE1 and MYC, in which Borzoi correctly identifies 
both proximal (distance to TSS, <20,000 bp) and distal (distance to 
TSS, >200,000) enhancers, although false positives are also present.

When comparing Borzoi, Enformer and a distance-to-TSS baseline 
on their ability to classify measured positive from negative enhancer–
gene interactions in data from previous works60–65, we find that Borzoi 
has superior average precision (AUPRC) and area under the receiver 
operating characteristic curve (AUROC) at all distances (Fig. 4c and 

Extended Data Fig. 5a). Similar results are obtained on the data from 
Gasperini et al. (2019)58 (Fig. 4d and Extended Data Fig. 5b). In line with 
recent work66, we find a general decreasing trend in average predicted 
percent expression change with TSS distance for both positive and 
negative examples (Supplementary Fig. 6a). We study coverage pat-
terns across the transcript in more detail in Supplementary Fig. 6b–e. 
Through ablation experiments, we find that including training data 
such as DNase-seq and ATAC–seq in addition to RNA-seq improves 
performance (Supplementary Fig. 7a–c).

To further demonstrate the model’s reliance on a broader genomic 
context for its predictions, we analyzed expression data of seven dis-
tinct promoters that had been integrated into thousands of genomic 
positions by the TRIP assay67,68. We predicted activity scores from 
multiple classes of coverage tracks, including DNase, histone modifi-
cations, CAGE and RNA-seq (Supplementary Fig. 8a,b and Methods). 
In general, the scores derived from DNase tracks were most concord-
ant with the measured expression levels (Fig. 4e and Supplementary 
Fig. 8c; 20-fold cross-validation, Spearman’s R = 0.58 for promoter 
ARHGEF9). These predictions were better correlated with expression 
than LMNB1 DamID-seq, which measures nuclear lamina interactions 
and constitutes a strong baseline.

Borzoi prioritizes genetic variants that influence expression
Accurately predicting the influence of genetic variants on gene expres-
sion is crucial for understanding the regulatory mechanisms of genetic 
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Fig. 2 | Predicting tissue-specific patterns of RNA-seq coverage in normal 
tissues. a, Example of tissue-specific gene expression predictions using Borzoi 
in five GTEx tissues for the blood-specific gene ADGRE1. The predicted and 
measured coverage of each RNA-seq experiment is aggregated in the bins that 
overlap exons (blue shaded regions; ‘max’ and ‘sum’ indicate maximum and total 
coverage). Exon annotations are shown below each coverage track (GENCODE 
v.41). b, Comparison of predicted and measured fold change between the 
aggregated coverage in a given tissue and the average coverage of the four other 
tissues for held-out test genes (n = 1,940). Blue and red dots represent replicate 
and ensemble model performance, respectively. Bar height represents average 
correlation. Inset, predictions for blood (color bar indicates Gaussian kernel 

density estimate). c, Example of alternative TSS isoform predictions for gene 
SGK1. TSS usage is estimated as a coverage ratio between bins overlapping each 
alternative start site (the ratio is annotated above each track). d, Comparison of 
predicted and measured TSS coverage ratio fold change, calculated between the 
coverage ratios (COVR) of a given tissue and the average coverage ratio of the 
remaining four tissues (n = 337 held-out genes with at least two TSSs). e, Example 
of 3′ UTR APA isoform predictions for gene RWDD1. Distal site usage is estimated 
as the coverage ratio of bins overlapping the distal-most and proximal-most 
polyadenylation sites. f, Comparison of predicted and measured fold change 
between APA coverage ratios of a given tissue and the remaining four tissues 
(n = 994 held-out genes with at least two sites).
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associations in human populations. Here, we evaluated Borzoi’s ability 
to distinguish fine-mapped GTEx expression quantitative trait loci 
(eQTLs) from a set of matched negatives, controlling for TSS distance1. 
As an example, Fig. 5a shows RNA-seq coverage predictions for the 
gene SHTN1 in GTEx whole blood, for both the reference sequence 
and an altered sequence substituting the alternative allele of single 
nucleotide polymorphism (SNP) rs1905542. We also show the measured 
coverage in GTEx individuals harboring each allele. Borzoi correctly 
predicts the upregulation of SHTN1 expression owing to the creation 
of a CEBP binding motif69–72 (see Supplementary Fig. 9a and Extended 
Data Fig. 6a,b for additional examples).

Borzoi predicts coverage across a large sequence region from 
which a variant effect score must be distilled. For RNA-seq tracks, we 
compute either the log fold-change sum or L2 norm of differential 
coverage across exons (Methods). Using Borzoi’s ensemble with an 
L2 score was superior to Enformer and its original sum aggregation at 
discriminating eQTLs (mean AUROC = 0.794 vs 0.747 across tissues; 
Fig. 5b,c). Borzoi still outperformed Enformer when using a single 
model (AUROC = 0.788) or when switching to the original sum statistic 
(AUROC = 0.772). Borzoi also exhibits greater Spearman correlation 

than Enformer when comparing effect size predictions to fine-mapped 
eQTL coefficients (mean R = 0.334 across tissues vs R = 0.227; Fig. 5d 
and Supplementary Fig. 9b,c). Borzoi outperforms Enformer with 
even a single model (mean R = 0.292). In ablation experiments, we 
found that training on DNase-seq and ATAC–seq data in addition to 
RNA-seq, as well as mouse data, substantially improved predictions 
(Supplementary Fig. 9d). We further evaluated the model’s ability to 
prioritize true eGenes among other genes surrounding an eQTL (Sup-
plementary Fig. 9e). The model performed, at best, marginally better 
than a TSS distance baseline.

To further test the utility of Borzoi-derived variant scores, we 
investigated the degree to which the model can distinguish common 
variation, which is generally benign, from a matched set of singletons 
(rare variants observed in a single individual), which are relatively 
enriched for pathogenicity, in the GnomAD database73,74. For com-
parison, we considered CADD (v.1.6) scores75,76. Restricted to ENCODE 
candidate cis-regulatory elements, Borzoi and CADD exhibited equal 
discriminative power (mean AUROC = 0.55; Fig. 5e and Supplementary 
Fig. 9f). Combining their scores resulted in the highest accuracy (mean 
AUROC = 0.57).
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In the Supplementary Information, we show that Borzoi exhibits 
competitive performance compared to Enformer when predicting 
non-coding regulatory mutations in promoters and enhancers as 
measured by massively parallel reporter assays (MPRAs) (Supplemen-
tary Fig. 10).

Functional polyadenylation variant interpretation
Another important class of disease variants alters 3′ mRNA processing77. 
We first probed Borzoi’s predicted coverage in 3′ UTRs with attribution 
methods to understand which sequence features affect the predicted 
shape (Fig. 6a). Motifs for well-known polyadenylation regulators (for 
example, CFIm, CPSF, CstF) emerge from the attribution scores of the 
predicted distal polyadenylation ratio (Fig. 6b). Although we generally 

do not find determinants of mRNA half-life in the 3′ UTR attributions, 
we do observe a correlation between codon-aggregated gradient salien-
cies of gene exon coverage and MPRA measurements from a previous 
publication78 (Pearson’ R = 0.59) (Supplementary Fig. 11a). We also 
note that window-shuffled ISM is a more reliable attribution method in  
3′ UTRs because of buffering effects (Supplementary Fig. 11b).

We next investigated Borzoi’s ability to distinguish between 
fine-mapped 3′ QTLs from the eQTL catalog79,80 (polyadenylation 
QTLs (paQTLs); n = 1,058) and a set of expression-matched negatives, 
controlling for PAS distance. We calculated variant effect scores as 
the maximal absolute change in predicted coverage ratio between 
any 3′ cleavage junction from tissue-pooled GTEx tracks. We focused 
on tissue-pooled predictions because the limited number of QTLs 
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prohibited a tissue-specific analysis. Coverage predictions for two 
paQTLs are shown in Fig. 6c–d (and Supplementary Fig. 11c,d). Com-
pared to RNA-seq tracks of GTEx individuals harboring the alternative 
allele, Borzoi correctly predicts the change in site usage caused by each 
variant. Extended Data Fig. 7a shows more examples.

The variant effect scores derived from the predicted RNA-seq 
tracks discriminated paQTLs from the matched negatives with a mono-
tonic increase in accuracy at closer distances to the nearest PAS (Fig. 6e; 
AUPRC = 0.64–0.74). Compared to variant scores predicted by the 
APARENT2 model22, Borzoi was consistently more accurate (Fig. 6f). 
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However, the performance gap decreased when scaling APARENT2’s 
predictions by the reference isoform percent from PolyADB, suggest-
ing that context is an important determinant. We further compared to 
a 3′ UTR-wide ensemble of APARENT2 and Saluki23 (Methods). Borzoi 
performs better at longer distances (dAUPRC > 0.050 at 2,000 bp) with 
a more comparable performance closer to the PAS (dAUPRC = 0.025 
at 50 bp) (Fig. 6g). At closer distances, the average rank of all model 
predictions (Borzoi, APARENT2 and Saluki) surpasses either model’s 
individual performance.

Functional splicing variant interpretation
Repeating the analyses of the previous section for RNA splicing, we 
defined a splice-centric attribution score based on the predicted 
exon-to-intron coverage ratio spanning a splice junction (Fig. 7a). When 
running MoDISco on gradients from tissue-pooled exon-to-intron 

coverage ratios for genes from the Gasperini set58, we found known 
splice-regulatory motifs (Fig. 7b). Buffering effects were less prob-
lematic when interpreting repeat-like splicing motifs with ISM (Sup-
plementary Fig. 12a).

We curated fine-mapped splicing QTLs (sQTLs) from the eQTL cat-
alog and constructed expression-matched and splice distance-matched 
negatives (n = 4,105)80. This relatively large set of variants allowed for a 
tissue-specific analysis. Variant effect scores were calculated from the 
predictions as the maximum absolute difference in relative coverage 
across bins within the gene span. RNA-seq coverage predictions for an 
example sQTL (rs55695858) are shown in Fig. 7c (see Supplementary 
Fig. 12b and Extended Data Fig. 8a,b for more examples), along with 
measured coverage for five GTEx individuals with or without the alter-
native allele. The variant weakens an alternative 3′ splice site, which 
upregulates extension of the corresponding exon. When comparing 
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Fig. 7 | Classifying sQTLs and intronic paQTLs from RNA-seq coverage 
predictions. a, Predicted and measured RNA-seq coverage across an exon in 
the SRSF11 gene (GTEx pooled tissue). Calculation of exon-to-intron coverage 
statistics (COVR) is illustrated in the figure. Attribution scores based on gradient 
saliency, ISM and ISM shuffle are shown below (min and max displayed in the right 
corner). b, PWMs of putative splicing regulators, obtained by running MoDISco 
on pooled GTEx coverage ratio gradients. c, Predicted RNA-seq coverage (GTEx 
tissue testis) for variant rs55695858, along with measured coverage in testis for 
five individuals with the reference allele and five heterozygous individuals (the 

sQTL is significant in testis). The log ratio between the variant and reference 
COVR statistics is annotated in the plot. Attribution scores are shown below 
(y axes plotted with equal scale). d, Comparison between the variant effect 
predictions of Borzoi, Pangolin and an ensemble of both models at the task 
of classifying fine-mapped splicing QTLs from GTEx, at different distance 
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line). e, Average AUPRC for Pangolin, Borzoi and their ensemble as a function of 
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Borzoi to Pangolin16 for the task of classifying the causal sQTLs from 
matched negatives, Pangolin has a slight advantage (Fig. 7d–e and 
Supplementary Fig. 12c; dAUPRC = 0.01, evaluated on all SNPs within 
distances of ≤10,000 bp from an annotated splice site). Most far-away 
SNPs are de novo splice–gain mutations and are relatively easy for Pan-
golin to classify based on the local predicted effect at the variant allele, 
whereas Borzoi’s splice–gain predictions appear less well-calibrated. By 
contrast, Borzoi is better at distances closer to the junction (Fig. 7d–e; 
dAUPRC = 0.02, evaluated on variants ≤200 bp from an annotated 
junction). Importantly, the average rank prediction of both models is 
superior to either model alone (dAUPRC > 0.02).

