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ABSTRACT

This paper presents Perceptual Preference Optimization (PerPO), a perception
alignment method aimed at addressing the visual discrimination challenges in gen-
erative pre-trained multimodal large language models (MLLMs). PerPO employs
discriminative rewarding and listwise preference optimization to align MLLMs
with human visual perception processes. By utilizing the reward as a quanti-
tative margin for ranking, our method effectively bridges generative preference
optimization and discriminative empirical risk minimization. PerPO significantly
enhances MLLMs’ visual discrimination capabilities while maintaining their gen-
erative strengths, mitigates image-unconditional reward hacking, and ensures con-
sistent performance across visual tasks. This work marks a crucial step towards
more perceptually aligned and versatile MLLMs. We also anticipate that PerPO
will inspire the community to reconsider MLLM alignment strategies.

1 INTRODUCTION

The success of next token generation (Radford, 2018; Radford et al., 2019) has reignited the pursuit
of artificial general intelligence (AGI). Representative methods (Brown, 2020; Anthropic., 2024)
have achieved non-trivial advancements in both creative generation (Zhao et al., 2024b; Azaiz et al.,
2024) and logical reasoning (Yang et al., 2023a; Frieder et al., 2023). Recently, they have also
demonstrated exceptional multimodal capabilities (Achiam et al., 2023; OpenAI., 2024), achieving
remarkable results in various generative visual tasks (Yang et al., 2023b; Wen et al., 2024).

However, visual discrimination tasks have emerged as the Achilles’ heel of these multimodal large
language models (MLLMs) (Li et al., 2024b; Qu et al., 2024; Liu et al., 2024a). These tasks, which
require minimal reasoning and yield deterministic answers—such as “provide the position of the
person”, as illustrated in Figure 1a—often leave these powerful models quite “nearsighted”, or even
“blind”. Could it be that generative models fundamentally struggle with visual discrimination tasks
that are simple for a child?

Despite efforts (Yu et al., 2023; Wei et al., 2023) to address this issue by incorporating discrimi-
native tasks into generative pre-training, results often remain suboptimal, compromising core lin-
guistic abilities. This paper approaches the problem from an alignment perspective. We argue that
performance deficiencies in pre-trained models with basic competencies stem primarily from mis-
alignment. In practice, existing MLLMs lack alignment with perceptual objectives—a fundamental
expectation for such models. Recent methods (Sun et al., 2023; Zhao et al., 2023) using Direct
Preference Optimization (DPO) (Rafailov et al., 2024) aim for low-hallucination, high-accuracy
outputs but often fall into image-unconditional reward hacking (Skalse et al., 2022), a phenomenon
where text preferences are optimized without truly engaging with visual input. Consequently, a truly
perception-oriented alignment becomes increasingly necessary.

In this paper, we propose a simple yet effective approach: Perceptual Preference Optimization
(PerPO) via discriminative rewarding. Our method aims to align with humans’ innate, coarse-
to-fine visual perception process: implicitly generating various hypotheses around the objective
ground truth, then progressively focusing along the path of increasing rewards towards the optimal
hypothesis (Hegdé, 2008). To simulate this process, PerPO extends the wisdom of empirical risk
minimization (Pérez-Cruz et al., 2003; Golubev, 2004), initially defining the reward as the negative
value of the errors between model predictions relative to the objective ground truth. Figure 1b
shows, through a Best-of-N (Charniak & Johnson, 2005) validation, the remarkable consistency

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

 Generation: 
"Can you provide a caption for this image?"
"Please write a 200-word article based on this picture."
  Discrimination: 
"Provide the bounding box coordinate of the man."
"What is the number on the man’s coat in the picture?"

Questions to MLLMs

(a) Generation vs. Discrimination (b) PerPO vs. Other methods

RefCOCOg 

61.5 61.3

60.3 64.7
LLaVA�

0.2↓

 4.4↑

DPO

PerPO

52.0 55.6

54.4 59.7

w/o image w image

DPO

PerPO

3.6↑

5.3↑

(c) PerPO vs. DPO

Figure 1: (a) Examples of visual generative and discriminative tasks. (b) Performance comparison
in RefCOCOg (Mao et al., 2016) with increasing list size for SFT, DPO, PerPO, and Best-of-N. (c)
Performance comparison of PerPO and DPO with and without image input across different bench-
marks. Notably, PerPO shows a greater performance gap, highlighting a strong reliance on image
conditioning.

between this reward and visual discriminative ability, also revealing the untapped discriminative
potential within MLLMs.

Centered on such discriminative reward, PerPO first employs a learning-to-rank (Burges et al., 2005)
approach for listwise preference optimization (Liu et al., 2024d) over an ordered set of all negative
samples. Where the negative samples are model-generated responses that deviate from the ground
truth, and the ”negative” is relative to the discriminative ground truth. This strategy aims to fully ex-
ploit the inherent scalability of discriminative rewards, enabling efficient learning from diverse neg-
ative samples without human annotation. It is also founded on our intuition that ordered sequences
of samples, rather than isolated pairs, can better capture image-conditioned preference patterns. As
Figure 1c confirms, PerPO significantly suppresses optimization toward image-unconditioned re-
ward hacking. Meanwhile, to compensate for the uncertainty introduced by preference ranking, we
treat the reward itself as a quantitative margin for anchoring the ranking. We demonstrate both
theoretically and empirically that PerPO effectively combines generative preference optimization
with discriminative empirical risk minimization. This ultimately ensures consistent modeling across
visual generation and discrimination tasks.

Our contributions are summarized as follows:

1. We highlight, for the first time, the capability dilemma of generative MLLMs in visual
discrimination tasks. To address this, we propose PerPO, the first method to align with the
human perception process, enhancing both visual discrimination performance and human
preference alignment.

