
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NEURAL DECONSTRUCTION SEARCH FOR VEHICLE
ROUTING PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoregressive construction approaches generate solutions to vehicle routing
problems in a step-by-step fashion, leading to high-quality solutions that are near-
ing the performance achieved by handcrafted, operations research techniques. In
this work, we challenge the conventional paradigm of sequential solution con-
struction and introduce an iterative search framework where solutions are instead
deconstructed by a neural policy. Throughout the search, the neural policy col-
laborates with a simple greedy insertion algorithm to rebuild the deconstructed
solutions. Our approach surpasses the performance of state-of-the-art operations
research methods across three challenging vehicle routing problems of various
problem sizes.

1 INTRODUCTION

Methods that can learn to solve complex optimization problems have the potential to transform
decision-making processes across virtually all domains. It is therefore unsurprising that learning-
based optimization approaches have garnered significant attention and yielded substantial advance-
ments (Bello et al., 2016; Kool et al., 2019; Kwon et al., 2020). Notably, reinforcement learning (RL)
approaches are particularly promising because they do not rely on a pre-defined training set of rep-
resentative solutions and can develop new strategies from scratch for novel optimization problems.
These methods generally construct solutions incrementally through a sequential decision-making
process and have been successfully applied to various vehicle routing problems.

Despite recent progress, learning-based methods for combinatorial optimization (CO) problems usu-
ally fall short of outperforming the state-of-the-art techniques from the operations research (OR)
community. For instance, while some new construction approaches for the capacitated vehicle rout-
ing problem (CVRP) have surpassed the LKH3 solver (Helsgaun, 2000), they still struggle to match
the performance of the state-of-the-art HGS solver (Vidal et al., 2012), particularly for larger in-
stances with over 100 nodes. One reason for this is their inability to explore as many solutions as
traditional approaches within the same amount of time. Given the limitations of current construction
approaches, we propose challenging the traditional paradigm of sequential solution construction by
introducing a novel iterative search framework, neural deconstruction search (NDS), which instead
deconstructs solutions using a neural policy.

NDS is an iterative search method designed to enhance a given solution through a two-phase
process involving deconstruction and reconstruction along the lines of large neighborhood search
(LNS) (Shaw, 1998) and ruin-and-recreate (Schrimpf et al., 2000) paradigms. The deconstruction
phase employs a deep neural network (DNN) to determine the customers to be removed from the
tours of the current solution. This is achieved through a sequential decision-making process, in
which nodes are removed one at a time based on the network’s guidance. The reconstruction phase
utilizes a straightforward greedy insertion algorithm, which inserts customers in the order given by
the neural network at the locally optimal positions. The core concept of NDS is shown in Figure 1.
Note that NDS is trained using reinforcement learning, which makes it adaptable to problems for
which no reference solutions are available for training.

The overall concept of modifying a solution by first removing some solution components and then
conducting a rebuilding step has been successfully used in various vehicle routing problem methods.
Non-learning based methods that use this concept include the rip-up and reroute method from Dees
& Smith (1981), LNS from Shaw (1998), and the ruin and recreate method from Schrimpf et al.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Autoregressive

Neural Deconstruction

Encode

Solution

Select

Customer

Remove

Customers

Sequential

Greedy


Insertion

Figure 1: Improving a solution via neural deconstruction.

(2000). Learning-based methods have also harnessed this paradigm. The local rewriting method
from Chen & Tian (2019), neural large neighborhood search from Hottung & Tierney (2020), and
the random reconstruction technique introduced in Luo et al. (2023) employ a DNN during the
reconstruction phase. The approaches from Li et al. (2021) and Falkner & Schmidt-Thieme (2023)
both generate different subproblems for a given solution and then use a DNN to choose which
subproblem should be considered in the reconstruction phase.

NDS has been designed with the goal of achieving a fast search procedure without sacrificing the
high-quality search guidance of a DNN. For medium-sized CVRP instances with 500 customers,
state-of-the-art OR approaches such as SISRs (Christiaens & Vanden Berghe, 2020) can examine
upwards of 270k solutions per second, however neural combinatorial optimization approaches, like
POMO (Kwon et al., 2020), can only observe around 10k per second. In contrast, NDS can process
120k solutions per second, significantly more than existing neural construction techniques. When
combined with a powerful deconstruction DNN, NDS is able to outperform state-of-the-art OR
approaches like SISRs and HGS in similar wall-clock time.

We evaluate NDS on several challenging problems, including the CVRP, the vehicle routing problem
with time windows (VRPTW), and the price-collecting vehicle routing problem (PCVRP). NDS
demonstrates substantial performance gains compared to existing learned construction methods and
surpasses state-of-the-art OR methods across various routing problems of different sizes. To the best
of our knowledge, NDS is the first learning-based approach that achieves this milestone.

In summary, we provide the following contributions:

• We propose to use a learned deconstruction policy in combination with a simple greedy
insertion algorithm.

• We introduce a novel training procedure designed to learn effective deconstruction policies.
• We present a new network architecture optimized for encoding the current solution.
• We develop a high-performance search algorithm specifically designed to leverage the par-

allel computing capabilities of GPUs.

2 LITERATURE REVIEW

Construction Methods The introduction of the pointer network architecture by Vinyals et al.
(2015) marked the first autoregressive, deep learning-based approach for solving routing problems.
In their initial work, the authors employ supervised learning to train the models, demonstrating its
application to the traveling salesperson problem (TSP) with 50 nodes. Building on this, Bello et al.
(2016) propose using reinforcement learning to train pointer networks, showcasing its effectiveness
in addressing larger TSP instances.

For the more complex CVRP, the first learning-based construction methods were introduced by
Nazari et al. (2018) and Kool et al. (2019). Recognizing the symmetries inherent in many combi-
natorial optimization problems, Kwon et al. (2020) develop POMO, a method that leverages these
symmetries to improve exploration of the solution space during both training and testing. Extending
this concept, Kim et al. (2022) propose a general-purpose symmetric learning framework.