Intronic polyadenylation variant interpretation
Candidate polyadenylation sites frequently occur in introns, result-
ing in competition between the PAS and the enveloping splice junc-
tions. In this case, the intron is either spliced out or retained and 
polyadenylated40,81. Curious as to whether Borzoi has learned about 
this competition between distinct regulatory functions, we fil-
tered the paQTLs from the eQTL catalog for SNPs that were closer 
to intronic polyadenylation sites than 3′ UTR sites and constructed 
new expression-controlled negatives that were matched for intronic 
polyadenylation distance. Borzoi predicts fine-mapped causal intronic 
paQTLs well, with an average AUPRC of 0.725 (Extended Data Fig. 9a,b 
and Supplementary Fig. 13a).

Discussion
In this paper, we propose a new sequence-based machine-learning 
model, Borzoi, that learns to predict sequencing coverage from a vast 
set of RNA-seq experiments. Borzoi enables variant scoring and inter-
pretation through multiple layers of regulation, including transcrip-
tion, splicing and polyadenylation, and demonstrates competitive 
performance to state-of-the-art models in classifying fine-mapped 
QTLs. When averaging predictions across an ensemble of model repli-
cates, Borzoi’s performance improved further. By applying sequence 
attribution methods to statistics derived from the predicted coverage 
tracks, Borzoi provides tissue-specific interpretations of enhancers 
driving RNA expression and post-transcriptional regulation within 
the transcript. Through a number of ablation studies, we discovered 
that training on DNase-seq and ATAC–seq data in addition to RNA-seq 
consistently improved test set accuracies compared to training on 
RNA-seq alone and delivered better concordance with eQTL measure-
ments and enhancer–gene linking data. This observation suggests 
that recent multiome datasets, which measure both accessibility and 
expression in single cells, would be valuable as joint training data. 
Variant prediction quality was only marginally affected by whether 
or not the variant occurs in genomic sequences seen during training, 
meaning that genetics researchers can ignore this factor when using 
the model.

Challenges to modeling RNA-seq coverage remain, and Borzoi is 
far from perfect in predicting these data. For example, although dif-
ferential 5′ (TSS) and 3′ (APA) isoforms of held-out genes were predicted 
accurately across tissues, most tissue-specific splicing events were 
not captured well by the model, which rather tended to predict the 
average RNA-seq shape. Furthermore, we did not find sequence ele-
ments related to mRNA half-life in Borzoi’s sequence attributions23,82. 
Disentangling these layers of regulation is particularly difficult in the 
presence of sequencing bias. For example, reads aligning with greater 
density at the 3′ end of transcripts83,84 and other confounders (for 
example, GC bias) caused false positives as we attempted to classify 
alternatively used splice sites based on predicted coverage. We also 
emphasize the importance of choosing appropriate attribution meth-
ods to interpret the model. Although input gradients and ISM produced 
high-quality attributions for splice junctions and enhancer–promoter 
regions, we found that window-shuffled ISM worked better for 3′ UTRs 
owing to buffering effects.

For researchers intending to use Borzoi in their genetic variant 
analyses, we recommend using the gene-centric variant effect scores 
derived in this paper to prioritize variants with respect to a particular 
target gene. These scores include (1) predicted exon-aggregated cov-
erage log fold change of the target gene (for abundance differences), 
(2) predicted maximum difference in coverage log ratio between any 
3′ cleavage site (for polyadenylation differences) and (3) predicted 
maximum normalized difference in any coverage bin within the gene 
body (for splicing differences). If target genes are unknown a priori, 
we recommend using a gene-agnostic statistic, such as the one based 
on total L2 norm, to quantify potential changes in coverage patterns 
across the entire output window.

In future work, we envision several directions for improvement. 
We believe that adding training data from additional assays based on 
RNA-seq will further improve model quality; for example, crosslink-
ing and immunoprecipitation sequencing to measure RNA-binding 
proteins85,86, ribosomal profiling to measure translation87,88 and 
time-series measuring mRNA half-lives89,90. Similarly, we anticipate 
that training on experiments in which regulatory proteins have been 
perturbed will improve model performance in general and enable 
causal inference by tying particular regulators to sequence motifs91,92. 
Data quantity is a critical factor in successful machine learning and 
we believe that adding RNA-seq from more mammals is a viable path 
to increasing training data and model quality93. Relatedly, training on 
individual human genomes with matched RNA-seq data from popula-
tion sequencing efforts like GTEx33 may help further improve variant 
effect predictions94,95. Finally, we are eager to incorporate new efficient 
attention modules to boost the receptive field to megabase scale and 
predict at finer resolution96.

In summary, we developed a neural network model for predict-
ing RNA coverage from sequence and demonstrated its performance 
on multiple variant interpretation tasks. Direct modeling of RNA-seq 
opens the door to studying a wide range of experimental assays, 
increasing our ability to understand the impact of genetic variation 
on gene-regulatory processes.
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Methods
The experiments conducted in this study did not require approval from 
a specific ethics board.

Training data
The training data for this analysis consisted of a large set of human 
and mouse RNA-seq experiments. To help the model use important 
sequence features for making its RNA coverage predictions, we also 
included the experimental assays studied by the Enformer and Basenji 
models in the training data8,9,13. This includes a curated set of human 
and mouse CAGE assays from the FANTOM5 consortium, which we rea-
soned would help the model relate TSS usage and strength to RNA-seq 
coverage between multiple (alternative) TSSs97,98, as well as DNase-seq 
and ChIP–seq from ENCODE and the Epigenomics Roadmap31,99 and 
pseudo-bulk single-cell ATAC–seq data from CATlas100,101, which focuses 
the model towards distal regulatory elements. We processed the data 
slightly differently relative to prior analyses9,13. First, we aggregated 
the aligned read counts here at 32 bp resolution. Second, we split the 
CAGE-aligned reads by strand, requiring that the model predict both 
the forward and anti-sense coverage.

We collected 867 human and 278 mouse RNA-seq coverage tracks 
from ENCODE. This set includes samples from a diverse set of tissues 
and cell types, with measurements spanning the developmental spec-
trum for both human and mouse. The tracks available for download 
represent normalized coverage from the STAR alignment program 
of uniquely mapping reads102. Most experiments used a protocol to 
enable stranded analysis, creating a forward and anti-sense coverage 
track. We trained Borzoi to directly predict these continuous coverage 
values in 32 bp genomic bins. Owing to the relatively large dynamic 
range of RNA-seq, we normalized each coverage track by exponenti-
ating its bin values by 3/4. If bin values were still larger than 384 after 
exponentiation, we applied an additional square-root transform to the 
residual value. These operations effectively limit the contribution that 
very highly expressed genes can impose on the model training loss. 
The formula below summarizes the transform applied to the jth bin for 
tissue t of target tensor y:

yyy( squashed )j,t = {yyy(3/4)j,t if yyy(3/4)j,t ≤ 384, otherwise 384 +√yyy(3/4)j,t − 384}

We refer to this set of transformations as ‘squashed scale’ in the 
main text. The parameters were chosen such that most genes had bin 
values of <1,000 (a reasonably large maximum value that is handled 
well by standard tensorflow data types). For most downstream tasks, 
for example, when calculating log fold changes from predicted val-
ues because of a mutation, we first undo the normalization by apply-
ing inverse transforms to the predictions (thus operating in ‘count’ 
space). One exception is when visualizing reference predictions of test 
sequences, in which all transforms except the residual exponentiation 
at 384 are inverted, as small amounts of noise near the threshold would 
otherwise be amplified.

We supplemented the training data with 89 tracks from GTEx 
whole-tissue samples33, uniformly processed by the recount3 pro-
ject34 (GTEx v.8 release). recount3 clustered the 49 GTEx tissues into 
30 meta-tissues, combining highly related physiological regions 
(such as regions of the brain). For each meta-tissue, we chose a 
subset of samples to include as training data by performing k-means 
clustering on the gene expression profiles of all samples with k = 3 
(although several meta-tissues collapsed to k = 2). For each cluster, 
we chose to include the sample with the minimum average dis-
tance to all cluster members. These data were processed without 
consideration of strand information in recount3, which means 
the GTEx training tracks are non-stranded whereas most other 
RNA-seq tracks are stranded. For these tracks, we scaled the aligned 
fragment counts by the inverse of their average length to weight 

each fragment as a single event, in addition to the exponentiation 
transform described above.

We fragmented the human (hg38) and mouse (mm10) chromo-
somes and randomly divided these fragments into eight roughly evenly 
sized partitions, pairing orthologous regions into the same partition. 
One partition was held out for validation and another for testing, and 
the remainder of the data (~75%) was used for training. Note that all 
coverage measurements of all experimental assays (RNA, DNase, CAGE, 
ATAC, ChIP) are held out (and not seen by the model) whenever a par-
ticular 524 kb sequence window is not in the training set.

Model
The model is based on the Enformer network architecture but intro-
duces a number of simplifications and enhancements to optimize for 
RNA-seq prediction13. Supplementary Fig. 14 shows the full architec-
ture. Enformer comprises two main stages. First, repeated applica-
tion of a convolution block that achieves a twofold reduction of the 
sequence length extracts local sequence patterns until each position 
in the sequence represents 128 bp. Second, repeated application of a 
self-attention (or transformer) block enables long-range interaction 
and exchange between every pair of sequence positions27,28. Enformer 
accepts a 196 kb input sequence and predicts coverage data aggregated 
at 128 bp resolution.

RNA-seq is a base-resolution readout of transcribed RNAs. We 
believed that it was important to both increase the sequence length and 
decrease the prediction resolution to model RNA-seq well. Mammalian 
genes regularly exceed a full span of >100 kb, and if the 5′ or 3′ end of 
a gene extends outside of the training sequence window (such that its 
promoter and other regulatory signals are not captured in the receptive 
field of the network), it will probably obstruct learning. Conversely, 
mammalian exons regularly cover fewer than 128 bp, and modeling 
the coverage patterns around these exons at such a coarse resolution 
can obstruct splice site learning. However, computational limitations 
make these joint objectives challenging. Therefore, we aimed for a 
compromise of 524 kb input sequences, predicting at 32 bp resolution.

Halting the convolution and pooling blocks in the vanilla Enformer 
architecture at 32 bp would mean that the self-attention blocks pro-
cessed 16,384-length sequences. These blocks require quadratic mem-
ory complexity, which exceeds the capability of contemporary GPU/
TPU hardware without complicated optimizations. Therefore, we chose 
to remain at 128 bp resolution for the self-attention blocks. To predict at 
32 bp resolution, we instead make use of U-net upsampling techniques 
from the image segmentation and object detection literature29,30, which 
solve an analogous problem of determining image-level content and 
communicating it back down to pixel resolution annotations. In brief, 
the output embeddings predicted by the self-attention blocks at 128 bp 
resolution are upsampled two times by duplicating the embedding 
vector at each position. We then apply point-wise convolutions to 
match the number of channels to those of the original convolution 
tower output (preceding the self-attention blocks) at 64 bp resolution. 
Finally, we add the upsampled feature map from the self-attention 
blocks and the intermediate feature map from the convolution tower 
and apply a separable convolution with a width of three. This workflow 
is repeated once more using the intermediate feature map with 32 bp 
resolution from the convolution tower.