2. Technically, we first introduce a scalable discriminative reward that aligns well with both
perception and human preferences.

3. Building on this, a listwise approach to preference optimization effectively distills insights
from diverse negative samples and mitigates image-unconditional reward hacking.

4. Further, using the reward itself as a margin to anchor uncertainty in ranking is theoretically
and experimentally proven to harmonize visual perception and generation.

2 PRELIMINARIES

Best-of-N sampling (Charniak & Johnson, 2005; Nakano et al., 2021), also known as rejection
sampling, involves generating N candidate solutions and selecting the one that scores highest ac-
cording to a proxy reward. This method leverages the natural variability (Renze & Guven, 2024)
in LLM responses, effectively finding the best output from a pool of possibilities. By picking the
top-scoring candidate, Best-of-N increases the likelihood of identifying the correct answer, enhanc-
ing the problem-solving capabilities (Guo et al., 2024) of LLMs and making them more reliable and
accurate (Bai et al., 2022).
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Direct Preference Optimization (DPO) (Rafailov et al., 2024) surpasses Best-of-N by utilizing
an implicit reward derived from reinforcement learning objectives. DPO employs the LLM for
both reward learning and proposal generation, fine-tuning the model to better align with human
preferences. This integration improves the model’s relevance and quality, pushing the boundaries
of LLM performance. Formally, given pairwise preference data (x, y+, y−), where y+ is preferred
over y− with respect to prompt x, the reward objective is defined as:

r(x, y) = β log
πθ (y|x)
πref (y|x)

+ Z (q) (1)

where πθ is the model being optimized, πref is the reference model, Z (q) is a partition function,
and β is a hyperparameter controlling the deviation between πθ and πref. By reparameterizing the
Bradley-Terry (BT) model (Bradley & Terry, 1952), DPO’s objective can be expressed as:

LDPO(θ) = −E(x,y+,y−)∼D[log σ(β(log
πθ (y

+|x)
πref (y+|x)

− log
πθ (y

−|x)
πref (y−|x)

))] (2)

where σ is the sigmoid function, and D is the preference dataset. This objective encourages the
model to assign higher probabilities to preferred completions.

From pairwise to listwise preference, LiPO (Liu et al., 2024d) extends DPO to handle ranked lists
of responses Y = {y1, ..., yn}. It employs the pairwise logistic ranking loss (Burges et al., 2005)
for sequence optimization. Specifically, each response is assigned a predicted score, defined as:

{R1, ..., Rn} =

{
log

πθ (y1|x)
πref (y1|x)

, ..., log
πθ (yn|x)
πref (yn|x)

}
(3)

To simplify notation, we use R∗ to represent these scores.

Additionally, each response is associated with a ranking level ψ = {ψ1, ..., ψn}, which determines
the sample’s role in training: higher-ranked responses serve as positive samples, while lower-ranked
ones are negative. The listwise ranking objective, in both its basic form and advanced variant (LiPO-
λ), is defined as:

LLiPO(θ) = −E(x,Y,ψ)∼D

 ∑
ψi>ψj

∆i,j log σ (β(Ri −Rj))

 (4)

In the basic version of LiPO, ∆i,j = 1 for all i and j. In the advanced variant, ∆i,j , the Lambda
weight, is used for more sophisticated preference pair weighting based on ranking levels.

Both methods enable efficient preference-based fine-tuning. LiPO offers more nuanced optimization
by considering the relative rankings of multiple completions. These approaches align language
models with human preferences without needing explicit reward modeling or reinforcement learning
techniques.

3 PERPO: PERCEPTUAL PREFERENCE OPTIMIZATION

Motivated by the contrast between MLLMs’ prowess in generative tasks (Yang et al., 2023b; Wen
et al., 2024) and their struggles in visual discrimination (Li et al., 2024b; Qu et al., 2024), we aim to
bridge this gap. We posit that this issue primarily stems from a lack of explicit perception alignment.
Therefore, we employ preference optimization to simulate the human innate, coarse-to-fine visual
perception process (Hegdé, 2008). As we will detail, we utilize the negative value of the model’s
prediction error relative to the visual ground truth as a reward signal. By maximizing the exploitation
of this reward, we can effectively activate the model’s inherent visual discrimination capability.

A simple reward aligns well with visual discrimination. The success of empirical risk mini-
mization (ERM) (Pérez-Cruz et al., 2003; Golubev, 2004) in perceptual tasks (Zhang et al., 2018)
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suggests the deterministic nature of ground truths in visual discrimination tasks. Practically, when a
visual model is applied to well-defined discrimination tasks, generalization is often well-guaranteed.
This indicates that the discrepancy between model predictions and ground truths can serve as a
highly accurate and validated reward in visual discrimination tasks.

To substantiate this, Figure 1b visualizes the effects of Best-of-N (Charniak & Johnson, 2005;
Nakano et al., 2021), SFT, DPO (Rafailov et al., 2024), and PerPO with N samples, leveraging the
model’s object grounding performance on RefCOCOg (Mao et al., 2016). Among them, Best-of-N
selects the answer with the highest reward, SFT uses the ground truth, DPO chooses the pair of an-
swers with the largest reward discrepancy, and PerPO incorporates all answers. Notably, Best-of-N
performance grows logarithmically with N , achieving 50% improvement at N = 20, demonstrating
consistency between discriminative reward and model performance. In addition, DPO, trained on
largest-margin pairs, surpasses SFT at N = 8, indicating the reward’s efficacy in sample selection.