Various techniques have been proposed to enhance performance in neural combinatorial optimiza-
tion. For instance, Hottung et al. (2022) introduce efficient active search, which updates a subset of
parameters during inference. Choo et al. (2022) propose SGBS, combining Monte Carlo tree search

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

with beam search to guide the search process more effectively. Additionally, Drakulic et al. (2023)
and Luo et al. (2023) focus on improving out-of-distribution generalization by re-encoding the re-
maining subproblem after each construction step. To enhance solution diversity during sampling,
Grinsztajn et al. (2022) and Hottung et al. (2024) explore approaches that learn a set of policies,
rather than a single policy.

Instead of constructing solutions autoregressively, some approaches predict heat maps that highlight
promising solution components (e.g., arcs in a graph), which are then used in post-hoc searches to
construct solutions (Joshi et al., 2019; Fu et al., 2021; Kool et al., 2022b; Min et al., 2023). Other
approaches focus on more complex variants of routing problems, such as the VRPTW (Falkner &
Schmidt-Thieme, 2020; Kool et al., 2022a; Berto et al., 2024a;b).

Improvement Methods Improvement methods focus on iteratively refining a given starting so-
lution. In addition to the ruin-and-recreate approaches discussed in the introduction, several other
methods aim to enhance solution quality through iterative adjustments. For instance, Ma et al.
(2021) propose learning to iteratively improve solutions by performing local modifications. Simi-
larly, several works have guided the k-opt heuristic for vehicle routing problems (Wu et al., 2019;
da Costa et al., 2020), although they are constrained by a fixed, small k. More recently, Ma et al.
(2023) introduced a method capable of handling any k. Furthermore, Ye et al. (2024a) and Kim
et al. (2024) integrate learning-based approaches with ant colony optimization to allow for a more
extensive search phase. Additionally, several divide-and-conquer methods have been developed to
address large-scale routing problems (Kim et al., 2021; Li et al., 2021; Ye et al., 2024b).

3 NEURAL DECONSTRUCTION SEARCH

3.1 DECONSTRUCTION POLICY

For solution deconstruction, a neural policy is employed to sequentially select customers for removal
from a given solution. We model this selection process as a Markov decision process. Let s be a fea-
sible solution to a vehicle routing problem (VRP) instance l, which involves customers c1, . . . , cN .
A policy network πθ, parameterized by θ, is used to select M customers for removal. At each step
m ∈ {1, . . . ,M}, an action am ∈ {1, . . . , N} is chosen according to the probability distribution
πθ(am | l, s, v, a1:m−1), where am corresponds to selecting customer cam , l is the instance, s is
the solution, v is a random seed, and a1:m−1 are the previous actions. We condition the policy on
a random seed v to encourage more diverse rollouts as explained in Hottung et al. (2024). Each
seed is a randomly generated binary vectors of dimension dv (we set dv = 10 in all experiments).
Finally, after all M customers are selected the reward can be computed as discussed in the following
sections.

3.2 TRAINING

The deconstruction policy in NDS is trained using reinforcement learning. During the training pro-
cess, solutions are repeatedly deconstructed and reconstructed, aiming to discover a deconstruction
policy that facilitates the reconstruction of high-quality solutions. Algorithm 1 outlines our train-
ing procedure. It is important to implement the algorithm in a way that allows processing batches
of instances in parallel to ensure efficient training. However, for clarity, the pseudocode presented
describes the training process for a single instance at a time.

The main training loop runs until a termination criterion (such as the number of processed instances)
is met. In each iteration of the loop, a new instance and its corresponding solution are generated in
lines 4-8. The solution is then repeatedly deconstructed and reconstructed for I iterations (lines
9-18), during which gradients are computed based on the rewards obtained. After completing I
iterations, the gradients are accumulated, and the network parameters are updated using the learning
rate α. The following section provides a more detailed explanation of this process.

At the start of each iteration of the training loop, a new instance l and its corresponding solution
s are generated. The instance is sampled from the same distribution as the test instances. In line
5, an initial solution is constructed using a simple procedure: for an instance with N customers,
we generate N tours, each containing one customer. In lines 6-8, this initial solution is iteratively

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 NDS Training
1: procedure TRAIN(Iterations per instance I , rollouts per solution K, improvement steps J)
2: Initialize policy network πθ

3: while Termination criteria not reached do
4: l← GENERATEINSTANCE()
5: s← GENERATESTARTSOLUTION(l)
6: for j = 1, . . . , J do
7: s← IMPROVEMENTSTEP(s, πθ) ▷ Improve solution using procedure shown in Figure 2
8: end for
9: for i = 1, . . . , I do

10: {τ1, τ2, . . . , τK} ← ROLLOUTPOLICY(πθ, l, s,K)
11: s̄k ← REMOVECUSTOMERS(s, τk) ∀k ∈ {1, . . . ,K}
12: s′k ← GREEDYINSERTION(s̄k, τk) ∀k ∈ {1, . . . ,K}
13: rk ← max(OBJ(s)− OBJ(s′k), 0) ∀k ∈ {1, . . . ,K} ▷ Calculate reward
14: b← 1

K

∑K
k=1 rk ▷ Calculate baseline

15: k∗ = argmaxk∈{1,...,K} rk
16: gi ← (rk∗ − b)∇θ log πθ(τk∗ |l, s, vk∗) ▷ Calculate gradients
17: s← s′k∗ ▷ Update s with best found solution
18: end for
19: θ ← θ + α

∑I
i=1 gi ▷ Optimizer step with accumulated gradients

20: end while
21: end procedure

improved through J improvement steps of the NDS search procedure, which are detailed in Sec-
tion 3.4. By refining s with NDS’s main search component before the training rollouts, we ensure
that the training focuses on improving non-trivial solutions.

