

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051

HIGH-DIMENSIONAL HETTMANSPERGER-RANDLES ESTIMATOR AND ITS APPLICATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

The classic Hettmansperger-Randles estimator has found extensive use in robust statistical inference. However, it cannot be directly applied to high-dimensional data. In this paper, we propose a high-dimensional Hettmansperger-Randles estimator for the location parameter and scatter matrix of elliptical distributions in high-dimensional scenarios. Subsequently, we apply these estimators to two prominent problems: the one-sample location test problem and quadratic discriminant analysis. We discover that the corresponding new methods exhibit high effectiveness across a broad range of distributions. Both simulation studies and real-data applications further illustrate the superiority of the newly proposed methods.

1 INTRODUCTION

Estimating the mean vector and covariance matrix is a fundamental task in statistics. In low-dimensional settings, when the data are multivariate normal, the sample mean and covariance matrix are efficient estimators (Härdle et al., 2007). Their performance, however, deteriorates under deviations from normality, motivating the development of robust alternatives. For elliptical distributions, robust estimators such as the spatial median for location and Tyler's scatter matrix for dispersion have been extensively studied (Oja, 2010). Furthermore, Hettmansperger & Randles (2002) proposed a unified procedure for jointly and robustly estimating both location and scatter.

The increasing prevalence of high-dimensional data in areas such as genomics and finance has introduced new challenges. When the number of features approaches or exceeds the sample size, traditional estimators like the sample covariance matrix become singular and non-invertible. This has spurred extensive research on high-dimensional covariance estimation, including thresholding, regularization, and shrinkage techniques (Bickel & Levina, 2008a;b); for a comprehensive overview, see Fan et al. (2016). Nevertheless, these approaches largely based on the sample covariance matrix, and thus are not robust to heavy-tailed distributions.

To address these challenges, robust estimation techniques under elliptical distributions, which naturally accommodate a broad class of heavy-tailed models such as the multivariate t -distribution and certain multivariate normal mixtures (those with a common mean and proportional covariances), have garnered increasing attention in high-dimensional statistics. Several studies have explored the properties of the sample spatial median and its use in high-dimensional sphericity testing and location parameter testing problems, including Zou et al. (2014), Li & Xu (2022), and Cheng et al. (2023). However, these estimators are not scalar invariant. To address this issue, scale-invariant spatial median estimators (Feng et al., 2016; Feng & Sun, 2016; Liu et al., 2024) were developed as extensions of the simultaneous estimation framework of Hettmansperger & Randles (2002). However, these approaches are not affine invariant with respect to scatter transformations, limiting their flexibility and applicability in practice. In parallel, robust scatter estimation has advanced through the study of spatial-sign covariance matrices, known for their affine equivariance. Recent works have developed linear shrinkage methods tailored for high-dimensional settings (Raninen et al., 2021; Raninen & Ollila, 2021; Ollila & Breloy, 2022; Ollila, 2024), and sparse precision matrix estimation based on spatial-sign covariance (Lu & Feng, 2025), extending previous advances such as Cai et al. (2011) and Yuan & Lin (2007). However, most existing methods address location and scatter matrix separately, lacking a unified framework that integrates both aspects in high dimensions.

Motivated by these limitations, we propose a novel framework for robust high-dimensional inference. Specifically, we introduce the high-dimensional Hettmansperger-Randles (HR) estimator, from which both the spatial median and the scatter matrix estimators inherit affine equivariance. The resulting spatial median estimator is therefore affine invariant with respect to scatter transformations, overcoming certain limitations of previous approaches and enhancing

robustness in high-dimensional inference under elliptical distributions. We demonstrate the practical utility of the HR estimator through its applications to two core problems in modern high-dimensional statistics: one-sample location testing and quadratic discriminant analysis.

For the high-dimensional one-sample location testing problem, substantial research has been conducted over the past two decades, leading to three main categories of testing procedures. The first category comprises sum-type tests, which aggregate statistics across all variables and are powerful against dense alternatives (Bai & Saranadasa, 1996; Chen et al., 2010; Wang et al., 2015; Ayyala et al., 2017; Feng et al., 2015; Feng & Sun, 2016; Feng et al., 2016; 2021). The second category includes max-type tests, which focus on the maximum of individual statistics and excel under sparse alternatives, explored in works such as (Zhong et al., 2013; Cai et al., 2013; Cheng et al., 2023; Chang et al., 2017). The third category consists of adaptive type tests, which combine sum-type and max-type strategies to achieve robustness across diverse sparsity regimes, with important contributions from Xu et al. (2016); He et al. (2021); Feng et al. (2022a; 2024); Chang et al. (2023); Chen et al. (2024); Ma et al. (2024). Comprehensive overviews are available in Huang et al. (2022) and Liu et al. (2024).

Since the seminal contribution of Chernozhukov et al. (2013; 2017), Gaussian approximation has become a cornerstone of high-dimensional statistical inference. Inspired by their theoretical framework, we first derive a Bahadur representation for the standardized spatial median estimator and establish its Gaussian approximation over a class of simple convex sets. This theoretical development provides a solid foundation for analyzing the limiting distributions of our proposed test statistics and facilitates the verification of the asymptotic independence between the max-type and sum-type statistics. Specifically, we introduce two types of test statistics based on the L_2 and L_∞ norms of the corresponding standardized spatial-median estimator, which correspond to sum-type and max-type test procedures, respectively. We rigorously establish that these statistics are asymptotically independent. Leveraging this property, we develop a Cauchy combination test that integrates both sources of information. While Liu et al. (2024) focuses on the sparsity of the original mean vector μ , our approach targets the sparsity of the transformed mean $\Sigma^{-1/2}\mu$, which removes correlations among coordinates. This notion of sparsity is natural in settings with strong correlations among observed variables, such as financial or gene expression data, where the underlying signal is often concentrated in a small number of latent directions. Such sparsity assumptions on the decorrelated mean vector have been widely used and formally justified in the high-dimensional classification and testing literature (Chen & Tang, 2021; Cai & Liu, 2011). Furthermore, given that the true sparsity structure (whether in μ or in $\Sigma^{-1/2}\mu$) is generally unknown in practice, we further extend our procedure by combining four test statistics to achieve greater adaptability across various sparsity regimes. Simulation studies confirm that the resulting Cauchy combination tests perform well under a wide range of distributional settings and sparsity levels, highlighting their robustness and wide applicability for high-dimensional hypothesis testing.

We further apply the proposed HR estimator to improve quadratic discriminant analysis (QDA), which is a natural extension of linear discriminant analysis (LDA) (Friedman, 1989; Muirhead, 2009). When population parameters are known, QDA achieves optimal classification by comparing likelihood ratios. In low-dimensional settings, replacing population parameters with sample estimates generally preserves strong classification performance. However, in high-dimensional regimes, the singularity of the sample covariance matrix renders classical QDA infeasible. To address this, previous works have proposed sparse estimators for the covariance matrix (Wu et al., 2019; Xiong et al., 2016) or its inverse (Cai et al., 2011; Yuan & Lin, 2007). Nonetheless, these approaches fundamentally rely on the sample covariance matrix, which is highly sensitive to heavy-tailed distributions, and thus undermines robustness. To overcome this limitation, we propose a robust QDA procedure by replacing the sample mean and precision matrix with the HR-based spatial median and scatter matrix estimators. The resulting classifier retains high efficiency even under heavy-tailed distributions. We rigorously establish the asymptotic properties of the proposed method under mild moment conditions and demonstrate its superior performance through extensive simulations and real data application. These results highlight the significant gains in robustness and classification accuracy offered by our framework in high-dimensional, non-normal settings.

The remainder of this paper is structured as follows. Section 2 introduces the high-dimensional HR estimator. Section 3 develops the corresponding theoretical results and proposes a new adaptive test for the high-dimensional one-sample location problem. Section 4 presents simulation studies related to this test. Section 5 concludes the paper. Due to space constraints, additional results, including the second adaptive test for the one-sample location problem, its asymptotic theory, and simulation results, as well as the full study on high-dimensional quadratic discriminant analysis, are provided in the Appendix.

104 **Notations:** For d -dimensional $\mathbf{x} \in \mathbb{R}^d$, $\|\mathbf{x}\|$ and $\|\mathbf{x}\|_\infty$ denote its Euclidean norm and maximum-norm, respectively.
105 Denote $a_n \lesssim b_n$ if there exists constant C , $a_n \leq Cb_n$ and $a_n \asymp b_n$ if both $a_n \lesssim b_n$ and $b_n \lesssim a_n$ hold. Let
106 $\psi_\alpha(x) = \exp(x^\alpha) - 1$ be a function defined on $[0, \infty)$ for $\alpha > 0$. Then the Orlicz norm $\|\cdot\|_{\psi_\alpha}$ of a random variable
107 X is defined as $\|X\|_{\psi_\alpha} = \inf \{t > 0, \mathbb{E} \{\psi_\alpha(|X|/t)\} \leq 1\}$. Let $\text{tr}(\cdot)$ be a trace of matrix, $\lambda_{\min}(\cdot)$ and $\lambda_{\max}(\cdot)$ be
108 the minimum and maximum eigenvalue for symmetric matrix. For a matrix $\mathbf{A} = (a_{ij}) \in \mathbb{R}^{p \times q}$, we define the
109 elementwise ℓ_∞ norm $\|\mathbf{A}\|_\infty = \max_{1 \leq i \leq p, 1 \leq j \leq q} |a_{ij}|$, the operation norm $\|\mathbf{A}\|_{\text{op}} = \sup_{\|\mathbf{x}\| \leq 1} \|\mathbf{A}\mathbf{x}\|$, the matrix
110 ℓ_1 norm $\|\mathbf{A}\|_{L_1} = \max_{1 \leq j \leq q} \sum_{i=1}^p |a_{ij}|$, the Frobenius norm $\|\mathbf{A}\|_F = (\sum_{i,j} a_{ij}^2)^{1/2}$, and the elementwise ℓ_1 norm
111 $\|\mathbf{A}\|_1 = \sum_{i=1}^p \sum_{j=1}^q |a_{ij}|$. \mathbf{I}_p represents a p -dimensional identity matrix, $\text{diag}(v_1, \dots, v_p)$ represents the diagonal
112 matrix with entries $\mathbf{v} = (v_1, \dots, v_p)$. The notation $\mathbf{1}_d$ denotes a d -dimensional vector whose elements are all one.
113 And \mathbb{S}^{d-1} represents the unit sphere in \mathbb{R}^d . \xrightarrow{d} stands for convergence in distribution. Unless stated otherwise, the
114 notation in the supplementary material are consistent with those in the main text.
115

2 HIGH-DIMENSIONAL HR ESTIMATOR

119 Let $\mathbf{X}_1, \dots, \mathbf{X}_n$ be independently and identically distributed (i.i.d) observations from p -variate elliptical distribution
120 with density function $|\Sigma|^{-1/2} g\{\|\Sigma^{-1/2}(\mathbf{x} - \boldsymbol{\mu})\|\}$, where $\boldsymbol{\mu}$ is the location parameter, Σ is a positive definite symmetric
121 $p \times p$ scatter matrix, and $g(\cdot)$ is a scale function. The spatial sign function is defined as $U(\mathbf{x}) = \|\mathbf{x}\|^{-1} \mathbf{x} \mathbb{I}(\mathbf{x} \neq \mathbf{0})$.
122 Denote $\boldsymbol{\varepsilon}_i = \Sigma^{-1/2}(\mathbf{X}_i - \boldsymbol{\mu})$. The modulus $\|\boldsymbol{\varepsilon}_i\|$ and the direction $\mathbf{U}_i = U(\boldsymbol{\varepsilon}_i)$ are independent, and the direction
123 vector \mathbf{U}_i is uniformly distributed on \mathbb{S}^{p-1} . It is then well known that $\mathbb{E}(\mathbf{U}_i) = \mathbf{0}$ and $\text{Cov}(\mathbf{U}_i) = p^{-1} \mathbf{I}_p$. Without
124 loss of generality, we assume that the scatter matrix satisfies $\text{tr}(\Sigma) = p$.

125 The Hettmansperger-Randles (HR) (Hettmansperger & Randles, 2002) estimates for the location and scatter matrix
126 are the values that simultaneously satisfy the following two equations:
127

$$\frac{1}{n} \sum_{i=1}^n U(\hat{\boldsymbol{\varepsilon}}_i) = \mathbf{0} \quad \text{and} \quad \frac{p}{n} \sum_{i=1}^n \{U(\hat{\boldsymbol{\varepsilon}}_i) U(\hat{\boldsymbol{\varepsilon}}_i)^\top\} = \mathbf{I}_p,$$

131 where $\hat{\boldsymbol{\varepsilon}}_i = \hat{\Sigma}^{-1/2}(\mathbf{X}_i - \hat{\boldsymbol{\mu}})$. These estimators are affine equivariant and provide robust estimates of both the location
132 parameter and the scatter matrix. Hettmansperger & Randles (2002) further established their asymptotic distributions
133 and showed that the HR estimators possess bounded influence functions and a positive breakdown point.

134 The HR estimator is computed via the iterative procedure summarized in Algorithm 1, which alternately updates
135 the residuals, location, and scatter matrix. In high-dimensional settings, however, the sample spatial-sign covariance
136 matrix (SSCM) $\hat{\mathbf{S}} \doteq n^{-1} \sum_{i=1}^n U(\hat{\boldsymbol{\varepsilon}}_i) U(\hat{\boldsymbol{\varepsilon}}_i)^\top$ becomes singular, making Step 3 infeasible. A naive workaround is to
137 restrict Σ to be diagonal (Feng et al., 2016), but this loses the full scatter structure.
138

Algorithm 1 HR estimator

```

1: procedure UPDATE( $\mathbf{X}_1, \dots, \mathbf{X}_n, \hat{\boldsymbol{\mu}}, \hat{\Sigma}, p$ )
2:   Step 1:  $\hat{\boldsymbol{\varepsilon}}_i \leftarrow \hat{\Sigma}^{-1/2}(\mathbf{X}_i - \hat{\boldsymbol{\mu}})$ 
3:   Step 2:  $\hat{\boldsymbol{\mu}} \leftarrow \hat{\boldsymbol{\mu}} + \frac{\hat{\Sigma}^{1/2} \sum_{i=1}^n U(\hat{\boldsymbol{\varepsilon}}_i)}{\sum_{i=1}^n \|\hat{\boldsymbol{\varepsilon}}_i\|^{-1}}$ 
4:   Step 3:  $\hat{\Sigma} \leftarrow p \hat{\Sigma}^{1/2} \{n^{-1} \sum_{i=1}^n U(\hat{\boldsymbol{\varepsilon}}_i) U(\hat{\boldsymbol{\varepsilon}}_i)^\top\} \hat{\Sigma}^{1/2}$ 
5:   Step 4: Repeat Steps 1 - 3 until convergence.
6:   return  $\hat{\boldsymbol{\mu}}, \hat{\Sigma}$ 
7: end procedure

```

150 Our key insight comes from the elliptical symmetry of the population: if the initial location and precision estimates
151 are reasonable, the scaled SSCM $p^{-1} \hat{\mathbf{S}}$ is approximately equal to the identity matrix \mathbf{I}_p . This implies that
152 most off-diagonal entries are negligible, allowing us to safely ignore them in Step 3 without imposing any structural
153 assumptions. Therefore, we adopt the banding approach proposed by Bickel & Levina (2008b) for $\hat{\mathbf{S}}$, defining
154 $\mathcal{B}_h(\mathbf{M}) = \{m_{ij} \mathbb{I}(|i - j| \leq h)\}$ with $0 \leq h < p$ to simplify computation while retaining the essential scatter information.
155 The bandwidth parameter h exhibits low sensitivity to the final results, the relevant explanations are located in

156 Appendix C. To initialize the procedure, we use the spatial median for the location parameter,
157

$$158 \quad 159 \quad 160 \quad \hat{\boldsymbol{\mu}}_0 = \arg \min_{\boldsymbol{\mu} \in \mathbb{R}^p} \sum_{i=1}^n \|\boldsymbol{X}_i - \boldsymbol{\mu}\|, \quad (1)$$

161 which is consistent in high dimensions (Zou et al., 2014; Feng et al., 2016; Feng, 2024), and the sparse graphical Lasso
162 (SGLASSO) for the precision matrix (Lu & Feng, 2025):

$$163 \quad 164 \quad \hat{\boldsymbol{\Omega}}_0 = \arg \min_{\boldsymbol{\Theta} \succ \mathbf{0}} \text{tr}(p\boldsymbol{\Theta}\hat{\mathbf{S}}_0) - \log\{\det(\boldsymbol{\Theta})\} + \lambda_{\mathbf{n}}\|\boldsymbol{\Theta}\|_1, \quad (2)$$

165 where $\boldsymbol{\Theta} \succ \mathbf{0}$ indicates $\boldsymbol{\Theta}$ is positive define, $\hat{\mathbf{S}}_0 = n^{-1} \sum_{i=1}^n U(\boldsymbol{X}_i - \hat{\boldsymbol{\mu}}_0)U(\boldsymbol{X}_i - \hat{\boldsymbol{\mu}}_0)^\top$ is the sample spatial-sign
166 covariance matrix based on the initial location estimate.
167

168 Combining these components, we present Algorithm 2, a high-dimensional extension of the HR estimator that robustly
169 estimates both the location and scatter matrix.

170 **Algorithm 2** High-dimensional HR estimator

172 1: **procedure** UPDATE($\boldsymbol{X}_1, \dots, \boldsymbol{X}_n, \hat{\boldsymbol{\mu}}, \hat{\boldsymbol{\Sigma}}, p$)
173 2: Initial estimator $\hat{\boldsymbol{\mu}} = \hat{\boldsymbol{\mu}}_0, \hat{\boldsymbol{\Sigma}} = \hat{\boldsymbol{\Omega}}_0^{-1}$
174 3: **Step 1:** $\hat{\boldsymbol{\varepsilon}}_i \leftarrow \hat{\boldsymbol{\Sigma}}^{-1/2}(\boldsymbol{X}_i - \hat{\boldsymbol{\mu}})$
175 4: **Step 2:** $\hat{\boldsymbol{\mu}} \leftarrow \hat{\boldsymbol{\mu}} + \frac{\hat{\boldsymbol{\Sigma}}^{1/2}n^{-1}\sum_{i=1}^n \mathbf{U}(\hat{\boldsymbol{\varepsilon}}_i)}{n^{-1}\sum_{i=1}^n \|\hat{\boldsymbol{\varepsilon}}_i\|^{-1}}$
176 5: **Step 3:** $\hat{\boldsymbol{\Sigma}} \leftarrow p\hat{\boldsymbol{\Sigma}}^{1/2}\mathcal{B}_h\left\{n^{-1}\sum_{i=1}^n U(\hat{\boldsymbol{\varepsilon}}_i)U(\hat{\boldsymbol{\varepsilon}}_i)^\top\right\}\hat{\boldsymbol{\Sigma}}^{1/2}, \hat{\boldsymbol{\Sigma}} \leftarrow \frac{p\hat{\boldsymbol{\Sigma}}}{\text{tr}(\hat{\boldsymbol{\Sigma}})}$
177 6: **Step 4:** Repeat Steps 1 - 3 until convergence.
178 7: **return** $\hat{\boldsymbol{\mu}}, \hat{\boldsymbol{\Sigma}}$
179 8: **end procedure**

183
184 In the next section, we will prove the consistency of the high-dimensional HR estimator $\hat{\boldsymbol{\mu}}$, and then apply it together
185 with $\hat{\boldsymbol{\Sigma}}$ to the one-sample location testing problem.
186

187 **3 HIGH-DIMENSIONAL ONE-SAMPLE LOCATION PROBLEM**

190 In this section, we consider the following one-sample hypothesis testing problem:

$$191 \quad 192 \quad H_0 : \boldsymbol{\mu} = \mathbf{0} \quad \text{versus} \quad H_1 : \boldsymbol{\mu} \neq \mathbf{0}.$$

193 When the dimension p is fixed and the observations $\boldsymbol{X}_1, \dots, \boldsymbol{X}_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_X)$, the classical Hotelling's T^2 test
194 statistic commonly used: $T^2 = n\bar{\boldsymbol{X}}^\top \hat{\boldsymbol{\Sigma}}_X^{-1} \bar{\boldsymbol{X}}$, where $\bar{\boldsymbol{X}}$ and $\hat{\boldsymbol{\Sigma}}_X$ represent the sample mean vector and the sample
195 covariance matrix, respectively. However, when the dimension p exceeds the sample size n , the sample covariance
196 matrix $\hat{\boldsymbol{\Sigma}}_X$ becomes singular, rendering Hotellings T^2 test inapplicable.
197

198 To overcome the limitation, Fan et al. (2015) proposed replacing the sample covariance matrix with a sparse estimator
199 $\hat{\boldsymbol{\Sigma}}_\tau$ and introduced the following test statistic:

$$200 \quad 201 \quad 202 \quad T_{FLY} = \frac{n\bar{\boldsymbol{X}}^\top \hat{\boldsymbol{\Sigma}}_\tau^{-1} \bar{\boldsymbol{X}} - p}{\sqrt{2p}}.$$

203 Under the null, they showed that as $(n, p) \rightarrow \infty$, $T_{FLY} \xrightarrow{d} \mathcal{N}(0, 1)$. As a sum-type test, T_{FLY} is effective under
204 dense alternatives but deteriorates in performance under sparse ones. To better handle sparse alternatives, Chen et al.
205 (2024) introduced a max-type test statistic:
206

$$207 \quad T_{CFL} = \max_{1 \leq i \leq p} W_i^2 - 2\log p + \log \log p,$$

208 where $\mathbf{W} = (W_1, \dots, W_p)^\top = n^{1/2} \hat{\Sigma}_\tau^{-1/2} \bar{\mathbf{X}}$. They show that under the null, T_{CFL} follows a Gumbel distribution.

209 Both T_{FLY} and T_{CFL} rely on multivariate normality or an independent component model, which limits their robustness under heavy-tailed distributions such as multivariate t or multivariate mixture normal. This motivates the need for test procedures that remain effective when the data deviate from normality.

210 For elliptical distributions, spatial-sign methods provide a natural robust alternative and have been extensively studied
211 (Oja, 2010). When the dimension p is fixed, the spatial-sign test with inner standardization (Randles, 2000) is defined
212 as $Q^2 = np \bar{\mathbf{U}}_T^\top \bar{\mathbf{U}}_T$, $\bar{\mathbf{U}}_T = n^{-1} \sum_{i=1}^n \hat{\mathbf{U}}_{i,T}$, $\hat{\mathbf{U}}_{i,T} = U(\hat{\Sigma}_T^{-1/2} \mathbf{X}_i)$, where $\hat{\Sigma}_T$ denotes Tyler's scatter matrix (Tyler,
213 1987). This construction standardizes the data in the spatial-sign framework, providing a test that is affine-invariant
214 and resistant to heavy tails.

215 However, in high-dimensional settings where $p > n$, Tylers scatter matrix is no longer well-defined, making Q^2
216 inapplicable. To overcome this limitation, we propose novel test procedures based on high-dimensional HR estimators,
217 aiming to maintain robustness and efficiency under heavy-tailed distributions while adapting to the challenges of high
218 dimensionality.

219 First, we investigate some theoretical properties of the high dimensional HR estimator $\hat{\mu}$. Let $\mathbf{U}_i = U(\varepsilon_i)$, $r_i = \|\varepsilon_i\|$,
220 $\Omega = \Sigma^{-1}$, $\mathbf{S} = \mathbb{E}\{U(\mathbf{X}_i - \mu)U(\mathbf{X}_i - \mu)^\top\}$ and $\zeta_k = \mathbb{E}(r_i^{-k})$ for $i = 1, \dots, n$.

221 **Assumption 1.** *There exist constants $\underline{b}, \bar{B} > 0$ such that $\underline{b} \leq \limsup_p \mathbb{E}\{(r_1/\sqrt{p})^{-k}\} \leq \bar{B}$ for $k \in \{-1, 1, 2, 3, 4\}$.
222 And $\zeta_1^{-1} r_1^{-1}$ is sub-Gaussian distributed, i.e. $\|\zeta_1^{-1} r_1^{-1}\|_{\psi_2} \leq K_1 < \infty$.*

223 **Assumption 2.** *$\exists \eta, h > 0$, s.t. $\eta < \lambda_{\min}(\Sigma) \leq \lambda_{\max}(\Sigma) < \eta^{-1}$, $\text{tr}(\Sigma) = p$ and $\|\Sigma\|_{L_1} \leq h$. The diagonal
224 matrix of Σ is denoted as $\mathbf{D} = \text{diag}\{d_1^2, d_2^2, \dots, d_p^2\}$, $\liminf_{p \rightarrow \infty} \min_{j=1, \dots, p} d_j > \underline{d}$ for some constant $\underline{d} > 0$ and
225 $\limsup_{p \rightarrow \infty} \max_{j=1, \dots, p} d_j < \bar{D}$ for some constant $\bar{D} > 0$.*

226 **Assumption 3.** *$\exists T > 0$, $0 \leq q < 1$, $s_0(p) > 0$, s.t. (1) $\|\Omega\|_{L_1} \leq T$, (2) $\max_{1 \leq i \leq p} \sum_{j=1}^p |\omega_{ij}|^q \leq s_0(p)$.*

227 **Assumption 4.** *$\limsup_p \|\mathbf{S}\|_{op} < 1 - \psi < 1$ for some positive constant ψ .*

228 Assumption 1 aligns with Assumption 1-2 in Liu et al. (2024), which requires that $\zeta_k \asymp p^{-k/2}$. Assumptions 2 and 3
229 are standard conditions in high-dimensional data analysis, as seen in Bickel & Levina (2008b) and Cai et al. (2011),
230 ensuring the sparsity of the covariance and precision matrices. Assumption 4 corresponds to Assumption (A2) in Feng
231 (2024), guaranteeing the consistency of the initial sample spatial median.