Listwise rewarded samples boost visual preference optimization. Methods like PPO (Schulman
et al., 2017; Ouyang et al., 2022) and LiPO (Liu et al., 2024d) highlight the importance of diverse
preference sample sequences in RL optimization. Generally, a sufficiently varied and systemati-
cally ordered set of negative samples helps the model rectify deficiencies incrementally and learn
true preferences from rankings. Discriminative rewards, which require no human annotation, scale
efficiently and enhance the impact of diverse negative samples for MLLMs. This is corroborated
by Figure 1b, where PerPO’s performance improves with increasing N . Table 4 further compares
PerPO and DPO performance as N increases, validating the superiority of listwise over pairwise
negative sample optimization.

Meanwhile, recent studies show that human alignment in MLLMs doesn’t effectively extend to
visual conditions (Wang et al., 2024a), suggesting a form of image-unconditional reward hack-
ing (Skalse et al., 2022). Our comparative analysis of DPO and PerPO, with and without image
input (Figure 1c), reveals that PerPO exhibits superior gains with visual information. This indi-
cates PerPO’s optimization is more dependent on visual conditions. We attribute this robustness to
the precision of discriminative reward and the strength of listwise optimization. For MLLMs, this
implies that visual input engagement is crucial for accurate pattern identification.

Your reward is secretly the perfect margin. Often, rewards lack absolute values or have ambigu-
ous magnitudes. Previous methods have addressed this by manually adding margins (Meng et al.,
2024) or constructing imbalanced rankings based on permutations (Song et al., 2024) for balanced
sorting. The success of these approaches fundamentally stems from the non-uniform objectives lead-
ing to smoother optimization spaces (Burges et al., 2006), although these spaces may not necessarily
align with the preference space.

However, as mentioned earlier, the deterministic nature of discriminative rewards — specifically, the
well-defined output space — ensures that we can guide an optimization space perfectly isomorphic
to the discrimination space. Concretely, we use the absolute value of the reward itself as the weight
for the sequence. Formally, we define

{
R̂1, ..., R̂n

}
= {f(x, y1), ..., f(x, yn)} to denote the set

of discriminative reward scores, where R̂i is derived by evaluating the discrepancy (denoted by f )
between sequence samples Y and ground truth x. Based on them, we define the reward weight wij
for any pair of responses (x, yi, yj) as:

wij =

(
R̂i − R̂j

)γ
∑
R̂i>R̂j

(
R̂i − R̂j

)γ (5)

where γ is a scale factor. Notably, a norm design mitigates numerical impacts from varied discrimi-
native rewards, enhancing model training robustness.

The PerPO objective. PerPO maximizes the ranking objective using discriminative reward scores
to accurately measure response rankings. Leveraging these deterministic scores as the personal-
ization reward weight for listwise preference amplifies the differences between distinct responses.
Ultimately, the ranking optimization objective of our PerPO is defined as:

4
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LPerPO(θ) = −E(x,Y )∼D[
∑

R̂i>R̂j

wij log σ(β(Ri −Rj))] (6)

Overall, PerPO’s listwise optimization intensifies penalties on negative samples, mitigating image-
unconditional reward hacking, while refining performance through adaptive pairwise optimization
based on discriminative rewards.

Theoretically, PerPO is a listwise ERM. A natural question is: why don’t we directly optimize
discriminative rewards? In other words, why not perform empirical risk minimization directly on
MLLM? Interestingly, when we adjust the order of the discriminative reward margin and preference
optimization objective in Eq 6, we have

LPerPO(θ) = −E(x,Y )∼D

 ∑
R̂i>R̂j

log σ(β(Ri −Rj)) ·

(
R̂i − R̂j

)γ
∑
R̂i>R̂j

(
R̂i − R̂j

)γ
 (7)

We can consider a simplified scenario where γ equals 1 and
∑
R̂i>R̂j

(
R̂i − R̂j

)γ
is treated as a

constant. In this case, Eq 7 expresses that for each R̂i, all R̂m smaller than it form a coefficient in
the preference optimization objective, while all R̂n larger than it construct an opposite coefficient in
this objective. Formally, this can be expressed as:

LPerPO(θ) = −E(x,Y )∼D

∑
R̂i

 ∑
R̂i>R̂m

log σ(β(Ri −Rm))−
∑

R̂i<R̂n

log σ(β(Rn −Ri))

 · R̂i


(8)

we can observe that PerPO essentially implements a form of listwise empirical risk minimization.
Each sample is assigned a dynamic weight, derived from the discriminative reward relationships
between that sample and others. This weight is computed as the sum of preference optimization
objectives based on the model’s implicit reward R. This demonstrates a coordination between
discriminative rewards and the MLLM’s inherent rewards, theoretically proving PerPO’s capa-
bility to model both visual discrimination and language generation abilities concurrently.

4 EXPERIMENTS

4.1 IMPLEMENTAL DETAILS

Data construction. We construct listwise preference data for two visual discriminative tasks: ob-
ject grounding and dense OCR. Discriminative rewards are calculated using Intersection over Union
(IoU) for object grounding and edit distance for dense OCR. For object grounding, we derive the
corpus from RefCOCO (Yu et al., 2016), RefCOCO+ (Yu et al., 2016), and RefCOCOg (Mao et al.,
2016). We sample an equal amount of data from each dataset and perform 20 samplings per instruc-
tion using the model at a temperature of 0.5. The resulting preference data are then filtered based on
the data margin, defined as the difference between the maximum and minimum discriminative re-
wards within a list of responses. By setting the margin to 0.8, we retain 3,000 high-quality samples.
For dense OCR, we use page-level OCR data from Fox (Liu et al., 2024a), employing edit distance
instead of IoU for rewarding. Setting the margin to 0.04 yields a dataset of 1,800 samples.