In lines 9 to 18, the solution s is improved over I iterations. At the start of each iteration, the policy
πθ is used to sample K rollouts τ1, τ2, . . . , τK , using K different, random seed vectors v0, . . . , vk.
Each rollout is a sequence of M actions that specifies the indices of customers to be removed from
the tours in solution s. Each rollout τk is individually applied to deconstruct solution s by remov-
ing the specified customers, yielding K deconstructed solutions s̄1, . . . , s̄K . These deconstructed
solutions are then repaired using the greedy insertion algorithm, which is described in more detail
below. Next, the reward rk is calculated for each rollout τk, based on the difference in cost between
the original solution s and the reconstructed solution s′k. Importantly, the reward is constrained to
be non-negative, encouraging the learning of risk-taking policies. In lines 14 to 16, the gradients are
computed using the REINFORCE method. The overall probability of generating a rollout τk is given
by πθ(τk | l, s, vk) =

∏M
m=1 πθ(am | l, s, vk, a1:m−1). The baseline b is set as the average cost of

all rollouts. Gradients are only calculated with respect to the best-performing rollout, denoted k∗,
to encourage diversity in the solutions as proposed by Grinsztajn et al. (2022). Finally, at the end of
each iteration, the solution s is replaced by the reconstructed solution with the highest reward.

Greedy Insertion The greedy insertion procedure reintegrates the customers removed by the pol-
icy, inserting them one by one into either existing or new tours. Specifically, if M customers have
been removed, the procedure performs M iterations, where in each iteration, a single customer cam

is inserted. At each iteration m, the cost of inserting customer cam
at every feasible position in the

current tours is evaluated. Throughout this process, various constraints, such as vehicle capacity
limits, are taken into account. If at least one feasible insertion point is found within an existing tour,
the customer cam is placed at the position that incurs the least additional cost. If no feasible insertion
is available, a new tour is created for customer cam .

The order in which removed customers are reinserted significantly impacts the overall performance.
We reinsert customers either in the order determined by the neural network or at random. Allowing
the network to control the reinsertion order gives it control over the reconstruction process, enabling
it to find ordering strategies that lead to better reconstructed solutions. If customers are ordered at
random, a deconstructed solution should be reconstructed multiple times using different insertion
orders. This can provide more stable learning signal during training.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 MODEL ARCHITECTURE

We design a transformer-based architecture that consists of an encoder and a decoder. The encoder
is used to generate embeddings for all nodes based on the instance l and the current solution s. The
decoder is used to decode a sequence of actions based on these embeddings in an iterative fashion.

3.3.1 ENCODER

The encoder processes the input features xi for each of the N + 1 nodes, where x0 corresponds to
the depot’s features, alongside the current solution s that needs to be encoded. Initially, each input
vector xi is mapped to a 128-dimensional node embedding hi through a linear transformation. The
embeddings h0, . . . , hN are sequentially processed through several layers. First, two attention layers
encode static instance information. Next, a message passing layer allows information exchange
between consecutive nodes in the solution. This is followed by a tour embedding layer, which
computes embeddings for each tour within the solution. Finally, two additional attention layers
refine the representations. The attention mechanisms employed are consistent with those used in
prior work (e.g., Kwon et al. (2020)), and detailed descriptions are omitted here for brevity.

Message Passing Layer The message passing layer updates the embedding of a customer ci by
incorporating information from its immediate neighbors (i.e., nodes that are visited before and after
ci in the solution s). Specifically, the embedding hi of customer ci is updated as follows:

h′
i = Norm

(
hi + FF

(
ReLU

(
W 3

[
hi;W

1hprev(i) +W 2hnext(i)
])))

In this equation, prev(i) and next(i) represent the indices of the nodes immediately preceding and
following ci in the solution s. The weight matrices W 1 and W 2 are used to transform the embed-
dings of these neighboring nodes, while W 3 is applied to the concatenated vector of hi and the
aggregated embeddings from the neighbors. The ReLU activation function introduces non-linearity
into the transformation. The output of this transformation is processed through a feed-forward net-
work, which consists of two linear layers with a ReLU activation function in between. The resulting
output, combined with the original embedding hi via a skip connection, is then normalized using
instance normalization.

Tour Encoding Layer The tour encoding layer updates the embedding of each customer ci by
incorporating information from the tour they are part of. To this end, a tour embedding is first
computed using mean aggregation of the embeddings of all customers within the same tour, and this
aggregated tour embedding is then used to update the individual customer embeddings. Specifically,
the embedding hi of customer ci is updated as follows:

ĥi = Norm
(
h′
i + FF

(
ReLU

(
W 4

[
h′
i;
∑

j∈T (i)
h′
j

])))
,

where T (i) denotes the set of customers in the same tour as customer ci and W 4 is a weight matrix.
This layer captures important information about which customers belong to the same tour in the
current solution, without considering their specific positions within the tour.

3.3.2 DECODER

Given the node embeddings generated by the encoder, the decoder is responsible for sequentially se-
lecting customers for removal. The overall architecture of our decoder is identical to that of Hottung
et al. (2024), which utilizes a multi-head attention mechanism (Vaswani et al., 2017) followed by a
pointer mechanism (Vinyals et al., 2015). This architecture has been widely used in many routing
problems methods (Kool et al., 2019; Kwon et al., 2020).

Our approach differs from previous works in that we account for the already selected customers at
each decision step. This contrasts with construction-based methods, where each decision is inde-
pendent of prior selections. To address this, we integrate a gated recurrent unit (GRU) (Cho, 2014),
which is used to compute the query for the multi-head attention mechanism. At each decision step,
the GRU takes the embedding of the previously selected customer as input, updating its internal
state to incorporate past decisions.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

DNN

Remove customers Greedy Insertion Accept?

Accept?

Accept?

Remove customers

Remove customers

Set 1

Set 2

Set K

Improvement Step

Rollouts

Greedy Insertion

Greedy Insertion

Figure 2: Improvement step of NDS.