232 The following lemma provides a Bahadur representation of the standardized estimator $\hat{\mu}$, which lays the foundation
233 for the Gaussian approximation in Lemma 2.

234 **Lemma 1. (Bahadur representation)** *Under the Assumptions 1–4 and $\log p = o(n^{1/3})$, there exist constants $C_{\eta,T}$ and
235 C , such that if we pick $\lambda_n = T\{\sqrt{2}C(8 + \eta^2 C_{\eta,T})\eta^{-2} n^{-1/2} \log^{1/2} p + p^{-1/2} C_{\eta,T}\}$, and $\lambda_n^{1-q} s_0(p) \log^{1/2} p = o(1)$,
236 then*

$$237 n^{1/2} \hat{\Omega}^{1/2} (\hat{\mu} - \mu) = n^{-1/2} \zeta_1^{-1} \sum_{i=1}^n \mathbf{U}_i + C_n,$$

238 where

$$239 \|C_n\|_\infty = O_p\{n^{-1/4} \log^{1/2}(np) + n^{-(1-q)/2} (\log p)^{(1-q)/2} \log^{1/2}(np) s_0(p) \\ 240 + p^{-(1-q)/2} \log^{1/2}(np) s_0(p)\}.$$

241 Let \mathcal{A}^{si} be the class of simple convex sets (Chernozhukov et al., 2017) in \mathbb{R}^p . Based on the Bahadur representation of
242 $\hat{\mu}$, we establish the following Gaussian approximation for $\hat{\Omega}^{1/2} (\hat{\mu} - \mu)$ over the class \mathcal{A}^{si} , where $\hat{\Omega} = \hat{\Sigma}^{-1}$.

243 **Lemma 2. (Gaussian approximation)** *Assume the Assumptions 1–4 holds. If $\log p = o(n^{1/5})$, then*

$$244 \rho_n(\mathcal{A}^{\text{si}}) = \sup_{A \in \mathcal{A}^{\text{si}}} \left| \mathbb{P}\{n^{1/2} \hat{\Omega}^{1/2} (\hat{\mu} - \mu) \in A\} - \mathbb{P}(\mathbf{Z} \in A) \right| \rightarrow 0,$$

245 as $n \rightarrow \infty$, where $\mathbf{Z} \sim \mathcal{N}(0, p^{-1} \zeta_1^{-2} \mathbf{I}_p)$.

246 Consequently, we derive the following corollary, which establishes the limiting distributions of the L_2 - and L_∞ -norms
247 of $n^{1/2} \hat{\Omega}^{1/2} (\hat{\mu} - \mu)$.

260 **Corollary 1.** Assume the conditions of Lemma 2 hold. Set A to $\{x \mid \|x\|_\infty \leq t\}$, $\{x \mid \|x\| \leq t\}$ and $\{x \mid \|x\|_\infty \leq t_1, \|x\| \leq t_2\}$ we have

$$\begin{aligned}\tilde{\rho}_{n,\infty} &= \sup_{t \in \mathbb{R}} |\mathbb{P}\{n^{1/2}\|\hat{\Omega}^{1/2}(\hat{\mu} - \mu)\|_\infty \leq t\} - \mathbb{P}(\|\mathbf{Z}\|_\infty \leq t)| \rightarrow 0, \\ \tilde{\rho}_{n,2} &= \sup_{t \in \mathbb{R}} |\mathbb{P}\{n^{1/2}\|\hat{\Omega}^{1/2}(\hat{\mu} - \mu)\| \leq t\} - \mathbb{P}(\|\mathbf{Z}\| \leq t)| \rightarrow 0, \\ \tilde{\rho}_{n,comb} &= \sup_{t_1, t_2 \in \mathbb{R}} |\mathbb{P}\{n^{1/2}\|\hat{\Omega}^{1/2}(\hat{\mu} - \mu)\|_\infty \leq t_1, n^{1/2}\|\hat{\Omega}^{1/2}(\hat{\mu} - \mu)\| \leq t_2\} \\ &\quad - \mathbb{P}(\|\mathbf{Z}\|_\infty \leq t_1, \|\mathbf{Z}\| \leq t_2)| \rightarrow 0,\end{aligned}$$

270 as $n \rightarrow \infty$, where $\mathbf{Z} \sim \mathcal{N}(0, \zeta_1^{-2} p^{-1} \mathbf{I}_p)$.

272 We know that $\{x \mid \|x\|_\infty \leq t\}$ and $\{x \mid \|x\| \leq t\}$ are simple convex sets. The third equation holds because the
273 intersection of a finite number of simple convex sets is still simply convex.

275 From Cai et al. (2013), we can see that $p\zeta_1^2 \max_{1 \leq i \leq p} Z_i^2 - 2 \log p + \log \log p$ converges to a Gumbel distribution with
276 the cumulative distribution function (cdf) $F(x) = \exp(-\frac{1}{\sqrt{\pi}} e^{-x/2})$ as $p \rightarrow \infty$. Combining this with Corollary 1, we
277 obtain

$$\mathbb{P}\left\{n\|\hat{\Omega}^{1/2}(\hat{\mu} - \mu)\|_\infty^2 p\zeta_1^2 - 2 \log p + \log \log p \leq x\right\} \rightarrow \exp(-e^{-x/2}/\sqrt{\pi}). \quad (3)$$

280 We estimate ζ_1 by $\hat{\zeta}_1 := n^{-1} \sum_{i=1}^n \tilde{r}_i^{-1}$, where $\tilde{r}_i = \|\hat{\Omega}^{1/2}(\mathbf{X}_i - \hat{\mu})\|$ and establish its consistency in Lemma 6. We
281 then propose the following max-type test statistic:

$$T_{MAX} = n \left\| \hat{\Omega}^{1/2} \hat{\mu} \right\|_\infty^2 \hat{\zeta}_1^2 p - 2 \log p + \log \log p.$$

285 It is evident that T_{MAX} is affine invariant.

286 **Theorem 1.** Suppose the Assumptions 1-4 hold. Under the null hypothesis, as $(n, p) \rightarrow \infty$, we have

$$\mathbb{P}(T_{MAX} \leq x) \rightarrow \exp(-e^{-x/2}/\sqrt{\pi}).$$

290 According to Theorem 1, H_0 will be rejected when our proposed statistic T_{MAX} is larger than the $(1 - \alpha)$ quantile
291 $q_{1-\alpha} = -\log \pi - 2 \log \log(1 - \alpha)^{-1}$ of the Gumbel distribution $F(x)$. We next establish the consistency of the test
292 in the following theorem.

293 **Theorem 2.** Suppose the conditions assumed in Theorem 1 hold, for any given $\alpha \in (0, 1)$, if $\|\Omega^{1/2}\mu\|_\infty \geq$
294 $\tilde{C}n^{-1/2}(\log p + q_{1-\alpha})^{1/2}$, for some large enough constant \tilde{C} , then

$$\mathbb{P}(T_{MAX} > q_{1-\alpha} | H_1) \rightarrow 1, \text{ as } (n, p) \rightarrow \infty.$$

297 Next, we consider a special case of alternative hypothesis:

$$H_1 : \Omega^{1/2}\mu = (\mu_1, 0, \dots, 0)^\top, \mu_1 > 0, \quad (4)$$

301 which means there are only one variable with nonzero mean. Similar to the calculation in Liu et al. (2024), we can
302 easily show the power function of new proposed T_{MAX} test is

$$\beta_{MAX}(\mu) \in (\Phi\{-x_\alpha^{1/2} + (np)^{1/2} d_1^{-1} \mu_1 \zeta_1\}, \Phi\{-x_\alpha^{1/2} + (np)^{1/2} d_1^{-1} \mu_1 \zeta_1\} + \alpha),$$

305 where $x_\alpha = 2 \log p - \log \log p + q_{1-\alpha}$. Similarly, the power function of Chen et al. (2024)'s test is

$$\beta_{CFL}(\theta) \in (\Phi(-x_\alpha^{1/2} + n^{1/2} \zeta_1^{-1} \mu_1), \Phi(-x_\alpha^{1/2} + n^{1/2} \zeta_1^{-1} \mu_1) + \alpha),$$

308 where ζ_i^2 is the variance of X_{ki} , $i = 1, \dots, p$. Thus, the asymptotic relative efficiency of T_{MAX} with respective to Cai
309 et al. (2013)'s test could be approximated as

$$311 \text{ARE}(T_{MAX}, T_{CFL}) = \{\mathbb{E}(r_i^{-1})\}^2 \mathbb{E}(r_i^2) \geq 1,$$

which indicates the superior performance of spatial sign-based methods over least-square-based methods. This observation is well-documented in the literature, including Feng & Sun (2016), Feng et al. (2016), and Liu et al. (2024). If \mathbf{X}_i are generated from standard multivariate t -distribution with ν degrees of freedom ($\nu > 2$),

$$\text{ARE}(T_{MAX}, T_{CFL}) = \frac{2}{\nu - 2} \left[\frac{\Gamma\{(\nu + 1)/2\}}{\Gamma(\nu/2)} \right]^2.$$

For different $\nu = 3, 4, 5, 6$, the above ARE are 2.54, 1.76, 1.51, 1.38, respectively. Under the multivariate normal distribution ($\nu = \infty$), our T_{MAX} test is the same powerful as Chen et al. (2024)'s test. However, our T_{MAX} test is much more powerful under the heavy-tailed distributions.

Similarly, we can see that $(2p)^{-1/2} \left(\sum_{i=1}^p p \zeta_1^2 Z_i^2 - p \right)$ converges to a standard Gaussian distribution with cdf $\Phi(x)$. In combining with the Corollary 1 we can conclude that,

$$\mathbb{P} \left[(2p)^{-1/2} \left\{ n \|\hat{\Omega}^{1/2}(\hat{\mu} - \mu)\|^2 p \zeta_1^2 - p \right\} \leq x \right] \rightarrow \Phi(x). \quad (5)$$

Then we propose the sum-type test statistic

$$T_{SUM} = \frac{\sqrt{2p}}{2} \left(n \hat{\zeta}_1^2 \hat{\mu}^\top \hat{\Omega} \hat{\mu} - 1 \right). \quad (6)$$

Theorem 3. Suppose the Assumptions 1-4 hold. Under $H_0 : \mu = \mathbf{0}$, as $(n, p) \rightarrow \infty$, we have $T_{SUM} \xrightarrow{d} \mathcal{N}(0, 1)$. Furthermore, under $H_1 : \mu^\top \Omega \mu = o(pn^{-1})$, as $(n, p) \rightarrow \infty$, we have $T_{SUM} - 2^{-1/2} np^{1/2} \zeta_1^2 \mu^\top \Omega \mu \xrightarrow{d} \mathcal{N}(0, 1)$.

By Theorem 3, the asymptotic power function of T_{SUM} is

$$\beta_{SUM}(\mu) = \Phi(-z_{1-\alpha} + 2^{-1/2} np^{1/2} \zeta_1^2 \mu^\top \Omega \mu).$$

After some simply calculations, we can obtain the power function of T_{FLY} is

$$\beta_{FLY}(\mu) = \Phi(-z_{1-\alpha} + 2^{-1/2} p^{-1/2} n \mu^\top \Sigma_s^{-1} \mu).$$

where $\Sigma_s = \mathbb{E}(\mathbf{X}_i \mathbf{X}_i^\top)$ is the covariance matrix and $\Sigma_s = p^{-1} \mathbb{E}(r_i^2) \Sigma$. So the asymptotic relative efficiency (ARE) of T_{SUM} with repective to T_{FLY} is $\text{ARE}(T_{SUM}, T_{FLY}) = \{\mathbb{E}(r_i^{-1})\}^2 \mathbb{E}(r_i^2) \geq 1$, which is the same as $\text{ARE}(T_{MAX}, T_{CFL})$.

However, when the dimension gets larger, there would be a non-negligible bias term in T_{SUM} and T_{MAX} . To use the above sum-type and max-type test procedure, we adopt the bootstrap method to calculate the bias term. We simply generate n samples $\mathbf{z}_1, \dots, \mathbf{z}_n$ from the multivariate normal distribution $\mathcal{N}(\mathbf{0}, \hat{\Omega}^{-1})$. Then, based on the random sample $\mathbf{z}_1, \dots, \mathbf{z}_n$, we calculate the sum-type test statistic T_{SUM}^* and max-type test statistic T_{MAX}^* . Repeat this procedure M times, we could get a bootstrap sample of T_{SUM} and T_{MAX} . Then, we calculate the sample mean and the sample variance of these bootstrap samples, denoted as μ_S^* and σ_S^{2*} for T_{SUM}^* and μ_M^* and σ_M^{2*} for T_{MAX}^* . The corresponding p -values of T_{SUM} and T_{MAX} are

$$p_{SUM} = 1 - \Phi\{(T_{SUM} - \mu_S^*)/\sigma_S^*\}, p_{MAX} = 1 - F\{\sigma_0(T_{MAX} - \mu_M^*)/\sigma_M^* + \mu_0\},$$

where $\mu_0 = -\log(\pi) + 2\gamma$ and $\sigma_0^2 = 3^{-1} 2\pi^2$ are the expectation and variance of the Gumbel distribution $F(x)$. Here γ is the Euler constant. Because we only need the mean and variance of the bootstrap samples, so the bootstrap size $M = 50$ is always enough for controlling the empirical sizes.

It is well known that sum-type and max-type tests are powerful against dense and sparse alternatives, respectively. To accommodate unknown sparsity in the real world, we adopt the Cauchy combination test Liu & Xie (2020) to integrate their advantages, leveraging their asymptotic independence.

Theorem 4. Under Assumptions 1-4, if $\|\mu\|_\infty = o(n^{-1/2})$ and $\|\mu\| = o(p^{1/4} n^{-1/2})$, as $n, p \rightarrow \infty$, T_{MAX} and T_{SUM} are asymptotic independent.

Based on Theorem 4, we define the Cauchy combination test as follows:

$$T_{CC1} = 1 - G[0.5 \tan\{(0.5 - p_{MAX})\pi\} + 0.5 \tan\{(0.5 - p_{SUM})\pi\}],$$

where $G(\cdot)$ is the cdf of the standard Cauchy distribution. We reject H_0 if $T_{CC1} < \alpha$ for a given significance level $\alpha \in (0, 1)$.

364 4 SIMULATION
 365

366 We consider the following three elliptical distributions:
 367

368 (i) Multivariate normal distribution: $\mathbf{X}_i \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$;
 369
 370 (ii) Multivariate t -distribution: $\mathbf{X}_i \sim t(\boldsymbol{\mu}, \boldsymbol{\Sigma}, 3)/\sqrt{3}$;
 371
 372 (iii) Multivariate mixture normal distribution: $\mathbf{X}_i \sim \mathcal{MN}(\boldsymbol{\mu}, \boldsymbol{\Sigma}, 10, 0.8)/\sqrt{22.8}$.

373 Four covariance matrices are considered. Model I: $\boldsymbol{\Sigma} = (0.6^{|i-j|})_{1 \leq i,j \leq p}$; Model II: $\boldsymbol{\Sigma} = 0.5\mathbf{I}_p + 0.5\mathbf{1}\mathbf{1}^\top$; Model
 374 III: $\boldsymbol{\Omega} = (0.6^{|i-j|})_{1 \leq i,j \leq p}$, $\boldsymbol{\Sigma} = \boldsymbol{\Omega}^{-1}$. Model IV: $\boldsymbol{\Omega} = (\omega_{i,j})_{p \times p}$ where $\omega_{i,i} = 2$ for $i = 1, \dots, p$, $\omega_{i,i+1} = 0.8$
 375 for $i = 1, \dots, p-1$, $\omega_{i,i+2} = 0.4$ for $i = 1, \dots, p-2$, $\omega_{i,i+3} = 0.4$ for $i = 1, \dots, p-3$, $\omega_{i,i+4} = 0.2$ for
 376 $i = 1, \dots, p-4$, $\omega_{i,j} = \omega_{j,i}$ for $i, j = 1, \dots, p$ and $\omega_{i,j} = 0$ otherwise. As the performance of our method is not
 377 sensitive to bandwidth choice, we set $h = 3$ throughout the paper for simplicity.
 378

379 Table 1 reports the empirical sizes of the new proposed test procedures T_{SUM} , T_{MAX} and T_{CC1} with $n = 100$,
 380 $p = 120, 240$. We found that all the tests could control the empirical sizes very well. Next, we conduct a comparison
 381 between our proposed methods and several test procedures based on the sample covariance matrix. Specifically, Chen
 382 et al. (2024) proposed a max-type test, denoted by T_{CFL} , based on the sample mean and a sparse precision matrix
 383 estimator. Fan et al. (2015) introduced a sum-type test, T_{FLY} , which uses a sparse covariance matrix estimator. For a
 384 fair comparison, both T_{CFL} and T_{FLY} adopt the graphical lasso to estimate the corresponding matrices. Furthermore,
 385 we consider a Cauchy combination of the two, denoted by T_{CCF} . In particular, T_{FLY} suffers from size distortion
 386 under heavy-tailed distributions when using its asymptotic critical value. To address this and ensure fair comparison,
 387 we employ a size-corrected power comparison framework, where empirical critical values are computed under the null
 388 for all tests, guaranteeing matching empirical sizes.
 389

390 We focus on Model II with $n = 100$ and $p = 120$. The power of each test procedure is evaluated under various
 391 distributions. For the alternative hypothesis, we specify $\boldsymbol{\mu} = \kappa\sqrt{\log p/(ns)}\boldsymbol{\Sigma}^{1/2}(\mathbf{1}_s^\top, \mathbf{0}_{p-s}^\top)^\top$ to guarantee $\boldsymbol{\Omega}^{1/2}\boldsymbol{\mu} =$
 392 $\kappa\sqrt{\log p/(ns)}(\mathbf{1}_s^\top, \mathbf{0}_{p-s}^\top)^\top$, where s represents the sparsity parameter of the alternative hypothesis. Specifically, for
 393 the normal distribution, we set $\kappa = 2$, for the multivariate t -distribution with 3 degrees of freedom, $\kappa = 1.5$, and for
 394 the multivariate mixture normal distribution, $\kappa = 0.6$.
 395

396 Figure 1 shows the power curves for each test across various scenarios. Under normal distribution, T_{SUM} and T_{MAX}
 397 perform similarly to T_{FLY} and T_{CFL} , respectively. However, for non-normal distributions, our robust methods T_{SUM} ,
 398 T_{MAX} , and T_{CC1} significantly outperform T_{FLY} , T_{CFL} , and T_{CCF} , demonstrating their robustness in heavy-tailed
 399 settings. When the sparsity parameter s is small, max-type tests (T_{MAX} , T_{CFL}) exhibit higher power than sum-type
 400 tests (T_{SUM} , T_{FLY}). In contrast, for dense alternatives (s large), sum-type tests outperform max-type ones. The
 401 Cauchy combination tests, T_{CC1} and T_{CCF} , consistently perform well across different sparsity levels. In conclusion,
 402 T_{CC1} demonstrates superior performance under both heavy-tailed distributions and varying sparsity levels, exhibiting
 403 double robustness.
 404

405 Table 1: Empirical sizes (%) of the three proposed test procedures under different models with $n = 100$.
 406

407 Dist.	408 Test	409 Model I		410 Model II		411 Model III		412 Model IV	
		413 $p = 120$	414 $p = 240$	415 $p = 120$	416 $p = 240$	417 $p = 120$	418 $p = 240$	419 $p = 120$	420 $p = 240$
(i)	T_{SUM}	4.3	4.9	4.2	5.7	4.4	5.5	4.7	5.2
	T_{MAX}	5.2	4.8	5.1	5.9	4.1	4.6	4.3	5.9
	T_{CC1}	4.7	5.3	5.6	4.5	4.9	5.4	4.5	5.5
(ii)	T_{SUM}	4.5	4.1	5.8	4.6	5.1	5.3	5.3	4.8
	T_{MAX}	4.8	4.2	5.7	5.0	4.9	4.4	4.3	5.6
	T_{CC1}	5.5	4.7	4.3	5.6	4.0	5.2	4.8	5.2
(iii)	T_{SUM}	4.2	5.6	4.9	4.4	5.8	4.3	4.1	5.7
	T_{MAX}	5.2	4.7	5.5	4.1	5.0	4.6	5.1	4.7
	T_{CC1}	4.8	5.3	4.5	5.7	4.0	5.4	4.4	5.8

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

Figure 1: Power curves of each method with different sparsity under Model II and $n = 100, p = 120$.

5 CONCLUSION

In this paper, we proposed a high-dimensional extension of the Hettmansperger-Randles estimator and applied it to two problems in high-dimensional statistics: the one-sample location testing problem and quadratic discriminant analysis. Simulation studies and theoretical analysis confirm the superior efficiency and robustness of our estimator in high-dimensional settings.

In particular, it may be fruitfully applied to other important problems such as the two-sample location test (Feng et al., 2016) and the high-dimensional linear asset pricing model (Feng et al., 2022b). These potential extensions warrant further investigation in future research. In addition, our methods rely on the assumption of an elliptically symmetric distribution, which may limit their applicability in more general settings. Existing work has shown that under near-spherical directional distributions and finite-moment conditions (Cheng et al., 2023; Liu et al., 2024), Gaussian approximation theory can be established, with Liu et al. (2024) further demonstrating the asymptotic independence between sum-type and max-type test statistics. An important direction for future research is to investigate how to maintain algorithmic implementability while establishing Gaussian approximation on simple convex sets and the asymptotic independence of test statistics under such general models.

REFERENCES

Deepak Nag Ayyala, Junyong Park, and Anindya Roy. Mean vector testing for high-dimensional dependent observations. *Journal of Multivariate Analysis*, 153:136–155, 2017.

Zhidong Bai and Hewa Saranadasa. Effect of high dimension: by an example of a two sample problem. *Statistica Sinica*, 6:311–329, 1996.

Peter J. Bickel and Elizaveta Levina. Covariance regularization by thresholding. *The Annals of Statistics*, 36(6): 2577–2604, 2008a.

Peter J. Bickel and Elizaveta Levina. Regularized estimation of large covariance matrices. *The Annals of Statistics*, 36 (1):199–227, 2008b.

Smarajit Bose, Amita Pal, Rita SahaRay, and Jitadeepa Nayak. Generalized quadratic discriminant analysis. *Pattern Recognition*, 48(8):2676–2684, 2015.

Tony Cai and Weidong Liu. A direct estimation approach to sparse linear discriminant analysis. *Journal of the American statistical association*, 106(496):1566–1577, 2011.

Tony T. Cai and Linjun Zhang. A convex optimization approach to high-dimensional sparse quadratic discriminant analysis. *The Annals of Statistics*, 49(3):1537 – 1568, 2021.

Tony T. Cai, Weidong Liu, and Xi Luo. A constrained 1 minimization approach to sparse precision matrix estimation. *Journal of the American Statistical Association*, 106(494):594–607, 2011.