Models and training settings. We adopt LLaVA-v1.5-7B (Liu et al., 2023a) as the base model,
integrating CLIP-ViT-L-336px (Radford et al., 2021) and Vicuna-7B-v1.5 (Chiang et al., 2023; Liu
et al., 2023b). All experiments are conducted using DeepSpeed ZeRO stage-3, applying LoRA (Hu
et al., 2022) for fine-tuning. The training setup includes a batch size of 8 and a learning rate of
5e-6 with the AdamW optimizer. Training is completed on 8 GPUs in approximately 1.5 hours.
To further validate our approach, we utilize LLaVA-Next-7B (Liu et al., 2024b) for both object
grounding and dense OCR tasks. This model’s sliced image processing capability enhances visual
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Table 1: Performance comparison of SFT, DPO, and PerPO in object grounding and image under-
standing. Bolding indicates optimal performance, underlining indicates sub-optimal performance.

Methods
RefCOCO RefCOCO+ RefCOCOg

LLaVAW MMHalBench
POPE

val testA testB val testA testB val test Score ↑ HalRate ↓

LLaVA-v1.5-7B 50.0 59.9 43.3 45.8 55.2 34.6 49.4 49.3 61.8 2.11 0.54 86.1
+ SFT 59.4 66.6 49.2 52.0 61.1 40.2 54.9 54.7 62.0 2.16 0.61 86.1
+ DPO 60.6 67.8 50.5 53.3 62.1 41.4 55.9 55.1 61.3 2.08 0.62 86.3
+ PerPO 63.8 70.6 54.4 57.3 65.9 46.9 60.0 59.6 64.0 2.26 0.57 86.5

LLaVA-NEXT-7B 84.9 90.5 77.3 77.6 86.8 67.0 80.7 80.3 72.7 2.79 0.48 87.5
+ SFT 84.6 90.3 77.1 77.5 86.5 67.4 81.3 80.2 75.0 2.57 0.48 87.6
+ DPO 85.5 90.8 78.8 78.1 86.9 68.0 81.0 81.1 77.6 2.69 0.49 87.5
+ PerPO 86.7 91.3 81.0 69.4 87.3 70.1 82.4 82.4 81.2 2.81 0.46 87.6

Table 2: Performance comparison of SFT, DPO, and PerPO in dense OCR and image understanding.
Bolding indicates optimal performance, underlining indicates sub-optimal performance.

Methods Edit Dist ↓ F1 ↑ Prec↑ Rec ↑BLEU ↑METEOR ↑LLaVAW MMHalBench
POPE

Score ↑HalRate ↓

LLaVA-Next-25k-7B 0.67 0.47 0.71 0.37 0.16 0.28 68.9 2.79 0.42 89.0
+ SFT 0.66 0.47 0.72 0.38 0.17 0.29 67.8 2.85 0.42 89.0
+ DPO 0.61 0.51 0.73 0.41 0.20 0.32 68.3 2.95 0.40 89.0
+ PerPO 0.58 0.54 0.73 0.44 0.23 0.36 68.4 2.92 0.39 89.0

LLaVA-Next-50k-7B 0.64 0.51 0.74 0.41 0.18 0.31 70.2 2.97 0.36 89.6
+ SFT 0.62 0.52 0.74 0.42 0.20 0.32 69.8 3.15 0.34 89.9
+ DPO 0.60 0.54 0.75 0.43 0.21 0.33 69.2 3.10 0.36 90.0
+ PerPO 0.56 0.56 0.75 0.46 0.24 0.36 71.5 3.00 0.36 90.0

understanding. However, it demonstrates limited efficacy in the dense OCR task, likely due to a lack
of sufficient training data. To address this, we construct page OCR datasets of varying sizes (25k,
50k), combining them with the original 780k instruction tuning data to train LLaVA-Next-*k-7B.
Unlike previous models, this version employs SigLIP-400M (Zhai et al., 2023) as the visual encoder
and Qwen2-7B (Yang et al., 2024) as the language model.

Evaluation benchmarks. We conduct a comprehensive assessment of PerPO across various multi-
modal benchmarks. Using LLaVAW (Liu et al., 2023a), we evaluate the general capabilities of mul-
timodal models. To assess perceptual robustness, we employ hallucination metrics from MMHal-
Bench (Sun et al., 2023) and POPE (Li et al., 2023). For object grounding, we utilize the RefCOCO,
RefCOCO+, and RefCOCOg datasets, with AP@50 as the evaluation metric. In the dense OCR
scenario, we use Fox’s proprietary dataset, measuring performance with Edit Distance, F1-score,
Precision, Recall, BLEU (Papineni et al., 2002), and METEOR (Satanjeev, 2005). Meanwhile,
Appendix A.2 provides additional metrics for evaluating the model’s performance in general visual
tasks. This comprehensive evaluation provides valuable insights into PerPO’s capacity in addressing
multimodal challenges.

4.2 PERFORMANCE COMPARISON

Superior performance of PerPO across various visual discriminative tasks. To demonstrate
PerPO’s effectiveness, we evaluate SFT, DPO and our PerPO on different model baselines across
various downstream tasks. As shown in Table 1, PerPO consistently outperforms SFT and DPO
across benchmarks, revealing a superiority of listwise preference optimization to pointwise (SFT)
and pairwise (DPO). On LLaVA-v1.5-7B, PerPO significantly boosts the object grounding capacity,
with relative gains of 3.42%, 8.18%, and 5.58% on RefCOCO, RefCOCO+, and RefCOCOg, re-
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Figure 2: Analysis of training data quality, quantity, and hyperparameter β (a) Performance across
different data margins. (b) Performance across different data sizes. (c) Performance across different
β values in the loss function.

spectively. On a stronger baseline LLaVA-NEXT-7B, PerPO also delivers consistent improvements,
demonstrating its cross-model generalizability. PerPO similarly demonstrates its superiority in the
highly applicable dense OCR scenario. Table 2 illustrates this by showing significant reductions in
edit distance on two baselines (13.4% in LLaVA-Next-25k-7B and 14.3% in LLaVA-Next-50k-7B,
respectively). This highlights, first, PerPO’s cross-task generalizability, and second, its higher data
utilization efficiency compared to SFT and DPO.