3.4 SEARCH

At test time, we leverage the learned policy within a search framework that supports batched rollouts,
enabling fast execution. Importantly, this framework is problem-agnostic, meaning it contains no
problem-specific components, allowing it to be applied to a broader range of problems than those
evaluated in this paper.

Our search framework consists of two main components: the improvement step function (illustrated
in Figure 2) and the high-level augmented simulated annealing (ASA) algorithm (Algorithm 2).
The improvement step function aims to enhance a given solution by iteratively applying the policy
model through a series of deconstruction and reconstruction steps. The ASA algorithm integrates
this function and supports batched execution for improved performance on the GPU. It is important
to note that we parallelize solely on the GPU, requiring only a single CPU core during test time.

Improvement Step The improvement step, the core component of the overall search algorithm, is
depicted in Figure 2. The process begins with an initial solution s0 that is passed to the policy DNN,
which generates K rollouts, each consisting of M actions that specify the customers to be removed.
Once the policy DNN completes its execution, these rollouts are sequentially applied to produce new
candidate solutions. Specifically, the solution s0 is first deconstructed based on the actions from the
first rollout (yielding s̄0) and then reconstructed into s′0. After reconstruction, a simulated annealing
(SA) based acceptance criterion is used to determine whether s′0 or s0 should be retained, resulting in
s1. This process is repeated in each subsequent iteration. After K iterations, the final solution sK is
returned, representing the outcome of K consecutive deconstruction and reconstruction operations.
By performing these iterations sequentially, the solution s0 is significantly modified, often leading
to notable cost improvements between the initial input s0 and the final output sK .

Augmented Simulated Annealing We introduced a novel simulated annealing (SA) algorithm to
conduct a high-level search specifically designed for GPU-based parallelization. While parallel SA
algorithms have been proposed in prior work, (Ferreiro et al., 2013; Jeong & Kim, 1990; Onbaşoğlu
& Özdamar, 2001), their main concern is on the information exchange between CPU or GPU cores.
In contrast, our approach focuses on executing parallel rollouts of the policy network on the GPU.

At a high level, the ASA technique, shown in Algorithm 2, modifies solutions over multiple itera-
tions using a temperature-based acceptance criterion. This criterion allows worsening solutions to
be accepted with a certain probability, which depends on the current temperature. The temperature
λ is manually set at the start of the search (line 2) and is gradually reduced after each iteration (line
15), resulting in a decreasing probability of accepting worsening solutions during the improvement
step (line 6). For a detailed discussion on SA, we refer the reader to Gendreau et al. (2010).

To enable parallel search for a single instance, we employ the augmentation technique introduced in
Kwon et al. (2020), which creates a set of augmentations l′1, l

′
2, . . . , l

′
A for an instance l. The search

is then conducted in parallel for these augmentations. After each modification by the improvement
step procedure (line 6), solutions can be exchanged between different augmentations. Specifically,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2 Augmented Simulated Annealing
1: procedure SEARCH(Instance l, Number of iterations maxIter , number of augmentations A, number of

rollouts K, start temperature λstart, temperature decay rate λdecay , trained policy network πθ , threshold
factor δ)

2: λ← λstart

3: {l′1, l′2, . . . , l′A} ← CREATEAUGMENTATIONS(l)
4: sa ← GENERATESTARTSOLUTION(l′a) ∀a ∈ {1, . . . , A}
5: for iter = 1, . . . ,maxIter do
6: sa ← IMPROVEMENTSTEP(sa, πθ, λ,K) ∀a ∈ {1, . . . , A}
7: costa ← OBJ(sa) ∀a ∈ {1, . . . , A}
8: cost∗ ← min(cost0 , . . . , costA)
9: thresh ← cost∗ + (λ× δ)

10: for a = 1, . . . , A do
11: if costa > thresh then
12: sa ← RANDOMCHOICE({s′ ∈ {s0, . . . sA} | OBJ(s′) < thresh})
13: end if
14: end for
15: λ← REDUCETEMPERATURE(λ, λdecay)
16: end for
17: end procedure

we iterate over all augmentation instances (lines 10 to 14) and replace solutions that surpass a certain
cost threshold with randomly selected solutions whose costs fall below the threshold. This threshold
is calculated based on the cost of the current best solution and the temperature, adjusted by a factor
δ > 1, as shown in line 9. The goal is to replace solutions that are unlikely to surpass the quality of
the current best solution, given the current temperature.

4 EXPERIMENTS

We evaluate NDS on three VRP variants with 100 to 2000 customers and compare to state-of-the-
art learning-based and traditional OR methods. Additionally, we provide ablation experiments for
the individual components of NDS and evaluate the generalization across different instance distri-
butions. All experiments are conducted on a research cluster utilizing a single Nvidia A100 GPU
per run. We will release our implementation of NDS, along with the instance generators, under an
open-source license upon acceptance.

4.1 PROBLEMS

CVRP The CVRP is one of the most extensively studied variants of the VRP. The goal is to deter-
mine the shortest routes for a fleet of vehicles tasked with delivering goods to a set of N customers.
Each vehicle begins and ends its route at a depot and is constrained by a maximum carrying ca-
pacity. We use the instance generator from Kool et al. (2019) to create scenarios with uniformly
distributed customer locations, and the generator from Queiroga et al. (2022) for generating more
realistic instances, with clustered customer locations to better simulate real-world conditions.

VRPTW The VRPTW extends the traditional CVRP by adding time constraints for customer
deliveries. Each customer has a time window, defining the earliest and latest allowable delivery
times. Vehicles can arrive early but must wait until the window opens, adding scheduling complexity.
All routes start at a central depot, with a fixed service duration for deliveries and travel times based
on the Euclidean distance. The objective is to minimize the total travel time while respecting both
vehicle capacity and time windows, making VRPTW more complex than the standard CVRP. To
generate customer locations and demands, we use the CVRP instance generator from Queiroga et al.
(2022), while time windows are generated following the methodology outlined by Solomon (1987).