468 Tony T. Cai, Weidong Liu, and Yin Xia. Two-sample test of high dimensional means under dependence. *Journal of*
469 *the Royal Statistical Society Series B: Statistical Methodology*, 76(2):349–372, 08 2013.
470

471 Jinyuan Chang, Qiwei Yao, and Wen Zhou. Testing for high-dimensional white noise using maximum cross-
472 correlations. *Biometrika*, 104(1):111–127, 2017.
473

474 Jinyuan Chang, Qing Jiang, and Xiaofeng Shao. Testing the martingale difference hypothesis in high dimension.
475 *Journal of Econometrics*, 235(2):972–1000, 2023.
476

477 Dachuan Chen, Long Feng, and Decai Liang. Asymptotic independence of the quadratic form and maximum of
478 independent random variables with applications to high-dimensional tests. *Acta Mathematica Sinica, English Series*,
479 40(12):3093–3126, 2024.
480

481 Songxi Chen, Lixin Zhang, and Pingshou Zhong. Tests for high-dimensional covariance matrices. *Journal of the*
482 *American Statistical Association*, 105(490):810–819, 2010.
483

484 Yin-Jen Chen and Minh Tang. Classification of high-dimensional data with spiked covariance matrix structure. *arXiv*
485 preprint *arXiv:2110.01950*, 2021.
486

487 Guanghui Cheng, Liuhua Peng, and Changliang Zou. Statistical inference for ultrahigh dimensional location parameter
488 based on spatial median. *arXiv preprint arXiv:2301.03126*, 2023.
489

490 Victor Chernozhukov, Denis Chetverikov, and Kengo Kato. Gaussian approximations and multiplier bootstrap for
491 maxima of sums of high-dimensional random vectors. *The Annals of Statistics*, 41(6):2786–2819, 2013.
492

493 Victor Chernozhukov, Denis Chetverikov, and Kengo Kato. Central limit theorems and bootstrap in high dimensions.
494 *The Annals of Probability*, 45(4):2309 – 2352, 2017.
495

496 Jianqing Fan, Yuan Liao, and Jiawei Yao. Power enhancement in high-dimensional cross-sectional tests. *Econometrica*,
497 83(4):1497–1541, 2015.
498

499 Jianqing Fan, Yuan Liao, and Han Liu. An overview of the estimation of large covariance and precision matrices. *The*
500 *Econometrics Journal*, 19(1):C1–C32, 2016.
501

502 Long Feng. Spatial sign based principal component analysis for high dimensional data. *arXiv preprint*
503 *arXiv:2409.13267*, 2024.
504

505 Long Feng and Fasheng Sun. Spatial-sign based high-dimensional location test. *Electronic Journal of Statistics*, 10:
506 2420–2434, 2016.
507

508 Long Feng, Changliang Zou, Zhaojun Wang, and Lixing Zhu. Two-sample behrens-fisher problem for high-
509 dimensional data. *Statistica Sinica*, 25:1297–1312, 2015.
510

511 Long Feng, Changliang Zou, and Zhaojun Wang. Multivariate-sign-based high-dimensional tests for the two-sample
512 location problem. *Journal of the American Statistical Association*, 111(514):721–735, 2016.
513

514 Long Feng, Binghui Liu, and Yanyuan Ma. An inverse norm sign test of location parameter for high-dimensional data.
515 *Journal of Business & Economic Statistics*, 39(3):807–815, 2021.
516

517 Long Feng, Tiefeng Jiang, Binghui Liu, and Wei Xiong. Max-sum tests for cross-sectional independence of high-
518 dimensional panel data. *The Annals of Statistics*, 50(2):1124 – 1143, 2022a.
519

519 Long Feng, Wei Lan, Binghui Liu, and Yanyuan Ma. High-dimensional test for alpha in linear factor pricing models
520 with sparse alternatives. *Journal of Econometrics*, 229(1):152–175, 2022b.
521

522 Long Feng, Tiefeng Jiang, Xiaoyun Li, and Binghui Liu. Asymptotic independence of the sum and maximum of
523 dependent random variables with applications to high-dimensional tests. *Statistica Sinica*, 34:1745–1763, 2024.
524

525 Jerome H. Friedman. Regularized discriminant analysis. *Journal of the American Statistical Association*, 84:165–175,
526 1989.

520 Wolfgang Härdle, Léopold Simar, et al. Applied multivariate statistical analysis. *Springer, Berlin-Heidelberg.*, 10:
521 978–3, 2007.

522

523 Yinqiu He, Gongjun Xu, Chong Wu, and Wei Pan. Asymptotically independent u-statistics in high-dimensional testing.
524 *The Annals of Statistics*, 49(1):151–181, 2021.

525

526 Thomas P. Hettmansperger and Ronald H. Randles. A practical affine equivariant multivariate median. *Biometrika*, 89
527 (4):851–860, 2002.

528

529 Yuan Huang, Changcheng Li, Runze Li, and Songshan Yang. An overview of tests on high-dimensional means.
Journal of Multivariate Analysis, 188:104813, 2022.

530

531 Yuta Koike. Notes on the dimension dependence in high-dimensional central limit theorems for hyperrectangles.
Japanese Journal of Statistics and Data Science, 4:257–297, 2021.

532

533 Quefeng Li and Jun Shao. Sparse quadratic discriminant analysis for high dimensional data. *Statistica Sinica*, pp.
534 457–473, 2015.

535

536 Weiming Li and Yangchang Xu. Asymptotic properties of high-dimensional spatial median in elliptical distributions
537 with application. *Journal of Multivariate Analysis*, 190:104975, 2022.

538

539 Jixuan Liu, Long Feng, Ping Zhao, and Zhaojun Wang. Spatial-sign based maxsum test for high dimensional location
540 parameters. *arXiv preprint arXiv:2402.01381*, 2024.

541

542 Yaowu Liu and Jun Xie. Cauchy combination test: A powerful test with analytic p-value calculation under arbitrary
543 dependency structures. *Journal of the American Statistical Association*, 115(529):393–402, 2020.

544

545 Zhengke Lu and Long Feng. Robust sparse presicion matrix estimation and its application. *arXiv preprint
arXiv:2503.03575*, 2025.

546

547 Huifang Ma, Long Feng, and Zhaojun Wang. Adaptive l-statistics for high dimensional test problem. *arXiv preprint
arXiv:2410.14308*, 2024.

548

549 Robb J. Muirhead. *Aspects of multivariate statistical theory*. John Wiley & Sons, 2009.

550

551 Hannu Oja. *Multivariate nonparametric methods with R: an approach based on spatial signs and ranks*. Springer
552 Science & Business Media, 2010.

553

554 Esa Ollila. Linear shrinkage of sample covariance matrix or matrices under elliptical distributions: a review. *Ellipti-
cally Symmetric Distributions in Signal Processing and Machine Learning*, pp. 79–109, 2024.

555

556 Esa Ollila and Arnaud Breloy. Regularized tapered sample covariance matrix. *IEEE Transactions on Signal Processing*,
557 70:2306–2320, 2022.

558

559 Ronald H Randles. A simpler, affine-invariant, multivariate, distribution-free sign test. *Journal of the American
Statistical Association*, 95(452):1263–1268, 2000.

560

561 Elias Raninen and Esa Ollila. Bias adjusted sign covariance matrix. *IEEE Signal Processing Letters*, 29:339–343,
562 2021.

563

564 Elias Raninen, David E. Tyler, and Esa Ollila. Linear pooling of sample covariance matrices. *IEEE Transactions on
Signal Processing*, 70:659–672, 2021.

565

566 Anqing Shen and Long Feng. A spatial-sign based direct approach for high dimensional sparse quadratic discriminant
567 analysis. *arXiv preprint arXiv:2504.11187*, 2025.

568

569 Peter R. Sinnaeve, Mark P. Donahue, Peter Grass, David Seo, Jacky Vonderscher, Salah-Dine Chibout, William E.
570 Kraus, Michael Sketch Jr, Charlotte Nelson, Geoffrey S Ginsburg, et al. Gene expression patterns in peripheral
blood correlate with the extent of coronary artery disease. *PloS one*, 4(9):e7037, 2009.

571

David E. Tyler. A distribution-free m-estimator of multivariate scatter. *The Annals of Statistics*, 15(1):234–251, 1987.

572 Lan Wang, Bo Peng, and Runze Li. A high-dimensional nonparametric multivariate test for mean vector. *Journal of*
573 *the American Statistical Association*, 110(512):1658–1669, 2015.

574

575 Yilei Wu, Yingli Qin, and Mu Zhu. Quadratic discriminant analysis for high-dimensional data. *Statistica Sinica*, 29:
576 939–960, 2019.

577 Cui Xiong, Jun Zhang, and Xinchao Luo. Ridge-forward quadratic discriminant analysis in high-dimensional situa-
578 *tions. Journal of Systems Science and Complexity*, 29:1703–1715, 2016.

579

580 Gongjun Xu, Lifeng Lin, Peng Wei, and Wei Pan. An adaptive two-sample test for high-dimensional means.
581 *Biometrika*, 103(3):609–624, 2016.

582

583 Ming Yuan and Yi Lin. Model selection and estimation in the gaussian graphical model. *Biometrika*, 94(1):19–35, 03
584 2007.

585 Pingshou Zhong, Songxi Chen, and Minya Xu. Tests alternative to higher criticism for high-dimensional means under
586 sparsity and column-wise dependence. *The Annals of Statistics*, 41(6):2820 – 2851, 2013.

587 Changliang Zou, Liuhua Peng, Long Feng, and Zhaojun Wang. Multivariate sign-based high-dimensional tests for
588 sphericity. *Biometrika*, 101(1):229–236, 2014.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624 Supplemental Material of "High-Dimensional Hettmansperger-Randles Estimator
 625 and Its Applications"

627 **A QUADRATIC DISCRIMINANT ANALYSIS**

629 **A.1 METHOD**

631 Consider the problem of classifying a p -dimensional normally distributed vector \mathbf{x} into one of two classes represented
 632 by two p -dimensional normal distributions, $N_p(\boldsymbol{\mu}_1, \boldsymbol{\Xi}_1)$ and $N_p(\boldsymbol{\mu}_2, \boldsymbol{\Xi}_2)$, where $\boldsymbol{\mu}_i$'s are mean vectors and $\boldsymbol{\Xi}_i$'s are
 633 positive definite covariance matrices. If $\boldsymbol{\mu}_i$ and $\boldsymbol{\Xi}_i, i = 1, 2$, are known, then an optimal classification rule having the
 634 smallest possible misclassification rate can be constructed. However, $\boldsymbol{\mu}_i$ and $\boldsymbol{\Xi}_i, i = 1, 2$, are usually unknown and
 635 the optimal classification rule, the Bayes rule, classifies \mathbf{x} to class 2 if and only if

637
$$(\mathbf{x} - \boldsymbol{\mu}_1)^\top (\boldsymbol{\Xi}_2^{-1} - \boldsymbol{\Xi}_1^{-1}) (\mathbf{x} - \boldsymbol{\mu}_1) - 2\boldsymbol{\delta}^\top \boldsymbol{\Xi}_2^{-1} (\mathbf{x} - \boldsymbol{\mu}_1) + \boldsymbol{\delta}^\top \boldsymbol{\Xi}_2^{-1} \boldsymbol{\delta} - \log(|\boldsymbol{\Xi}_1|/|\boldsymbol{\Xi}_2|) < 0, \quad (7)$$

638 where $\boldsymbol{\delta} = \boldsymbol{\mu}_2 - \boldsymbol{\mu}_1$. In practical applications, when the dimension is lower than the sample size, we substitute the
 639 mean and covariance matrix in (7) with their respective sample mean and covariance matrix. Nevertheless, when the
 640 dimension exceeds the sample size, the sample covariance matrix becomes non - invertible. As a result, a common
 641 approach, as described in Li & Shao (2015) and Wu et al. (2019), involves replacing the sample covariance matrix
 642 with various sparse covariance matrix estimators (Bickel & Levina, 2008a;b). However, it should be noted that these
 643 methods relying on the sample covariance matrix may not be highly efficient when the underlying distribution diverges
 644 from the normal distribution.

645 In fact it has been shown by Bose et al. (2015) that, for the class of elliptically symmetric distributions with the
 646 probability density function having the form

647
$$f(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Xi}) = |\boldsymbol{\Xi}|^{-1/2} g\{(\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Xi}^{-1} (\mathbf{x} - \boldsymbol{\mu})\},$$

649 the Bayes rule leads to the partition

650
$$R_1 = \left\{ \mathbf{x} : \frac{1}{2} \log \left(\frac{|\boldsymbol{\Xi}_2|}{|\boldsymbol{\Xi}_1|} \right) + k\Delta_d^2 \geq 0 \right\},$$

651 where $\Delta_d^2(\mathbf{x}) = \left\{ (\mathbf{x} - \boldsymbol{\mu}_2)^\top \boldsymbol{\Xi}_2^{-1} (\mathbf{x} - \boldsymbol{\mu}_2) - (\mathbf{x} - \boldsymbol{\mu}_1)^\top \boldsymbol{\Xi}_1^{-1} (\mathbf{x} - \boldsymbol{\mu}_1) \right\}$ and k may depend on \mathbf{x} . Therefore, letting
 652 $\varsigma_p \doteq \log(|\boldsymbol{\Xi}_1|/|\boldsymbol{\Xi}_2|)$, a general classification rule (or classifier) proposed by Bose et al. (2015), is given by

653
$$\begin{aligned} \mathbf{x} \in R_1 & \quad \text{if } \Delta_d^2(\mathbf{x}) \geq c\varsigma_p, \\ 654 \mathbf{x} \in R_2 & \quad \text{otherwise ,} \end{aligned} \quad (8)$$

655 for some constant $c \geq 0$. Clearly, this classifier boils down to the minimum Mahalanobis distance (MMD) and the
 656 QDA classifiers whenever c is chosen to be 0 and 1, respectively. It has a misclassification rate of

657
$$R_{QDA} = \frac{R_{QDA}^1 + R_{QDA}^2}{2}, \quad R_{QDA}^m = \mathbb{P}(\text{incorrectly classify } \mathbf{x} \text{ to class } m).$$

658 In practice, the parameters in the classifier (8) are unknown and need to be estimated from the training set. Suppose we
 659 observe two independent samples $\{\mathbf{X}_{il}\}_{l=1}^{n_i}, i = 1, 2$ from $f(\mathbf{x}; \boldsymbol{\mu}_i, \boldsymbol{\Xi}_i)$, respectively. Under the elliptical symmetric
 660 distribution assumption, we have $\boldsymbol{\Xi} = p^{-1} \text{tr}(\boldsymbol{\Xi}) \boldsymbol{\Sigma}$. So the inverse of the covariance matrix $\tilde{\boldsymbol{\Xi}}^{-1} = p \text{tr}^{-1}(\boldsymbol{\Xi}) \boldsymbol{\Omega}$ could
 661 be estimated by $\tilde{\boldsymbol{\Omega}}_i = p \{\widehat{\text{tr}(\boldsymbol{\Xi}_i)}\}^{-1} \hat{\boldsymbol{\Omega}}_i$ with

662
$$\widehat{\text{tr}(\boldsymbol{\Xi}_i)} = \frac{1}{n_i - 1} \sum_{l=1}^{n_i} \mathbf{X}_{il}^\top \mathbf{X}_{il} - \frac{n_i}{n_i - 1} \bar{\mathbf{X}}_i^\top \bar{\mathbf{X}}_i,$$

663 and $\bar{\mathbf{X}}_i = n_i^{-1} \sum_{l=1}^{n_i} \mathbf{X}_{il}$. Then, we replace the parameters with its high dimensional HR estimators, i.e.

664
$$\hat{\Delta}_d^2(\mathbf{x}) = (\mathbf{x} - \hat{\boldsymbol{\mu}}_2)^\top \tilde{\boldsymbol{\Omega}}_2 (\mathbf{x} - \hat{\boldsymbol{\mu}}_2) - (\mathbf{x} - \hat{\boldsymbol{\mu}}_1)^\top \tilde{\boldsymbol{\Omega}}_1 (\mathbf{x} - \hat{\boldsymbol{\mu}}_1), \hat{\varsigma}_p = \log \left(|\tilde{\boldsymbol{\Omega}}_2|/|\tilde{\boldsymbol{\Omega}}_1| \right),$$

676 where the parameter c is estimated the same as Subsection 2.1 in Bose et al. (2015), denoted as \hat{c} . So the final
 677 classification rule is

$$\begin{aligned} \mathbf{x} \in R_1 & \quad \text{if } \hat{\Delta}_d^2(\mathbf{x}) \geq \hat{c}\hat{\zeta}_p, \\ \mathbf{x} \in R_2 & \quad \text{otherwise.} \end{aligned} \quad (9)$$

680 It has a misclassification rate of

$$R_{HRQDA} = \frac{R_{HRQDA}^1 + R_{HRQDA}^2}{2}, \quad R_{HRQDA}^m = \mathbb{P}(\text{incorrectly classify } x \text{ to class } m).$$

684 To show the consistency of the misclassification rate of our proposed HRQDA method, we need the following additional
 685 assumptions.

686 **Assumption 5.** $\text{tr}(\boldsymbol{\Xi}_i) \asymp t_0(p)$ for each $i = 1, 2$. And

$$\sigma_Q(p) := \sqrt{\|\boldsymbol{\Sigma}_1^{1/2} \boldsymbol{\Omega}_2 \boldsymbol{\Sigma}_1^{1/2} - \mathbf{I}_p\|_F^2 + t_0(p)^{-1} p \|\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1\|^2} \asymp p.$$

689 **Assumption 6.** $r_i = \|\boldsymbol{\Xi}_i^{-1/2}(\mathbf{x} - \boldsymbol{\mu}_i)\|$ satisfies $\text{Var}(r_i^2) \lesssim p\sqrt{p}$ and $\text{Var}(r_i) \lesssim \sqrt{p}$, for $i = 1, 2$.

691 Assumption 5 assume the signal of the difference between the two distribution is larger enough. Assumption 6 is
 692 needed to show the consistency of the trace estimator $\widehat{\text{tr}(\boldsymbol{\Xi}_i)}$.

693 **Theorem 5.** If $\boldsymbol{\varepsilon}_i, \boldsymbol{\Sigma}_i, \boldsymbol{\Omega}_i, \mathbf{S}_i$ for $i = 1, 2$ satisfy Assumptions 1-4 and Assumptions 5,6 hold. Assume that $n_1 \asymp n_2$
 694 and $n := \min\{n_1, n_2\}$, we have

$$|R_{HRQDA} - R_{QDA}| = O_p\{\lambda_n^{1-q/2} s_0(p)^{1/2} + \lambda_n^{1-q} s_0(p)\}.$$

695 The result in Theorem 5 show that HRQDA is able to mimic the optimal Bayes rule consistently under some mild
 696 assumptions, which is similar to Theorem 4.2 in Cai & Zhang (2021).

700 A.2 SIMULATION

701 We compare our proposed method, HRQDA, with the SQDA method proposed by Li & Shao (2015) and the SeQDA
 702 method proposed by Wu et al. (2019). The SQDA method estimates the covariance matrix using the banding method
 703 proposed by Bickel & Levina (2008b), while the SeQDA method estimates the covariance matrix of the transformed
 704 sample by simplifying the structure of the covariance matrices.

705 We consider the following three elliptical distributions:

- 707 • (i): Multivariate normal distribution: $\mathbf{X}_{i1} \sim \mathcal{N}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$, $\mathbf{X}_{i2} \sim \mathcal{N}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$;
- 708 • (ii): Multivariate t -distribution: $\mathbf{X}_{i1} \sim t(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, 3)/\sqrt{3}$, $\mathbf{X}_{i2} \sim t(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2, 3)/\sqrt{3}$;
- 709 • (iii): Multivariate mixture normal distribution: $\mathbf{X}_{i1} \sim \mathcal{MN}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, 10, 0.8)/\sqrt{22.8}$,
 710 $\mathbf{X}_{i2} \sim \mathcal{MN}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2, 10, 0.8)/\sqrt{22.8}$.

712 We consider three models for the covariance matrix:

- 714 • Model I: $\boldsymbol{\Sigma}_1 = (0.6^{|i-j|})_{1 \leq i, j \leq p}$, $\boldsymbol{\Sigma}_2 = \mathbf{I}_p$;
- 715 • Model II: $\boldsymbol{\Sigma}_1 = (0.6^{|i-j|})_{1 \leq i, j \leq p}$, $\boldsymbol{\Sigma}_2 = 0.5\mathbf{I}_p + 0.5\mathbf{1}_p\mathbf{1}_p^\top$;
- 716 • Model III: $\boldsymbol{\Omega}_1 = (0.6^{|i-j|})_{1 \leq i, j \leq p}$, $\boldsymbol{\Sigma}_1 = \boldsymbol{\Omega}_1^{-1}$, $\boldsymbol{\Sigma}_2 = \boldsymbol{\Omega}_1$.

718 The covariance matrices in Model I are approximately banded. In Model II, $\boldsymbol{\Sigma}_2$ satisfies the structural assumption in
 719 Wu et al. (2019) but violates the sparsity condition in Li & Shao (2015), while in Model III, $\boldsymbol{\Sigma}_1$ satisfies the latter but
 720 violates both. We set $\boldsymbol{\mu}_1 = \mathbf{0}$ and $\boldsymbol{\mu}_2 = 0.1 \times \mathbf{1}_p$, and generate $n_1 = n_2 = 100$ training and test samples of the same
 721 size and two dimensions $p = 120, 240$.

722 Table 2 reports the average classification rates. HRQDA generally performs best. In Model I, SQDA benefits from the
 723 banded structure and outperforms SeQDA; HRQDA is comparable under normality but superior under heavy-tailed
 724 distributions. In Model II, SQDA performs worst due to structural mismatch, while HRQDA consistently outperforms
 725 SeQDA in non-normal settings. In Model III, HRQDA still achieves the best accuracy. These results confirm that
 726 HRQDA is robust and effective across various distributions and covariance structures.

728 Table 2: Average classification rate (%) and standard deviation (in parenthesis) of each method.
 729
 730

731 732 Model	733 734 735 Dist.	736 737 738 $p = 120$			739 740 741 $p = 240$		
		733 734 735 HRQDA	736 737 738 SQDA	739 740 741 SeQDA	733 734 735 HRQDA	736 737 738 SQDA	739 740 741 SeQDA
733 734 735 Model I	(i)	0.99(0.01)	0.94(0.08)	0.63(0.03)	1(0)	0.96(0.08)	0.64(0.04)
	(ii)	0.95(0.06)	0.64(0.11)	0.55(0.04)	0.97(0.08)	0.60(0.09)	0.54(0.05)
	(iii)	0.92(0.13)	0.55(0.07)	0.52(0.04)	0.96(0.10)	0.55(0.08)	0.51(0.04)
733 734 735 Model II	(i)	1(0.01)	0.77(0.10)	0.97(0.01)	1(0)	0.78(0.14)	1(0.01)
	(ii)	0.99(0.01)	0.55(0.06)	0.68(0.03)	1(0)	0.55(0.05)	0.68(0.03)
	(iii)	0.99(0.01)	0.53(0.04)	0.54(0.05)	1(0)	0.53(0.04)	0.53(0.03)
733 734 735 Model III	(i)	1(0)	1(0.02)	0.76(0.04)	1(0)	1(0.02)	0.76(0.04)
	(ii)	1(0)	0.82(0.11)	0.66(0.03)	1(0)	0.81(0.12)	0.65(0.03)
	(iii)	0.77(0.09)	0.60(0.02)	0.52(0.05)	0.78(0.10)	0.60(0.02)	0.51(0.04)

742
 743 **A.3 REAL DATA APPLICATION**
 744

745 We used the gene expression dataset GSE12288 from Sinnaeve et al. (2009), which includes 110 coronary artery
 746 disease (CAD) patients ($CAD_i > 23$) and 112 healthy controls. After applying two-sample t -tests, 297 genes with p -
 747 values below 0.01 were retained. To evaluate performance, we compared our HRQDA method with SQDA and SeQDA
 748 by randomly splitting the data into training (73 CAD, 75 control) and testing (37 CAD, 37 control) sets, repeating this
 749 process 200 times. Classification accuracy was averaged over the repetitions.

750 The performance of classifiers was evaluated using four key metrics:

751 • **Accuracy** (Acc): Proportion of correctly classified samples:

$$753 \quad 754 \quad Acc = \frac{TP + TN}{TP + TN + FP + FN}.$$

755 • **Specificity** (Spec): Proportion of true negatives correctly identified:

$$757 \quad 758 \quad Spec = \frac{TN}{TN + FP}.$$

759 • **Sensitivity** (Sens): Proportion of true positives correctly identified:

$$760 \quad 761 \quad Sens = \frac{TP}{TP + FN}.$$

762 • **Matthews Correlation Coefficient** (MCC): Balanced measure of classification quality:

$$763 \quad 764 \quad 765 \quad MCC = \frac{TP \cdot TN - FP \cdot FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}},$$

766 where TP (true positive), TN (true negative), FP (false positive), and FN (false negative) represent the counts of
 767 respective classification outcomes. All metrics range between 0 and 1, except MCC which ranges between -1 and 1 ,
 768 with higher values indicating better performance.

770 Table 3 shows that HRQDA outperforms SQDA and SeQDA, achieving the highest mean accuracy (0.760) and MCC
 771 (0.527). It also has the best sensitivity (0.821) and maintains good specificity (0.708), showing strong ability to detect
 772 CAD cases reliably.

773
 774 **B PERFORMANCE OF THE TEST UNDER ε -CONTAMINATION**
 775

776 For the one-sample testing problem, we consider $n = 100$ and $p = 120$. The uncontaminated data are generated from
 777 a multivariate t_3 distribution with mean vector μ and covariance matrix Σ with entries

$$778 \quad \Sigma_{ij} = 0.8^{|i-j|}, \quad 1 \leq i, j \leq p.$$

Table 3: Comparison of evaluation metrics and standard deviation (in parenthesis) for each method.

Method	Accuracy	Specificity	Sensitivity	MCC
HRQDA	0.760 (0.042)	0.708 (0.088)	0.821 (0.069)	0.527 (0.082)
SQDA	0.710 (0.051)	0.707 (0.112)	0.702 (0.111)	0.429 (0.103)
SeQDA	0.729 (0.051)	0.685 (0.084)	0.772 (0.070)	0.461 (0.102)

To introduce ε -contamination, we randomly select εn observations and replace them by independent noise drawn from $\mathcal{N}_p(0, \text{strength} \cdot I_p)$, where the contamination rate ε takes values in $\{0, 0.05, 0.10, 0.15, 0.20\}$ and the contamination strength is in $\{5, 10, 20\}$.