As this architecture is still very computationally expensive,  
we simplified several Enformer components. First, we used max pooling 
instead of attention pooling, which requires an additional convolution 
but generally only minimally boosts performance. Second, we apply 
only a single convolution with a width of five in each block of the initial 
convolution tower, forgoing the second convolution added in with a 
residual connection used by Enformer. Third, we reduced the number 
of self-attention blocks from 11 to 8 to reduce memory usage. Fourth, 
we used only central mask relative position embeddings given that 
additional distance functions minimally affected performance.
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Training
We trained the model in a multi-task setting to predict coverage for 
all assays from one species, with a species-specific head attached to 
the shared model trunk. During training, we alternated human and 
mouse training batches by dynamically swapping in the correspond-
ing species-specific head. To avoid less accurate predictions on the 
sequence boundaries (owing to asymmetric visibility), we cropped 
from each side to focus the loss computation on the center 196,608 bp. 
We used a Poisson loss function but decomposed the loss analogous to 
BPnet to separate magnitude and shape terms7. Having independent 
Poisson distributions at each sequence position is mathematically 
equivalent to a single Poisson distribution representing their sum, 
followed by allocating the counts to sequence positions using a mul-
tinomial distribution. Thus, we apply a Poisson loss on the sum of the 
observed and predicted coverage and a multinomial loss on the nor-
malized observed and predicted coverage across the sequence length. 
This decomposition allows us to weight the multinomial shape loss by 
a greater amount (five times), which we found boosts performance.

Using TensorFlow (v.2.11), backpropagation of this model on a 
524 kb sequence maxes out the 40 GB of RAM of a standard NVIDIA 
A100 GPU. Each model instance was trained using the Adam optimizer 
with a batch size of two, split across two GPUs for ~25 days, and training 
stopped when the validation set accuracy plateaued.

We trained four replicate models with random weight initialization 
and sequence training order. We constructed an ensemble predictor 
from these four replicates that generally performed better than any 
individual model. Note that for all analyses in Figs. 1 and 2 in which we 
evaluate model performance, we do so strictly on fragments from the 
held-out test set. In subsequent analyses (for example, variant effect 
prediction in Fig. 5), we make no distinction between train or test splits 
of hg38. This technically means that the ensemble is applied to genomic 
loci seen during training. We argue that these are still unbiased analy-
ses, as the evaluations are done on out-of-domain measurements not 
trained on (for example, the alternative alleles of fine-mapped QTLs 
and their estimated effects were not part of the training data).

Model ablation experiments
Instances of the Borzoi model were trained on smaller subsets of the 
original training data to assess the contribution of various data modali-
ties to final performance. We varied whether or not the model was 
trained on mouse data in addition to human experiments, whether 
or not the model was trained on additional assays (for example, 
DNase-seq, ATAC–seq, ChIP–seq and CAGE) in addition to the core 
RNA-seq modality and whether or not the model used a U-net compo-
nent to increase the output resolution. Owing to the large number of 
combinations, it was difficult to acquire a sufficient set of NVIDIA A100 
GPUs that would allow training them as full-sized Borzoi models in a rea-
sonable amount of time. Therefore, we reduced their size (393,192 bp 
input length, ~30 million trainable parameters, four self-attention 
heads per layer) such that we could fit them with a batch size of two on 
either NVIDIA RTX 4090 GPUs or NVIDIA TITAN RTX GPUs. We trained 
two cross-validation folds per ablation condition, choosing a different 
held-out validation and test set from the eight genomic hg38 or mm10 
partitions per fold. We trained four folds for the baseline condition 
(with all features included). Training lasted 30–90 days, depending on 
condition, and was stopped when the validation accuracy saturated.

The following model instances were trained: [‘Multispecies’] 
Training data - CAGE, DNase-, ATAC-, ChIP- and RNA-seq in human 
(hg38) and mouse (mm10). Architecture changes - N/A (baseline 
model). [‘Multispecies (No U-net)’] Training data - CAGE, DNase-, 
ATAC-, ChIP- and RNA-seq in human and mouse. Architecture changes -  
U-net removed. Trained at 128 bp output resolution. [‘Multispecies 
(D/A/RNA)’] Training data - DNase-, ATAC- and RNA-seq in human 
and mouse. Architecture changes - N/A. [‘Multispecies (RNA)’] Train-
ing data - RNA-seq in human and mouse. Architecture changes - N/A. 

[‘Human’] Training data - CAGE, DNase-, ATAC-, ChIP- and RNA-seq in 
human. Architecture changes - N/A. [‘Human (D/A/RNA)’] Training 
data - DNase-, ATAC- and RNA-seq in human. Architecture changes - 
N/A. [‘Human (GTEx RNA)’] Training data - GTEx RNA-seq (human). 
Architecture changes - N/A. [‘K562’] Training data - CAGE, DNase-, 
ChIP- and RNA-seq in K562 cells. Architecture changes - N/A. [‘K562 
(D/A/RNA)’] Training data - DNase-, and RNA-seq in K562 cells. Archi-
tecture changes - N/A. [‘K562 (RNA)’] Training data - RNA-seq in K562 
cells. Architecture changes - N/A.

Enformer comparison
Our research objective was to extend this modeling framework to new 
data (that is, RNA-seq) and not to exceed Enformer performance on the 
set of overlapping tracks, which includes CAGE, DNase, ATAC and ChIP 
assays. Several modeling decisions make comparisons between Borzoi 
and Enformer imperfect. First, working with larger sequences required 
reprocessing the genome so that the held-out test set of Borzoi does 
not exactly match that of Enformer. Second, we aggregated the data 
at 32 bp resolution, whereas Enformer works with 128 bp, thus altering 
the distribution of bin values. Third, we split the aligned reads from 
the CAGE datasets by strand. Nevertheless, we examined test accura-
cies for Borzoi versus Enformer (v.3.0) on these overlapping datasets 
and found them to be broadly similar despite these modifications 
(Extended Data Fig. 1a–d).

Tissue-specific expression, TSS and APA predictions
We evaluated three different statistics derived from the predicted GTEx 
RNA-seq coverage tracks to quantify (tissue-specific) gene expres-
sion, alternative TSS usage and APA isoform abundance (Fig. 2). Gene 
expression is quantified as the sum of predicted coverage overlap-
ping exonic bins. Alternative TSS usage is quantified by taking the 
maximum coverage among the nine bins immediately downstream 
of each annotated TSS in GENCODE (v.41) (maximum given that the 
exon may be shorter than nine bins) and computing the ratio between 
the 3′-most and 5′-most TSSs of each gene. Only TSSs that were within 
50 bp of an annotated TSS in FANTOM5 were included97. APA site usage 
is quantified by calculating the ratio of average coverage between the 
four bins immediately upstream of the distal-most PAS and the four 
bins upstream of the proximal-most PAS, based on polyadenylation 
sites annotated in PolyADB44.

Examples visualized in Fig. 2 and Extended Data Fig. 3 were chosen 
as follows: (1) differentially expressed examples were selected from the 
genes with the largest measured fold change between exon-aggregated 
coverage in the target tissue and the average coverage in the four 
other tissues, based on the GTEx RNA-seq data; (2) tissue-specific TSS 
examples were selected from the set of genes with largest measured 
differential TSS usage according to tissue-matched FANTOM5 CAGE 
data; and (3) tissue-specific APA examples were selected from the genes 
with the largest measured fold change in coverage ratio in the target 
tissue with respect to the average coverage ratio in the four other tis-
sues. To reduce the risk of picking genes in which the perceived APA is 
driven by 3′ bias in the GTEx RNA-seq data, we required that the genes 
also exhibited differential distal polyadenylation in cell-type-matched 
experiments from the PolyASite 2.0 database42. All example genes were 
picked from the held-out test set, and coverage was predicted using the 
four-replicate ensemble.

Input sequence attribution
To visualize important features in the input sequence (such as TF or 
RNA-binding protein motifs) and quantify their contribution to the 
prediction (their saliency score), we apply a number of different attri-
bution methods, each with their own strengths and limitations. In 
summary, we either use methods based on gradient saliency, which 
are computationally efficient for single outputs but tend to be noisier 
owing to moving off the one-hot coding simplex, or in-silico 
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mutagenesis, which often give better-calibrated attributions for all 
outputs, but are too computationally expensive to run on long 
sequences. The shared goal of these methods is to estimate the contri-
bution of each nucleotide in the input with respect to scalar statistics 
derived from the predicted coverage tracks, resulting in a matrix 
sss ∈ ℝ524,288×4 of saliency scores for each coverage track. In this study, 
we focus solely on interpreting Borzoi’s RNA-seq tracks. Furthermore, 
by computing distinct summary statistics from the predicted RNA 
coverage tracks, we dynamically isolate distinct regulatory mecha-
nisms in the attribution scores; namely, transcription, polyadenylation 
and splicing.

As preliminaries, let ℳ  be the Borzoi model, x ∈ {0, 1}524,288×4 be the 
one-hot coded input sequence, yyy = ℳ(xxx) ∈ (0, +∞]16,384×7,611  be the 
(human) coverage prediction and 𝒯𝒯 = {t0,… , tT} be the set of T indices 
of the coverage tracks in y that we want to average over (for example, 
to combine all blood-specific tracks) and compute the attribution 
scores for. Note that Borzoi’s raw prediction y is based on training data 
that had been subjected to various transforms intended to stabilize 
training (exponentiating by 3/4, additional exponentiation of residuals 
above a target value and re-scaling). Here, we assume that we have 
applied the inverse transforms to y such that the tensor can be reason-
ably assumed to reflect counts (also note that these transforms are 
differentiable, which means gradient saliency can be propagated 
through the inverse operations).

Below are the definitions of three distinct summary statistics used 
for expression attribution, polyadenylation attribution and splicing 
attribution, respectively:

Log sum of exon coverage (expression attribution). The summary 
statistic u ∈ ℝ  is computed by aggregating the set of 32 bp bins 
ℬ = {b0,… ,bB} in y overlapping the exons of the gene of interest (with 
optional pseudo count C ∈ ℝ):

u = log (C + (1/T ) × ∑
t∈𝒯𝒯

∑
b∈ℬ

yyyb,t)

Log ratio of PAS coverage (polyadenylation attribution). The statistic 
u ∈ ℝ is computed by summing coverage in five adjacent bins immedi-
ately upstream of bin bprox, which overlaps the PAS of interest, and 
dividing by the coverage of a matched set of bins upstream of bin bdist, 
where a competing PAS is located (or immediately downstream of bprox 
if the gene of interest is not subject to APA):

u = log(
C + (1/T ) × ∑t∈𝒯𝒯 ∑

bprox
b=bprox−5 yyyb,t

C + (1/T ) × ∑t∈𝒯𝒯 ∑
bdist
b=bdist−5 yyyb,t

)

Note that the formula above assumes that the gene is on the 
forward (plus) strand. Coverage must be summed from bprox + 1 to 
bprox + 5 + 1 (and from bdist + 1 to bdist + 5 + 1) if the gene is on the minus 
strand.