PCVRP The PCVRP is a variant of the VRP in which not all customers need to be visited. Each
customer is associated with a prize, and the objective is to minimize the total travel cost minus the
sum of collected prizes. Similar to the CVRP, all vehicles start and end their routes at a central
depot and are constrained by vehicle capacities. To generate PCVRP instances, we use the instance

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

generator from Queiroga et al. (2022) to create customer locations and demands. Customer prize
values are generated at random, with higher prizes assigned to customers with greater demand,
reflecting the increased resources required to service them.

4.2 SEARCH PERFORMANCE

Baselines We compare NDS to several heuristic solvers, including HGS (Vidal, 2022), SISRs
(Christiaens & Vanden Berghe, 2020), and LKH3 (Helsgaun, 2017). Additionally, we include
PyVRP (Wouda et al., 2024) (version 0.9.0), which is an open-source extension of HGS for other
VRP variants. For the CVRP, we further compare NDS to the state-of-the-art learning-based meth-
ods, SGBS-EAS (Choo et al., 2022), BQ (Drakulic et al., 2023), LEHD (Luo et al., 2023), and
GLOP (Ye et al., 2024b).

NDS Training For each problem and problem size, we perform a separate training run. Training
consists of 2000 epochs for settings with 1000 or fewer customers. For the 2000 customer setting, we
resume training from the 1000 customer model checkpoint at 1500 epochs and train for an additional
500 epochs. In each epoch, we process 1500 instances, with each instance undergoing 100 iterations,
128 rollouts, and 10 initial improvement steps. The learning rate is set to 10−4 and 15 customers are
selected per deconstruction step across all problem sizes. The training durations are approximately
5, 8, 15, and 8 days for the problem sizes 100, 500, 1000 and 2000, respectively. The training curves
are presented in Appendix A, while visualizations of policy rollouts are available in Appendix B.

Evaluation Setup At test time, we limit the runtime to 5, 60, 120, and 240 seconds of wall time
per instance for HGS, SISRs, and NDS to ensure a fair comparison, as these methods process test
instances sequentially. SGBS-EAS and LEHD, which process instances in batches, are given an
equivalent search budget per batch. All approaches are restricted to using a single CPU core. For the
CVRP, we use the test instances from Kool et al. (2019) for N=100 (10,000 instances), Drakulic et al.
(2023) for N=500 (128 instances), and Ye et al. (2024b) for N=1000 and N=2000 (100 instances
each). For the VRPTW and PCVRP, we generate new test sets consisting of 10,000 instances for
N=100 and 250 instances for settings with more than 100 customers.

NDS Test Configuration For NDS, the starting temperature λstart is set to 0.1 and decays expo-
nentially to 0.001 throughout the search. The threshold factor δ is fixed at 15. During the improve-
ment step, 200 rollouts are performed per instance, and each deconstructed solution is reconstructed
5 times (1× based on the selected order of the DNN and 4× using a random customer order). The
number of augmentations is set to 8 for the CVRP and VRPTW, and 128 for the PCVRP.

Results Table 1 presents the performance of all compared methods on the test data. The gap is
reported relative to HGS for the CVRP, and to PyVRP-HGS for the VRPTW and PCVRP. Across the
12 test settings, NDS delivers the best performance in 11 cases, with HGS being the only approach
able to outperform it on the CVRP with 100 customers. Compared to other learning-based methods,
NDS shows significant performance improvements across all CVRP sizes. On the CVRP with 2000
customers, NDS achieves a 7 percentage point improvement over the best-performing learning-based
method, LEHD, and a 12 percentage point improvement over GLOP. Against the state-of-the-art
HGS and its extension, PyVRP-HGS, NDS performs especially well on larger instances, achieving
a gap of more than 2% across all problems for instances with 2000 customers. For the PCVRP,
NDS also attains substantial gaps relative to PyVRP-HGS, exceeding 4% on instances with 500 or
more nodes. When compared to SISRs, NDS maintains a small advantage on larger instances and
demonstrates significantly better performance on small instances.

4.3 ABLATION STUDIES

We perform a series of ablation experiments to assess the importance of different components of
NDS. These experiments are conducted on separate validation instances with N=500 customers.
The parameter configuration remains identical to the previous section, except the training is reduced
to 1,000 epochs and the ASA search is limited by the number of iterations. For the CVRP and
VRPTW, we run 1,000 iterations using 8 augmentations, while for the PCVRP, we perform 50
iterations with 128 augmentations.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Performance on test data. The gap is calculated relative to HGS for the CVRP and relative
to PyVRP-HGS for the VRPTW and PCVRP. Runtime is reported on a per-instance basis in seconds.

Method N=100 N=500 N=1000 N=2000
Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

C
V

R
P

HGS 15.57 - 5 36.66 - 60 41.51 - 121 57.38 - 241
SISRs 15.62 0.32% 5 36.65 0.01% 60 41.14 -0.83% 120 56.04 -2.27% 240
LKH3 15.64 0.50% 41 37.25 1.66% 174 42.16 1.61% 408 58.12 1.35% 1448

SGBS-EAS 15.59 0.17% 5 - - - - - - - - -
BQ (BS64) 15.74 1.13% 1 37.51 2.32% 23 43.32 4.36% 164 - - -
LEHD (RRC) 15.61 0.30% 5 37.04 1.04% 60 42.47 2.31% 121 60.11 4.76% 246
GLOP (LKH3) - - - - - - 45.90 10.58% 4 63.00 9.79% 6

NDS 15.57 0.04% 5 36.57 -0.20% 60 41.11 -0.90% 120 56.00 -2.34% 240

V
R

PT
W PyVRP-HGS 12.98 - 5 49.01 - 60 90.35 - 120 173.46 - 240

SISRs 13.00 0.20% 5 48.09 -1.87% 60 87.68 -2.98% 120 167.49 -3.49% 240

NDS 12.95 -0.19% 5 47.94 -2.17% 60 87.54 -3.14% 120 167.48 -3.50% 240

PC
V

R
P PyVRP-HGS 10.11 - 5 44.97 - 60 84.91 - 120 165.56 - 240

SISRs 9.94 -1.66% 5 43.22 -3.90% 60 81.12 -4.55% 120 158.17 -4.54% 240

NDS 9.90 -2.07% 5 43.12 -4.12% 60 80.99 -4.71% 121 158.09 -4.60% 241

Table 2: Ablation experiments.