We consider three mean configurations:

$$\boldsymbol{\mu}_1 = \mathbf{0}_p, \quad \boldsymbol{\mu}_2 = \frac{0.15}{1-\varepsilon} \boldsymbol{\Sigma}^{1/2} (1, 1, 1, 0, \dots, 0)^\top, \quad \boldsymbol{\mu}_3 = \frac{0.1}{1-\varepsilon} \boldsymbol{\Sigma}^{1/2} \underbrace{(1, \dots, 1)}_{30}, 0, \dots, 0)^\top,$$

where the factor $0.15/(1 - \varepsilon)$ is used to keep the effective signal strength comparable across different contamination rates. Here μ_1 corresponds to the null (empirical size), μ_2 to a sparse alternative (nonzero in the first 3 coordinates), and μ_3 to a dense alternative (nonzero in the first 30 coordinates). For each setting, we repeat the experiment 500 times and record the empirical rejection probabilities of the max-type test, the sum-type test, and the Cauchy combination test.

The results under ε -contamination are summarized in Tables 4–6 below. Table 4 reports empirical size under the null (μ_1), while Tables 5 and 6 report empirical power under the sparse (μ_2) and dense (μ_3) alternatives, respectively. Overall, the sum, max, and Cauchy combination tests maintain sizes close to the nominal level and display reasonable power even when up to 20% of the observations are contaminated.

Table 4: Empirical size under ε -contamination for μ_1 .

ε	Strength	$\hat{\alpha}_{\max}$	$\hat{\alpha}_{\text{sum}}$	$\hat{\alpha}_{\text{Cauchy}}$
0.00	5	0.056	0.050	0.060
0.05	5	0.040	0.028	0.030
0.10	5	0.040	0.052	0.052
0.15	5	0.042	0.030	0.042
0.20	5	0.042	0.034	0.042
0.00	10	0.046	0.048	0.050
0.05	10	0.042	0.034	0.038
0.10	10	0.032	0.040	0.036
0.15	10	0.044	0.028	0.036
0.20	10	0.050	0.036	0.048
0.00	20	0.050	0.052	0.052
0.05	20	0.036	0.052	0.056
0.10	20	0.040	0.044	0.050
0.15	20	0.036	0.034	0.036
0.20	20	0.042	0.030	0.044

Notes: $n = 100$, $p = 120$. Errors are generated from a multivariate t_3 distribution with covariance $\Sigma_{ij} = 0.8^{|i-j|}$. Here μ_1 corresponds to the null (empirical size). Contamination follows an ε -contamination scheme with $\varepsilon \in \{0, 0.05, 0.10, 0.15, 0.20\}$ and strength in $\{5, 10, 20\}$. Each entry is based on 500 Monte Carlo replications.

For HRQDA, we consider a two-class classification problem with $p = 120$ and t_3 distribution. In each replicate, we generate a training sample of size 100 and an independent test sample of size 100 (again 50 per class). Class 1 follows a multivariate t_3 distribution with mean 0_p and covariance matrix $\Sigma_{ij} = 0.8^{|i-j|}$, while Class 2 follows a multivariate t_3 distribution with mean $0.1 \cdot 1_p$ and covariance matrix I_p . We then contaminate a fraction $\varepsilon \in \{0, 0.05, 0.10, 0.15, 0.20\}$ of the observations by replacing them with $\mathcal{N}_p(0, \text{strength} \cdot I_p)$ noise (using the same strengths $\{5, 10, 20\}$ as above), and record the classification accuracy of HRQDA on the test set. Table 7 reports the average classification accuracy (in %) over 500 replications.

832
833
834 Table 5: Empirical power under ε -contamination for μ_2 (sparse mean shift).

ε	Strength	$\hat{\beta}_{\max}$	$\hat{\beta}_{\text{sum}}$	$\hat{\beta}_{\text{Cauchy}}$
0.00	5	0.526	0.330	0.534
0.05	5	0.542	0.320	0.544
0.10	5	0.526	0.304	0.510
0.15	5	0.496	0.262	0.462
0.20	5	0.538	0.300	0.522
0.00	10	0.522	0.332	0.532
0.05	10	0.534	0.334	0.552
0.10	10	0.504	0.280	0.492
0.15	10	0.506	0.264	0.492
0.20	10	0.466	0.186	0.432
0.00	20	0.582	0.350	0.560
0.05	20	0.524	0.310	0.544
0.10	20	0.510	0.294	0.502
0.15	20	0.498	0.250	0.474
0.20	20	0.488	0.216	0.460

849 Notes: same data-generating mechanism as in Table 4, but μ_2 corresponds to a sparse mean shift. Entries are empirical power
850 (rejection probabilities under the alternative) based on 500 Monte Carlo replications.

851
852
853
854 Table 6: Empirical power under ε -contamination for μ_3 (dense mean shift).

ε	Strength	$\hat{\beta}_{\max}$	$\hat{\beta}_{\text{sum}}$	$\hat{\beta}_{\text{Cauchy}}$
0.00	5	0.336	0.526	0.524
0.05	5	0.306	0.500	0.514
0.10	5	0.310	0.518	0.514
0.15	5	0.316	0.512	0.532
0.20	5	0.270	0.496	0.498
0.00	10	0.326	0.512	0.490
0.05	10	0.342	0.544	0.546
0.10	10	0.288	0.484	0.486
0.15	10	0.280	0.528	0.496
0.20	10	0.250	0.444	0.444
0.00	20	0.330	0.558	0.558
0.05	20	0.314	0.560	0.528
0.10	20	0.320	0.524	0.514
0.15	20	0.298	0.480	0.490
0.20	20	0.254	0.450	0.464

869 Notes: same data-generating mechanism as in Table 4, but μ_3 corresponds to a dense mean shift. Entries are empirical power
870 based on 500 Monte Carlo replications.

871
872
873
874 Table 7: Classification accuracy (%) of HRQDA under ε -contamination.

Strength	0	0.05	0.10	0.15	0.20
5	96.82	95.12	92.90	90.72	88.50
10	96.82	95.13	92.90	90.71	88.42
20	96.92	95.13	92.80	90.70	88.41

880 Notes: Each entry is the average test-set classification accuracy (in %) of HRQDA over 500 Monte Carlo replications. Training
881 and test samples have size 100 each (50 observations per class). Class 1 has mean $\mathbf{0}_p$ and covariance $\Sigma_{ij} = 0.8^{|i-j|}$, and Class 2
882 has mean $0.1 \cdot \mathbf{1}_p$ and covariance \mathbf{I}_p . A fraction ε of the observations is replaced by $\mathcal{N}_p(0, \text{strength} \cdot \mathbf{I}_p)$ noise.

884 We observe that HRQDA retains high classification accuracy under moderate levels of ε -contamination, with performance degrading only gradually as the contamination rate increases, which is consistent with the robust behavior suggested by our theoretical developments. Due to the strict page and response-length constraints and the substantial additional space that a full grid of cellwise contamination scenarios would require, we focused our numerical study on ε -contamination and leave a systematic investigation of cellwise contamination to future work.
885
886
887
888
889

890 C ADDITIONAL METHODS FOR ONE-SAMPLE LOCATION TEST PROBLEM 891

892 For comparison, we also consider the test procedures proposed by Feng & Sun (2016) and Liu et al. (2024), which are
893 designed for the sparsity structure of the location parameter μ .
894

$$895 \quad T_{SUM2} = \frac{2}{n(n-1)} \sum_{i < j} \sum_{i < j} U \left(\tilde{\mathbf{D}}_{ij}^{-1/2} \mathbf{X}_i \right)^\top U \left(\tilde{\mathbf{D}}_{ij}^{-1/2} \mathbf{X}_j \right), \\ 896 \\ 897 \quad T_{MAX2} = n \hat{\zeta}_1^2 p \left\| \tilde{\mathbf{D}}^{-1/2} \tilde{\mu} \right\|_\infty^2 \left(1 - n^{-1/2} \right), \\ 898 \\ 899 \quad T_{CC2} = 1 - G [0.5 \tan \{(0.5 - p_{MAX2}) \pi\} + 0.5 \tan \{(0.5 - p_{SUM2}) \pi\}],$$

900 where p_{MAX2} and p_{SUM2} are the p-values of T_{MAX2} and T_{SUM2} , respectively. Here $\tilde{\mu}$ and $\tilde{\mathbf{D}}_{ij}$ are the estimator of
901 spatial-median and diagonal matrix of Σ by the following algorithm:
902

- 903 (i) $\tilde{\varepsilon}_i \leftarrow \tilde{\mathbf{D}}^{-1/2} (\mathbf{X}_i - \tilde{\mu})$, $j = 1, \dots, n$;
- 904 (ii) $\tilde{\mu} \leftarrow \tilde{\mu} + \frac{\tilde{\mathbf{D}}^{1/2} \sum_{j=1}^n U(\tilde{\varepsilon}_i)}{\sum_{j=1}^n \|\tilde{\varepsilon}_i\|^{-1}}$;
- 905 (iii) $\tilde{\mathbf{D}} \leftarrow p \tilde{\mathbf{D}}^{1/2} \text{diag} \left\{ n^{-1} \sum_{j=1}^n U(\tilde{\varepsilon}_i) U(\tilde{\varepsilon}_i)^\top \right\} \tilde{\mathbf{D}}^{1/2}$.

906 Next, we demonstrate that, under mild regularity conditions, the sum-type test statistic T_{SUM2} is asymptotically independent of the max-type test statistic T_{MAX} . Furthermore, the max-type test statistic T_{MAX2} is also asymptotically independent of the sum-type test statistic T_{SUM1} .
907

908 **Theorem 6.** Under Assumptions 1-4, if $\|\mu\|_\infty = o(n^{-1/2})$ and $\|\mu\| = o(p^{1/4} n^{-1/2})$, as $n, p \rightarrow \infty$, and Theorem 7
909 in Liu et al. (2024) holds, T_{SUM2}/σ_n is asymptotically independent with T_{MAX} , T_{SUM} is asymptotically independent with $T_{MAX2} - 2 \log p + \log \log p$.
910

911 In practice, we could not know the sparsity level of the alternative, either $\Omega^{1/2} \mu$ or μ , so we suggest to use Cauchy
912 combination test to combine all the four test procedures as follow:
913

$$914 \quad T_{CC3} = 1 - G \left[\frac{1}{4} \tan \{(0.5 - p_{MAX}) \pi\} + \frac{1}{4} \tan \{(0.5 - p_{SUM}) \pi\} \right. \\ 915 \quad \left. + \frac{1}{4} \tan \{(0.5 - p_{MAX2}) \pi\} + \frac{1}{4} \tan \{(0.5 - p_{SUM2}) \pi\} \right]. \quad (10)$$

916 We have supplemented the empirical sizes of the Cauchy combination test T_{CC3} under the null hypothesis as described
917 in Section 4. Table 8 reports the empirical sizes of T_{CC3} , which are consistently around 5%, indicating that T_{CC3} can
918 control the empirical size very well.
919

920 Next, we compare T_{CC3} with T_{CC1} proposed in Section 3 and T_{CC2} from Liu et al. (2024). Specifically, the comparison
921 is carried out under distributions (i)–(iii) and Models I–IV, using the same parameter settings and data-generating
922 mechanisms for the alternatives as described in Section 4. Figure 2 displays the power curves. We observe that T_{CC2}
923 tends to outperform T_{CC1} under Model I, while the reverse holds for Models III and IV. In the case of Model II, T_{CC2}
924 exhibits lower power than T_{CC1} when the signal sparsity s is small, but surpasses T_{CC1} as s increases. Overall, the
925 relative performance of T_{CC1} and T_{CC2} is highly sensitive to the underlying model structure.
926

927 In contrast, the proposed T_{CC3} demonstrates uniformly strong performance across all scenarios, offering both robustness to distributional variation and adaptability to different signal sparsity. It often achieves the highest power, making
928 it a reliable choice in practice.
929

936
937
938 Table 8: Empirical sizes (%) of T_{CC3} under different models with $n = 100$.
939
940

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987	Dist.	Test	Model I		Model II		Model III		Model IV	
			$p = 120$	$p = 240$						
(i)	T_{CC3}	5.8	4.3	4.7	5.2	5.0	4.4	4.1	5.6	
(ii)	T_{CC3}	5.9	4.6	5.4	4.2	5.0	4.7	5.9	4.5	
(iii)	T_{CC3}	5.1	4.9	4.2	5.6	4.7	5.9	4.9	5.5	

(i) Multivariate normal distribution

(ii) Multivariate t_3 distribution

(iii) Multivariate mixture normal distribution

Figure 2: Power curves of three Cauchy combination tests with different sparsity, models and $n = 100, p = 120$.

988 **D INSENSITIVITY OF PARAMETERS TO THE ALGORITHM**

990 The bandwidth parameter h exhibits low sensitivity to the final results, in contrast to the algorithm's higher sensitivity
 991 to the choice of initial values. Specifically, when appropriate initial values are selected, the following approximation
 992 holds:

$$993 \quad 994 \quad 995 \quad \frac{p}{n} \sum_{i=1}^n U(\hat{\varepsilon}_i) U(\hat{\varepsilon}_i)^\top \approx \mathbf{I}_p,$$

996 where \mathbf{I}_p denotes the p -dimensional identity matrix. Under such circumstances, satisfactory results can be obtained
 997 regardless of the specific choice of bandwidth parameter h . We typically adopt $h = 3$ as the default value to balance
 998 estimation accuracy and computational cost: while moderately larger values of h may yield marginal improvements
 999 in accuracy, the benefits are limited and come with increased computational time.

1000 To visually demonstrate the influence of h , we first present experimental results based on simulated data. Specifically,
 1001 our simulations generate observations \mathbf{X}_i from a multivariate t -distribution with the following specifications:

$$1002 \quad 1003 \quad \mathbf{X}_i \sim t(\boldsymbol{\mu}, \boldsymbol{\Sigma}, 3)/\sqrt{3},$$

1004 where we set the sample size $n = 100$ and dimensionality $p = 120$. The covariance matrix $\boldsymbol{\Sigma}$ follows an autoregressive
 1005 structure defined by $\boldsymbol{\Sigma} = (0.6^{|i-j|})_{1 \leq i,j \leq p}$.

1006 Table 9: Influence of bandwidth parameter h on robust mean and covariance estimation.

h	1	2	3	4	5	10	20
$\ \hat{\boldsymbol{\mu}} - \boldsymbol{\mu}\ _2$	1.76	1.76	1.76	1.76	1.76	1.76	1.76
$\ \hat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}\ _F$	3.82	3.79	3.77	3.76	3.74	3.66	3.65

1013 Here, $\|\cdot\|_2$ represents the L_2 -norm for vectors, and $\|\cdot\|_F$ denotes the Frobenius norm for matrices. These results
 1014 already indicate that the bandwidth parameter h exerts only a limited influence on the quality of the robust mean and
 1015 covariance estimators.

1016 To further quantify the practical impact of tuning parameters on our proposed tests, we conduct a sensitivity study
 1017 for the banding width h , the number of bootstrap iterations M , the regularization parameter λ in the SGLASSO step,
 1018 and the sample size (n, p) . The tables below report empirical size ($\hat{\alpha}_.$), empirical power ($\hat{\beta}_.$), and average runtime
 1019 (in seconds) in a representative one-sample setting with $n = 100$, $p = 120$, multivariate t_3 errors with covariance
 1020 $\Sigma_{ij} = (0.8^{|i-j|})_{1 \leq i,j \leq p}$, and a sparse mean shift

$$1021 \quad \boldsymbol{\mu} = \boldsymbol{\Sigma}^{1/2}(1, 1, 1, 0, \dots, 0)^\top$$

1022 under the alternative. Each entry is based on 500 Monte Carlo replications.

1023 Table 10 shows that the proposed tests are quite stable with respect to the banding width h . Across $h \in \{1, 2, 3, 4, 5, 10\}$, the empirical sizes of the max, sum, and Cauchy combination tests remain close to the nominal
 1024 level, and the powers are broadly comparable, with slightly better performance for moderate banding (e.g., $h = 3-5$).
 1025 The average runtime changes very little with h . This supports our default choice $h = 3$ and suggests that practitioners
 1026 can safely vary h within a moderate range without materially affecting performance.

1027 Table 11 examines the number of bootstrap iterations M . For $M \in \{20, 50, 100, 200\}$, the empirical sizes are again
 1028 close to 0.05 and the powers increase only mildly with M , while the runtime grows approximately linearly (from about
 1029 650 to 2300 seconds in this experiment). This indicates that M around several tens already yields stable behavior, and
 1030 our default $M = 50$ represents a reasonable compromise between accuracy and computational cost.

1031 Table 12 studies the SGLASSO regularization parameter λ . We find that overly small regularization (e.g., $\lambda = 0.05$)
 1032 leads to noticeable size distortion and very high rejection probabilities, whereas moderate to larger values ($\lambda = 0.1, 0.2, 0.3$) keep empirical size closer to the nominal level but with some loss of power when λ becomes too large.
 1033 The theoretically motivated choice $\lambda = 0.1$ lies in a region where both size and power are well behaved, and runtime
 1034 decreases slightly as λ increases. These results suggest that practitioners should avoid very small λ , and that a range
 1035 around the default (e.g., λ between 0.1 and 0.2) is acceptable in practice.

1036 Finally, Table 13 reports average runtime for several combinations of (n, p) . For the range of n considered, the runtime
 1037 varies only mildly with n at fixed p , whereas it increases substantially with p , reflecting that the computational cost

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
is dominated by operations on $p \times p$ covariance and precision matrices. This provides a concrete indication of the scalability of the proposed procedures: they are feasible for moderate to high dimensions, with computational burden growing primarily in p rather than n .

1043 Overall, these sensitivity results indicate that (i) the proposed tests are reasonably robust to moderate perturbations of
1044 h , M , and λ around the recommended defaults, and (ii) the computational cost behaves in a predictable way, which
1045 we believe will help practitioners choose tuning parameters and anticipate run times in their own applications.

Table 10: Sensitivity to banding width h .

h	$\hat{\alpha}_{\max}$	$\hat{\alpha}_{\text{sum}}$	$\hat{\alpha}_{\text{cc}}$	$\hat{\beta}_{\max}$	$\hat{\beta}_{\text{sum}}$	$\hat{\beta}_{\text{cc}}$	runtime
1	0.042	0.046	0.050	0.550	0.392	0.572	946.28
2	0.048	0.044	0.052	0.488	0.378	0.548	934.95
3	0.056	0.048	0.052	0.534	0.440	0.591	933.89
4	0.054	0.044	0.048	0.548	0.446	0.626	925.86
5	0.054	0.042	0.044	0.556	0.480	0.603	928.32
10	0.046	0.066	0.054	0.545	0.546	0.644	930.70

Table 11: Sensitivity to the number of bootstrap iterations M .

M	$\hat{\alpha}_{\max}$	$\hat{\alpha}_{\text{sum}}$	$\hat{\alpha}_{\text{cc}}$	$\hat{\beta}_{\max}$	$\hat{\beta}_{\text{sum}}$	$\hat{\beta}_{\text{cc}}$	runtime
20	0.040	0.050	0.049	0.478	0.354	0.584	655.14
50	0.056	0.048	0.052	0.534	0.440	0.594	933.89
100	0.054	0.052	0.052	0.550	0.406	0.584	1385.56
200	0.062	0.050	0.058	0.548	0.418	0.582	2316.18

Table 12: Sensitivity to the regularization parameter λ .

λ	$\hat{\alpha}_{\max}$	$\hat{\alpha}_{\text{sum}}$	$\hat{\alpha}_{\text{cc}}$	$\hat{\beta}_{\max}$	$\hat{\beta}_{\text{sum}}$	$\hat{\beta}_{\text{cc}}$	runtime
0.05	0.172	0.314	0.258	0.724	0.884	0.878	1082.52
0.1	0.056	0.048	0.052	0.544	0.466	0.562	933.89
0.2	0.046	0.067	0.066	0.424	0.364	0.474	794.08
0.3	0.046	0.103	0.078	0.382	0.402	0.470	737.93

E PROOFS OF THEORETICAL RESULTS

1074 Recall that for $i = 1, 2, \dots, n$, $\mathbf{U}_i = U(\boldsymbol{\varepsilon}_i) = U\{\boldsymbol{\Omega}^{1/2}(\mathbf{X}_i - \boldsymbol{\mu})\}$ and $r_i = \|\boldsymbol{\varepsilon}_i\| = \|\boldsymbol{\Omega}^{1/2}(\mathbf{X}_i - \boldsymbol{\mu})\|$ as the scale-
1075 invariant spatial-sign and radius of $\mathbf{X}_i - \boldsymbol{\mu}$, where $U(\mathbf{X}) = \mathbf{X}/\|\mathbf{X}\| \mathbb{I}(\mathbf{X} \neq 0)$ is the multivariate sign function of
1076 \mathbf{X} , with $\mathbb{I}(\cdot)$ being the indicator function. The moments of r_i is defined as $\zeta_k = \mathbb{E}(r_i^{-k})$. We denote the estimated
1077 version $\hat{\mathbf{U}}_i$ and \hat{r}_i as $\hat{r}_i = \|\hat{\boldsymbol{\Omega}}^{1/2}(\mathbf{X}_i - \boldsymbol{\mu})\|$ and $\hat{U}_i = \hat{\boldsymbol{\Omega}}^{1/2}(\mathbf{X}_i - \boldsymbol{\mu})/\|\hat{\boldsymbol{\Omega}}^{1/2}(\mathbf{X}_i - \boldsymbol{\mu})\|$, respectively, $i = 1, 2, \dots, n$.
1078 Finally, we denote various positive constants by C, C_1, C_2, \dots without mentioning this explicitly.

E.1 THE LEMMAS TO BE USED

1082 The following result is a one-sample special case of Lemma 1 in Feng et al. (2016).

1083 **Lemma 3.** *Under Assumption 1, for any matrix \mathbf{M} , we have*

$$1084 \mathbb{E}[\{U(\boldsymbol{\varepsilon}_i)^\top \mathbf{M} U(\boldsymbol{\varepsilon}_i)\}^2] = O\{p^{-2} \text{tr}(\mathbf{M}^\top \mathbf{M})\}.$$

1086 As it plays a key role in our analysis, we restate Theorem 1 from Lu & Feng (2025) below.

1088 **Lemma 4.** *Under Assumptions 1-4, $\hat{\boldsymbol{\Omega}}$ defined in Lemma 1 satisfies the following property. When n, p are sufficiently
1089 large, there exist constants $C_{\eta, T}$ and C , such that if we pick*

$$1090 \lambda_n = T \left\{ \frac{\sqrt{2}C(8 + \eta^2 C_{\eta, T})}{\eta^2} \sqrt{\frac{\log p}{n}} + \frac{C_{\eta, T}}{\sqrt{p}} \right\},$$

1092
1093
1094
1095
1096
1097
1098
1099 Table 13: Average runtime (seconds) for different (n, p) .