Log ratio of exon-to-intron coverage (splicing attribution). The 
statistic u ∈ ℝ  is computed by summing coverage in bins 
ℬexon = {b0,… ,bE}  overlapping the exon and dividing by the sum of 
coverage in a matched number of bins ℬintron = {b0,… ,bI} overlapping 
the adjacent intron or, alternatively, a neighboring exon (which occa-
sionally resulted in less noisy attributions when intronic polyadenyla-
tion sites created non-uniform intronic coverage):

u = log (
C + (1/T ) × ∑t∈𝒯𝒯∑b∈ℬexon

yyyb,t
C + (1/T ) × ∑t∈𝒯𝒯∑b∈ℬintron

yyyb,t
)

The summary statistics defined above are used in conjunction 
with the following attribution methods:

Gradient × input (gradients). Given summary statistic u(x), the attribu-
tion scores sss ∈ ℝ524,288×4  are computed by taking the gradient with 
respect to input x and subtracting the mean at each position across 
nucleotides103:

sssi, j =
∂u(xxx)
∂xxxi, j

− (1/4) ×
4
∑
k=1

∂u(xxx)
∂xxxi,k

When visualizing s, we extract the score at position i correspond-
ing to the reference nucleotide j only (which is easily implemented by 
multiplying with x and aggregating across nucleotides):

sss (vis)i =
4
∑
j=1

sssi, j × xxxi, j

ISM. Given a start and end position, pstart and pend, in x to compute ISM 
over, the attribution scores sss ∈ ℝ524,288×4  are computed as follows:  
create a new tensor ̃xxx ∈ {0, 1}(pend−pstart)×4×524,288×4 and let each matrix ̃xxxu,v 
hold a mutated copy of x where the reference nucleotide at position u 
is substituted for nucleotide v. Then compute the ISM scores s as:

sssi, j = u(xxx) − u( ̃xxxi−pstart , j), if pstart ≤ i ≤ pend,0 otherwise .

When visualizing s, we average the scores across the four 
nucleotides:

sss (vis)i = (1/4) ×
4
∑
j=1

sssi, j

Window-shuffled ISM (ISM shuffle). Given a start and end position, 
pstart and pend, a window size M and a number of re-shuffles N, the attribu-
tion scores sss ∈ ℝ524,288×4  are computed as follows: create tensor 
̃xxx ∈ {0, 1}(pend−pstart)×N×524,288×4 containing (pend − pstart) × N copies of input 

pattern x. For each matrix ̃xxxu,v (where v denotes one of N independent 
samples), either dinucleotide-shuffle the local region [u − M/2, 
u + M/2 + 1] or replace the reference nucleotides in this region with 
uniformly random nucleotides. Dinucleotide shuffling (with M = 7 and 
N = 24, or N = 8 for large window sizes) is performed when computing 
enhancer saliency, whereas uniform random substitution (M = 5 and 
N = 24, or N = 8 for large window sizes) is used for promoters, splice 
sites and PASs (where salient features are often stretches of repeating 
nucleotides). Then compute the attribution scores s as:

sssi,n = u(xxx) − u( ̃xxxi−pstart ,n), if pstart ≤ i ≤ pend,0 otherwise .

When visualizing s, we average the scores across the N samples:

sss (vis)i = (1/N) ×
N
∑
n=1

sssi,n

Tissue-specific motif discovery
We visualized learned tissue-specific cis-regulatory motifs driving RNA 
coverage in GTEx tracks through a combination of (1) picking a large 
set of (measured) highly tissue-specific genes, (2) computing their 
gradient saliencies and normalizing out tissue-shared saliency and 
(3) clustering and annotating the saliency scores using TF-MoDISco 
(v.0.5.14.1)51 and Tomtom MEME suite (v.5.5.2)52. We first downloaded 
measured TPMs for GTEx (v.8) (GTEx_Analysis_2017-06-05_v8_RNASe-
QCv1.1.9_gene_median_tpm.gct.gz). We heuristically cleaned the data 
by adding a small pseudo-TPM that was roughly the first percentile 
of all values (to avoid zeros), followed by clipping at a value slightly 
larger than the 99th percentile per tissue (to avoid extremely large 
numbers). Then, for each of the five prospective GTEx tissues whole 
blood, liver, brain - cortex, muscle - skeletal and esophagus - muscularis,  
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we computed gene-specific log fold changes of TPM expression for 
the tissue of interest relative to the average TPM expression of the four 
other tissues. For each tissue, we sorted the TPM matrix in descending 
order of this metric and selected the top 1,000 most differentially 
expressed genes, resulting in a total of 5,000 genes.

We computed nucleotide-level attribution scores (input gradients) 
with respect to the log of aggregated exon coverage for each of the 
5,000 genes, repeating the gradient computation for each of the five 
GTEx tissues. Specifically, we matched each GTEx tissue to the corre-
sponding two to three RNA coverage tracks obtained from recount3 
that we trained on (for example, for brain - cortex, we computed the 
input gradient saliency with respect to the three GTEx brain meta-tissue 
tracks). The gradient computation was repeated for all four model rep-
licates, for both forward-complemented and reverse-complemented 
input sequences, and averaged.

The gradient computation outlined above produces five separate 
sets of saliency scores for all 5,000 genes (one set of scores per tissue). 
Next, we performed de novo motif discovery for tissue x by slicing out 
the 1,000 genes originally selected to be differentially upregulated 
in tissue x and running TF-MoDISco on the residual gradient scores 
for tissue x. The residual scores were calculated by subtracting the 
average gradient of the four other tissues from those of tissue x, thus 
dampening the saliency of shared regulatory motifs and accentuating 
motifs specific to tissue x. Additionally, before running MoDISco, we 
first re-weighted the gradients by computing the standard deviation 
at each position across the four nucleotides, applying a Gaussian filter 
(s.d. = 1,280; truncate = 2) to the resulting vector of standard devia-
tions and dividing the gradient scores by this smoothed vector. This 
operation results in down-weighting of regulatory regions with long 
contiguous stretches of large magnitude (often promoter regions) and 
up-weights sparser regulatory regions (transcriptional enhancers). 
To increase computational efficiency, we extracted the centered-on 
131 kb gradient scores (as opposed to the full 524 kb) before calling 
MoDISco. TF-MoDISco was executed with the following parameters: 
‘revcomp = true’, ‘trim_to_window_size = 24’, ‘initial_flank_to_add = 8’, 
‘sliding_window_size = 18’, ‘flank_size = 8’ and ‘max_seqlets_per_meta-
cluster = 40,000’. Other parameters were kept at their default values.

The five tissue-specific MoDISco result objects were filtered and 
pooled as follows: Tomtom MEME was used to match the position 
weight matrices of each MoDISco cluster to HOCOMOCO (v.11)53 motifs 
(each position weight matrix was trimmed by an information content 
threshold of >0.1). Only matches with E values of ≤0.1 were retained. The 
match with the lowest P value was chosen as the representative motif 
for that cluster. The five MoDISco objects were pooled by matching 
clusters with identical HOCOMOCO motifs and merging the seqlet 
coordinates, resulting in a single list of seqlet coordinates for each puta-
tive motif. A scalar tissue-specific saliency score was then computed 
for each seqlet by averaging the input-gated gradients overlapping its 
coordinates. The distributions of these seqlet-level gradient saliencies 
were used to assess the tissue-specificity of each motif.

Replicating the entire analysis with pseudo counts added to the 
predicted sum of exon coverage before applying log and computing 
gradients resulted in nearly identical results. Replicating the analysis 
without running TF-MoDISco on residual attribution scores but rather 
using the raw gradients from each tissue-specific coverage track as 
input to TF-MoDISco similarly produced negligible differences.

Tissue-pooled splice motif discovery
Splice-regulatory motifs were generated by computing input gra-
dients with respect to the splicing attribution statistic (log ratio of 
exon-to-intron coverage) for one randomly chosen exon in each of the 
4,778 genes from the Gasperini dataset58. The gradients were computed 
with respect to the average predicted coverage taken across all 89 of 
Borzoi’s GTEx RNA-seq tracks. The gradients were normalized across 
genes as follows: we first computed the standard deviation across the 

four nucleotides and found the maximum standard deviation across 
all 524,288 positions per gene. We clipped the lower end of the 4,778 
maximum deviations at the 25th percentile (to avoid up-weighting 
gradients with very low magnitudes) and divided each gene’s gradi-
ent by this number. We tried varying the percentile threshold (from 1 
to 100) and the results were robust to this parameter (the same motif 
clusters were identified with roughly the same number of supporting 
seqlets). Finally, to obtain 5′ splice motifs, we extracted a 192 bp window 
centered on the splice donor from each of the gradients. To obtain 3′ 
splice motifs, we extracted a 192 bp window around the splice acceptor.

TF-MoDISco was executed on the resulting 4,778 × 192 × 4 hypo-
thetical scores, using custom parameter settings that we empirically 
found worked better for degenerate RNA-binding protein motifs: 
‘revcomp = false’, ‘trim_to_window_size = 8’, ‘initial_flank_to_add = 2’, 
‘sliding_window_size = 6’, ‘flank_size = 2’, ‘max_seqlets_per_metaclus-
ter = 40,000’, ‘kmer_len = 5’, ‘num_gaps = 2’ and ‘num_mismatches = 1’.

Tissue-pooled polyadenylation motif discovery
Salient motifs related to PASs were obtained in a process similar to 
the procedure for splice-regulatory motif discovery. We computed 
tissue-pooled gradients with respect to the polyadenylation statistic 
(log ratio of PAS coverage) for the distal-most PAS of each gene from 
the Gasperini dataset58. The gradients were normalized by the (clipped) 
maximum standard deviation per gene. Finally, a 192 bp window cen-
tered on the mode of saliency in the 3′ UTR of each gene was used to 
extract short gradient slices. These gradient slices were used as hypo-
thetical scores for TF-MoDISco, which was executed using the same 
custom parameters as was used for splice motif discovery.

Attention matrix visualization
We visualized higher-order structures and long-range interactions 
learned by Borzoi directly through the attention score matrices of 
the self-attention layers. Examples of such higher-order structures 
include intronic and exonic regions, UTRs, promoters and gene spans. 
Long-range interactions describe relationships or dependencies 
between these structures learned by Borzoi, which would be observed 
as off-diagonal intensities in the attention matrix. Such examples 
include phenomena in which an intron attends to its nearest exon 
junction, a 3′ UTR attends to its PASs or gene spans attend to pro-
moters and transcriptional enhancers. After exploring the predicted 
attention maps for several different loci, we noticed that higher-order 
structures matching GENCODE annotations104 were generally found in 
the later self-attention layers. However, to mitigate capturing poten-
tial assay-specific or experiment-specific biases and focus on general 
knowledge, we decided not to use the two final attention layers and 
instead used the two penultimate self-attention layers for all analyses. 
We further noted that different attention heads tended to capture 
mostly the same trends, leading us to analyze the mean attention of 
all eight heads.

Let aaal,h
i, j = softmax (qqqikkk

T
j /√K + rrri, j) ∈ ℝN×N  be the attention matrix  

for head h of layer l, where qi is the ith query vector, kj is the jth key vector, 
ri,j is the positional encoding and K is the key or query size. We obtain 
the final attention matrix to be visualized as an unweighted average of 
all heads of the two penultimate layers: (1/16) × ∑7

l=6∑
8
h=1 aaa

lh
ij . When 

zooming in on smaller sections of the attention matrix, we apply a small 
Gaussian filter to smooth out high-frequency noise (σ = 0.5, trun-
cate = 2.0). We further average the attention matrix over four independ-
ent model replicates and reverse-complemented input sequences. 
Promoters generally had higher magnitude attention values than 
exons, leading us to clip individual entries in the average attention 
matrix at 0.005 (each row of 4,096 entries sums to 1.0).