PerPO also improves general image understanding. As demonstrated in Table 1 and Table 2,
PerPO exhibits substantial improvements in general image understanding (LLaVAW) and image
hallucination mitigation (MMHalBench and POPE). This indicates that despite PerPO’s singular
focus on aligning perceptual processes, it effectively generalizes to broader image comprehension
domains, and in fact, deepens image cognition.

4.3 ABLATION STUDY

Training data statistical analysis. Training data plays a crucial role in preference optimization.
We conduct a comprehensive statistical analysis, focusing on data quality and quantity. Quality
is assessed by the margin, defined as the difference between the highest and lowest discriminative
scores within a list. As shown in Figure 2a, the experimental results are influenced by the margin.
A balanced performance for both LLaVAW and RefCOCO+ is achieved with the margin of 0.8 to
1.0. Figure 2b indicates that RefCOCO+ improves with larger data size, while LLaVAW declines.
Optimal performance occurs at 3k samples.

Hyperparameter β in PerPO loss. DPO loss includes a hyperparameter β, which controls the
model’s sensitivity to differences between candidate responses. A higher β increases the model’s
focus on subtle distinctions in outputs, while a lower β allows for greater tolerance of minor de-
viations. During training, β also affects the model’s rate of assimilating human preferences, with
an optimal value ensuring stable learning progression. This parameter, also applied in our PerPO
method, underwent several experimental iterations. As shown in Figure 2c, the best performance
was achieved with β set to 0.1.

Table 3: Analysis of LoRA training strategy.

r α Ref Ref+ Refg LLaVAW POPE

64 128 62.9 57.0 59.5 62.2 86.4
128 256 63.4 57.2 59.7 62.8 86.4
256 512 63.7 57.6 60.0 64.1 86.5
512 1024 64.4 58.2 60.3 64.6 86.7
1024 2048 65.8 59.6 61.5 64.2 86.6

LoRA training strategy. The calibration of
hyperparameters r and α in LoRA training il-
lustrates the balance between specialized learn-
ing and general competence in fine-tuning.
Higher r values enhance task-specific knowl-
edge acquisition but carry the risk of catas-
trophic forgetting, while α controls the magni-
tude of weight updates. As demonstrated in Ta-
ble 3, the horizontal and vertical axes represent
the values of LLaVAW and RefCOCO, respec-
tively. As r increases, the model’s performance
shows an upward trend. Our experiments with

PerPO, conducted at r = 128 and α = 256, prioritize computational efficiency over maximizing
performance, in order to reduce resource consumption. This approach underscores the trade-off
between theoretical optimization and computational constraints in applied machine learning.
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Question: Please provide the bounding box coordinate of the region this 
sentence describes: glass behind burger.

Without PerPO:
 [0.25, 0.26, 0.64, 0.87]

With PerPO: 
[0.61, 0.17, 0.77, 0.53]

Question: Please describe what the other people around the man who is cooking 
are doing.

Without PerPO:
The other people are standing and 
watching him prepare the food. They 
are likely observing his cooking 
techniques. 

With PerPO:
The other people are standing and 
socializing. They are likely enjoying 
the outdoor event and the food being 
prepared on the grill. 

24%76%

71% 29%

Win Lose

LLaVA� 59% 41%

Page ocr-

Human users as Judge 

RefCOCO

Figure 3: Relative performance (Left, Human users as judge) and comparative showcases (Right)
with and without PerPO alignment across different tasks.

Table 4: Performance comparison of PerPO and DPO for different sample sizes N . Bolding indi-
cates optimal performance, underlining indicates sub-optimal performance.

N Methods Ref+ Refg LLaVAW POPE Methods Ref+ Refg LLaVAW POPE

2 DPO 50.9 54.0 60.1 86.2 PerPO 55.4 57.3 65.9 86.3
4 DPO 52.2 54.6 60.6 86.3 PerPO 56.2 58.6 61.2 86.5
8 DPO 52.6 55.2 62.4 86.2 PerPO 57.0 59.3 62.1 86.4
12 DPO 52.7 55.4 62.6 86.2 PerPO 57.4 59.4 63.1 86.5
20 DPO 52.9 55.4 61.2 86.2 PerPO 57.4 59.7 64.7 86.5

5 IN-DEPTH ANALYSIS

5.1 IMPACT OF DISCRIMINATIVE REWARD IN PERPO

Discriminative reward aligns well with perception. We conducted a comparative analysis of
Best-of-N, SFT, DPO, and PerPO on object grounding task, using IoU as discriminative reward.
To explore upper-bound performance, we calculated Best-of-N using test set ground truth, while
other methods utilized the train set. Sampling was performed at temperature 0.5 from a moderately
capable model. As shown in Figure 1a, Best-of-N’s logarithmic performance trend with increasing
samples validates the reward’s effectiveness in aligning with perception performance in an oracle
scenario. Meanwhile, the enhanced gains of DPO and PerPO at higher N values confirm the ac-
curacy of reward-based sample selection or ranking, highlighting the potential of reward-guided
approaches for model improvement.