	$n = 100$	$n = 200$	$n = 400$	$n = 600$
$p = 120$	24.29	23.35	23.67	23.35
$p = 240$	186.01	181.78	165.88	157.70
$p = 480$	1921.63	1506.36	1405.67	1358.17

1100 with probability larger than $1 - 2p^{-2}$, the following inequalities hold:
1101
1102
1103
1104
1105

$$\begin{aligned}\|\hat{\Omega} - \Omega\|_\infty &\leq 4\|\Omega\|_{L_1}\lambda_n, \\ \|\hat{\Omega} - \Omega\|_{\text{op}} &\leq \|\hat{\Omega} - \Omega\|_{L_1} \leq C_4\lambda_n^{1-q}s_0(p), \\ p^{-1}\|\hat{\Omega} - \Omega\|_F^2 &\leq C_5\lambda_n^{2-q}s_0(p),\end{aligned}$$

1106 where $C_4 \leq (1 + 2^{1-q} + 3^{1-q})(4\|\Omega\|_{L_1})^{1-q}$ and $C_5 \leq 4\|\Omega\|_{L_1}C_4$.
1107
1108
1109
1110

1111 In fact, Theorem 1 from Lu & Feng (2025) and this Lemma are not fundamentally the same. However, our algorithm is actually not sensitive to bandwidth choice. When the initial value is well-chosen, $pn^{-1}\sum_{i=1}^n U\{\hat{\epsilon}_i^{(k)}\}U\{\hat{\epsilon}_i^{(k)}\}^\top \approx I$, so a very small bandwidth is also acceptable. In this case, it can be regarded as projecting $n^{-1}\sum_{i=1}^n U\{\hat{\epsilon}_i^{(k)}\}U\{\hat{\epsilon}_i^{(k)}\}^\top$ onto the subspace where its true value resides.
1112
1113

1114 **Lemma 5.** Define a random matrix $\hat{\mathbf{Q}} = n^{-1}\sum_{i=1}^n \hat{r}_i^{-1}\hat{U}_i\hat{U}_i^\top \in \mathbb{R}^{p \times p}$, and let $\hat{\mathbf{Q}}_{jl}$ denote its (j, l) -th element. Assume $\lambda_n^{1-q}s_0(p)(\log p)^{1/2} = o(1)$, and satisfy Assumptions 1-4. Then we have

$$|\hat{\mathbf{Q}}_{jl}| \lesssim p^{-3/2}\mathbb{I}(j = l) + O_p\left\{n^{-1/2}p^{-3/2} + \lambda_n^{1-q}s_0(p)p^{-3/2}\right\}.$$

1115 Here, the symbol \lesssim has been defined in the *Notations at the end of Section 1*.
1116

1117 *Proof.* Denote $\hat{\mathbf{I}} = \hat{\Omega}^{1/2}\Sigma^{1/2}$. Set $\hat{\mathbf{I}}_i^\top$ and Ω_i^\top be the i th row of $\hat{\mathbf{I}}$ and Ω respectively.
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

$$\begin{aligned}\hat{\mathbf{Q}}_{jl} &= \frac{1}{n} \sum_{i=1}^n \hat{r}_i^{-1} \hat{U}_{ij} \hat{U}_{il} \\ &= \frac{1}{n} \sum_{i=1}^n \hat{r}_i^{-3} \hat{\mathbf{I}}_j^\top \mathbf{\epsilon}_i \hat{\mathbf{I}}_l^\top \mathbf{\epsilon}_i \\ &= \frac{1}{n} \sum_{i=1}^n \|\hat{\mathbf{I}}\mathbf{\epsilon}_i\|^{-3} (\hat{\mathbf{I}}_j^\top \mathbf{\epsilon}_i) (\hat{\mathbf{I}}_l^\top \mathbf{\epsilon}_i) \\ &= A_1 + A_2 + A_3,\end{aligned}$$

1128 where A_1 , A_2 and A_3 are defined as follows
1129
1130
1131
1132
1133
1134
1135
1136
1137

$$\begin{aligned}A_1 &= \frac{1}{n} \sum_{i=1}^n \left(\|\hat{\mathbf{I}}\mathbf{\epsilon}_i\|^{-3} - \|\mathbf{I}\mathbf{\epsilon}_i\|^{-3} \right) (\hat{\mathbf{I}}_j^\top \mathbf{\epsilon}_i) (\hat{\mathbf{I}}_l^\top \mathbf{\epsilon}_i); \\ A_2 &= \frac{1}{n} \sum_{i=1}^n \left(\|\mathbf{I}\mathbf{\epsilon}_i\|^{-3} - \zeta_3 \right) (\hat{\mathbf{I}}_j^\top \mathbf{\epsilon}_i) (\hat{\mathbf{I}}_l^\top \mathbf{\epsilon}_i); \\ A_3 &= \frac{1}{n} \sum_{i=1}^n \zeta_3 (\hat{\mathbf{I}}_j^\top \mathbf{\epsilon}_i) (\hat{\mathbf{I}}_l^\top \mathbf{\epsilon}_i).\end{aligned}$$

Given Lemma 4 and under Assumption 2, we obtain that
1138
1139
1140
1141
1142
1143

$$\begin{aligned}\|\hat{\mathbf{I}}\mathbf{\epsilon}_i\|^2 &= \mathbf{\epsilon}_i^\top \Sigma^{1/2} (\hat{\Omega} - \Omega) \Sigma^{1/2} \mathbf{\epsilon}_i + r_i^2 \\ &\leq r_i^2 + (\mathbf{\epsilon}_i^\top \Sigma \mathbf{\epsilon}_i) \|\hat{\Omega} - \Omega\|_{\text{op}} \\ &\leq r_i^2 + \eta^{-1} r_i^2 \|\hat{\Omega} - \Omega\|_{\text{op}} \\ &\doteq r_i^2 (1 + H),\end{aligned}$$

1144 where $H = \eta^{-1} \|\hat{\Omega} - \Omega\|_{op} = O_p\{\lambda_n^{1-q} s_0(p)\}$. Therefore, for any integer k ,

$$\begin{aligned} 1146 \|\hat{\mathbf{I}}\boldsymbol{\varepsilon}_i\|^k &= \{\boldsymbol{\varepsilon}_i^T \Sigma^{1/2} (\hat{\Omega} - \Omega) \Sigma^{1/2} \boldsymbol{\varepsilon}_i + r_i^2\}^{k/2} \\ 1147 &\leq r_i^k (1 + H)^{k/2} \\ 1148 &:= r_i^k (1 + H_k), \end{aligned} \tag{11}$$

1150 where $H_k = (1 + H)^{k/2} - 1 = O_p\{\lambda_n^{1-q} s_0(p)\}$.

1151 Similar to the proof of Lemma A3 in Cheng et al. (2023), we have

$$\begin{aligned} 1153 \mathbb{E}(A_1) &= \mathbb{E} \left\{ \frac{1}{n} \sum_{i=1}^n \left(\|\hat{\mathbf{I}}\boldsymbol{\varepsilon}_i\|^{-3} - \|\mathbf{I}\boldsymbol{\varepsilon}_i\|^{-3} \right) (\hat{\mathbf{I}}_j^\top \boldsymbol{\varepsilon}_i) (\hat{\mathbf{I}}_l^\top \boldsymbol{\varepsilon}_i) \right\} \\ 1154 &= \mathbb{E} \left\{ \frac{1}{n} \sum_{i=1}^n \left(\|\boldsymbol{\varepsilon}_i\|^{-3} H_{-3} \right) (\hat{\mathbf{I}}_j^\top \boldsymbol{\varepsilon}_i) (\hat{\mathbf{I}}_l^\top \boldsymbol{\varepsilon}_i) \right\} \\ 1155 &= \mathbb{E} \{(A_2 + A_3) H_{-3}\}. \end{aligned}$$

1160 Firstly, notice that,

$$\begin{aligned} 1162 \hat{\mathbf{I}}_j^\top \boldsymbol{\varepsilon}_i &= (\hat{\mathbf{I}} - \mathbf{I})_j^\top \boldsymbol{\varepsilon}_i + \varepsilon_{ij} \\ 1163 &= (\hat{\Omega}^{1/2} - \Omega^{1/2})_j^\top \Sigma^{1/2} \boldsymbol{\varepsilon}_i + \varepsilon_{ij}, \end{aligned}$$

1164 thus,

$$\begin{aligned} 1166 \hat{\mathbf{I}}_j^\top \boldsymbol{\varepsilon}_i - \varepsilon_{ij} &= \frac{1}{2} \{ \Omega^{-1/2} (\hat{\Omega} - \Omega) \}_j^\top \Sigma^{1/2} \boldsymbol{\varepsilon}_i + o_p[\{ \Omega^{-1/2} (\hat{\Omega} - \Omega) \}_j^\top \Sigma^{1/2} \boldsymbol{\varepsilon}_i] \\ 1167 &\lesssim \|\Omega^{-1/2}\|_{L_1} \|\hat{\Omega} - \Omega\|_{L_1} \|\Sigma^{1/2}\|_{L_1} \|r_i \Sigma^{1/2} \mathbf{U}_i\|_\infty \\ 1168 &= O_p\{\lambda_n^{1-q} s_0(p) (\log p)^{1/2}\} = o_p(1). \\ 1169 \\ 1170 \end{aligned}$$

1171 In the above equation, the second to last equation from the following facts: (1) Since Σ is a positive define symmetric
1172 matrix, and under the Assumption 1, we have $\|\Omega^{-1/2}\|_{L_1} \leq \{\lambda_{\max}(\Sigma)\} \|\Sigma\|_{L_1}^{1/2} = O(1)$. (2) Furthermore, accord-
1173 ing to the second formula of Lemma 4, $\|\hat{\Omega} - \Omega\|_{L_1} = O_p\{\lambda_n^{1-q} s_0(p)\}$. (3) As for \mathbf{U}_i is uniformly distributed on a
1174 p-dimensional unit sphere, $\|\mathbf{U}_i\|_\infty = O_p(\sqrt{\log p/p})$ and $r_i = O_p(\sqrt{p})$, we have $\|r_i \Sigma^{1/2} \mathbf{U}_i\|_\infty = O_p\{(\log p)^{1/2}\}$.
1175

1176 Next, we analyze A_2 and A_3 . Since $\mathbb{E}(r_i^2) = p$,

$$\begin{aligned} 1177 A_2 &= \frac{1}{n} \sum_{i=1}^n (\|\mathbf{I}\boldsymbol{\varepsilon}_i\|^{-3} - \zeta_3) \{\varepsilon_{ij} + o_p(1)\} \{\varepsilon_{il} + o_p(1)\} \\ 1178 &= \frac{1}{n} \sum_{i=1}^n (r_i^{-1} - \zeta_3 r_i^2) U_{ij} U_{il} \mathbb{I}(j = l) + o_p(1) \\ 1179 &= \zeta_1 p^{-1} \mathbb{I}(j = l) + O_p(n^{-1/2} p^{-3/2}) \lesssim p^{-3/2} \mathbb{I}(j = l) + O_p(n^{-1/2} p^{-3/2}). \\ 1180 \\ 1181 \end{aligned}$$

1182 and

$$\begin{aligned} 1186 A_3 &= \frac{1}{n} \sum_{i=1}^n \zeta_3 \{\varepsilon_{ij} + o_p(1)\} \{\varepsilon_{il} + o_p(1)\} \\ 1187 &\lesssim p^{-3/2} \mathbb{I}(j = l) + O_p(n^{-1/2} p^{-3/2}). \\ 1188 \\ 1189 \end{aligned}$$

1190 It follows that,

$$1191 |\hat{\mathbf{Q}}_{jl}| \lesssim \left\{ p^{-3/2} \mathbb{I}(j = l) + O_p(n^{-1/2} p^{-3/2}) \right\} [1 + O_p\{\lambda_n^{1-q} s_0(p)\}]. \\ 1192$$

1193 Thus,

$$1194 |\hat{\mathbf{Q}}_{jl}| \lesssim p^{-3/2} \mathbb{I}(j = l) + O_p \left\{ n^{-1/2} p^{-3/2} + \lambda_n^{1-q} s_0(p) p^{-3/2} \right\}. \\ 1195$$

□

1196 **Lemma 6.** Suppose the Assumptions in Lemma 4 hold, then $\hat{\zeta}_1 \xrightarrow{p} \zeta_1$ as $(n, p) \rightarrow \infty$, where $\hat{\zeta}_1 =$
1197 $n^{-1} \sum_{i=1}^n \|\hat{\Omega}^{1/2}(\mathbf{X}_i - \hat{\mu}_1)\|^{-1}$.
1198

1199 *Proof.* Denote $\hat{\theta} = \hat{\mu} - \mu$.
1200

$$\begin{aligned} \|\hat{\Omega}^{1/2}(\mathbf{X}_i - \hat{\mu})\| &= \|\Omega^{1/2}(\mathbf{X}_i - \mu)\|(1 + r_i^{-2}\|(\hat{\Omega}^{1/2} - \Omega^{1/2})(\mathbf{X}_i - \mu)\|^2 \\ &\quad + r_i^{-2}\|\hat{\Omega}^{1/2}\hat{\theta}\|^2 + 2r_i^{-2}\mathbf{U}_i^\top(\hat{\Omega}^{1/2} - \Omega^{1/2})\Omega^{-1/2}\mathbf{U}_i) \\ &\quad - 2r_i^{-1}\mathbf{U}_i^\top\hat{\Omega}^{1/2}\hat{\theta} - 2r_i^{-1}\mathbf{U}_i\Omega^{-1/2}(\hat{\Omega}^{1/2} - \Omega^{1/2})\hat{\Omega}^{1/2}\hat{\theta})^{1/2}. \end{aligned}$$

1201 By combining the third expression in Lemma 4, the Taylor expansion and Markov's inequality, we obtain $r_i^{-2}\|(\hat{\Omega}^{1/2} -$
1202 $\Omega^{1/2})(\mathbf{X}_i - \mu)\|^2 = O_p\{\lambda_n^{2-q}s_0(p)\} = o_p(1)$. Based on Lemma 1 and under the Assumption 1, we have
1203 $r_i^{-2}\|\hat{\Omega}^{1/2}\hat{\theta}\|^2 = O_p(n^{-1}) = o_p(1)$. Similarly, by the Cauchy-Schwarz inequality, the other parts are also $o_p(1)$.
1204 So,

$$n^{-1} \sum_{i=1}^n \|\hat{\Omega}^{1/2}(\mathbf{X}_i - \hat{\mu})\|^{-1} = \left\{ n^{-1} \sum_{i=1}^n \|\Omega^{1/2}(\mathbf{X}_i - \mu)\|^{-1} \right\} \{1 + o_p(1)\}.$$

1205 Obviously, $\mathbb{E}(n^{-1} \sum_{i=1}^n r_i^{-1}) = \zeta_1$ and $\text{Var}(n^{-1} \zeta_1^{-1} \sum_{i=1}^n r_i^{-1}) = O(n^{-1})$. Finally, the proof is completed. \square
1206

1207 **Lemma 7.** Suppose the Assumptions in Lemma 6 hold with $s_0(p) \asymp p^{1-\delta}$ for some positive constant $\delta \leq 1/2$. Then, if
1208 $\log p = o(n^{1/3})$,

$$\begin{aligned} (i) \left\| n^{-1} \sum_{i=1}^n \zeta_1^{-1} \hat{\mathbf{U}}_i \right\|_\infty &= O_p\left\{n^{-1/2} \log^{1/2}(np)\right\}, \\ (ii) \left\| \zeta_1^{-1} n^{-1} \sum_{i=1}^n \delta_{1,i} \hat{\mathbf{U}}_i \right\|_\infty &= O_p(n^{-1}). \end{aligned} \tag{12}$$

1209 where $\delta_{1,i}$ is defined in the proof in Lemma 1.
1210

1211 *Proof.* From the proof of Lemma 5, we can see that $\hat{\mathbf{I}}_j^\top \boldsymbol{\varepsilon}_i - \varepsilon_{ij} = O_p\{\lambda_n^{1-q}s_0(p)(\log p)^{1/2}\}$. Moreover, for any
1212 integer k , we have $\hat{r}_i^k \leq r_i^k(1 + H_k)$, where $H_k = O_p\{\lambda_n^{1-q}s_0(p)\}$. Recall that $\hat{\mathbf{U}}_i = U\{\hat{\Omega}^{1/2}(\mathbf{X}_i - \mu)\}$, since
1213 $r_i^{-1} = O_p(p^{-1/2})$, then for any $j \in \{1, 2, \dots, p\}$,

$$\begin{aligned} \hat{U}_{ij} &= \hat{r}_i^{-1} \hat{\mathbf{I}}_j^\top \boldsymbol{\varepsilon}_i \leq r_i^{-1}(1 + H_{-1})\varepsilon_{ij} + r_i^{-1}(1 + H_{-1})(\hat{\mathbf{I}}_j^\top \boldsymbol{\varepsilon}_i - \varepsilon_{ij}) \\ &= (1 + H_{-1})U_{ij} + o_p\{(1 + H_{-1})U_{ij}\}. \end{aligned}$$

1214 Therefore, we obtain that $\hat{\mathbf{U}}_i \leq U_i(1 + H_{-1})$ for $i = 1, 2, \dots, n$ with the assumption $\lambda_n^{1-q}s_0(p)(\log p)^{1/2} = o(1)$.
1215 According to the Lemma A4 in Cheng et al. (2023), we have $\|n^{-1/2} \sum_{i=1}^n \zeta_1^{-1} \hat{\mathbf{U}}_i\|_\infty = O_p\{\log^{1/2}(np)\}$ and
1216 $\|n^{-1} \sum_{i=1}^n (\zeta_1^{-1} \hat{\mathbf{U}}_i)^2\|_\infty = O_p(1)$ with $\log p = o(n^{1/3})$. Therefore, we have

$$\begin{aligned} \left\| n^{-1} \sum_{i=1}^n \zeta_1^{-1} \hat{\mathbf{U}}_i \right\|_\infty &= \left\| n^{-1} \sum_{i=1}^n \zeta_1^{-1} (1 + H_{-1}) \mathbf{U}_i \right\|_\infty \\ &\leq |1 + H_{-1}| \cdot \left\| n^{-1} \sum_{i=1}^n \zeta_1^{-1} \mathbf{U}_i \right\|_\infty = O_p\left\{n^{-1/2} \log^{1/2}(np)\right\}. \end{aligned}$$

1217 Similarly

$$\begin{aligned} \left\| \zeta_1^{-1} n^{-1} \sum_{i=1}^n \delta_{1,i} \hat{\mathbf{U}}_i \right\|_\infty &\leq |1 + H_{-1}| \cdot \left\| \zeta_1^{-1} n^{-1} \sum_{i=1}^n \delta_{1,i} \mathbf{U}_i \right\|_\infty \\ &= O_p\{n^{-1}(1 + n^{-1/2} \log^{1/2} p)\} = O_p(n^{-1}). \end{aligned}$$

1218 \square

1248 The proof of Lemma 8 can be found in Appendix A of Chernozhukov et al. (2017).
1249

1250 **Lemma 8** (Nazarov's inequality). *Let $\mathbf{Y}_0 = (Y_{0,1}, Y_{0,2}, \dots, Y_{0,p})^\top$ be a centered Gaussian random vector in \mathbb{R}^p and
1251 $\mathbb{E}(Y_{0,j}^2) \geq b$ for all $j = 1, 2, \dots, p$ and some constant $b > 0$, then for every $y \in \mathbb{R}^p$ and $a > 0$,*

$$1252 \quad \mathbb{P}(\mathbf{Y}_0 \leq y + a) - \mathbb{P}(\mathbf{Y}_0 \leq y) \lesssim a \log^{1/2}(p).$$

1253 We restate Lemma S9 in Feng et al. (2024).

1254 **Lemma 9.** *For each $d \geq 1$, we have*

$$1255 \quad \lim_{p \rightarrow \infty} H(d, p) \leq \frac{1}{d!} \pi^{-d/2} e^{-dy/2},$$

1256 where $H(d, p) \doteq \sum_{1 \leq i_1 < \dots < i_d \leq p} \mathbb{P}(B_{i_1} \dots B_{i_d})$, $B_{i_d} = \{|y_{i_d}| \geq \sqrt{2 \log p - \log \log p + y}\}$, $\mathbf{Y} = (y_1, \dots, y_p)^\top \sim \mathcal{N}(\mathbf{0}, \mathbf{R})$.

1257 **Lemma 10.** *Let $\mathbf{u} \in \mathbb{R}^p$ be a random vector uniformly distributed on the unit sphere \mathbb{S}^{p-1} . $\mathbf{A} \in \mathbb{R}^{p \times p}$ is a non-random matrix. Then we have $\mathbb{E}(\mathbf{u}^\top \mathbf{A} \mathbf{u}) = p^{-1} \text{tr}(\mathbf{A})$ and $\text{Var}(\mathbf{u}^\top \mathbf{A} \mathbf{u}) \asymp p^{-2} \|\mathbf{A}\|_F^2$ as $p \rightarrow \infty$.*

1258 *Proof.* Since $\mathbb{E}(\mathbf{u} \mathbf{u}^\top) = p^{-1} \mathbf{I}_p$, then $\mathbb{E}(\mathbf{u}^\top \mathbf{A} \mathbf{u}) = \text{tr}\{\mathbf{A} \mathbb{E}(\mathbf{u} \mathbf{u}^\top)\} = p^{-1} \text{tr}(\mathbf{A})$. Let $\mathbf{A} = (a_{ij})_{i,j=1}^p$, $\mathbf{u} = (u_1, \dots, u_p)^\top$,

$$1259 \quad \begin{aligned} \mathbb{E}(\mathbf{u}^\top \mathbf{A} \mathbf{u})^2 &= \mathbb{E} \left(\sum_{i=1}^p a_{ii} u_i^2 + \sum_{1 \leq i \neq j \leq p} a_{ij} u_i u_j \right)^2 \\ 1260 &= \mathbb{E} \left\{ \sum_{i=1}^p a_{ii}^2 u_i^4 + \sum_{1 \leq i \neq j \leq p} (a_{ij}^2 + a_{ii} a_{jj}) u_i^2 u_j^2 \right\} \\ 1261 &= \frac{3}{p(p+2)} \sum_{i=1}^p a_{ii}^2 + \frac{1}{p(p+2)} \sum_{1 \leq i \neq j \leq p} a_{ij}^2 + a_{ii} a_{jj}, \end{aligned}$$

1262 where the last equality because that $(u_1^2, \dots, u_p^2)^\top$ follow a Dirichlet distribution $D_p(1/2, \dots, 1/2)$ (Oja, 2010). As a consequence, we have $\mathbb{E}(u_i^4) = 3/\{p(p+2)\}$ and $\mathbb{E}(u_i^2 u_j^2) = 1/\{p(p+2)\}$ for any $i \neq j$. Combining the two results above and after some straightforward calculations, we obtain $\text{Var}(\mathbf{u}^\top \mathbf{A} \mathbf{u}) \asymp p^{-2} \|\mathbf{A}\|_F^2$. \square

1263 **Lemma 11.** *Under Assumption 1, for $i = 1, 2$, we have*

$$1264 \quad \widehat{\frac{\text{tr}(\mathbf{\Xi}_i)}{\text{tr}(\mathbf{\Xi}_i)}} - 1 = O_p(n^{-1/2}).$$

1265 *Proof.* Recall that $\widehat{\text{tr}(\mathbf{\Xi}_i)}$ is defined as in Section A. Notice that, for $i = 1, 2$,

$$1266 \quad \begin{aligned} \widehat{\text{tr}(\mathbf{\Xi}_i)} &= \frac{1}{n_i - 1} \sum_{j=1}^{n_i} \mathbf{X}_{ij}^\top \mathbf{X}_{ij} - \frac{n_i}{n_i - 1} \bar{\mathbf{X}}_i^\top \bar{\mathbf{X}}_i \\ 1267 &= \frac{\sum_{j=1}^{n_i} \mathbf{X}_{ij}^\top \mathbf{X}_{ij} - \sum_{j,k} \mathbf{X}_{ij}^\top \mathbf{X}_{ik}}{n_i(n_i - 1)} \\ 1268 &= \frac{\sum_{j \neq k \neq l} -\mathbf{X}_{ij}^\top \mathbf{X}_{ik} + \mathbf{X}_{ik}^\top \mathbf{X}_{ik}}{n_i(n_i - 1)(n_i - 2)} \\ 1269 &= \frac{\sum_{j \neq k \neq l} \mathbf{X}_{ij}^\top \mathbf{X}_{il} - \mathbf{X}_{ik}^\top \mathbf{X}_{il} - \mathbf{X}_{ij}^\top \mathbf{X}_{ik} + \mathbf{X}_{ik}^\top \mathbf{X}_{ik}}{n_i(n_i - 1)(n_i - 2)} \\ 1270 &= \frac{\sum_{j \neq k \neq l} (\mathbf{X}_{ij} - \mathbf{X}_{ik})^\top (\mathbf{X}_{il} - \mathbf{X}_{ik})}{n_i(n_i - 1)(n_i - 2)}, \end{aligned}$$

1271 which implies that our estimate of $\text{tr}(\mathbf{\Xi}_i)$ is the same as that of Shen & Feng (2025). Thus, we complete the proof according to Lemma 8.4 of Shen & Feng (2025). \square

1300 We next restate Lemma 8.9 from Shen & Feng (2025).

1301 **Lemma 12.** *For positive matrix \mathbf{X}, \mathbf{Y} ,*

$$1303 \log |\mathbf{X}| \leq \log |\mathbf{Y}| + \text{tr}\{\mathbf{Y}^{-1}(\mathbf{X} - \mathbf{Y})\}.$$

1304 **E.2 PROOF OF MAIN LEMMAS**

1305 **Proof of Lemma 1.** As μ is a location parameter, we assume $\mu = 0$ without loss of generality. Note that given $\hat{\Omega}$, the
1306 estimator $\hat{\mu}$ satisfies

$$1309 \sum_{i=1}^n U\{\hat{\Omega}^{1/2}(\mathbf{X}_i - \hat{\mu})\} = 0.$$

1311 Therefore, the estimator $\hat{\mu}$ is defined as the minimizer of the following objective function:

$$1313 L(\boldsymbol{\theta}) = \sum_{i=1}^n \left\| \hat{\Omega}^{1/2}(\mathbf{X}_i - \boldsymbol{\theta}) \right\|. \quad (13)$$

1315 Our goal is find $b_{n,p}$ such that $\|\hat{\mu}\| = O_p(b_{n,p})$. The existence of a $b_{n,p}^{-1}$ -consistent local minimizer is implied by the
1316 fact that for an arbitrarily small $\varepsilon > 0$, there exist a sufficiently large constant C , which does no depend on n or p ,
1317 such that

$$1318 \liminf_n \mathbb{P} \left\{ \inf_{\mathbf{u} \in \mathbb{R}^p, \|\mathbf{u}\|=C} L(b_{n,p}\mathbf{u}) > L(\mathbf{0}) \right\} > 1 - \varepsilon. \quad (14)$$

1320 Firstly, we prove Equation (14) holds when $b_{n,p} = p^{1/2}n^{-1/2}$. Consider the expansion of $\|\hat{\Omega}^{1/2}(\mathbf{X}_i - b_{n,p}\mathbf{u})\|$:

$$1322 \|\hat{\Omega}^{1/2}(\mathbf{X}_i - b_{n,p}\mathbf{u})\| = \|\hat{\Omega}^{1/2}\mathbf{X}_i\| \left(1 - 2b_{n,p}\hat{r}_i^{-1}\mathbf{u}^\top \hat{\Omega}^{1/2}\hat{U}_i + b_{n,p}^2\hat{r}_i^{-2}\mathbf{u}^\top \hat{\Omega}\mathbf{u} \right)^{1/2}.$$