Fine-mapped eQTL classification and regression tasks
eQTL studies deliver valuable data for evaluating whether Borzoi iden-
tifies the correct nucleotides driving expression and their sensitivity 
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to specific alternative alleles. We studied GTEx (v.8) eQTL results from 
49 tissues of varying sample sizes. We made use of summary statistics 
and fine-mapping results generated with SuSiE in a previous publica-
tion1. Only fine-mapped causal eQTLs with a posterior causal prob-
ability (PIP) of ≥0.9 were kept as positives. We focused all analyses 
on single nucleotide variants only because insertions and deletions 
(indels) introduce technical variance caused by shifted prediction 
boundaries, which we aspire to alleviate in future work. To visualize 
the measured RNA-seq coverage tracks in individuals with or without 
the minor allele(s) of interest, we also made use of whole genome 
sequencing genotyping data of GTEx subjects obtained through dbGAP  
(http://www.ncbi.nlm.nih.gov/gap).

Inspired by the expression modifier score construction presented 
in a previous work1, in which the authors demonstrated that functional 
eQTL classification probabilities enable improved fine-mapping, we 
evaluated Borzoi and other models at the task of discriminating 
fine-mapped causal eQTLs from a negative set chosen to control for 
TSS distance. To compare against models with multiple generic out-
puts, we constructed a feature vector based on the model predictions 
for each variant and trained a random forest classifier with the eQTL 
causal and non-causal labels. We considered a ‘SUM’ score and an ‘L2’ 
score to define these SNP features. For both score types, we start by 
centering the 524 kb input window on the SNP of interest and predict 
coverage yyy(ref) = ℳ(xxx(ref)),yyy(alt) = ℳ(xxx(alt)) ∈ ℝ16,384×7,611  for the reference 
and variant patterns, respectively. When computing the SUM score 
vector uuu(xxx(ref),xxx(alt)) ∈ ℝ7,611 for the 7,611 distinct Borzoi tracks, we aggre-
gate the difference between coverage predictions y(ref) and y(alt) across 
the length axis independently per track:

uuut =
16,384
∑
j=1

(yyy( alt )j,t − yyy( ref )j,t )

For the L2 score vector, we compute the L2 norm of the difference 
between predictions y(ref) and y(alt) across the length axis independently 
for each track. Before applying the L2 norm, we first log transform 
the coverage track bins to focus on fold change rather than absolute 
change. The final metric is calculated as:

uuut =
√√√
√

16,384
∑
j=1

(log2(1 + yyy(alt)j,t ) − log2(1 + yyy(ref)j,t ))
2

The L2 score extracts more information and achieves greater per-
formance on this task for Borzoi. All previous Enformer work uses the 
SUM score, but we observed here that it also benefits from L2, though 
less than Borzoi.

For the second task, we evaluated models on their ability to predict 
eQTL effect sizes, which is a critical component of a system tasked with 
predicting gene expression values across a population of individuals. 
Given that the Borzoi and Enformer models make use of gene annota-
tion differently to map predictions to genes, we chose to perform a 
gene-agnostic analysis for a less biased comparison. Thus, we filtered 
the variant set for only those with a consistent sign of the estimated 
eQTL effect sizes across genes and chose the effect size with maximum 
absolute value as the representative effect size for that particular 
fine-mapped SNP. For a subset of GTEx tissues, we were able to select 
an appropriately matched CAGE experiment from Enformer’s outputs 
and computed the SUM score. For Borzoi, we selected the matching 
GTEx tissue RNA-seq output and computed a ‘logSUM’ score, in which 
we transformed the bin predictions y by log2(yyy + 1) before taking a sum 
over the length axis. In supplementary analyses, we performed 
gene-specific coefficient analyses using a variant statistic termed 
‘logSED’ (‘sum of expression differences’), in which we aggregated 
predicted coverage in the bins ℬ = {b1,… ,bK}  overlapping the exons  
of the target gene, and compared the log fold change between alternate 
and reference alleles: log2 (∑

K
k=1 yyy

(alt)
ℬ(k)) − log2 (∑

K
k=1 yyy

(ref)
ℬ(k) ).

For the third task, we evaluated Borzoi’s ability to identify the 
gene(s) affected by an eQTL from the set of local genes, which is 
intended to estimate how accurately the model can prioritize the cor-
rect gene at more general GWAS loci. We downloaded fine-mapped 
eQTL credible sets and their associated eGenes for 49 GTEx tissues from 
the eQTL catalog (release 5)79,80. The credible set files were downloaded 
from ftp://ftp.ebi.ac.uk/pub/databases/spot/eQTL/credible_sets/ (e.g. 
ftp://ftp.ebi.ac.uk/pub/databases/spot/eQTL/credible_sets/GTEx_ge_
adipose_subcutaneous.purity_filtered.txt.gz).

Note: These file paths have since changed but historical versions  
can be found at https://github.com/eQTL-Catalogue/eQTL-Catalogue- 
resources/blob/00ea8a7abca895f26c3aee74ece1307dc5054ace/
tabix/tabix_ftp_paths.tsv. To download credible sets with the latest 
file path table, use column ‘ftp_cs_path’ (e.g. for adipose_subcutane-
ous, download file ftp://ftp.ebi.ac.uk/pub/databases/spot/eQTL/susie/
QTS000015/QTD000116/QTD000116.credible_sets.tsv.gz).

For each variant within a credible set, we predicted a gene-specific 
L2 score, which considers only sequence positions overlapping the 
genes’ exons, for all genes within a 360,448 bp sequence window cen-
tered on the variant. For each credible set, we computed a single score 
for each surrounding gene by averaging the gene’s score across variants 
weighted by their posterior causal probabilities. For each GTEx tissue, 
we computed a variant’s L2 score using model predictions for the 
matched GTEx RNA-seq tracks. We analyzed only credible sets associ-
ated with protein-coding genes. Owing to the indel challenge described 
above, we further removed credible sets in which a fine-mapped variant 
(PIP > 0.1) is an indel. We predicted a credible set’s target gene as the 
gene with the highest aggregate PIP-weighted L2 score for that cred-
ible set. As a baseline, we predicted a credible set’s target gene as the 
nearest gene. We define ‘nearest gene’ as the gene with the maximum 
PIP-weighted inverse distance from the credible set. Maximizing the 
PIP-weighted inverse distance outperforms the previously described 
approach of minimizing the PIP-weighted distance105. Notably, a single 
distal credible set variant can inflate the minimum average distance 
statistic, resulting in an incorrect eGene prediction, whereas maxi
mizing the inverse distance does not lead to this problem.

Fine-mapped paQTL classification task
We benchmarked Borzoi’s ability to predict genetic variants that alter 
the relative abundance of mRNA 3′ isoforms using fine-mapped 3′ 
QTLs (referred to in this paper as polyadenylation QTLs) obtained 
from the eQTL catalog via txrevise processing79,80. The file paths to 
the fine-mapping results were obtained from https://github.com/
eQTL-Catalogue/eQTL-Catalogue-resources/blob/master/tabix/
tabix_ftp_paths.tsv.

Table rows were filtered by study = ‘GTEx’ and quant_method =  
‘txrev’. The resulting sumstat files (for example, ‘GTEx_txrev_adipose_
subcutaneous.all.tsv.gz’) were changed to fine-map files (‘GTEx_txrev_
adipose_subcutaneous.purity_filtered.txt.gz’) and downloaded from 
ftp://ftp.ebi.ac.uk/pub/databases/spot/eQTL/credible_sets/ (e.g.  
ftp://ftp.ebi.ac.uk/pub/databases/spot/eQTL/credible_sets/GTEx_
txrev_adipose_subcutaneous.purity_filtered.txt.gz).

Note: These file paths have since changed but a historical version of 
the file path table can be found at https://github.com/eQTL-Catalogue/
eQTL-Catalogue-resources/blob/00ea8a7abca895f26c3aee74ece130
7dc5054ace/tabix/tabix_ftp_paths.tsv. To download credible sets with 
the latest file path table, use column ‘ftp_cs_path’ (e.g. for adipose_sub-
cutaneous, download file ftp://ftp.ebi.ac.uk/pub/databases/spot/eQTL/
susie/QTS000015/QTD000119/QTD000119.credible_sets.tsv.gz).

To build negative sets of GTEx SNPs that are not part of any txrevise 
credible set, we obtained rows from the file path table where quant_
method = ‘ge’ and downloaded the full sumstat files from ftp://ftp.ebi.
ac.uk/pub/databases/spot/eQTL/sumstats/GTEx/ge/ (e.g. ftp://ftp.
ebi.ac.uk/pub/databases/spot/eQTL/sumstats/GTEx/ge/GTEx_ge_adi-
pose_subcutaneous.all.tsv.gz). These file paths have also changed; 
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to download sumstat files with the latest file path table, use column 
‘ftp_path’ (e.g. for adipose_subcutaneous, download file ftp://ftp.ebi.
ac.uk/pub/databases/spot/eQTL/sumstats/QTS000015/QTD000116/
QTD000116.all.tsv.gz).

Fine-mapped causal paQTLs for a given tissue were obtained from 
the corresponding fine-mapping file (‘XYZ.purity_filtered.txt.gz’) by 
filtering on rows in which molecular_traid_id contained the substring 
‘.downstream.’, the SNP occurred at most 50 bp outside of a gene span 
(GENCODE v.41), the distance to the nearest annotated 3′ UTR PAS in 
PolyADB (v.3)44 was at most 10,000 bp and PIP was ≥0.9. Valid nega-
tives were obtained from the tissue’s sumstat file (‘XYZ.all.tsv.gz’) with 
identical gene-span and PAS distance filters as the fine-mapped paQTLs. 
Negative SNPs had to be either absent from all credible sets or have 
PIP < 0.01 across all GTEx tissues. Finally, we selected one negative SNP 
for each fine-mapped causal paQTL by requiring that they have identi-
cal distances to an annotated PAS and that the negative SNP occurs in a 
gene with expression levels that are within (and less than) 1.5-fold the 
expression level of the paQTL gene (in the same tissue). This resulted 
in 1,058 retained unique fine-mapped causal paQTLs. The following 
procedure was used to efficiently search for negative SNPs fulfilling 
these requirements for a given tissue:

Step 1. Discretize and bin the log2(TPM) values of all genes (GTEx 
v.8) into buckets of size 0.4 (in log2-space). Step 2. For a given query 
gene (and its associated log2(TPM) value), take all candidate genes 
that map into the same bucket. Scan this subset of genes for any gene 
that contains a distance-matched non-causal SNP. Step 3. If none of the 
genes in the bucket are suitable candidates (none have a non-causal 
distance-matched SNP), then subtract 0.15 from the query log2(TPM) 
value and take all candidate genes that were binned into the new bucket 
(if subtracting 0.15 does not change the bucket, skip to Step 4). Scan 
this new bucket for suitable genes. Step 4. If no suitable gene has been 
found, repeat Step 3 but instead add 0.15 rather than subtract 0.15 to 
the original log2(TPM) value. Scan this (potentially) new bucket for 
suitable genes. Step 5. If no suitable gene has been found, exit with an 
error (unmatchable).

The maximum log2 fold change that two genes can be within and 
still match is 0.4 + 0.15 = 0.55 (~1.464-fold). With these parameter set-
tings, each bucket contained at least 100 genes, and we never exited 
Step 5 with an error.

Note that owing to the relatively small number of fine-mapped 
paQTLs, we decided to pool all tissues rather than benchmark sepa-
rately per tissue. Given that many of the positives are shared between 
tissues (there are a total of 1,058 unique paQTLs, each occurring in at 
least one tissue), we end up with ~2.5× the amount of unique negative 
SNPs after merging across tissues. Hence, for the benchmark, we per-
formed 100 permutations of randomly matching one of the multiple 
valid negative SNPs (from different tissues) to each corresponding 
positive SNP and evaluated performance on each permutation set of 
1,058 positives and 1,058 sampled negatives.