Discriminative reward also aligns well with human. To assess PerPO’s user alignment, we
employed both GPT-4o and human users to compare models before and after PerPO alignment
from multiple perspectives. We uniformly sampled 500 questions from open-ended datasets like
LLaVAW, RefCOCO, and Page-ocr in Fox, and evaluated relative performance, considering re-
sponse accuracy, instruction adherence, and hallucination reduction. A more detailed description
of the evaluation can be found in Appendix A.3. Figure 3 (left) shows that the PerPO-aligned model
achieved a higher win rate, with significant improvements in different datasets. Therefore, enhanc-
ing perception not only aligns better with human preferences but also boosts user experience due to
stronger visual capabilities and more efficient optimization.

5.2 IMPACT OF LISTWISE PREFERENCE IN PERPO

More negative supervisions help discrimination. Figure 1b illustrates the asymptotic growth of
DPO and PerPO under increased sampling, preliminarily validating the value of negative samples.
We further conduct a comprehensive comparison between PerPO and DPO across multiple bench-
marks including RefCOCO+, RefCOCOg, LLaVAW, and POPE, examining performance disparities
at varying sample sizes 2, 4, 8, 12, 20. In Table 4, observations reveal that increased sampling con-
sistently led to improved performance across diverse metrics. Moreover, PerPO demonstrated more

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 0.1 0.5 1.0 2.060

61

62

63

64

65

66

64.0
63.5

64.7

63.2
63.6

LLaVAW

RefCOCOg

54

55

56

57

58

59

60

61

62

59.7 59.8 59.7 59.6 59.5

(a) Parameter γ in PerPO loss

0k 25k 50k
LLaVA-Next-*k-7B

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ed
it 

Di
st

SFT to Origin
PerPO to SFT
Origin
SFT
PerPO

(b) PerPO vs. SFT

Figure 4: (a) Performance across different γ values in PerPO loss. (b) Comparison of PerPO and
SFT across different dense OCR levels. As the model capability increases and approaches saturation,
PerPO can unleash the full potential of the model compared to SFT.

pronounced absolute performance and performance gains relative to DPO. This confirms the role
of negative sample supervision in visual preference optimization. Notably, as sampling size N in-
creases, performance gains saturate, indicating a loss of negative sample diversity. Thus, mining
more diverse negative samples is critical and will be pursued in future work.

Listwise preference optimization helps prevent image-unconditional reward hacking. As dis-
cussed in Section 3, we compared the preference optimization results of DPO and PerPO with and
without image input on RefCOCOg and LLaVAW. PerPO shows significant performance gains over
DPO with image input, demonstrating that PerPO’s optimization is more reliant on visual conditions,
and hence helps prevent such reward hacking.

5.3 IMPACT OF DISCRIMINATIVE MARGIN.

Reward itself serves as the perfect margin. As shown in Eq 6, we introduce a coefficient γ to finely
modulate the influence of the differential discriminative rewards on the corresponding sample pairs.
It can be seen that when γ = 0, PerPO simplifies to LiPO. When γ ̸= 0, unlike LiPO balanced
ranking, PerPO can emphasize inter-sample distinctions, facilitating more targeted optimization.
Our ablation study on γ parameter, presented in Figure 4a, shows that the model achieves optimal
performance at γ = 0.5, highlighting the effectiveness of our personalized weighting strategy in
improving model performance.

5.4 FURTHER ANALYSIS

PerPO aims to unlock the model’s full potential. PerPO’s effectiveness seems to depend on the
capability level of the model. Comparing SFT and PerPO performance on models trained with
varying amounts of OCR data (0k, 25k, 50k), we found that PerPO’s advantage emerges only as the
model’s capabilities mature. Figure 4b shows that with weak or no dense OCR capabilities, PerPO
and SFT perform similarly. However, as the model approaches capability saturation, the area of the
light blue region increases significantly, indicating that PerPO outperforms SFT. To sum up, SFT is
crucial for imparting basic capabilities, whereas PerPO is key to unlocking the model’s full potential
in later stages.

Qualitative analysis. To qualitatively analyze the effectiveness of PerPO, as shown in Figure 3
(right), we present two cases highlighting the differences before and after applying PerPO. The first
case involves the object grounding task of locating a glass behind a hamburger. Initially, the model
focuses on the hamburger, but after alignment, it correctly identifies the glass. The second case is to
ask what the other people arounding the man cooking in the image are doing. Without PerPO, the
model would mistakenly think they are watching the man prepare the food and observing his cooking
techniques, while the model with PerPO would answer that the people around are socializing and
they are enjoying outdoor event and the food being prepared on the grill. PerPO not only improves
the accuracy of visual recognition tasks such as object detection, but also reduces hallucinations and
enhances visual perception capabilities.
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6 RELATED WORK

Reinforcement Learning from Human Feedback (RLHF). RLHF (Christiano et al., 2017; Stien-
non et al., 2020) is a crucial technique for aligning Large Language Models (LLMs) with human
preferences, comprising both reward model-based and model-free methods. In PPO (Schulman
et al., 2017; Ouyang et al., 2022), an auxiliary reward model is cultivated first and then used to
optimize the policy. Conversely, DPO (Rafailov et al., 2024) directly leverages preference data for
policy optimization, offering a streamlined yet effective pathway for alignment. To mitigate overfit-
ting, IPO (Azar et al., 2024) incorporates a regularization term. KTO (Ethayarajh et al., 2024) and
DPOP (Pal et al., 2024) optimize the relative gain of outputs, bypassing the need for pairwise data.
sDPO (Kim et al., 2024) uses multi-stage training for better alignment. ORPO (Hong et al.) and
SimPO (Meng et al., 2024) adopt reference-free reward formulations to simplify alignment. Despite
impressive results, these methods rely on labeled perference data, limiting their generalizability. In
contrast, PerPO uses a discriminative reward mechanism, allowing data scaling without extra costs
and enhancing model performance across diverse domains.