1324 Note that $b_{n,p}\hat{r}_i^{-1}\mathbf{u}^\top \hat{\Omega}^{1/2}\hat{U}_i = O_p(n^{-1/2})$ and $b_{n,p}^2\hat{r}_i^{-2}\mathbf{u}^\top \hat{\Omega}\mathbf{u} = O_p(n^{-1})$. These orders follow from the following
1325 argument. Since we already know that $\hat{r}_i^k \leq r_i^k(1 + H_k)$ and $\hat{U}_i \leq \mathbf{U}_i(1 + H_{-1})$ with $H_k = O_p\{\lambda_n^{1-q}s_0(p)\}$ for any
1326 integer k , thus,

$$1328 b_{n,p}\hat{r}_i^{-1}\mathbf{u}^\top \hat{\Omega}^{1/2}\hat{U}_i \leq b_{n,p}(1 + H_k)^2\hat{r}_i^{-1}\mathbf{u}^\top \hat{\Omega}^{1/2}\mathbf{U}_i + b_{n,p}(1 + H_k)^2\hat{r}_i^{-1}\mathbf{u}^\top (\hat{\Omega}^{1/2} - \Omega^{1/2})\mathbf{U}_i.$$

1329 For the first term, by independence between r_i and \mathbf{U}_i , we have $\mathbb{E}\{(r_i^{-1}\mathbf{u}^\top \hat{\Omega}^{1/2}\mathbf{U}_i)^2\} = \mathbb{E}(r_i^{-2})\mathbb{E}\{(\mathbf{u}^\top \hat{\Omega}^{1/2}\mathbf{U}_i)^2\} =$
1330 $\zeta_2 p^{-1} \text{tr}(\hat{\Omega})$, which implies that $\hat{r}_i^{-1}\mathbf{u}^\top \hat{\Omega}^{1/2}\hat{U}_i = O_p(p^{-1/2})$. Similarly, for the second term, applying Taylor expansion
1331 and Lemma 4 yields:

$$1333 \mathbb{E}\{r_i^{-1}\mathbf{u}^\top (\hat{\Omega}^{1/2} - \Omega^{1/2})\mathbf{U}_i\}^2 \lesssim p^{-2}\|\hat{\Omega} - \Omega\|_{op}^2 \leq p^{-2}\|\hat{\Omega} - \Omega\|_{op}^2 \lesssim p^{-2}\lambda_n^{2-2q}s_0^2(p),$$

1334 which implies that $r_i^{-1}\mathbf{u}^\top (\hat{\Omega}^{1/2} - \Omega^{1/2})\mathbf{U}_i = O_p\{p^{-1}\lambda_n^{1-q}s_0(p)\}$. Hence

$$1336 b_{n,p}\hat{r}_i^{-1}\mathbf{u}^\top \hat{\Omega}^{1/2}\hat{U}_i = O_p\{b_{n,p}p^{-1/2} + b_{n,p}p^{-1}\lambda_n^{1-q}s_0(p)\} \\ 1337 = O_p(n^{-1/2}).$$

1338 As the same way, we have $b_{n,p}^2\hat{r}_i^{-2}\mathbf{u}^\top \hat{\Omega}\mathbf{u} = O_p(n^{-1})$. Then we have

$$1340 \|\hat{\Omega}^{1/2}(\mathbf{X}_i - b_{n,p}\mathbf{u})\| = \|\hat{\Omega}^{1/2}\mathbf{X}_i\| - b_{n,p}\mathbf{u}^\top \hat{\Omega}^{1/2}\hat{U}_i \\ 1341 + \frac{1}{2}b_{n,p}^2\hat{r}_i^{-2}\mathbf{u}^\top \hat{\Omega}^{1/2}(\mathbf{I}_p - \hat{U}_i\hat{U}_i^\top)\hat{\Omega}^{1/2}\mathbf{u} + O_p(p^{1/2}n^{-3/2}).$$

1344 So, it can be easily seen

$$1346 p^{-1/2} \{L(b_{n,p}\mathbf{u}) - L(\mathbf{0})\} \\ 1347 = -n^{-1/2}\mathbf{u}^\top \hat{\Omega}^{1/2} \sum_{i=1}^n \hat{U}_i \\ 1348 + 2^{-1}p^{1/2}\mathbf{u}^\top \hat{\Omega}^{1/2} \left\{ n^{-1} \sum_{i=1}^n (\hat{r}_i^{-1}\mathbf{I}_p - \hat{r}_i^{-1}\hat{U}_i\hat{U}_i^\top) \right\} \hat{\Omega}^{1/2}\mathbf{u} + O_p(n^{-1/2}). \quad (15)$$

1352 Notice that $\mathbb{E} \left(\|n^{-1/2} \sum_{i=1}^n \hat{U}_i\|^2 \right) = O(1)$ and $\text{Var} \left(\|n^{-1/2} \sum_{i=1}^n \hat{U}_i\|^2 \right) = O(1)$. Accordingly

$$1355 \quad \left| -n^{-1/2} \mathbf{u}^\top \hat{\Omega}^{1/2} \sum_{i=1}^n \hat{U}_i \right| \leq \left\| \hat{\Omega}^{1/2} \mathbf{u} \right\| \left\| n^{-1/2} \sum_{i=1}^n \hat{U}_i \right\| = O_p(1).$$

1357 Recall the definition $\hat{\mathbf{Q}} = n^{-1} \sum_{i=1}^n \hat{r}_i^{-1} \hat{U}_i \hat{U}_i^\top$ in Lemma 5. After some tedious calculation, we can obtain that
1358 $\mathbb{E}\{\text{tr}(\hat{\mathbf{Q}}^2)\} = O\{p^{-2} + n^{-1}p^{-1} + \lambda_n^{2-2q}s_0^2(p)p^{-1}\}$. Then $\mathbb{E}(\mathbf{u}^\top \hat{\Omega}^{1/2} \hat{\mathbf{Q}} \hat{\Omega}^{1/2} \mathbf{u})^2 \leq \mathbb{E}\left\{(\mathbf{u}^\top \hat{\Omega} \mathbf{u})^2 \text{tr}(\hat{\mathbf{Q}}^2)\right\} =$
1359 $O\{p^{-2} + n^{-1}p^{-1} + \lambda_n^{2-2q}s_0^2(p)p^{-1}\}$, which leads to $\mathbf{u}^\top \hat{\Omega}^{1/2} \hat{\mathbf{Q}} \hat{\Omega}^{1/2} \mathbf{u} = O_p\{p^{-1} + n^{-1/2}p^{-1/2} + \lambda_n^{1-q}s_0(p)p^{-1/2}\}$.
1360 Thus we have

$$1363 \quad p^{1/2} \mathbf{u} \hat{\Omega}^{1/2} \left\{ \frac{1}{n} \sum_{i=1}^n \left(\hat{r}_i^{-1} \mathbf{I}_p - \hat{r}_i^{-1} \hat{U}_i \hat{U}_i^\top \right) \right\} \hat{\Omega}^{1/2} \mathbf{u} \\ 1364 = p^{1/2} n^{-1} \sum_{i=1}^n \hat{r}_i^{-1} \mathbf{u} \hat{\Omega} \mathbf{u} + o_p(1),$$

1365 where we use the fact that $n^{-1} \sum_{i=1}^n \hat{r}_i^{-1} = \zeta_1 + O_p\{n^{-1/2}p^{-1/2} + \lambda_n^{1-q}s_0(p)p^{-1/2}\}$. By choosing a sufficient
1366 large C , the second term in (15) dominates the first term uniformly in $\|\mathbf{u}\| = C$. Hence, (15) holds and accordingly
1367 $\hat{\mu} = O_p(b_{n,p})$. The estimator $\hat{\mu}$ satisfies $\sum_{i=1}^n U\{\hat{\Omega}^{1/2}(\mathbf{X}_i - \hat{\mu})\} = 0$, which is is equivalent to

$$1373 \quad n^{-1} \sum_{i=1}^n (\hat{U}_i - \hat{r}_i^{-1} \hat{\Omega}^{1/2} \hat{\mu}) (1 - 2\hat{r}_i^{-1} \hat{U}_i^\top \hat{\Omega}^{1/2} \hat{\mu} + \hat{r}_i^{-2} \hat{\mu}^\top \hat{\Omega} \hat{\mu})^{-1/2} = 0.$$

1375 By the first-Taylor expansion, the above equation can be rewritten as:

$$1377 \quad n^{-1} \sum_{i=1}^n (\hat{U}_i - \hat{r}_i^{-1} \hat{\Omega}^{1/2} \hat{\mu}) \left(1 + \hat{r}_i^{-1} \hat{U}_i^\top \hat{\Omega}^{1/2} \hat{\mu} - 2^{-1} \hat{r}_i^{-2} \left\| \hat{\Omega}^{1/2} \hat{\mu} \right\|^2 + \delta_{1,i} \right) = 0,$$

1380 where $\delta_{1,i} = O_p\{(\hat{r}_i^{-1} \hat{U}_i^\top \hat{\Omega}^{1/2} \hat{\mu} - 2^{-1} \hat{r}_i^{-2} \left\| \hat{\Omega}^{1/2} \hat{\mu} \right\|^2)^2\} = O_p(n^{-1})$, which implies

$$1382 \quad \frac{1}{n} \sum_{i=1}^n (1 - 2^{-1} \hat{r}_i^{-2} \hat{\mu}^\top \hat{\Omega} \hat{\mu} + \delta_{1,i}) \hat{U}_i + \frac{1}{n} \sum_{i=1}^n \hat{r}_i^{-1} (\hat{U}_i^\top \hat{\Omega}^{1/2} \hat{\mu}) \hat{U}_i \\ 1383 = \frac{1}{n} \sum_{i=1}^n (1 + \delta_{1,i} + \delta_{2,i}) \hat{r}_i^{-1} \hat{\Omega}^{1/2} \hat{\mu}, \quad (16)$$

1388 where $\delta_{2,i} = O_p(\hat{r}_i^{-1} \hat{U}_i^\top \hat{\Omega}^{1/2} \hat{\mu} - 2^{-1} \hat{r}_i^{-2} \left\| \hat{\Omega}^{1/2} \hat{\mu} \right\|^2) = O_p(\delta_{1,i}^{1/2})$. By Assumption 1 and Markov inequality, we have
1389 that: $\max r_i^{-2} = O_p(p^{-1}n^{1/2})$, $\max \delta_{1,i} = O_p\left(\left\| \hat{\Omega}^{1/2} \hat{\mu} \right\|^2 \max \hat{r}_i^{-2}\right) = O_p(n^{-1/2})$ and $\max \delta_{2,i} = O_p(n^{-1/4})$.
1390 Considering the second term in Equation (16),

$$1392 \quad \frac{1}{n} \sum_{i=1}^n \hat{r}_i^{-1} (\hat{U}_i^\top \hat{\Omega}^{1/2} \hat{\mu}) \hat{U}_i = \frac{1}{n} \sum_{i=1}^n \hat{r}_i^{-1} (\hat{U}_i \hat{U}_i^\top \hat{\Omega}^{1/2}) \hat{\mu} = \hat{\mathbf{Q}} \hat{\Omega}^{1/2} \hat{\mu}.$$

1395 From Lemma 5 we acquire

$$1397 \quad |\hat{\mathbf{Q}}_{jl}| \lesssim p^{-3/2} \mathbb{I}(j = l) + O_p\left\{n^{-1/2}p^{-3/2} + \lambda_n^{1-q}s_0(p)p^{-3/2}\right\},$$

1398 and this implies that,

$$1400 \quad \left\| \hat{\mathbf{Q}} \hat{\Omega}^{1/2} \hat{\mu} \right\|_\infty \\ 1401 \leq \left\| \hat{\mathbf{Q}} \right\|_1 \left\| \hat{\Omega}^{1/2} \hat{\mu} \right\|_\infty \\ 1402 = O_p\left\{n^{-1/2}p^{-1/2} + \lambda_n^{1-q}s_0(p)p^{-1/2}\right\} \left\| \hat{\Omega}^{1/2} \hat{\mu} \right\|_\infty. \quad (17)$$

1404 According to Lemma 7, we obtain
1405

$$1406 \quad \left\| \zeta_1^{-1} n^{-1} \sum_{i=1}^n \hat{r}_i^{-2} \|\hat{\Omega}^{1/2} \hat{\mu}\|^2 \hat{U}_i \right\|_{\infty} \leq |1 + H_u| \cdot \left\| \zeta_1^{-1} n^{-1} \sum_{i=1}^n \hat{r}_i^{-2} \|\hat{\Omega}^{1/2} \hat{\mu}\|^2 U_i \right\|_{\infty} \\ 1407 \\ 1408 = O_p(n^{-1}) [1 + O_p\{\lambda_n^{1-q} s_0(p) (\log p)^{1/2}\}] = O_p(n^{-1}).$$

1409 Using the fact that $\zeta_1^{-1} n^{-1} \sum_{i=1}^n r_i^{m-1} = 1 + O_p(n^{-1/2})$ and Equation (11), we have
1410

$$1411 \quad \frac{1}{n} \zeta_1^{-1} \sum_{i=1}^n \hat{r}_i^{-1} = \frac{1}{n} \zeta_1^{-1} \sum_{i=1}^n r_i^{-1} [1 + O_p\{\lambda_n^{1-q} s_0(p)\}] \\ 1412 \\ 1413 = \left\{ 1 + O_p(n^{-1/2}) \right\} [1 + O_p\{\lambda_n^{1-q} s_0(p)\}] \\ 1414 \\ 1415 = 1 + O_p\{\lambda_n^{1-q} s_0(p)\}.$$

1416 We final obtain:
1417

$$1418 \quad \left\| \hat{\Omega}^{1/2} \hat{\mu} \right\|_{\infty} \lesssim \left\| \zeta_1^{-1} n^{-1} \sum_{i=1}^n \hat{U}_i \right\|_{\infty} + \zeta_1^{-1} \left\| \hat{\mathbf{Q}} \hat{\Omega}^{1/2} \hat{\mu} \right\|_{\infty} \\ 1419 \\ 1420 \lesssim p^{-1} \left\| \hat{\Omega}^{1/2} \hat{\mu} \right\|_{\infty} + O_p\left\{ n^{-1/2} \log^{1/2}(np) \right\} \\ 1421 \\ 1422 + O_p\left\{ n^{-1/2} p^{-1} + \lambda_n^{1-q} s_0(p) p^{-1} \right\} \left\| \hat{\Omega}^{1/2} \hat{\mu} \right\|_{\infty}.$$

1423 Thus we conclude that:
1424

$$1425 \quad \left\| \hat{\Omega}^{1/2} \hat{\mu} \right\|_{\infty} = O_p\{n^{-1/2} \log^{1/2}(np)\},$$

1426 as $s_0(p) \asymp p^{1-\delta}$. In addition, by equation (17) we have
1427

$$1428 \quad \left\| \zeta_1^{-1} \hat{\mathbf{Q}} \hat{\Omega}^{1/2} \hat{\mu} \right\|_{\infty} = O_p\left[p^{1/2} \{n^{-1/2} p^{-1/2} + \lambda_n^{1-q} s_0(p) p^{-1/2}\} n^{-1/2} \log^{1/2}(np) \right] \\ 1429 \\ 1430 = O_p\left\{ n^{-1} \log^{1/2}(np) + n^{-1/2} \lambda_n^{1-q} s_0(p) \log^{1/2}(np) \right\},$$

1431 and
1432

$$1433 \quad n^{-1} \sum_{i=1}^n \hat{r}_i^{-1} (1 + \delta_{1,i} + \delta_{2,i}) \\ 1434 \\ 1435 = \zeta_1 \left\{ 1 + O_p\left(n^{-1/4}\right) \right\} [1 + O_p\{\lambda_n^{1-q} s_0(p)\}] \\ 1436 \\ 1437 = \zeta_1 \left[1 + O_p\{n^{-1/4} + \lambda_n^{1-q} s_0(p)\} \right].$$

1438 Finally, we can write
1439

$$1440 \quad n^{1/2} \hat{\Omega}^{1/2} (\hat{\mu} - \mu) = n^{-1/2} \zeta_1^{-1} \sum_{i=1}^n U_i + C_n,$$

1441 where
1442

$$1443 \quad C_n = \zeta_1^{-1} \left\{ \left(-2^{-1} n^{-1/2} \sum_{i=1}^n \hat{r}_i^{-2} \hat{U}_i \right) \hat{\mu} \hat{\Omega} \hat{\mu} \right\} + \zeta_1^{-1} \left(n^{-1/2} \sum_{i=1}^n \delta_{1,i} \hat{U}_i \right) + \zeta_1^{-1} n^{1/2} \hat{\mathbf{Q}} \hat{\Omega}^{1/2} \hat{\mu} \\ 1444 \\ 1445 + n^{-1/2} \sum_{i=1}^n (\delta_{1,i} + \delta_{2,i}) \hat{r}_i^{-1} \hat{\Omega}^{1/2} \hat{\mu}.$$

1446 By previous discussion, we have
1447

$$1448 \quad \|C_n\|_{\infty} = O_p\left[n^{-1/2} + n^{-1/2} + n^{-1} \log^{1/2}(np) + n^{-1/2} \lambda_n^{1-q} s_0(p) \log^{1/2}(np) + \left\{ n^{-1/4} \right. \right. \\ 1449 \\ 1450 \quad \left. \left. + \lambda_n^{1-q} s_0(p) \right\} \log^{1/2}(np) \right] \\ 1451 = O_p\left\{ n^{-1/4} \log^{1/2}(np) + \lambda_n^{1-q} s_0(p) \log^{1/2}(np) \right\}.$$

1452 Then we complete the proof. □
1453

1456 **Proof of Lemma 2.** Let $L_{n,p} = n^{-1/4} \log^{1/2}(np) + \lambda_n^{1-q} s_0(p) \log^{1/2}(np)$, according to Lemma 1, for any sequence
1457 $\eta_n \rightarrow \infty$ and any $t \in \mathbb{R}^p$,

$$\begin{aligned} 1459 \quad \mathbb{P}\{n^{1/2}\hat{\Omega}^{1/2}(\hat{\mu} - \mu) \leq t\} &= \mathbb{P}\left(n^{-1/2}\zeta_1^{-1} \sum_{i=1}^n \mathbf{U}_i + C_n \leq t\right) \\ 1460 \quad &\leq \mathbb{P}\left(n^{-1/2}\zeta_1^{-1} \sum_{i=1}^n \mathbf{U}_i \leq t + \eta_n L_{n,p}\right) + \mathbb{P}(\|C_n\|_\infty > \eta_n L_{n,p}). \end{aligned}$$

1464 According to Lemma A4. in Cheng et al. (2023) and $\mathbb{E}\{(\zeta_1^{-1} U_{i,j})^4\} \lesssim 3$ and $\mathbb{E}\{(\zeta_1^{-1} U_{i,j})^2\} \gtrsim \bar{B}^{-2}$ uniformly for
1465 all $i = 1, 2, \dots, n$, $j = 1, 2, \dots, p$, the Gaussian approximation for independent partial sums in Koike (2021) yields:

$$\begin{aligned} 1467 \quad \mathbb{P}\left(n^{1/2}\zeta_1^{-1} \sum_{i=1}^n \mathbf{U}_i \leq t + \eta_n L_{n,p}\right) &\leq \mathbb{P}(\mathbf{Z} \leq t + \eta_n L_{n,p}) + O(\{n^{-1} \log^5(np)\}^{1/6}) \\ 1468 \quad &\leq \mathbb{P}(\mathbf{Z} \leq t) + O\{\eta_n L_{n,p} \log^{1/2}(p)\} + O[\{n^{-1} \log^5(np)\}^{1/6}], \end{aligned}$$

1471 where $\mathbf{Z} \sim \mathcal{N}(0, p^{-1}\zeta_1^{-2}\mathbf{I}_p)$, and the second inequality follows from Nazarov's inequality (Lemma 8). Thus,

$$\begin{aligned} 1473 \quad \mathbb{P}\{n^{1/2}\hat{\Omega}^{1/2}(\hat{\mu} - \mu) \leq t\} &\leq \mathbb{P}(\mathbf{Z} \leq t) + O\{\eta_n L_{n,p} \log^{1/2}(p)\} + O(\{n^{-1} \log^5(np)\}^{1/6}) \\ 1474 \quad &\quad + \mathbb{P}(\|C_n\|_\infty > \eta_n l_{n,p}). \end{aligned}$$

1476 On the other hand, we have

$$\mathbb{P}\{n^{1/2}\hat{\Omega}^{1/2}(\hat{\mu} - \mu) \leq t\} \geq \mathbb{P}(\mathbf{Z} \leq t) - O\{\eta_n L_{n,p} \log^{1/2}(p)\} - O(\{n^{-1} \log^5(np)\}^{1/6}) - \mathbb{P}(\|C_n\|_\infty > \eta_n l_{n,p}),$$

1479 where $\mathbb{P}(\|C_n\|_\infty > \eta_n l_{n,p}) \rightarrow 0$ as $n \rightarrow \infty$ by Lemma 1. Then we have that, if $\log p = o(n^{1/5})$,

$$\sup_{t \in \mathbb{R}^p} |\mathbb{P}\{n^{1/2}\hat{\Omega}^{1/2}(\hat{\mu} - \mu) \leq t\} - \mathbb{P}(\mathbf{Z} \leq t)| \rightarrow 0.$$

1483 Furthermore, by Corollary 3.1 in Chernozhukov et al. (2017), we have

$$\rho_n(\mathcal{A}^{s_i}) = \sup_{A \in \mathcal{A}^{s_i}} |\mathbb{P}\{n^{1/2}\hat{\Omega}^{1/2}(\hat{\mu} - \mu) \in A\} - \mathbb{P}(\mathbf{Z} \in A)| \rightarrow 0.$$

1486 The proof is thus complete. □

1488 E.3 PROOF OF MAIN THEOREMS

1490 **Proof of Theorem 1.** Recall that $\mathbf{Z} \sim \mathcal{N}(0, p\zeta_1^2\mathbf{I}_p)$. Under the null hypothesis, Theorem 1 in Cai et al. (2013) estab-
1491 lishes that as $p \rightarrow \infty$, we have

$$\mathbb{P}\left(p\zeta_1^2 \max_{1 \leq i \leq p} Z_i^2 - 2 \log p + \log \log p \leq x\right) \rightarrow F(x) = \exp\left(-\frac{1}{\sqrt{\pi}}e^{-x/2}\right),$$

1495 for any $x \in \mathbb{R}$. Thus, by applying the triangle inequality, using Lemma 6 and Corollary 1, we obtain that under the
1496 null hypothesis,

$$\begin{aligned} 1498 \quad &\left| \mathbb{P}\left(n \left\| \hat{\Omega}^{1/2}\hat{\mu} \right\|_\infty^2 \zeta_1^2 p - 2 \log p + \log \log p \leq x\right) - F(x) \right| \\ 1499 \quad &\leq \left| \mathbb{P}\left(n \left\| \hat{\Omega}^{1/2}\hat{\mu} \right\|_\infty^2 \zeta_1^2 p - 2 \log p + \log \log p \leq x\right) - F(x) \right| + o(1) \\ 1500 \quad &\leq \left| \mathbb{P}\left(n \left\| \hat{\Omega}^{1/2}\hat{\mu} \right\|_\infty^2 \zeta_1^2 p - 2 \log p + \log \log p \leq x\right) - \mathbb{P}\left(p\zeta_1^2 \max_{1 \leq i \leq p} Z_i^2 - 2 \log p + \log \log p \leq x\right) \right| \\ 1501 \quad &\quad + \left| \mathbb{P}\left(p\zeta_1^2 \max_{1 \leq i \leq p} Z_i^2 - 2 \log p + \log \log p \leq x\right) - F(x) \right| + o(1) \rightarrow 0, \end{aligned}$$

1507 for any $x \in \mathbb{R}$. □

1508 **Proof of Theorem 2.** Under alternative hypothesis for small α , we have
1509
1510

$$\begin{aligned}
& \mathbb{P}(T_{MAX} > q_{1-\alpha} \mid H_1) \\
&= \mathbb{P}\left(n\|\hat{\Omega}^{1/2}\hat{\mu}\|_\infty^2 \hat{\zeta}_1^2 p - 2\log p + \log \log p > q_{1-\alpha} \mid H_1\right) \\
&= \mathbb{P}\left(n^{1/2}\|\hat{\Omega}^{1/2}\hat{\mu}\|_\infty \hat{\zeta}_1 p^{1/2} > (2\log p + \log \log p + q_{1-\alpha})^{1/2} \mid H_1\right) \\
&\geq \mathbb{P}\left(n^{1/2}\|\hat{\Omega}^{1/2}\mu\|_\infty \hat{\zeta}_1 p^{1/2} - n^{1/2}\|\hat{\Omega}^{1/2}(\hat{\mu} - \mu)\|_\infty \hat{\zeta}_1 p^{1/2} > (2\log p + \log \log p + q_{1-\alpha})^{1/2} \mid H_1\right) \\
&= \mathbb{P}\left(n\|\hat{\Omega}^{1/2}(\hat{\mu} - \mu)\|_\infty^2 \hat{\zeta}_1^2 p - 2\log p + \log \log p \right. \\
&\quad \left. \leq n\|\hat{\Omega}^{1/2}\mu\|_\infty^2 \hat{\zeta}_1^2 p - 2(2\log p + \log \log p + q_{1-\alpha})^{1/2} n^{1/2} \|\hat{\Omega}^{1/2}\mu\|_\infty \hat{\zeta}_1 p^{1/2} + q_{1-\alpha} \mid H_1\right).
\end{aligned}$$