Intronic paQTLs (and matched negatives) were extracted from 
the same files as above but had to occur in intronic regions and be 
closer to an annotated intronic polyadenylation site than any 3′ UTR 
polyadenylation site. Negatives were now matched by distance to the 
nearest intronic PAS. A total of 567 fine-mapped causal intronic paQTLs 
were retained.

Polyadenylation variant effect prediction
We compute polyadenylation-centric variant effect scores from  
Borzoi’s predicted RNA coverage tracks as the maximum ratio of  
coverage fold change between any annotated 3′ cleavage junction 
within the UTR of the same gene as the SNP. Specifically, we center  
the 524 kb input window on the SNP, predict coverage tracks 
yyy(ref) = ℳ(xxx(ref)),yyy(alt) = ℳ(xxx(alt)) ∈ ℝ16,384×7,611  given the reference and 

alternate allele sequences x(ref) and x(alt) as input and compute the sta-
tistic uuu(yyy(ref),yyy(alt))t  for coverage track t as follows:

uuut = max K−1
k=1 ||log2

(
(1/k)×∑k

u=1((∑
ℬ(u)
j=ℬ(u)−4 yyy

( alt )
j,t )/(∑ℬ(u)

j=ℬ(u)−4 yyy
( ref )
j,t ))

(1/(K−k−1)) )×∑K
u=k+1((∑

ℬ(u)
j=ℬ(u)−4 yyy

( alt )
j,t )/(∑ℬ(u)

j=ℬ(u)−4 yyy
( ref )
j,t ))

)
||||

K in the equation above denotes the total number of PASs within the 
UTR. ℬ = {b1,… ,bK} is the ordered set of bin indices in y overlapping the 
K PASs. The final score used in the benchmarks was the average statistic 
computed from all of Borzoi’s 89 GTEx coverage tracks. The score was 
also averaged over all four model replicates in both forward- 
complemented and reverse-complemented input formats.

Comparison to APARENT2 and Saluki
We compare Borzoi’s classification performance to APARENT2 (v.1.0.2) 
in two ways. First, we score the reference and alternate PAS sequence 
affected by the variant using APARENT2 and simply use the absolute 
value of the predicted log odds ratio as the variant effect score. Second, 
we use the predicted odds ratio to scale the tissue-pooled reference PAS 
usage (as reported in PolyADB) and use the absolute value of the differ-
ence in PAS usage as the final variant effect score. The latter statistic 
effectively dampens the magnitude of variants, which, based on APAR-
ENT2’s prediction, has a large predicted fold change but, according to 
measurements, occur in lowly used PASs (owing to competing PASs).

When comparing performance to an ensemble consisting of both 
APARENT2 and Saluki (v.1.0.0) on the paQTL classification task, we fol-
low the methodology from the APARENT2 paper22. In brief, we curate 
the PAS sequences and corresponding mRNA isoforms of each gene 
(at most 30) based on annotations from PolyADB and fit a logistic 
regression model to predict tissue-pooled distal isoform proportions 
(as reported in PolyADB) given both APARENT2’s PAS scores (at most 
30 scalars) and Saluki’s isoform scores (at most 30 vectors of top four 
PCA components extracted from the penultimate layer of Saluki) as 
input. Using this calibrated ensemble model, we predict the reference 
and alternate distal proportions of a gene when inducing a particular 
variant (which may affect multiple PAS- and isoform sequences). We 
estimate a final odds ratio from the predicted distal proportions and 
use the odds ratio to recalculate the alternate distal proportion based 
on the measured reference distal proportion. Finally, we subtract the 
alternate distal proportion from the reference proportion and use the 
absolute value of this difference as the final variant effect score.

Fine-mapped sQTL classification task
Fine-mapped sQTLs and matched negatives were obtained from the 
eQTL catalog79,80 using the same sumstat and fine-mapping files as 
were used for the paQTL classification task. The fine-mapped causal 
sQTLs were extracted by filtering on rows in which molecular_trait_id 
contained the substring ‘.contained.’. These QTLs were further filtered 
on PIP ≥ 0.9 and on a maximum distance of ≤10,000 bp to an anno-
tated splice junction (GENCODE v.41). A set of expression-matched 
and distance-matched negatives were constructed per tissue in an 
identical fashion to the paQTL task, with the exception of matching by 
nearest distance to splice junctions. We retained a total of 4,105 unique 
fine-mapped causal sQTL SNPs.

Splicing variant effect prediction
Purely isolating splicing impact from other mechanisms proved chal-
lenging. We focus on a simple statistic that worked well in practice; 
namely, the maximum difference in normalized coverage across the 
gene span. Specifically, we center the 524 kb input window on the SNP, 
predict coverage tracks yyy(ref) = ℳ(xxx(ref)),yyy(alt) = ℳ(xxx(alt)) ∈ ℝ16,384×7,611   
and compute the statistic uuu(yyy(ref),yyy(alt))t  for coverage track t as follows:

uuut = maxbend
j=bstart

|
|
|
|

yyy( alt)j,t

∑bend
k=bstart

yyy( alt )k,t

−
yyy( ref)j,t

∑bend
k=bstart

yyy( alt )k,t

|
|
|
|
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The indices bstart and bend refer to the bins in y overlapping the 
start and end positions of the gene span. The relatively large number 
of fine-mapped causal sQTLs allows for a tissue-specific benchmark 
comparison. To that end, for a given SNP and GTEx tissue, we average 
the statistic only over the subset of tracks corresponding to the tissue.

Comparison to Pangolin
We used the pre-packaged command-line utility to score sQTL SNPs 
with Pangolin (v.1.0.1)16. To make comparisons easier, we modified the 
program to output scores with six rather than two decimals. We used 
the following command to score the positive and negative vcf files: 
pangolin -d 2,000 -m False < sqtl file > .vcf hg38.fa gencode41_basic_
nort_protein.db < out_dir >.

Although this command allows at most a distance of 2,000 bp from 
an annotated splice junction, Pangolin will also score potential de novo 
splice gains at the variant position, meaning that the command will 
produce variant effect scores for all variants (even those separated by 
>2,000 bp from a splice site). We parsed the command-line output and 
matched the gene identifier of the Pangolin output to the gene in which 
the SNP occurs. The final variant effect score is calculated as the sum of 
the absolute values of the predicted maximum increase and decrease.

Splice site identification task
Identifying splice sites in DNA sequences has formed the basis for a 
successful approach to interpreting the splicing code and prioritizing 
pathogenic splicing variants15,16. To evaluate Borzoi’s ability to identify 
splice sites, we constructed an analogous classification task and com-
pared it to Pangolin16. We downloaded the splicing junction counts 
for all GTEx samples from recount3 and selected positive examples 
from annotated junctions with coverage above the 50th percentile of 
aligned read counts. We filtered this set for those that fall in the inter-
section of Pangolin’s and Borzoi’s test sets. For each positive example, 
we selected a matching negative site that had the same tri-nucleotide 
context, was between 100 bp and 2,000 bp away and lacked evidence 
of being a splice junction itself. For Borzoi, we scored each site as the 
predicted log ratio of exon-to-intron coverage around the junction, 
averaged across samples from the corresponding GTEx tissue. For 
Pangolin, we scored each site with its predicted splice site probability, 
averaged across all tissues.

Classifying rare and common variation from gnomAD
We sampled a set of 14,198 singletons and 14,198 matched common vari-
ants (allele frequency > 5%) from the GnomAD (v.3.1) database (https://
gnomad.broadinstitute.org), with sampling restricted to regions over-
lapping ENCODE candidate cis-regulatory elements. To control for 
sequence mutability, we excluded variants within CpG islands and 
low-complexity regions. For each singleton sampled, we sampled a 
negative example as a matched common variant with the same refer-
ence and alternate allele as the singleton. We also matched the variants’ 
background DNA contexts, sampling common variants that lie within 
the same tri-nucleotide as the singleton. Finally, we removed variants 
overlapping gene exons in coding sequences (GENCODE v.41), focus-
ing only on regulatory variants for our evaluation. For all sampled 
variants, we used their CADD raw score and CADD phred scores (v.1.6) 
from the GnomAD (v.3.1) dataset. We trained ridge regression models 
to discriminate common variants from singletons and used tenfold 
cross-validation to evaluate the models. The CADD-based model uses 
the CADD scores as features, whereas the Borzoi-based model uses 
the L2 scores across all RNA-seq tracks as features, averaged across the 
four model replicates. We derived a third (combined) model by aver-
aging predicted variant ranks for the Borzoi-based and CADD-based 
models. For a second genome-wide benchmark, we sampled uniformly 
from across the genome instead of restricting the variant sampling to 
ENCODE candidate cis-regulatory elements. This resulted in a variant 
set containing 17,360 singletons and 17,360 matched common variants.

Predicting TRIP expression
We downloaded TRIP insertion coordinates and measured expression 
levels for seven distinct promoters from the supplementary material 
of a previous publication68. The promoter sequences are listed in 
Table S1 and the insertion coordinates (and measurements) are listed 
in Data S2 of that paper. To predict the activity of TRIP reporters, we 
iterated over each promoter sequence and coordinate, centered the 
524 kb input window on the insertion coordinate and inserted the 
sequence. When deriving statistics from Borzoi’s RNA-seq or CAGE 
predictions, we inserted the entire TRIP reporter into the genomic 
location (including the promoter sequence, the GFP CDS, the PAS 
and the PiggyBac terminal repeat regions). By contrast, when deriv-
ing statistics from Borzoi’s DNase or histone modification tracks (for 
example, H3K4me3) we only inserted the promoter, as these predic-
tions became marginally worse when inserting the full reporter. We 
attribute this phenomenon to the PiggyBac transposable elements 
flanking the reporter, which Borzoi inherently does not predict well 
owing to the clipping of unmappable regions during the original 
training data processing.

Given the predicted coverage yyy = ℳ(xxx) ∈ ℝ16,384×T  for the T cover-
age tracks considered (for example, K562 DNase tracks), we calculate 
a scalar prediction u(xxx) ∈ ℝ by averaging the coverage tracks, aggregat-
ing the signal in a local window of size W centered at the insertion site 
and applying a log2 transform:

u = log2 ((1/T) ×
T
∑
t=1

W/2
∑

j=−W/2
yyy8,192+j,t)

For CAGE and RNA-seq outputs, we used a 4,096 bp window size 
that tightly covered the full reporter construct (and tightly covered the 
average signal profile, as exemplified in Supplementary Fig. 8a for pro-
moter ARHGEF98). Although this was technically a sub-optimal choice 
(a narrow 128 bp window maximized the average Spearman’s R across 
promoters for RNA-seq; see Supplementary Fig. 8b), the difference 
in Spearman’s R was small (for example, <0.02 for ARHGEF98) and a 
4,096 bp window size was a more intuitive choice. Similarly, the average 
optimal CAGE window size was 8,813 bp, but the 4,096 bp window had 
near-identical performance (<0.01 difference in average Spearman’s R 
across promoter types). For DNase and histone ChIP tracks, we used a 
slightly wider 8,192 bp window size as we noticed that the correlation 
to measured expression saturated less quickly than CAGE as a function 
of window size (for example, ~0.02 difference in average Spearman’s 
R across promoter types when comparing a window size of 4,096 bp 
to 8,192 bp for H3K4me3).