Multimodal Large Language Models (MLLMs). MLLMs (Liu et al., 2024c; Yu et al., 2023; Zhu
et al., 2024; Dong et al., 2024; Ghosal et al., 2023; Lin et al., 2023) integrate various data modal-
ities into a unified framework, enabling more sophisticated content understanding and generation.
Vision-Language Models (VLMs) are a prominent example, aligning visual encoders with LLMs to
connect different modal information. Recently, MLLMs have been evolving to enhance reliability
and incorporate ethical considerations, aiming to align their outputs with human values (Amirloo
et al., 2024; Yu et al., 2024a; Xu et al., 2024). LLaVA-RLHF (Sun et al., 2023) leverages sup-
plementary factual information to enhance the reward model, mitigating vulnerabilities like reward
hacking. HA-DPO (Zhao et al., 2023) reframes hallucination as a preference task, introducing an
efficient pipeline for generating high-quality, consistent sample pairs. Additionally, mDPO (Wang
et al., 2024a) balances language and image preferences, reducing the over-emphasis on textual in-
puts. Nevertheless, these models focus on reasoning and reducing hallucinations, they often struggle
with discriminative tasks requiring minimal analysis and concise answers. PerPO, however, can en-
hance models’ visual comprehension abilities through discriminative rewards.

Generation and Discrimination. AI’s landscape is shaped by discriminative tasks, which clas-
sify and predict (Godbole & Sarawagi, 2004; Bhat et al., 2019; Zhu et al., 2021), and generative
tasks, which create and innovate (Radford, 2018; Radford et al., 2019). Traditionally distinct,
these tasks are now converging in the era of MLLMs. Hybrid applications, such as conversational
agents (Brown, 2020; Nguyen, 2023; Wölfel et al., 2024) that understand and generate text or au-
tonomous vehicles (Schwarting et al., 2018; Janai et al., 2020; Wang et al., 2021) that recognize ob-
jects and make decisions, exemplify this trend. Discriminative tasks are increasingly tackled through
generative modeling, yielding impressive results in areas like mathematical reasoning (Cobbe et al.,
2021; Shi et al., 2024) and multimodal inference (Zhao et al., 2024a; Wang et al., 2024b). However,
current MLLM architectures face limitations in visual discrimination due to the absence of nega-
tive reinforcement. PerPO addresses this shortcoming by optimizing perceptual ordered preferences
from discriminative rewards, effectively bridging the gap between MLLMs’ generative prowess and
their discriminative capabilities in visual tasks.

7 DISCUSSION

Conclusion. In this paper, we highlight the limitations of Multimodal Large Language Models
(MLLMs) in visual discrimination tasks, such as object recognition and dense OCR. Therefore, we
propose Perceptual Preference Optimization (PerPO), a novel framework that enhances the visual
discrimination capabilities of MLLMs through discriminative rewarding. By constructing perceptual
ordered preferences based on prediction deviations, the performance is effectively optimized without
the need for extensive human annotations. The extensive experiments on widely-used benchmarks
demonstrate that PerPO not only significantly improves the performance of MLLMs and the output
robustness in visual tasks. The innovative method bridges the gap between generative and discrim-
inative functionalities, paving the way for more comprehensive artificial intelligence systems that
can excel in both creative generation and perceptual understanding.
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Table 5: Performance comparison of SFT, DPO, and PerPO in object grounding and image under-
standing. Bolding indicates optimal performance, underlining indicates sub-optimal performance.

Methods
RefCOCO RefCOCO+ RefCOCOg

LLaVAW MMHalBench
POPE

val testA testB val testA testB val test Score ↑ HalRate ↓

LLaVA-OneVision 73.6 82.6 63.8 69.4 79.5 58.2 71.1 70.8 79.7 2.70 0.41 88.3
+ SFT 74.7 83.7 65.4 70.3 80.8 59.1 72.1 71.7 77.9 2.73 0.40 88.1
+ DPO 79.5 86.5 71.1 74.6 83.4 64.5 76.3 76.1 80.1 2.75 0.39 88.4
+ PerPO 82.2 88.1 75.6 77.3 85.3 68.4 79.6 79.9 83.3 2.82 0.37 88.8

Table 6: Performance comparison of SFT, DPO, and PerPO on general visual benchmarks.

Methods MM-Vet MM-Bench MMMU VQAv2 LLaVAW

LLaVA-v1.5-7B 32.9 62.3 35.7 78.5 61.8
+ SFT 31.0 62.5 36.7 78.6 62.0
+ DPO 31.2 62.3 36.0 78.4 61.3
+ PerPO 33.3 62.8 37.0 78.8 64.0

A A COMPREHENSIVE ASSESSMENT OF PERPO

A.1 GENERALIZATION ASSESSMENT

Performance on LLaVA-OneVision (Li et al., 2024a). To assess PerPO’s generalization capabil-
ity, we performed comparative experiments on LLaVA-OneVision for object grounding. We initially
constructed model-specific datasets by leveraging the diverse responses, retaining 3k listwise pref-
erence data, after filtering. Detailed results are shown in Table 5. It is evident that after perceptual
alignment training, the model show improvements in both specific and general capabilities, sig-
nificantly surpassing SFT and DPO. Extensive experimentation conclusively demonstrates PerPO’s
robust generalization capabilities.