(a) Impact of the message passing layer (MPL) and
the tour encoding layer (TEL) on performance.

MPL TEL CVRP VRPTW PCVRP

✓ ✓ 36.81 47.68 42.96
✓ ✗ 36.82 47.75 43.13
✗ ✓ 36.81 47.74 42.98
✗ ✗ 36.87 47.87 43.62

(b) Insertion order

Order CVRP VRPTW PCVRP

DNN+Random 36.81 47.68 42.96
Random 36.86 47.76 43.05

(c) Deconstruction policy

Policy CVRP VRPTW PCVRP

DNN 36.81 47.68 42.96
Heuristic 37.03 48.16 43.61

Network Architecture We assess the impact of the message passing layer (MPL) and tour en-
coding layer (TEL) on overall performance by training separate models without these components.
Table 2a summarizes the resulting search performance. Excluding both layers leads to a significant
performance drop, with a 1.5% reduction on the PCVRP. Even the removal of a single layer causes
a notable performance decline, particularly for the VRPTW and PCVRP. The VRPTW in particular
benefits from both layers, likely due to the MPL’s ability to better interpret and handle time windows.

Insertion Order The insertion algorithm reinserts removed customers in a specified order. Dur-
ing testing, we reconstruct a deconstructed solution five times using different customer orders and
retain the best solution. For the first reconstruction iteration, we use the customer order provided by
the DNN, while for the remaining four iterations we use a random order. We compare our standard
setting to using only random orderings for all five insertion iterations to assess whether the ordering
enhances overall search performance. The results in Table 2b show that using a only random order-
ings leads to significantly worse performance across all three problems, indicating that the learned
policy not only plays a crucial role in deconstruction, but also significantly influences reconstruction.

Learned Policy We assess the relevance and effectiveness of the learned deconstruction policy by
replacing it with a handcrafted heuristic based on the destroy procedure outlined in Christiaens &
Vanden Berghe (2020). The resulting approach eliminates any learned components, but is other-
wise identical to NDS. The performance comparison, shown in Figure 2c, reveals that the heuristic
deconstruction policy performs significantly worse than the learned counterpart, with performance
gaps of up to 1.5% on the PCVRP. This demonstrates that the DNN is capable of learning a highly
efficient policy that surpasses handcrafted methods in this use case.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Out-of-distribution (OOD) vs. in-distribution (ID) performance on the CVRP500.

Method
Uniform Locations Clustered Locations

Low Capacity High Capacity Low Capacity High Capacity
Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

HGS 91.73 - 60 47.89 - 60 88.20 - 60 44.53 - 61
SISRs 91.34 -0.38% 60 47.79 -0.17% 60 87.78 -0.48% 60 44.31 -0.49% 60

NDS (OOD) 91.15 -0.59% 60 47.70 -0.36% 60 87.75 -0.53% 60 44.29 -0.54% 60
NDS (ID) 91.14 -0.59% 60 47.69 -0.38% 60 87.70 -0.58% 60 44.26 -0.60% 60

4.4 GENERALIZATION

One major advantage of learning-based solution approaches is their ability to adapt precisely to the
specific type of instances at hand. However, in real-world scenarios, concept drift in the instance
distributions cannot always be avoided. In this experiment, we evaluate whether the learned policies
of NDS can handle instances sampled from a slightly different distribution. For the CVRP with
N=500, we train a policy on instances with medium-capacity vehicles and customer locations that
follow a mix of uniform and clustered distributions. We then evaluated the learned policy on in-
stances with low- and high-capacity vehicles, and customer locations following either uniform or
clustered distributions. Additionally, we train distribution-specific models for each test setting for
comparison. As a baseline, we compare against HGS and SISRs, giving all approaches the same
runtime. The results are shown in Table 3, where NDS (OOD) represents the model’s performance
when the training and test distributions differ, and NDS (ID) represents the setting where the train-
ing and test distributions are identical. Overall, the performance difference between the two settings
is minimal, indicating that NDS generalizes well across different distributions. Interestingly, the
distribution of customer locations has a larger impact on performance than vehicle capacity.

4.5 SCALABILITY ANALYSIS

Figure 3: Scalability

We assess the scalability of NDS by analyzing its runtime
and GPU memory consumption on CVRP instances of vary-
ing sizes. Figure 3 presents the relative resource usage as a
function of problem size. Overall, NDS demonstrates strong
scalability to larger instances. Notably, solving instances with
1,000 customers requires only 61% more runtime and 23%
more memory compared to instances with 100 customers, de-
spite the problem size increasing by an order of magnitude.

5 CONCLUSION

In this work, we introduced a novel search method, NDS, which leverages a learned policy to de-
construct solutions for routing problems. NDS presents several key advantages. First, it delivers
superior performance, consistently outperforming state-of-the-art OR methods under equal runtime.
Second, NDS scales effectively to larger problem instances, handling up to N=2000 customers,
due to the fact that the number of customers selected by the policy is independent of the problem
size. Third, it demonstrates strong generalization across different data distributions. Finally, NDS
is easily adaptable to new vehicle routing problems, requiring only small adjustments to the greedy
insertion heuristic and the model input.