Gene–enhancer prioritization task
We evaluated Borzoi’s ability to link distal regulatory elements to 
genes by analyzing experiments in which CRISPRi was used to block 
the regulatory element followed by measuring gene expression. These 
experiments have been performed on a small set of specifically chosen 
genes in which expression was measured by various techniques60–65 and 
a large set of all expressed genes in which perturbation and expression 
were measured by single-cell RNA-seq (scRNA-seq)58. These datasets 
were analyzed to consider whether each tested regulatory element 
significantly altered gene expression, defining a set of binary labels. 
The flow/proliferation dataset contains 117 positives out of 2,194 tested 
within 262 kb of the gene’s TSS. After filtering for genes with ≥3 ele-
ments tested, the scRNA-seq dataset contains 404 positives of 19,104 
tested within 262 kb of the gene’s TSS. These numbers shrunk further 
on a per-analysis basis after requiring that each enhancer–gene pair 
is within the input window of the current set of models evaluated in a 
given benchmark.

For both Enformer and Borzoi, we scored putative enhancers using 
input gradient analysis. For Enformer, we computed the gradient of 
the K562 CAGE prediction in the two 128 bp bins centered at the gene’s 
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TSS. Computing the gradient using three bins (as in the original paper) 
resulted in marginally worse performance. The gradient score statistic 
was averaged for genes with multiple TSSs, which performed better 
than taking either the max or sum. For Borzoi, we computed the gradi-
ent of the K562 RNA-seq prediction for all bins overlapping the gene’s 
exons in GENCODE (v.41). For each nucleotide, we took the absolute 
value of the reference nucleotide gradient. For each regulatory ele-
ment, we computed a weighted average of the nucleotide scores using 
Gaussian weights (s.d. = 300), centered at the element’s midpoint. This 
approach improved performance for both Enformer and Borzoi com-
pared to a simpler strategy of averaging the absolute-valued gradients 
in a 2 kb window centered on the enhancer. To calibrate scores across 
genes with different expression levels, we normalized the scores by the 
mean nucleotide score across the entire region.

The analysis was repeated using an in-silico perturbation approach 
instead of input gradients. The putative enhancers were independently 
dinucleotide-shuffled with a 2 kb window. Using Borzoi, each shuffle 
was repeated 16 times for both forward and reverse orientations and for 
all four model replicates (128 times total). For Enformer, each shuffle 
was repeated 64 times in forward and reverse orientations. For Borzoi, 
the absolute-valued percent change in exon-aggregated RNA-seq cov-
erage was used as the final statistic. For Enformer, the absolute-valued 
percent change in aggregated CAGE signal was used (within two or three 
output bins). Smaller or larger window sizes only marginally affected 
the results (as shown in Supplementary Fig. 7a).

Saturation mutagenesis MPRA benchmark
The saturation mutagenesis experiment from a previous publication106 
was used to compare Borzoi to Enformer on non-QTL variation data. 
Each measured variant was induced in the hg38 reference sequence and 
centered on when making predictions. For DNase, CAGE and histone 
ChIP tracks, variant effects were estimated as the log fold change in 
coverage within a 4 kb window, whereas scores for RNA-seq were com-
puted as the log fold change in exon-aggregated coverage. The final 
predictions were calculated as an unweighted average of (potentially a 
subset of) the different assays’ scores. Using a narrow 512 bp window for 
aggregation as in the Enformer paper13 resulted in worse concordance 
with measured effects for some promoters and better concordance 
for other promoters. We settled on the wider 4 kb window as it led to 
better performance on the majority of promoters. Only promoters and 
enhancers with better performance using cell-type-matched outputs 
in the Enformer paper were included to simplify the benchmark. The 
same cell-type mappings were used except for promoters F9 (K562 
instead of HepG2), LDLR (adrenal gland instead of HepG2) and HNF4A, 
MSMB, TERT and MYC (adrenal gland RNA-seq instead of HEK293T 
RNA-seq). These changes led to better performance for Borzoi and 
were reasonable choices with respect to the target genes’ expression 
patterns. The same changes were made to Enformer’s mappings if they 
resulted in an improvement.

Codon stability comparison
Prior work has demonstrated strong relationships between codon 
usage and mRNA half-life23,78. We constructed a Borzoi codon statistic to 
compare to those previously measured. For the Gasperini58 scRNA-seq 
enhancer screen, we computed input gradients for a set of 4,778 genes 
for K562 gene expression. We made use of these gradients here to quan-
tify codon contributions to expression. For each reference codon in 
these genes, we used the gradients to approximate the predicted effect 
of changing it to all alternative codons with a single base-pair mutation. 
We used least squares regression to fit a coefficient for each codon on 
this set of possible codon mutations and effects. Finally, we compared 
these coefficients to codon stability coefficients computed in previous 
work78 as the Pearson correlation between codon frequency and mRNA 
half-life in three mammalian cell lines: HeLA, mouse embryonic stem 
cells and CHO cells78.

Statistics and reproducibility
All data from ENCODE, FANTOM5 and CATlas matching the target 
assay types and passing quality metrics, as established by each respec-
tive source, were included in the training data. Only a subset of GTEx 
RNA-seq samples were included; namely, the most representative 
samples as determined by expression profile clustering (details above). 
No statistical methods were used to predetermine sample size. No data 
were otherwise excluded from analyses.

Computational experiments and statistical tests were conducted 
as indicated in relevant sections. The experiments were not randomized 
and the authors were not blinded to outcome assessment. Confidence 
intervals of performance metrics were obtained by bootstrapping or 
permutation tests.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The processed Borzoi training data (including one-hot coded 
sequences and coverage tracks) are available for download at ‘gs://
borzoi-paper/data’ (Google Cloud Storage). Gene annotations were 
obtained from https://www.gencodegenes.org (v.41). Human varia-
tion data were obtained from gnomAD (v.3.1) (https://gnomad.broad
institute.org). Annotations of polyadenylation sites were obtained 
from PolyADB (v.3.2) (https://exon.apps.wistar.org/polya_db/v3) and 
PolyASite (v.2.0) (https://polyasite.unibas.ch/atlas). CRISPRi data were 
obtained from Nasser et al. (2021)65 and from GEO accession GSE120861 
for the Gasperini et al. (2019)58 data. DNase-seq, ChIP–seq and RNA-seq 
data were downloaded and processed from ENCODE (https://www.
encodeproject.org); see the ENCODE portal for details and statistics 
on the RNA-seq experiments. Processed RNA-seq samples for GTEx 
individuals were downloaded from recount3 (https://rna.recount.
bio). CAGE data were downloaded from FANTOM5 (https://fantom.
gsc.riken.jp/5). ATAC–seq data were downloaded from CATlas (http://
catlas.org/catlas_hub). All experiments used for training, including 
their unique identifiers, are enumerated for human samples at https://
storage.googleapis.com/seqnn-share/borzoi/hg38/targets.txt and 
for mouse samples at https://storage.googleapis.com/seqnn-share/
borzoi/mm10/targets.txt. Fine-mapped eQTLs were obtained from 
the supplementary material of Wang et al. (2021)1. Fine-mapped eQTL 
credible sets and other QTLs (sQTLs and paQTLs) were downloaded 
from the eQTL catalog (https://www.ebi.ac.uk/eqtl). The positive 
(fine-mapped causal) and negative eQTL, sQTL and paQTL sets used 
in this study are available at ‘gs://borzoi-paper/qtl/’ (Google Cloud Stor-
age). TRIP data were downloaded from the supplementary material of  
Leemans et al. (2019)68.

Code availability
The code repository for training RNA-seq deep learning models, includ-
ing example code to use the model as well as scripts for variant scoring, 
is available under the Apache 2.0 open source license at https://github.
com/calico/borzoi107. Pre-trained Borzoi model weights are available 
through GitHub. A separate GitHub repository (also licensed under 
Apache 2.0 open source) contains code relevant to the analyses and 
results presented in the manuscript, located at https://github.com/
calico/borzoi-paper108.
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Extended Data Fig. 1 | Additional test set evaluations and comparisons to 
Enformer. (a) - (d) Performance comparison between Borzoi and Enformer on 
held-out genomic (human) sequences when tasked with inferring (a) ChIP-seq 
TF, (b) ChIP-seq Histone, (c) DNase-seq, or (d) CAGE coverage. Each dot in the 
scatter plot represents the Pearson correlation between predicted and observed 
bin-level coverage values. The mean Pearson R of each model is annotated in 
the plot. The top row of plots displays performance when comparing Borzoi’s 
predictions to measurements at the original 32bp resolution, while the middle 
row of plots shows the result of aggregating the predicted and measured bins 
to 128bp resolution before computing Pearson R. Additionally, the published 
version of Enformer was fine-tuned on human assays without mouse data as a 
final step, while Borzoi was not. The bottom row of plots compares Borzoi at 
128bp resolution to Enformer before fine-tuning, which is comparable to how 
Borzoi was trained. (e) Distribution of Pearson correlation metrics, for Enformer 
(green) or Borzoi (red), when comparing predicted to observed bin-level 

coverage values on held-out data. Bars with darker/lighter shades correspond 
to train/test performances respectively. Each bar displays the mean correlation 
across experiments, and the intervals mark the 5th and 95th percentiles. Only 
tracks shared by both models are included for CAGE (n = 638), DNase (n = 546), 
TF- (n = 1,203) and Histone (n = 1,634) ChIP. A total of 1,543 tracks were included 
for Borzoi’s RNA-seq bar. For Enformer, the results of the published (fine-tuned) 
version of the model are shown alongside the performance metrics before 
fine-tuning. For Borzoi, performance metrics for a single replicate (‘repl 0’) and 
the ensemble (‘ens’) are shown at 32bp resolution. (f) Distribution of Pearson 
correlation metrics for RNA-seq tracks when making bin-level, gene-level, or 
quantile-normalized and mean-subtracted (gene-level) predictions on the held-
out test set. Results are shown for each individual Borzoi replicate (blue; ‘0’-‘3’) 
or the full ensemble (red; ‘e’). Each bar displays the mean correlation, and the 
intervals mark the 5th and 95th percentiles. Bin- / gene-level bars are estimated 
from 1,543 and 955 distinct (stranded) tracks / experiments respectively.
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Extended Data Fig. 2 | Attention matrix visualization. (a) Attention weight 
matrix averaged across all 8 heads of the final transformer layers, shown for 
example region chr1:69993520-70517808. Average predicted RNA-seq coverage 
for 89 GTEx samples is shown above the attention heatmap. Ensembl gene 
models and H3K4me3 tracks are shown below. Exon junctions (blue stars) and 
polyadenylation signals (red stars) are annotated in the plot. Genes and their 
bounding boxes are also annotated (green = forward strand, blue = reverse 
strand). (b)-(d) Enlarged view of the attention weight matrix for the SRSF11 gene, 
highlighting (b) a promoter region (and alternative TSS), (c) several introns 

and exons, and (d) the 3’ UTR. Gradient saliencies (‘Grad x Inp’) of either the 
output coverage tracks (‘Cov’, within the brown boxes) or the attention matrix 
(‘Att’, within the blue boxes) are displayed below each vignette. The regions 
highlighted in the saliency logos are either dinucleotide-shuffled (promoter) or 
mutated (exon and 3’ UTR) and the resulting coverage predictions are depicted 
above each logo (blue = reference, red = variant). The altered attention matrices 
due to the mutations are also shown in (c) and (d). Exon junctions (blue stars) and 
polyadenylation signals (red stars) are annotated in the plots. FANTOM5 CAGE 
peaks / counts are annotated below the heatmap and sequence logo in (b).
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Extended Data Fig. 3 | Example coverage predictions for genes that exhibit 
differential isoform usage. (a) Predicted and measured RNA-seq coverage 
patterns for pairs of GTEx tissues exhibiting differential TSS usage, for two 
example genes: ARHGEF18 (GTEx whole blood vs brain) and TACC1 (whole 
blood vs muscle). Exon-overlapping bins are shaded light-blue, TSSs and pA 
sites are drawn as dashed lines, and ‘max’ refers to the maximum bin value in the 
exonic regions (in a - b). TSS usage is estimated as a coverage ratio between bins 
overlapping each alternative start site (the ratio is annotated above each track). 
The examples were selected by searching for test genes with largest measured 
fold change in TSS usage between each pair of tissues, where measured usage was 