A.2 GENERAL VISUAL CAPACITY ASSESSMENT

Our method enhances model perception by employing discriminative rewards in specific tasks
like object grounding and dense OCR. To thoroughly evaluate PerPO’s capabilities on general
visual tasks, we included diverse benchmarks in Table 6, such as MM-Vet (Yu et al., 2024b),
MM-Bench (Liu et al., 2024e), MMMU (Yue et al., 2024), VQAv2 (Goyal et al., 2017), and
LLaVAW (Liu et al., 2023a). The results clearly demonstrate a significant advantage over SFT and
DPO, confirming PerPO’s superior efficacy.

MM-Vet stands as a preeminent multimodal evaluation metric, critically assessing models across six
dimensions: recognition, OCR, knowledge, language generation, spatial reasoning, and mathemati-
cal computation. Detailed evaluation results within MM-Vet are presented in Table 7. Obviously, our
method excels across multiple tasks, indirectly suggesting an enhancement in the model’s perceptual
capabilities.

MM-Bench is designed to systematically evaluate multimodal models on a range of vision-language
tasks with emphasis on robustness, reasoning, and generalization. It often focuses on benchmarks
that highlight deficiencies in current vision-language systems. Detailed evaluation criteria and asso-
ciated tasks span domains like captioning, VQA, and multimodal reasoning.

MMMU stands for multimodal multitask understanding, encompassing datasets and benchmarks
tailored to models capable of performing multiple tasks. It is a concept designed to focus on
advanced perception and reasoning with domain-specific knowledge, emphasizing flexibility and
comprehension across various visual and linguistic scenarios.
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Table 7: Performance comparison of SFT, DPO, and PerPO on MM-Vet.

Methods Rec Ocr Know Gen Spat Math Overall
LLaVA-v1.5-7B 44.9 26.7 22.9 21.5 25.6 7.7 32.9
+ SFT 43.8 25.6 16.7 20.6 24.9 7.7 31.0
+ DPO 43.5 24.6 19.5 22.5 24.5 7.7 31.2
+ PerPO 45.1 29.3 19.5 23.0 26.8 12.7 33.3

Table 8: The evaluation of GPT-4o and Human users.

LLaVAW RefCOCO Page-ocr
Win rate as judged by GPT-4o 56% 72% 71%
Win rate as judged by Human users 59% 76% 71%

VQAv2 is a dataset for visual question answering, addressing issues like biases in earlier datasets. It
contains pairs of images and questions with answers verified by human annotators, ensuring higher
reliability and reducing the tendency of models to exploit statistical patterns in the dataset.

LLaVAW evaluates multimodal large language models on real-world, unstructured inputs like ev-
eryday photos and screenshots. It focuses on tasks such as visual question answering, reasoning,
and conversational understanding, using human and AI feedback to assess accuracy and relevance.
This benchmark emphasizes practical robustness in diverse, open-world applications.

A.3 GPT-4O AND HUMAN USERS ASSESSMENT

We conducted a comparative analysis of models before and after PerPO alignment, utilizing assess-
ments from GPT-4o and human users across three dimensions: response accuracy (RA), instruction
adherence (IA), and hallucination reduction (HaR). The test dataset comprises 500 samples sourced
from multiple public datasets. Ultimately, we derived the win rates for PerPO across individual
datasets in Table 8. The results indicate that the evaluations of GPT-4o and humans yield relatively
consistent outcomes.

GPT-4o prompt template. The prompt used to compare the responses before and after applying
PerPO is illustrated in Figure 5.

Human users. We invited 20 experts and scholars specializing in computer vision, natural lan-
guage processing, and human-computer interaction to provide independent assessments. For each
question, we calculated the average scores in terms of response accuracy, instruction adherence, and

As a professional evaluator of computer vision and natural language processing data, you will be presented with an image, a 
question, and two corresponding answers. Please rate each response on the following three aspects, using a scale from 5 to 1 
(5 indicating highly satisfactory, 4 satisfactory, 3 uncertain, 2 somewhat unsatisfactory, and 1 completely unsatisfactory).

1. Response Accuracy: The content of the response is correct based on the provided image and question, ensuring image-text 
consistency and coherence.
2. Instruction Adherence: The response strictly follows user instructions, carefully addresses each question posed by the user, 
and outputs in the format requested.
3. Hallucination Reduction: The response content is credible and authentic, with minimal provision of false information.

Additionally, based on the above ratings, you need to select the response you consider superior. Output 1 if the first response 
is better, 2 if the second response is better, or 0 if both responses are equally good. Please ensure that your final output 
adheres to the following format. Maintain output conformity and don't provide extra output.

OUTPUT: 
Response1: [Response Accuracy: #<A score>#, Instruction Adherence: #<A score>#, Hallucination Reduction: #<A score>#]
Response2: [Response Accuracy: #<A score>#, Instruction Adherence: #<A score>#, Hallucination Reduction: #<A score>#]
The selected response: #<selected response>#

GPT-4o for Assessment 

Figure 5: The prompt for comparing the responses before and after applying PerPO.
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hallucination reduction. The winning response was determined based on the magnitude of these
average scores. Finally, we aggregated evaluations from 20 expert assessors to determine PerPO’s
overall win rate.

B LIMITATION AND FUTURE WORK

While PerPO has significantly advanced the visual discrimination capabilities of MLLMs, it still has
some limitations. The better effectiveness may depend on the support of specific datasets, limiting
the generalizability of performance. Additionally, although it reduces reliance on human annota-
tions, more complex tasks may still require human annotations for more precise feedback. In the
future, we will further explore the implications of PerPO across various applications to fully real-
ize the potential of MLLMs in diverse domains. Moreover, the combination with other advanced
innovations will be developed for better overall model performance.
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