A notable limitation is the reliance on a GPU for executing the policy network. Future research
could explore model distillation techniques to lower the computational requirements or investigate
whether the underlying principles of the learned policies can be approximated using faster, more
efficient algorithms.

REFERENCES

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural Combinatorial
Optimization with Reinforcement Learning. ArXiv, abs/1611.0, 2016.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui
Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan
Zhou, Jieyi Bi, Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni, Wouter
Kool, Zhiguang Cao, Qingfu Zhang, Joungho Kim, Jie Zhang, Kijung Shin, Cathy Wu, Sung-
soo Ahn, Guojie Song, Changhyun Kwon, Kevin Tierney, Lin Xie, and Jinkyoo Park. RL4CO:
an extensive reinforcement learning for combinatorial optimization benchmark. arXiv preprint
arXiv:2306.17100, 2024a.

Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels Wouda, Leon Lan, Kevin
Tierney, and Jinkyoo Park. Routefinder: Towards foundation models for vehicle routing problems.
arXiv preprint arXiv:2406.15007, 2024b.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimiza-
tion. In Advances in Neural Information Processing Systems, pp. 6278–6289, 2019.

Kyunghyun Cho. Learning phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney, and
Youngjune Gwon. Simulation-guided beam search for neural combinatorial optimization. Ad-
vances in Neural Information Processing Systems, 35:8760–8772, 2022.

Jan Christiaens and Greet Vanden Berghe. Slack induction by string removals for vehicle routing
problems. Transportation Science, 54(2):417–433, 2020.

Paulo da Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Eren Akçay. Learning 2-opt Heuris-
tics for the Traveling Salesman Problem via Deep Reinforcement Learning. In Asian Conference
on Machine Learning, 2020.

William A Dees and Robert J Smith. Performance of interconnection rip-up and reroute strategies.
In 18th Design Automation Conference, pp. 382–390. IEEE, 1981.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-
NCO: Bisimulation Quotienting for Generalizable Neural Combinatorial Optimization. ArXiv,
abs/2301.03313, 2023.

Jonas K Falkner and Lars Schmidt-Thieme. Learning to Solve Vehicle Routing Problems with Time
Windows through Joint Attention. arXiv preprint arXiv:2006.09100, 2020.

Jonas K Falkner and Lars Schmidt-Thieme. Too big, so fail?–enabling neural construction methods
to solve large-scale routing problems. arXiv preprint arXiv:2309.17089, 2023.

Ana M Ferreiro, JA Garcı́a, José G López-Salas, and Carlos Vázquez. An efficient implementation
of parallel simulated annealing algorithm in gpus. Journal of global optimization, 57:863–890,
2013.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large TSP instances. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 7474–7482, 2021.

Michel Gendreau, Jean-Yves Potvin, et al. Handbook of metaheuristics, volume 2. Springer, 2010.

Nathan Grinsztajn, Daniel Furelos-Blanco, and Thomas D Barrett. Population-Based Reinforcement
Learning for Combinatorial Optimization. arXiv preprint arXiv:2210.03475, 2022.

Keld Helsgaun. An effective implementation of the Lin–Kernighan traveling salesman heuristic.
European Journal of Operational Research, 126:106–130, 2000.

Keld Helsgaun. An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 2017.

André Hottung and Kevin Tierney. Neural Large Neighborhood Search for the Capacitated Vehicle
Routing Problem. In European Conference on Artificial Intelligence, pp. 443–450, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

André Hottung, Mridul Mahajan, and Kevin Tierney. Polynet: Learning diverse solution strategies
for neural combinatorial optimization. arXiv preprint arXiv:2402.14048, 2024.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient Active Search for Combinatorial
Optimization Problems. International Conference on Learning Representations, 2022.

CS Jeong and MH Kim. Parallel algorithm for traveling salesman problem on simd machines us-
ing simulated annealing. In [1990] Proceedings of the International Conference on Application
Specific Array Processors, pp. 712–721. IEEE, 1990.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An Efficient Graph Convolutional Net-
work Technique for the Travelling Salesman Problem. arXiv preprint arXiv:1906.01227, 2019.

Minsu Kim, Jinkyoo Park, and Joungho Kim. Learning Collaborative Policies to Solve NP-hard
Routing Problems. In Neural Information Processing Systems, 2021.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-NCO: Leveraging Symmetricity for Neural
Combinatorial Optimization. In NeurIPS, 2022.

Minsu Kim, Sanghyeok Choi, Jiwoo Son, Hyeonah Kim, Jinkyoo Park, and Yoshua Ben-
gio. Ant colony sampling with gflownets for combinatorial optimization. arXiv preprint
arXiv:2403.07041, 2024.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, Learn to Solve Routing Problems! In
International Conference on Learning Representations, 2019.

Wouter Kool, Laurens Bliek, Danilo Numeroso, Yingqian Zhang, Tom Catshoek, Kevin Tierney,
Thibaut Vidal, and Joaquim Gromicho. The EURO Meets NeurIPS 2022 Vehicle Routing Com-
petition. In Proceedings of the NeurIPS 2022 Competitions Track, 2022a.

Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep Policy Dynamic Pro-
gramming for Vehicle Routing Problems. In Integration of Constraint Programming, Artificial
Intelligence, and Operations Research, 2022b.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
POMO: Policy Optimization with Multiple Optima for Reinforcement Learning. In Advances in
Neural Information Processing Systems, volume 33, pp. 21188–21198, 2020.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Ad-
vances in Neural Information Processing Systems, 34:26198–26211, 2021.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural Combinatorial Optimization
with Heavy Decoder: Toward Large Scale Generalization. In Neural Information Processing
Systems, 2023.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to Iteratively Solve Routing Problems with Dual-Aspect Collaborative Transformer. In
Neural Information Processing Systems, 2021.

Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to Search Feasible and Infeasible
Regions of Routing Problems with Flexible Neural k-Opt. In Neural Information Processing
Systems, 2023.

Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised Learning for Solving the Travelling
Salesman Problem. In Neural Information Processing Systems, 2023.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. In Advances in Neural Information Processing
Systems, pp. 9839–9849, 2018.

Esin Onbaşoğlu and Linet Özdamar. Parallel simulated annealing algorithms in global optimization.
Journal of global optimization, 19:27–50, 2001.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Eduardo Queiroga, Ruslan Sadykov, Eduardo Uchoa, and Thibaut Vidal. 10,000 optimal CVRP so-
lutions for testing machine learning based heuristics. In AAAI-22 Workshop on Machine Learning
for Operations Research (ML4OR), 2022.

Gerhard Schrimpf, Johannes Schneider, Hermann Stamm-Wilbrandt, and Gunter Dueck. Record
breaking optimization results using the ruin and recreate principle. Journal of Computational
Physics, 159(2):139–171, 2000.

Paul Shaw. Using constraint programming and local search methods to solve vehicle routing prob-
lems. In International conference on principles and practice of constraint programming, pp.
417–431. Springer, 1998.

Marius M Solomon. Algorithms for the vehicle routing and scheduling problems with time window
constraints. Operations research, 35(2):254–265, 1987.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Thibaut Vidal. Hybrid genetic search for the CVRP: Open-source implementation and SWAP*
Neighborhood. Computers & Operations Research, 140:105643, 2022.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and Walter Rei. A Hybrid
Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems. Operations Research,
60(3):611–624, 2012.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer Networks. In C Cortes, N D Lawrence,
D D Lee, M Sugiyama, and R Garnett (eds.), Advances in Neural Information Processing Systems
28, pp. 2692–2700. Curran Associates, Inc., 2015.

Niels A Wouda, Leon Lan, and Wouter Kool. PyVRP: A high-performance VRP solver package.
INFORMS Journal on Computing, 2024.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning Improvement Heuris-
tics for Solving Routing Problems. IEEE Transactions on Neural Networks and Learning Systems,
2019.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: neural-enhanced ant
systems for combinatorial optimization. Advances in Neural Information Processing Systems, 36,
2024a.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. GLOP: Learning
global partition and local construction for solving large-scale routing problems in real-time. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 20284–20292,
2024b.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A TRAINING CURVES

Figure 4 presents the training curves for all experiments conducted across the three problem types
and four problem sizes. Note that the training of the models for N=2000 is warm-started using the
model weights from N=1000 after 1,500 epochs.

0 500 1000 1500 2000

Epoch

15.66

15.67

15.68

15.69

15.70

15.71

C
os

ts

CVRP

0 500 1000 1500 2000

Epoch

10.00

10.02

10.04

10.06

C
os

ts

PCVRP

0 500 1000 1500 2000

Epoch

13.12

13.13

13.14

13.15

13.16

13.17

13.18

C
os

ts

VRPTW

N=100

0 500 1000 1500 2000

Epoch

37.4

37.6

37.8

38.0

C
os

ts

CVRP

0 500 1000 1500 2000

Epoch

43.50

43.75

44.00

44.25

44.50

44.75

45.00

C
os

ts

PCVRP

0 500 1000 1500 2000

Epoch

49.00

49.25

49.50

49.75

50.00

50.25

50.50

C
os

ts

VRPTW

N=500

0 500 1000 1500 2000

Epoch

42.50

42.75

43.00

43.25

43.50

43.75

C
os

ts

CVRP

0 500 1000 1500 2000

Epoch

83

84

85

86

C
os

ts

PCVRP

0 500 1000 1500 2000

Epoch

91

92

93

94

C
os

ts

VRPTW

N=1000

100 200 300 400

Epoch

58.18

58.20

58.22

58.24

58.26

C
os

ts

CVRP

100 200 300 400 500

Epoch

161.00

161.05

161.10

161.15

161.20

161.25

161.30

C
os

ts

PCVRP

100 200 300 400

Epoch

174.2

174.4

174.6

174.8

C
os

ts

VRPTW

N=2000

Figure 4: Training curves.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B VISUALIZATIONS OF POLICY ROLLOUTS

Figures 5, 6, and 7 show visualizations of different policy rollouts for the CVRP, PCVRP, and
VRPTW, respectively. For each problem, we display two different instances, and for each instance,
six rollouts are shown. Customers selected for deconstruction are circled in red. We note that the
nodes selected for each deconstruction differs, sometimes significantly, allowing NDS to try out a
variety of options in each iteration.

(a) Rollouts for instance 1.
Rollout 1 Rollout 2 Rollout 3

Rollout 4 Rollout 5 Rollout 6

(b) Rollouts for instance 2.
Rollout 1 Rollout 2 Rollout 3

Rollout 4 Rollout 5 Rollout 6

Figure 5: Rollouts for two selected instances for the CVRP with N=100 (best viewed in color).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) Rollouts for instance 1.
Rollout 1 Rollout 2 Rollout 3

Rollout 4 Rollout 5 Rollout 6

(b) Rollouts for instance 2.
Rollout 1 Rollout 2 Rollout 3

Rollout 4 Rollout 5 Rollout 6

Figure 6: Rollouts for two selected instances for the PCVRP with N=100 (best viewed in color).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) Rollouts for instance 1.
Rollout 1 Rollout 2 Rollout 3

Rollout 4 Rollout 5 Rollout 6

(b) Rollouts for instance 2.
Rollout 1 Rollout 2 Rollout 3

Rollout 4 Rollout 5 Rollout 6

Figure 7: Rollouts for two selected instances for the VRPTW with N=100 (best viewed in color).

17


	Introduction
	Literature Review
	Neural Deconstruction Search
	Deconstruction Policy
	Training
	Model Architecture
	Encoder
	Decoder

	Search

	Experiments
	Problems
	Search Performance
	Ablation Studies
	Generalization
	Scalability Analysis

	Conclusion
	Training Curves
	Visualizations of Policy Rollouts