estimated from FANTOM5 TSS counts (Methods). (b) Predicted and measured 
coverage in GTEx tissues whole blood and brain for two test genes with increased 
coverage over the distal polyadenylation signal in brain compared to blood: 
PRR5L and MARCH6. Distal usage is estimated as a coverage ratio between bins 
overlapping the distal site relative to the proximal site (the ratio is annotated 
above each track). The genes were chosen from the set of genes with maximal fold 
change of distal-to-proximal coverage ratio in brain. Their brain-specific distal 
polyadenylation bias were verified in bulk 3’-sequencing data obtained from the 
database PolyASite 2.0 (Methods).
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Extended Data Fig. 4 | Splice site detection and alternative splicing examples. 
(a) Predicted and measured RNA-seq coverage across an exon in the SRSF11 
gene (GTEx pooled-tissue), centered on its splice donor. Each coverage track is 
independently normalized. Calculation of exon-to-intron coverage statistics 
(COVR) is illustrated in the figure. Exon-overlapping bins are shaded light-blue, 
and junctions are drawn with dashed lines. (b) Comparison between Borzoi’s 
predicted exon-to-intron coverage ratio statistic and Pangolin’s predicted 
splice usage when classifying annotated splice donors/acceptors from matched 
negatives in the reference genome. Average precision (AUPRC) is displayed 
separately for each type of splice junction (AG - Acceptor, GT/GC - Donor) and 

each dot corresponds to a GTEx tissue. (c) Average precision when using Borzoi 
to classify annotated splice junctions, calculated separately for protein-coding 
and long non-coding RNA. (d) Predicted and measured RNA-seq coverage across 
an alternative splicing event in the SLC25A3 gene for GTEx tissues whole blood 
and muscle (both predictions and measurements are pooled across 3 tissue-
specific samples for blood and muscle). Each coverage track is independently 
normalized. Exon-overlapping bins are shaded light-blue, and junctions are 
drawn with dashed lines (in d - e). (e) Predicted and measured blood- and muscle 
RNA-seq coverage across an alternative splicing event in the PKM1 gene (coverage 
tracks are pooled across 3 samples per tissue).
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Extended Data Fig. 5 | Prioritizing gene-enhancer pairs from CRISPR 
perturbation data. (a) Area under the receiver operating characteristic 
curve (AUROC) when using a statistic computed from the Borzoi or Enformer 
gradient saliencies to classify whether or not a given CRE locus regulates a target 
gene (measurements from Fulco et al., 2016, 2019 and Klann et al., 2017, and 
others)60–65. The baseline performance (blue bars) corresponds to using only TSS 
distance when performing the classification. The number of positives and total 
number of examples are displayed below each distance bin. The total number of 

examples are: (< 15K) n = 144, (15K - 45K) n = 277, (45K - 98K) n = 500, (98K - 262K)  
n = 1,220. 95% confidence intervals were estimated from 1,000-fold bootstrapping. 
(b) AUROCs when using the Borzoi or Enformer gradient scores to classify 
regulating / non-regulating CRE loci in the data from Gasperini et al. (2019)58. The 
total number of examples are: (< 15K) n = 1,230, (15K - 45K) n = 2,445, (45K - 98K) 
n = 4,058, (98K - 262K) n = 10,051. 95% confidence intervals were estimated from 
1,000-fold bootstrapping.
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Extended Data Fig. 6 | Variant interpretation of fine-mapped eQTLs.  
(a) Predicted RNA-seq coverage (GTEx tissue whole blood) for the WLS gene 
when introducing variant rs72670481. Exon-overlapping bins are shaded light-
blue. Exon-aggregated coverage for the alternate and reference alleles, and  
their ratio, are annotated in the coverage plot (in a - b). Measured coverage in  
6 individuals with the reference allele and 6 hetero- or homozygous individuals 
for the alternative allele is displayed below the predictions, along with attribution 
scores computed in a local window centered on the variant. The attributions 
scores are calculated with respect to the log-sum of exon coverage for the WLS 
gene. The sequence logo y-axes are equally scaled for both the reference and 

alternate alleles (min / max annotated in the right corner). Likely motif hits are 
displayed below the sequence logos (the E-values represent the significance of 
the motif match, as computed by Tomtom). (b) Predicted RNA-seq coverage 
(GTEx tissue whole blood) for variant rs3890144, along with measured coverage 
in 8 individuals with the reference allele and in 8 individuals who are either 
hetero- or homozygous for the alternative allele. Attribution scores in a window 
centered on the variant, calculated with respect to EPHB4 coverage, displayed at 
the bottom (equally scaled y-axes for the reference and alternate allele; min / max 
annotated in the right corner). Likely motifs and Tomtom E-values shown below 
the sequence logos.
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Extended Data Fig. 7 | Variant interpretation of fine-mapped paQTLs.  
(a) Predicted RNA-seq coverage (GTEx tissue-pooled) for variant rs74327114 in 
the FBXO9 gene, along with measured coverage in 1 individual with the reference 
allele and 1 heterozygous individual (averaged across two tissues each). Exon-
overlapping bins are shaded light-blue, and pA sites are drawn with black dashed 
lines. The log ratio between the coverage ratio (COVR) statistics computed for 

the alternate and reference alleles is annotated in the plot. Attribution scores 
of the predicted COVR statistic, computed using three separate methods, are 
displayed to the right and indicate loss of an extra hexamer motif, resulting in 
moderate reduction in polyadenylation efficiency. The sequence logo y-axes are 
equally scaled for both the reference and alternate alleles (min / max annotated in 
the right corner).
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Extended Data Fig. 8 | Variant interpretation of fine-mapped sQTLs.  
(a) Predicted RNA-seq coverage (GTEx tissue whole blood) for variant rs1882553 
using Borzoi, along with measured coverage in 32 individuals with the reference 
allele and 32 hetero- or homozygous individuals for the alternative allele (whole 
blood samples). Exon-overlapping bins are shaded light-blue. The log ratio 
between the coverage ratio (COVR) statistics computed for the alternate and 
reference alleles is annotated in the plot (in a - b). Attribution scores (bottom) 
are computed with respect to the predicted log ratio of exon-to-intron coverage, 

comparing three methods (equally scaled y-axes for the reference and alternate 
allele, displayed in reverse-complemented form; min / max annotated in the 
right corner). (b) Predicted RNA-seq coverage (GTEx tissue adipose) for variant 
rs10411704, along with measured coverage in 20 individuals with the reference 
allele and 20 hetero- or homozygous individuals for the alternative allele 
(adipose samples). Attribution scores of the predicted exon-to-exon log coverage 
ratio are displayed at the bottom (equally scaled y-axes for the reference and 
alternate allele; min / max annotated in the right corner).
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Extended Data Fig. 9 | Variant interpretation of fine-mapped intronic paQTLs. 
(a) Predicted RNA-seq coverage (GTEx tissue nerve) for variant rs3830026 and 
measured coverage in 16 individuals with the reference allele and 16 individuals 
who are hetero- or homozygous for the alternative allele (the QTL is significant in 
nerve samples). Exon-overlapping bins are shaded light-blue. The computation 
of polyadenylation- and splice-centric coverage ratio (COVR) statistics is 
illustrated. The log ratio between the splice-centric COVR statistics computed for 

the alternate and reference alleles is annotated in the plot. Bottom: Attribution 
scores of the exon-to-intron coverage ratio (COVR Splice) and the exon-to-exon 
coverage ratio (COVR PolyA), plotted in reverse-complement with equally scaled 
y-axes for the reference and alternate allele (min / max annotated in the right 
corner of each sequence logo). (b) Average AUPRC when using Borzoi to classify 
fine-mapped intronic paQTLs (tissue-pooled). Each dot represents a permutation 
test and the dashed line shows the mean (n = 100; Methods).
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.
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Data collection No software was used for data collection.

Data analysis Packages or software used in this manuscript include the following; Michigan Imputation Server (version 1.6.3), Eagle (2.4), plink (2.0), 
bcftools (1.18), Cellranger (5.0.1), Cellranger-ARC (2.0.2), DropletUtils (1.22), Seurat (v4), DoubletFinder (2.0), edgeR (3.4.2), MatrixEQTL (2.3), 
lmerTest (3.1),qvalue (2.34),MungeSumstats (1.10.1),ieugwasr (1.0.1), coloc (5.2.3), MendelianRandomization (0.10).  
 
Scripts used for data analysis are available here. https://github.com/johnsonlab-ic/singlecell-MR
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Raw snRNA-seq and genotype data from the Bryois_192 dataset is available as per their publication at the European Genome-Phenome Archive (EGA) under 
accession code EGAS00001006345 [7]. Raw snRNA-seq and genotype data from the MATTHEWS dataset is hosted at Synapse under accession code syn54083444. 
Newly generated raw snRNA-seq and associated genotype data (MRC_60 and Roche_PD) is available under accession code EGAS50000000687. Genotype data is 
considered personal data and is therefore under protected access by the host repository (EGA), where access is subject to the submission of an application 
delineating the scope of the project and the data required (full details on the portal). Applications are aimed to be reviewed within two weeks. 
 
Processed single-cell expression counts for each dataset and the full set of eQTL summary statistics for both the full and control-only datasets are available at 
https://zenodo.org/records/13343729 . The full set of published GWAS summary statistics  used for the colocalisation and MR analysis as well as links to the original 
publications are described in Supplementary Table 3.  
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Reporting on sex and gender Yes, sex is included as clinical covariates for the eQTL mapping.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Yes, there is a description of genetic ancestry (white european).

Population characteristics Yes, clinical covariates have been included and contain age, sex, genotypic information, disease diagnosis as assessed by 
neuropathology. All samples were collected post-mortem.

Recruitment This research was conduceted under the oversight of Imperial College Research ethics. 

Ethics oversight Imperial College Research Ethics reference: ICREC_14_2_11

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We performed snRNA-seq on all brain samples available to us, yielding N=409 individuals (391 post quality control). It is the largest dataset to 
date with almost equal sizes of controls (N = 183) and disease cases (N = 208), allowing to isolate disease-specific effects of feQTLs at cell-type 
specific level.

Data exclusions Nuclei with less than 500 UMIs in 300 features, and more than 5% Mitochondrial content were excluded. Related individuals based on 
genotypic data were excluded, and individuals with less than 10 nuclei for a single cell-type were removed.

Replication Replication was made by comparing eQTL discovery to a large-scale eQTL study performed in bulk brain tissue (N = 6,523). Between 
72.9-88.7% of cell-type eQTLs (depending on cell type) replicated at FDR < 5%, of which 90.0–98.3 had the same direction of effect.

Randomization Grouping was done based on diagnosis, determined by neuropathology. eQTL discovery was conducted on the full dataset (N = 391) and on 
the controls-only dataset (N = 183). No other grouping or selection was made. 

Blinding Blinding was not implemented to group allocation. However, in our case, the analysis focused on objective genetic and expression data, 
where researcher bias is unlikely to influence the outcome. Our study design required knowledge of group allocation to conduct separate 
analyses for controls and the full cohort, which is standard in genetic studies aiming to capture eQTLs across different biological conditions.
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plant specimens were collected from the field, describe the collection location, date and sampling procedures.
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