1521 By Lemma 4, Lemma 6 and Theorem 1, we have
1522

$$\begin{aligned}
& \mathbb{P}(T_{MAX} > q_{1-\alpha} \mid H_1) \\
&\leq \mathbb{P}\left(n\|\hat{\Omega}^{1/2}(\hat{\mu} - \mu)\|_\infty^2 \hat{\zeta}_1^2 p - 2\log p + \log \log p \right. \\
&\quad \left. \geq n\|\hat{\Omega}^{1/2}\mu\|_\infty^2 \hat{\zeta}_1^2 p - 2(2\log p + \log \log p + q_{1-\alpha})^{1/2} n^{1/2} \|\hat{\Omega}^{1/2}\mu\|_\infty \hat{\zeta}_1 p^{1/2} + q_{1-\alpha} \mid H_1\right) \\
&= \mathbb{P}\left(n\|\hat{\Omega}^{1/2}(\hat{\mu} - \mu)\|_\infty^2 \hat{\zeta}_1^2 p - 2\log p + \log \log p \right. \\
&\quad \left. \leq n\|\Omega^{1/2}\mu\|_\infty^2 \hat{\zeta}_1^2 p - 2(2\log p + \log \log p + q_{1-\alpha})^{1/2} n^{1/2} \|\Omega^{1/2}\mu\|_\infty \hat{\zeta}_1 p^{1/2} + q_{1-\alpha} + o(1) \mid H_1\right) \\
&= F\left(n\|\Omega^{1/2}\mu\|_\infty^2 \hat{\zeta}_1^2 p - 2(2\log p + \log \log p + q_{1-\alpha})^{1/2} n^{1/2} \|\Omega^{1/2}\mu\|_\infty \hat{\zeta}_1 p^{1/2} + q_{1-\alpha} + o(1)\right) + o(1) \rightarrow 1,
\end{aligned}$$

1533 when $\|\Omega^{1/2}\mu\|_\infty \geq \tilde{C}n^{-1/2}\{\log p - 2\log \log(1-\alpha)^{-1}\}^{1/2}$. □
1534

1535 **Proof of Theorem 3.** By Lemma 2, we have the Gaussian approximation
1536

$$\sup_{A \in \mathcal{A}^{re}} \left| \mathbb{P}\left(n^{1/2}p^{1/2}\zeta_1\hat{\Omega}^{1/2}\hat{\mu} \in A\right) - \mathbb{P}\left(\mathbf{G} + n^{1/2}p^{1/2}\zeta_1\hat{\Omega}^{1/2}\mu \in A\right) \right| \rightarrow 0,$$

1539 where $\mathbf{G} := p^{1/2}\zeta_1\mathbf{Z} \sim \mathcal{N}(0, \mathbf{I}_p)$. Then
1540

$$\begin{aligned}
& \sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\left\|n^{1/2}p^{1/2}\zeta_1\hat{\Omega}^{1/2}\hat{\mu}\right\|^2 \leq t\right) - \mathbb{P}\left(\left\|\mathbf{G} + n^{1/2}p^{1/2}\zeta_1\hat{\Omega}^{1/2}\mu\right\|^2 \leq t\right) \right| \\
&= \sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\left\|n^{1/2}p^{1/2}\zeta_1\hat{\Omega}^{1/2}\hat{\mu}\right\|^2 \leq t\right) - \mathbb{P}\left\{\chi^2\left(p, \left\|n^{1/2}p^{1/2}\zeta_1\hat{\Omega}^{1/2}\mu\right\|^2\right) \leq t\right\} \right| \\
&\rightarrow \sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\left\|n^{1/2}p^{1/2}\zeta_1\hat{\Omega}^{1/2}\hat{\mu}\right\|^2 \leq t\right) - \mathbb{P}\left\{\chi^2\left(p, \left\|n^{1/2}p^{1/2}\zeta_1\Omega^{1/2}\mu\right\|^2\right) \leq t\right\} \right| \\
&= \sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\frac{\left\|n^{1/2}p^{1/2}\zeta_1\hat{\Omega}^{1/2}\hat{\mu}\right\|^2 - p - \left\|n^{1/2}p^{1/2}\zeta_1\Omega^{1/2}\mu\right\|^2}{\sqrt{2p + 4\left\|n^{1/2}p^{1/2}\zeta_1\Omega^{1/2}\mu\right\|^2}} \leq t\right) \right. \\
&\quad \left. - \mathbb{P}\left\{\frac{\chi^2\left(p, \left\|n^{1/2}p^{1/2}\zeta_1\hat{\Omega}^{1/2}\mu\right\|^2\right) - p - \left\|n^{1/2}p^{1/2}\zeta_1\Omega^{1/2}\mu\right\|^2}{\sqrt{2p + 4\left\|n^{1/2}p^{1/2}\zeta_1\Omega^{1/2}\mu\right\|^2}} \leq t\right\} \right| \\
&= \sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\frac{\left\|n^{1/2}p^{1/2}\zeta_1\hat{\Omega}^{1/2}\hat{\mu}\right\|^2 - p - \left\|n^{1/2}p^{1/2}\zeta_1\Omega^{1/2}\mu\right\|^2}{\sqrt{2p + 4\left\|n^{1/2}p^{1/2}\zeta_1\Omega^{1/2}\mu\right\|^2}} \leq t\right) - \Phi(t) \right| \rightarrow 0,
\end{aligned}$$

1560 as $(n, p) \rightarrow \infty$. Therefore, under the null hypothesis, we have $T_{SUM} \xrightarrow{d} N(0, 1)$; Under the alternative hypothesis,
1561 assuming $\|n^{1/2}p^{1/2}\zeta_1\Omega^{1/2}\mu\|^2 = o(p)$, we have
1562

$$1563 \quad T_{SUM} - 2^{-1/2}np^{1/2}\zeta_1^2\mu^\top\Omega\mu \xrightarrow{d} \mathcal{N}(0, 1).$$

1565 Then we complete the proof. \square

1566 **Proof of Theorem 4.** Recall that Corollary 1, as $n \rightarrow \infty$, we have

$$1568 \quad \tilde{\rho}_{n,comb} = \sup_{t_1, t_2 \in \mathbb{R}} \left| \mathbb{P} \left(n^{1/2} \|\hat{\Omega}^{1/2}(\hat{\mu} - \mu)\|_\infty \leq t_1, n^{1/2} \|\hat{\Omega}^{1/2}(\hat{\mu} - \mu)\| \leq t_2 \right) \right. \\ 1569 \quad \left. - \mathbb{P} (\|Z\|_\infty \leq t_1, \|Z\| \leq t_2) \right| \rightarrow 0.$$

1573 By $\|\mu\|_\infty = o(n^{-1/2})$, $\|\mu\| = o(p^{1/4}n^{-1/2})$, Assumption 3 and Lemma 4 we have

$$1575 \quad \sup_{t_1, t_2 \in \mathbb{R}} \left| \mathbb{P} \left(n^{1/2}p^{1/2}\zeta_1\|\hat{\Omega}^{1/2}\hat{\mu}\|_\infty + o(1) \leq t_1, n^{1/2}p^{1/2}\zeta_1\|\hat{\Omega}^{1/2}\hat{\mu}\| + o(p^{1/2}) \leq t_2 \right) \right. \\ 1576 \quad \left. - \mathbb{P} \left(p^{1/2}\zeta_1\|Z\|_\infty \leq t_1, p^{1/2}\zeta_1\|Z\| \leq t_2 \right) \right| \rightarrow 0.$$

1577 Hence, applying the continuous mapping theorem, we obtain that

$$1580 \quad \sup_{t_1, t_2 \in \mathbb{R}} \left| \mathbb{P} (T_{MAX} + o(1) \leq t_1, T_{SUM} + o(1) \leq t_2) \right. \\ 1581 \quad \left. - \mathbb{P} \left(p\zeta_1^2\|Z\|_\infty^2 - 2\log p + \log\log p \leq t_1, (2p)^{-1/2}(p\zeta_1^2\|Z\|^2 - p) \leq t_2 \right) \right| \rightarrow 0.$$

1585 By Theorem 3 in Feng et al. (2024), we have $p^{1/2}\zeta_1\|Z\|_\infty^2 - 2\log p + \log\log p$ and $(2p)^{-1/2}(p\zeta_1^2\|Z\|^2 - p)$ are
1586 asymptotic independent as $p \rightarrow \infty$, so we have T_{MAX} and T_{SUM} are asymptotic independent as $n, p \rightarrow \infty$. \square

1588 **Proof of Theorem 5.** Set $Q(\mathbf{x}) = \Delta_d^2(\mathbf{x}) - c\varsigma_p$ and $\hat{Q}(\mathbf{x}) = \hat{\Delta}_d^2(\mathbf{x}) - c\hat{\varsigma}_p$. Thus we have

$$1590 \quad R_{HRQDA} - R_{QDA} \\ 1591 \quad = \int_{\hat{Q} < 0} \frac{1}{2} f_1(\mathbf{x}) d\mathbf{x} + \int_{\hat{Q} \geq 0} \frac{1}{2} f_2(\mathbf{x}) d\mathbf{x} - \left(\int_{Q < 0} \frac{1}{2} f_1(\mathbf{x}) d\mathbf{x} + \int_{Q \geq 0} \frac{1}{2} f_2(\mathbf{x}) d\mathbf{x} \right) \\ 1593 \quad = \int_{Q(\mathbf{x}) \geq 0} \frac{1}{2} \{f_1(\mathbf{x}) - f_2(\mathbf{x})\} d\mathbf{x} + \int_{\hat{Q}(\mathbf{x}) < 0} \frac{1}{2} \{f_1(\mathbf{x}) - f_2(\mathbf{x})\} d\mathbf{x}.$$

1596 Notice that $\int \frac{1}{2} \{f_1(\mathbf{x}) - f_2(\mathbf{x})\} d\mathbf{x} = 0$, we have

$$1598 \quad |R_{HRQDA} - R_{QDA}| \tag{18} \\ 1599 \quad = \left| \int_{Q(\mathbf{x}) \geq 0, \hat{Q}(\mathbf{x}) < 0} \frac{1}{2} \{f_1(\mathbf{x}) - f_2(\mathbf{x})\} d\mathbf{x} \right| \\ 1600 \quad \leq \frac{1}{2} \mathbb{E}_{\mathbf{x} \sim f_1} \mathbf{1}\{0 \leq Q(\mathbf{x}) < Q(\mathbf{x}) - \hat{Q}(\mathbf{x})\} + \frac{1}{2} \mathbb{E}_{\mathbf{x} \sim f_2} \mathbf{1}\{0 \leq Q(\mathbf{x}) < Q(\mathbf{x}) - \hat{Q}(\mathbf{x})\}$$

$$1604 \quad = \frac{1}{2} \mathbb{P}_{x \sim f_1} \left\{ 0 \leq \frac{1}{p} Q(\mathbf{x}) < \frac{1}{p} M(\mathbf{x}) \right\} + \frac{1}{2} \mathbb{P}_{x \sim f_2} \left\{ 0 \leq \frac{1}{p} Q(\mathbf{x}) < \frac{1}{p} M(\mathbf{x}) \right\}, \tag{19}$$

1606 where $M(\mathbf{x}) := Q(\mathbf{x}) - \hat{Q}(\mathbf{x})$. By calculations, we can get

$$1608 \quad M(\mathbf{x}) = (\mathbf{x} - \mu_1)^\top \{\Xi_2^{-1} - \Xi_1^{-1} - (\tilde{\Omega}_2 - \tilde{\Omega}_1)\}(\mathbf{x} - \mu_1) - 2(\mu_1 - \hat{\mu})^\top (\tilde{\Omega}_2 - \tilde{\Omega}_1)(\mathbf{x} - \mu_1) \\ 1609 \quad + 2(\delta^\top \Xi_2^{-1} - \hat{\delta}^\top \tilde{\Omega}_2)(\mathbf{x} - \mu_1) + (\mu_1 - \hat{\mu}_1)^\top (\tilde{\Omega}_2 - \tilde{\Omega}_1)(\mu_1 - \hat{\mu}_1) - 2\hat{\delta}^\top \tilde{\Omega}_2(\mu_1 - \hat{\mu}_1) \\ 1610 \quad + \delta^\top \Xi_2^{-1} \delta - \hat{\delta}^\top \tilde{\Omega}_2 \hat{\delta} - c(\varsigma_p - \hat{\varsigma}_p).$$

1612 Next we calculate the variance of $p^{-1}Q(\mathbf{x})$
1613

$$\begin{aligned}
1614 \quad & \text{Var}_{\mathbf{x} \sim f_1} \left\{ \frac{1}{p} Q(\mathbf{x}) \right\} \\
1615 \quad & = \text{Var}_{\mathbf{x} \sim f_1} \left\{ \frac{1}{p} (\mathbf{x} - \boldsymbol{\mu}_1)^\top (\boldsymbol{\Xi}_2^{-1} - \boldsymbol{\Xi}_1^{-1})(\mathbf{x} - \boldsymbol{\mu}_1) - \frac{1}{p} 2\boldsymbol{\delta}^\top \boldsymbol{\Xi}_2^{-1}(\mathbf{x} - \boldsymbol{\mu}_1) \right\} \\
1616 \quad & = \mathbb{E}_{\mathbf{x} \sim f_1} \left[\left\{ \frac{1}{p} (\mathbf{x} - \boldsymbol{\mu}_1)^\top (\boldsymbol{\Xi}_2^{-1} - \boldsymbol{\Xi}_1^{-1})(\mathbf{x} - \boldsymbol{\mu}_1) \right\}^2 + \left\{ \frac{1}{p} 2\boldsymbol{\delta}^\top \boldsymbol{\Xi}_2^{-1}(\mathbf{x} - \boldsymbol{\mu}_1) \right\}^2 \right] \\
1617 \quad & \quad - \left[\mathbb{E}_{\mathbf{x} \sim f_1} \left\{ \frac{1}{p} (\mathbf{x} - \boldsymbol{\mu}_1)^\top (\boldsymbol{\Xi}_2^{-1} - \boldsymbol{\Xi}_1^{-1})(\mathbf{x} - \boldsymbol{\mu}_1) \right\} \right]^2 \\
1618 \quad & = \text{Var}_{\mathbf{x} \sim f_1} \left\{ \frac{1}{p} (\mathbf{x} - \boldsymbol{\mu}_1)^\top (\boldsymbol{\Xi}_2^{-1} - \boldsymbol{\Xi}_1^{-1})(\mathbf{x} - \boldsymbol{\mu}_1) \right\} + \mathbb{E}_{\mathbf{x} \sim f_1} \left\{ \frac{1}{p} 2\boldsymbol{\delta}^\top \boldsymbol{\Xi}_2^{-1}(\mathbf{x} - \boldsymbol{\mu}_1) \right\}^2 \\
1619 \quad & = \text{Var}_{\mathbf{x} \sim f_1} \left\{ \frac{1}{p} \mathbf{U}^\top \boldsymbol{\Xi}_1^{1/2} (\boldsymbol{\Xi}_2^{-1} - \boldsymbol{\Xi}_1^{-1}) \boldsymbol{\Xi}_1^{1/2} \mathbf{U} \right\} + \text{Var} \left\{ \frac{2r}{p} \boldsymbol{\delta}^\top \boldsymbol{\Xi}_2^{-1} \boldsymbol{\Xi}_1^{1/2} \mathbf{U} \right\} \\
1620 \quad & = \mathbb{E} \left(\frac{r^2}{p^2} \right) \text{Var} \left\{ \mathbf{U}^\top \boldsymbol{\Xi}_1^{1/2} (\boldsymbol{\Xi}_2^{-1} - \boldsymbol{\Xi}_1^{-1}) \boldsymbol{\Xi}_1^{1/2} \mathbf{U} \right\} + \mathbb{E} \left(\frac{4r^2}{p} \right) \text{Var} \left(\frac{1}{\sqrt{p}} \boldsymbol{\delta}^\top \boldsymbol{\Xi}_2^{-1} \boldsymbol{\Xi}_1^{1/2} \mathbf{U} \right) \\
1621 \quad & \quad + \text{Var} \left(\frac{r^2}{p} \right) \left[\mathbb{E} \left\{ \mathbf{U}^\top \boldsymbol{\Xi}_1^{1/2} (\boldsymbol{\Xi}_2^{-1} - \boldsymbol{\Xi}_1^{-1}) \boldsymbol{\Xi}_1^{1/2} \mathbf{U} \right\} \right]^2 + \text{Var} \left(\frac{2r}{\sqrt{p}} \right) \left\{ \mathbb{E} \left(\frac{1}{\sqrt{p}} \boldsymbol{\delta}^\top \boldsymbol{\Xi}_2^{-1} \boldsymbol{\Xi}_1^{1/2} \mathbf{U} \right) \right\}^2.
\end{aligned}$$

1622 By Assumptions 1, 6 and Lemma 10 we have
1623

$$1624 \quad \text{Var}_{\mathbf{x} \sim f_1} \left\{ \frac{1}{p} Q(\mathbf{x}) \right\} \asymp \frac{1}{p^2} \left\{ \|\boldsymbol{\Xi}_1^{1/2} (\boldsymbol{\Xi}_2^{-1} - \boldsymbol{\Xi}_1^{-1}) \boldsymbol{\Xi}_1^{1/2}\|_F^2 + \|\boldsymbol{\Xi}_2^{-1} \boldsymbol{\Xi}_1^{1/2} \boldsymbol{\delta}\|^2 \right\}.$$

1625 By Assumptions 2 and 3 we have $\|\boldsymbol{\Xi}_1^{1/2} (\boldsymbol{\Xi}_2^{-1} - \boldsymbol{\Xi}_1^{-1}) \boldsymbol{\Xi}_1^{1/2}\|_F \asymp \|\boldsymbol{\Xi}_2^{1/2} (\boldsymbol{\Xi}_1^{-1} - \boldsymbol{\Xi}_2^{-1}) \boldsymbol{\Xi}_2^{1/2}\|_F \asymp \|\boldsymbol{\Sigma}_1^{1/2} (\boldsymbol{\Omega}_2 - \boldsymbol{\Omega}_1) \boldsymbol{\Sigma}_1^{1/2}\|_F \asymp \|\boldsymbol{\Sigma}_2^{1/2} (\boldsymbol{\Omega}_1 - \boldsymbol{\Omega}_2) \boldsymbol{\Sigma}_2^{1/2}\|_F$ and $\|\boldsymbol{\Xi}_2^{-1} \boldsymbol{\Xi}_1^{1/2} \boldsymbol{\delta}\| \asymp \sqrt{p/t_0(p)} \|\boldsymbol{\delta}\|$. Thus, we have $\text{Var}_{\mathbf{x} \sim f_1} \{p^{-1}Q(\mathbf{x})\} \asymp p^{-2} \sigma_Q^2(p) \asymp 1$. Similarly, $\text{Var}_{\mathbf{x} \sim f_2} p^{-1}Q(\mathbf{x}) \asymp p^{-2} \sigma_Q^2(p) \asymp 1$.

1626 Next, we bound the discrepancy between $\tilde{\boldsymbol{\Omega}}_i$ and $\boldsymbol{\Xi}_i^{-1}$ by Lemma 4 and 11.
1627

$$\begin{aligned}
1628 \quad & \|\tilde{\boldsymbol{\Omega}}_i - \boldsymbol{\Xi}_i^{-1}\|_\infty = \left\| \frac{p}{\text{tr}(\boldsymbol{\Xi}_i)} \hat{\boldsymbol{\Omega}}_i - \frac{p}{\text{tr}(\boldsymbol{\Xi}_i)} \boldsymbol{\Omega}_i \right\|_\infty \\
1629 \quad & \leq \left(\frac{p}{\text{tr}(\boldsymbol{\Xi}_i)} \left| \frac{\text{tr}(\boldsymbol{\Xi}_i)}{\text{tr}(\boldsymbol{\Xi}_i)} - 1 \right| \right) \|\hat{\boldsymbol{\Omega}}_i\|_\infty + \|\hat{\boldsymbol{\Omega}}_i - \boldsymbol{\Omega}_i\|_\infty \\
1630 \quad & = O_p(\lambda_n + n^{-1/2}) = O_p(\lambda_n).
\end{aligned}$$

1631 Similarly, we have $\|\tilde{\boldsymbol{\Omega}}_i - \boldsymbol{\Xi}_i^{-1}\|_{op} \leq \|\tilde{\boldsymbol{\Omega}}_i - \boldsymbol{\Xi}_i^{-1}\|_{L_1} = O_p\{\lambda_n^{1-q} s_0(p)\}$. And $p^{-1}\|\tilde{\boldsymbol{\Omega}}_i - \boldsymbol{\Xi}_i^{-1}\|_F^2 \leq \|\tilde{\boldsymbol{\Omega}}_i - \boldsymbol{\Xi}_i^{-1}\|_{L_1}$,
1632 $\|\tilde{\boldsymbol{\Omega}}_i - \boldsymbol{\Xi}_i^{-1}\|_\infty = O_p\{\lambda_n^{2-q} s_0(p)\}$. By the proof of Lemma 1 we have $\|\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}\| = O_p(p^{1/2} n^{-1/2})$ and $\|\boldsymbol{\mu} - \hat{\boldsymbol{\mu}}\|_\infty =$
1633 $O_p\{n^{-1/2} \log^{1/2}(np)\}$. Then we bound the $p^{-1}M(\mathbf{x})$ under $\mathbf{x} \sim f_1$.

$$\begin{aligned}
1634 \quad & \frac{1}{p} (\mathbf{x} - \boldsymbol{\mu}_1)^\top \{ \boldsymbol{\Xi}_2^{-1} - \boldsymbol{\Xi}_1^{-1} - (\tilde{\boldsymbol{\Omega}}_2 - \tilde{\boldsymbol{\Omega}}_1) \} (\mathbf{x} - \boldsymbol{\mu}_1) = \frac{r^2}{p} \mathbf{U}^\top \boldsymbol{\Sigma}_1^{1/2} \{ \boldsymbol{\Xi}_2^{-1} - \boldsymbol{\Xi}_1^{-1} - (\tilde{\boldsymbol{\Omega}}_2 - \tilde{\boldsymbol{\Omega}}_1) \} \boldsymbol{\Sigma}_1^{1/2} \mathbf{U} \\
1635 \quad & \leq \frac{r^2}{p} \|\boldsymbol{\Sigma}_1^{1/2} (\boldsymbol{\Xi}_2^{-1} - \boldsymbol{\Xi}_1^{-1} - (\tilde{\boldsymbol{\Omega}}_2 - \tilde{\boldsymbol{\Omega}}_1)) \boldsymbol{\Sigma}_1^{1/2}\|_{op} \\
1636 \quad & = O_p\{\lambda_n^{1-q} s_0(p)\},
\end{aligned}$$

$$\begin{aligned}
1637 \quad & \frac{1}{p} (\boldsymbol{\mu}_1 - \hat{\boldsymbol{\mu}})^\top (\tilde{\boldsymbol{\Omega}}_2 - \tilde{\boldsymbol{\Omega}}_1) (\mathbf{x} - \boldsymbol{\mu}_1) \leq \frac{1}{\sqrt{p}} \|\boldsymbol{\mu}_1 - \hat{\boldsymbol{\mu}}\| \frac{r}{\sqrt{p}} \|(\tilde{\boldsymbol{\Omega}}_2 - \tilde{\boldsymbol{\Omega}}_1) \boldsymbol{\Sigma}_1^{1/2} \mathbf{U}\| \\
1638 \quad & = O_p(n^{-1/2}),
\end{aligned}$$

$$\begin{aligned}
1664 \quad & \frac{1}{p}(\boldsymbol{\delta}^\top \boldsymbol{\Xi}_2^{-1} - \hat{\boldsymbol{\delta}}^\top \tilde{\boldsymbol{\Omega}}_2)(\mathbf{x} - \boldsymbol{\mu}_1) \leq \frac{1}{p}(\|\boldsymbol{\delta} \boldsymbol{\Xi}_2^{-1} - \boldsymbol{\delta} \tilde{\boldsymbol{\Omega}}_2\| + \|\boldsymbol{\delta} \tilde{\boldsymbol{\Omega}}_2 - \hat{\boldsymbol{\delta}} \tilde{\boldsymbol{\Omega}}_2\|) \|\mathbf{x} - \boldsymbol{\mu}_1\| \\
1665 \quad & \leq \frac{1}{p}(\|\boldsymbol{\delta}\| \|\boldsymbol{\Xi}_2^{-1} - \tilde{\boldsymbol{\Omega}}_2\|_{op} + \|\boldsymbol{\delta} - \hat{\boldsymbol{\delta}}\| \|\tilde{\boldsymbol{\Omega}}_2\|_{op}) \|\mathbf{x} - \boldsymbol{\mu}_1\| \\
1666 \quad & = O_p(\lambda_n^{1-q} s_0(p) + n^{-1/2}) = O_p\{\lambda_n^{1-q} s_0(p)\}, \\
1667 \quad & \\
1668 \quad & \frac{1}{p}(\boldsymbol{\mu}_1 - \hat{\boldsymbol{\mu}}_1)^\top (\tilde{\boldsymbol{\Omega}}_2 - \tilde{\boldsymbol{\Omega}}_1)(\boldsymbol{\mu}_1 - \hat{\boldsymbol{\mu}}_1) \leq \frac{1}{p} \|\boldsymbol{\mu}_1 - \hat{\boldsymbol{\mu}}_1\|^2 \|\tilde{\boldsymbol{\Omega}}_2 - \tilde{\boldsymbol{\Omega}}_1\|_{op} = O_p(n^{-1}), \\
1669 \quad & \\
1670 \quad & \\
1671 \quad & \frac{1}{p} \hat{\boldsymbol{\delta}}^\top \tilde{\boldsymbol{\Omega}}_2(\boldsymbol{\mu}_1 - \hat{\boldsymbol{\mu}}_1) \leq \frac{1}{p} \|\hat{\boldsymbol{\delta}}\| \|\tilde{\boldsymbol{\Omega}}_2\|_{op} \|\boldsymbol{\mu}_1 - \hat{\boldsymbol{\mu}}_1\| = O_p(n^{-1/2}), \\
1672 \quad & \\
1673 \quad & \\
1674 \quad & \frac{1}{p}(\boldsymbol{\delta}^\top \boldsymbol{\Xi}_2^{-1} \boldsymbol{\delta} - \hat{\boldsymbol{\delta}}^\top \tilde{\boldsymbol{\Omega}}_2 \hat{\boldsymbol{\delta}}) \leq \frac{1}{p}(\boldsymbol{\delta}^\top \boldsymbol{\Xi}_2^{-1} \boldsymbol{\delta} - \boldsymbol{\delta}^\top \tilde{\boldsymbol{\Omega}}_2 \boldsymbol{\delta} + \boldsymbol{\delta}^\top \tilde{\boldsymbol{\Omega}}_2 \boldsymbol{\delta} - \boldsymbol{\delta}^\top \tilde{\boldsymbol{\Omega}}_2 \hat{\boldsymbol{\delta}} + \hat{\boldsymbol{\delta}}^\top \tilde{\boldsymbol{\Omega}}_2 \hat{\boldsymbol{\delta}}) \\
1675 \quad & = O_p\{\lambda_n^{1-q} s_0(p) + n^{-1/2}\} = O_p\{\lambda_n^{1-q} s_0(p)\}.
\end{aligned}$$

1680 Denote $\mathbf{D}_\Omega = \boldsymbol{\Xi}_2^{-1} - \boldsymbol{\Xi}_1^{-1}$, $\tilde{\mathbf{D}}_\Omega = \tilde{\boldsymbol{\Omega}}_2 - \tilde{\boldsymbol{\Omega}}_1$,

$$\begin{aligned}
1682 \quad & (\hat{\zeta}_p - \zeta_p) = \log |\tilde{\mathbf{D}}_\Omega \tilde{\boldsymbol{\Omega}}_1^{-1} + \mathbf{I}_p| - \log |\mathbf{D}_\Omega \boldsymbol{\Xi}_1 + \mathbf{I}_p| \\
1683 \quad & \leq \text{tr}\{(\mathbf{D}_\Omega \boldsymbol{\Xi}_1 + \mathbf{I}_p)^{-1}(\tilde{\mathbf{D}}_\Omega \tilde{\boldsymbol{\Omega}}_1^{-1} - \mathbf{D}_\Omega \boldsymbol{\Xi}_1)\} \\
1684 \quad & = \text{tr}\{(-\mathbf{D}_\Omega \boldsymbol{\Xi}_2 + \mathbf{I}_p)(\tilde{\mathbf{D}}_\Omega \tilde{\boldsymbol{\Omega}}_1^{-1} - \mathbf{D}_\Omega \boldsymbol{\Xi}_1)\} \\
1685 \quad & = \text{tr}\{(-\mathbf{D}_\Omega \boldsymbol{\Xi}_2)(\tilde{\mathbf{D}}_\Omega \tilde{\boldsymbol{\Omega}}_1^{-1} - \mathbf{D}_\Omega \boldsymbol{\Xi}_1)\} + \text{tr}(\tilde{\mathbf{D}}_\Omega \tilde{\boldsymbol{\Omega}}_1^{-1} - \mathbf{D}_\Omega \boldsymbol{\Xi}_1) \\
1686 \quad & \leq \|\mathbf{D}_\Omega \boldsymbol{\Xi}_2\|_F \cdot \|\tilde{\mathbf{D}}_\Omega \tilde{\boldsymbol{\Omega}}_1^{-1} - \mathbf{D}_\Omega \boldsymbol{\Xi}_1\|_F + \text{tr}(\tilde{\mathbf{D}}_\Omega \tilde{\boldsymbol{\Omega}}_1^{-1} - \mathbf{D}_\Omega \boldsymbol{\Xi}_1) \\
1687 \quad & \lesssim \|\mathbf{D}_\Omega\|_F \|\boldsymbol{\Xi}_2\|_{op} \cdot \|\tilde{\mathbf{D}}_\Omega \tilde{\boldsymbol{\Omega}}_1^{-1} - \mathbf{D}_\Omega \boldsymbol{\Xi}_1\|_F,
\end{aligned}$$

1691 where

$$\begin{aligned}
1693 \quad & \|\mathbf{D}_\Omega \boldsymbol{\Xi}_1 - \tilde{\mathbf{D}}_\Omega \tilde{\boldsymbol{\Omega}}_1^{-1}\|_F \\
1694 \quad & \leq \|\mathbf{D}_\Omega \boldsymbol{\Xi}_1 - \tilde{\mathbf{D}}_\Omega \boldsymbol{\Xi}_1\|_F + \|\tilde{\mathbf{D}}_\Omega (\boldsymbol{\Xi}_1 - \tilde{\boldsymbol{\Omega}}_1^{-1})\|_F \\
1695 \quad & \leq \|\mathbf{D}_\Omega - \tilde{\mathbf{D}}_\Omega\|_F \|\boldsymbol{\Xi}_1\|_{op} + \|\tilde{\mathbf{D}}_\Omega\|_F \|\boldsymbol{\Xi}_1 - \tilde{\boldsymbol{\Omega}}_1^{-1}\|_{op}.
\end{aligned}$$

1698 Then, we can find $p^{-1}(\hat{\zeta}_d - \zeta_d) = O_p\{\lambda_n^{1-q/2} s_0(p)^{1/2} + \lambda_n^{1-q} s_0(p)\}$. Thus, under $\mathbf{x} \sim f_1$ we have $p^{-1}M(\mathbf{x}) =$
1699 $O_p\{\lambda_n^{1-q/2} s_0(p)^{1/2} + \lambda_n^{1-q} s_0(p)\}$. Similarly, we can get the same solution under $\mathbf{x} \sim f_2$. From the previous
1700 discussion, we know that $p^{-1}Q(\mathbf{x})$ is non-degenerate. Recall (18) we have
1701

$$\begin{aligned}
1702 \quad & |R_{HRQDA} - R_{QDA}| \leq \frac{1}{2} \mathbb{P}_{x \sim f_1} \left\{ 0 \leq \frac{1}{p} Q(\mathbf{x}) < \frac{1}{p} M(\mathbf{x}) \right\} + \frac{1}{2} \mathbb{P}_{x \sim f_2} \left\{ 0 \leq \frac{1}{p} Q(\mathbf{x}) < \frac{1}{p} M(\mathbf{x}) \right\} \\
1703 \quad & = O_p\{\lambda_n^{1-q/2} s_0^{1/2}(p) + \lambda_n^{1-q} s_0(p)\}.
\end{aligned} \tag{20}$$

1706 \square

1707 **Proof of Theorem 6.** From the proof of Theorem 7 in Liu et al. (2024) we can find that

$$1709 \quad T_{SUM2} = \frac{2}{n(n-1)} \sum \sum_{i < j} \tilde{\mathbf{U}}_i^\top \tilde{\mathbf{U}}_j + \zeta_1^2 \boldsymbol{\mu}^\top \mathbf{D}^{-1} \boldsymbol{\mu} + o_p(\sigma_n),$$

1712 with $\sigma_n^2 = 2/\{n(n-1)p\} + o(n^{-3})$, and

$$1714 \quad n^{1/2} \mathbf{D}^{-1/2} \hat{\boldsymbol{\mu}} = n^{-1/2} \zeta_1^{-1} \sum_{i=1}^n \tilde{\mathbf{U}}_i + n^{1/2} \mathbf{D}^{-1/2} \boldsymbol{\mu} + C_n,$$

1716 where $\tilde{\mathbf{U}}_i := U(\mathbf{D}^{-1/2} \boldsymbol{\Sigma}^{1/2} \mathbf{U}_i) = (\mathbf{R}^{1/2} \mathbf{U}_i) / \|\mathbf{R}^{1/2} \mathbf{U}_i\|$, $\mathbf{R} = \mathbf{D}^{-1/2} \boldsymbol{\Sigma} \mathbf{D}^{-1/2}$. Thus, we have

$$1718 \frac{T_{SUM2}}{\sigma_n} = \frac{p}{n\sqrt{2\text{tr}(\mathbf{R}^2)}} \left(\left\| \sum_{i=1}^n \tilde{\mathbf{U}}_i \right\|^2 - n \right) + O(1) = \frac{\|p^{1/2} n^{-1/2} \sum_{i=1}^n \tilde{\mathbf{U}}_i\|^2 - p}{\sqrt{2\text{tr}(\mathbf{R}^2)}} + O(1),$$

1721 and

$$1722 T_{MAX2} - 2\log p + \log \log p = \left\| \sqrt{\frac{p}{n}} \sum_{i=1}^n \tilde{\mathbf{U}}_i \right\|_\infty^2 - 2\log p + \log \log p.$$

1724 Notice that

$$1726 p^{1/2} n^{-1/2} \sum_{i=1}^n \tilde{\mathbf{U}}_i = p^{1/2} n^{-1/2} \sum_{i=1}^n \mathbf{R}^{1/2} \mathbf{U}_i + p^{1/2} n^{-1/2} \sum_{i=1}^n \mathbf{R}^{1/2} \mathbf{U}_i (1/\|\mathbf{R}^{1/2} \mathbf{U}_i\| - 1).$$

1729 Denote $v_i = 1/\|\mathbf{R}^{1/2} \mathbf{U}_i\| - 1$, $\text{Var}(v_i) = \sigma_v^2$. We have

$$1730 \left\| \sqrt{\frac{p}{n}} \sum_{i=1}^n v_i \mathbf{R}^{1/2} \mathbf{U}_i \right\|_\infty = \sqrt{\frac{p}{n}} \max_{i \leq j \leq p} \left| \sum_{i=1}^n v_i U_{ij} \right| \leq \frac{1}{\sqrt{n}} \sum_{i=1}^n |v_i| \max_{i \leq j \leq p} \sqrt{p} |U_{ij}| = O_p(\sigma_v \log p).$$

1733 For a random variable X , denote $X^* = (X - \mathbb{E}X)/\sqrt{\text{Var}(X)}$. Thus the original proposition is equivalent to proving
1734 that $\|\sum_{i=1}^p \mathbf{U}_i\|_\infty^*$ is asymptotically independent with $\|\mathbf{R}^{1/2} \sum_{i=1}^p \mathbf{U}_i\|^*$ and $\|\sum_{i=1}^p \mathbf{U}_i\|^*$ is asymptotically independent
1735 with $\|\mathbf{R}^{1/2} \sum_{i=1}^p \mathbf{U}_i\|_\infty^*$. Then for any sequence $\eta_{n,p} \rightarrow \infty$ and any $t \in \mathbb{R}^p$

$$1737 \begin{aligned} \mathbb{P} \left(\sqrt{\frac{p}{n}} \sum_{i=1}^n \tilde{\mathbf{U}}_i \leq t \right) &= \mathbb{P} \left(\sqrt{\frac{p}{n}} \sum_{i=1}^n \mathbf{R}^{1/2} \mathbf{U}_i + \sqrt{\frac{p}{n}} \sum_{i=1}^n v_i \mathbf{R}^{1/2} \mathbf{U}_i \leq t \right) \\ 1738 &\leq \mathbb{P} \left(\sqrt{\frac{p}{n}} \sum_{i=1}^n \mathbf{R}^{1/2} \mathbf{U}_i \leq t + \eta_{n,p} \sigma_v \log p \right) \\ 1739 &\quad + \mathbb{P} \left(\left\| \sqrt{\frac{p}{n}} \sum_{i=1}^n v_i \mathbf{R}^{1/2} \mathbf{U}_i \right\|_\infty > \eta_{n,p} \sigma_v \log p \right) \\ 1740 &\leq \mathbb{P} \left(\sqrt{\frac{p}{n}} \sum_{i=1}^n \mathbf{R}^{1/2} \mathbf{U}_i \leq t \right) + o(1). \end{aligned}$$

1748 Similarly, we have $\mathbb{P} \left(\sqrt{\frac{p}{n}} \sum_{i=1}^n \tilde{\mathbf{U}}_i \leq t \right) \geq \mathbb{P} \left(\sqrt{\frac{p}{n}} \sum_{i=1}^n \mathbf{R}^{1/2} \mathbf{U}_i \leq t \right) + o(1)$. We have

$$1751 \sup_{t \in \mathbb{R}^p} \left| \mathbb{P} \left(\sqrt{\frac{p}{n}} \sum_{i=1}^n \tilde{\mathbf{U}}_i \leq t \right) - \mathbb{P} \left(\sqrt{\frac{p}{n}} \sum_{i=1}^n \mathbf{R}^{1/2} \mathbf{U}_i \leq t \right) \right| \rightarrow 0.$$

1753 Further,

$$1755 \sup_{A \in \mathcal{A}^{si}} \left| \mathbb{P} \left(\sqrt{\frac{p}{n}} \sum_{i=1}^n \tilde{\mathbf{U}}_i \in A \right) - \mathbb{P} \left(\sqrt{\frac{p}{n}} \sum_{i=1}^n \mathbf{R}^{1/2} \mathbf{U}_i \in A \right) \right| \rightarrow 0.$$

1757 From the proof of Lemma 2 we have

$$1758 \sup_{A \in \mathcal{A}^{si}} \left| \mathbb{P} \left(\sqrt{\frac{p}{n}} \sum_{i=1}^n \mathbf{U}_i \in A \right) - \mathbb{P} (\mathbf{Z} \in A) \right| \rightarrow 0,$$

1761 where $\mathbf{Z} \sim N(0, \mathbf{I}_p)$. Thus

$$1763 \sup_{A_1, A_2 \in \mathcal{A}^{si}} \left| \mathbb{P} \left(\sqrt{\frac{p}{n}} \sum_{i=1}^n \mathbf{R}^{1/2} \mathbf{U}_i \in A_1, \sqrt{\frac{p}{n}} \sum_{i=1}^n \mathbf{U}_i \in A_2 \right) - \mathbb{P} (\mathbf{R}^{1/2} \mathbf{Z} \in A_1, \mathbf{Z} \in A_2) \right| \rightarrow 0,$$

1766 Thus the original proposition is equivalent to proving that $\|\mathbf{Z}\|_\infty^*$ is asymptotically independent with $\|\mathbf{R}^{1/2} \mathbf{Z}\|^*$ and
1767 $\|\mathbf{R}^{1/2} \mathbf{Z}\|_\infty^*$ is asymptotically independent with $\|\mathbf{Z}\|^*$. From Theorem 2.2 in Chen et al. (2024) we have $\|\mathbf{Z}\|_\infty^*$ is

asymptotically independent with $\|\mathbf{R}^{1/2}\mathbf{Z}\|^\star$. Consider that $\mathbf{R}^{1/2}\mathbf{Z} \sim N(\mathbf{0}, \mathbf{R})$. Next we prove $\|\mathbf{Y}\|_\infty^\star$ is asymptotically independent with $\|\mathbf{R}^{-1/2}\mathbf{Y}\|^\star$ where $\mathbf{Y} = \mathbf{R}^{1/2}\mathbf{Z} \sim N(\mathbf{0}, \mathbf{R})$.

Define $\mathbf{Y} = (\mathbf{Y}_1^\top, \mathbf{Y}_2^\top)^\top \in \mathbb{R}^p$ where $\mathbf{Y}_1 = (Y_1, \dots, Y_d)^\top$ and $\mathbf{Y}_2 = (Y_{d+1}, \dots, Y_p)^\top$. And

$$\mathbf{R} = \begin{pmatrix} \mathbf{R}_1 & \mathbf{R}_{12} \\ \mathbf{R}_{21} & \mathbf{R}_2 \end{pmatrix}, \quad \mathbf{R}^{-1} := \mathbf{P} = \begin{pmatrix} \mathbf{P}_1 & \mathbf{P}_{12} \\ \mathbf{P}_{21} & \mathbf{P}_2 \end{pmatrix}.$$

$$\mathbf{K} := \begin{pmatrix} \mathbf{K}_1 & \mathbf{K}_{12} \\ \mathbf{K}_{21} & \mathbf{K}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{R}_1^{1/2} \mathbf{P}_1 \mathbf{R}_1^{1/2} & \mathbf{R}_1^{1/2} \mathbf{P}_{12} \mathbf{R}_2^{1/2} \\ \mathbf{R}_2^{1/2} \mathbf{P}_{21} \mathbf{R}_1^{1/2} & \mathbf{R}_2^{1/2} \mathbf{P}_2 \mathbf{R}_2^{1/2} \end{pmatrix}.$$

So,

$$\mathbf{Y}^\top \mathbf{P} \mathbf{Y} = \mathbf{Y}_1^\top \mathbf{P}_1 \mathbf{Y}_1 + 2\mathbf{Y}_1^\top \mathbf{P}_{12} \mathbf{Y}_2 + \mathbf{Y}_2^\top \mathbf{P}_2 \mathbf{Y}_2.$$

For $\epsilon > 0$, set z_i are i.i.d. Gaussian random variables. Define $\mathbf{z}_1 = (z_1, \dots, z_d)^\top \in \mathbb{R}^d$, $\mathbf{z}_1 = (z_{d+1}, \dots, z_p)^\top \in \mathbb{R}^{p-d}$. Then there exist $\eta > 0$ and $K > 0$ such that $\mathbb{E}\{\exp(\eta z_i^2)\} \leq K$. According to Assumptions of Theorem 7 in Liu et al. (2024), we can get $\lambda_{\max}(\mathbf{K}_1) \leq \lambda_{\max}(\mathbf{K}) < c_1$ for a constant $c_1 > 0$.

$$\begin{aligned} \mathbb{P}(\mathbf{Y}_1^\top \mathbf{P}_1 \mathbf{Y}_1 > \sqrt{2p}\epsilon) &\leq \mathbb{P}(c_1 \mathbf{z}_1^\top \mathbf{z}_1 > \sqrt{2p}\epsilon) \\ &= \mathbb{P}\left(\eta \sum_{i=1}^d z_i^2 > \sqrt{2p}\epsilon c_1^{-1} \eta \epsilon\right) \\ &\leq \exp(-\sqrt{2p}\epsilon c_1^{-1} \eta \epsilon) \mathbb{E}(e^{\eta \sum_{i=1}^d z_i^2}) \\ &= \exp(-\sqrt{2p}\epsilon c_1^{-1} \eta \epsilon) \{E(e^{\eta z_i^2})\}^d \\ &\leq K^d \exp(-\sqrt{2p}\epsilon c_1^{-1} \eta \epsilon). \end{aligned}$$

Define $\mathbf{K} = \mathbf{O}^\top \mathbf{\Lambda} \mathbf{O}$ where $\mathbf{O} = (q_{ij})_{1 \leq i, j \leq p}$ is an orthogonal matrix and $\mathbf{\Lambda} = \text{diag}\{\lambda_1, \dots, \lambda_p\}$, $\lambda_i, i = 1, \dots, p$ are the eigenvalues of \mathbf{K} . Note that $\sum_{1 \leq j \leq p} k_{ij}^2$ is the i -th diagonal element of $\mathbf{K}^2 = \mathbf{O}^\top \mathbf{\Lambda}^2 \mathbf{O}$. We have $\sum_{1 \leq j \leq p} k_{ij}^2 = \sum_{l=1}^p q_{li}^2 \lambda_l^2 \leq c_1^2$. Next, define $\theta = \sqrt{(2\eta)/(dc_1^2)}$. We have

$$\begin{aligned} \mathbb{P}(\mathbf{Y}_1^\top \mathbf{P}_{12} \mathbf{Y}_2 \geq \sqrt{2p}\epsilon) &\leq \exp(-\sqrt{2p}\theta\epsilon) \mathbb{E}(\exp(\theta \mathbf{z}_1^\top \mathbf{K}_{12} \mathbf{z}_2)) \\ &= \exp(-\sqrt{2p}\theta\epsilon) \mathbb{E}(e^{\theta \sum_{i=1}^d \sum_{j=d+1}^p k_{ij} z_i z_j}) \\ &= \exp(-\sqrt{2p}\theta\epsilon) \mathbb{E}\{\mathbb{E}(e^{\theta \sum_{j=d+1}^p (\sum_{i=1}^d k_{ij} z_i) z_j} | \mathbf{z}_1)\} \\ &= \exp(-\sqrt{2p}\theta\epsilon) \mathbb{E}\left[\prod_{j=d+1}^p \mathbb{E}\{e^{(\theta \sum_{i=1}^d k_{ij} z_i) z_j} | \mathbf{z}_1\}\right] \\ &\leq \exp(-\sqrt{2p}\theta\epsilon) \mathbb{E}\left[\prod_{j=d+1}^p \exp\left\{\frac{\theta^2}{2} \left(\sum_{i=1}^d k_{ij} z_i\right)^2\right\}\right] \\ &= \exp(-\sqrt{2p}\theta\epsilon) \mathbb{E}\left[\exp\left\{\frac{\theta^2}{2} \sum_{j=d+1}^p \left(\sum_{i=1}^d k_{ij} z_i\right)^2\right\}\right] \\ &\leq \exp(-\sqrt{2p}\theta\epsilon) \left\{\exp\left(\frac{d\theta^2}{2} \sum_{j=d+1}^p \sum_{i=1}^d k_{ij}^2 z_i^2\right)\right\} \\ &\leq \exp(-\sqrt{2p}\theta\epsilon) \left\{\exp\left(\frac{dc_1^2 \theta^2}{2} \sum_{i=1}^d z_i^2\right)\right\} \\ &= \exp(-\sqrt{2p}\theta\epsilon) \left\{\exp\left(\eta \sum_{i=1}^d z_i^2\right)\right\} \\ &\leq K^d \exp(-\sqrt{2p}\theta\epsilon). \end{aligned}$$

1820 So

$$1821 \quad 1822 \quad 1823 \quad \mathbb{P}(\mathbf{Y}_1^\top \mathbf{P}_{12} \mathbf{Y}_2 \geq \sqrt{2p}\epsilon) \leq K^d \exp\left(-\sqrt{\frac{4\eta}{dc_1^4}}\epsilon p^{1/2}\right).$$

1824 Similarly, we also can prove that

$$1825 \quad 1826 \quad 1827 \quad \mathbb{P}\{(-\mathbf{Y}_1)^\top \mathbf{P}_{12} \mathbf{Y}_2 \geq \sqrt{2p}\epsilon\} \leq K^d \exp\left(-\sqrt{\frac{4\eta}{dc_1^4}}\epsilon p^{1/2}\right).$$

1828 Let $\Theta_p = \mathbf{Y}_1^\top \mathbf{P}_1 \mathbf{Y}_1 + 2\mathbf{Y}_1^\top \mathbf{P}_{12} \mathbf{Y}_2$.

$$1831 \quad \mathbb{P}(|\Theta_p| > \sqrt{2p}\epsilon) \leq \mathbb{P}(\mathbf{Y}_1^\top \mathbf{P}_1 \mathbf{Y}_1 > \sqrt{2p}\epsilon/2) + \mathbb{P}(|\mathbf{Y}_1^\top \mathbf{P}_{12} \mathbf{Y}_2| > \sqrt{2p}\epsilon/4) \\ 1832 \quad \leq \mathbb{P}(\mathbf{Y}_1^\top \mathbf{P}_1 \mathbf{Y}_1 > \sqrt{2p}\epsilon/2) + \mathbb{P}(\mathbf{Y}_1^\top \mathbf{P}_{12} \mathbf{Y}_2 > \sqrt{2p}\epsilon/8) \\ 1833 \quad + \mathbb{P}(-\mathbf{Y}_1^\top \mathbf{P}_{12} \mathbf{Y}_2 > \sqrt{2p}\epsilon/8).$$

1834 Denote $A_p(x) = \left\{ \frac{\mathbf{Y}_1^\top \mathbf{P}_1 \mathbf{Y}_1 - p}{\sqrt{2p}} \right\} \leq x$, $B_i = \{|\mathbf{Y}_1| \geq \sqrt{2 \log p - \log \log p}\}$, so there exist a constant $c_\epsilon > 0$

$$1837 \quad \mathbb{P}(|\Theta_p| > \sqrt{2p}\epsilon) \leq K^d \exp(-c_\epsilon p^{1/2}), \\ 1838 \quad \mathbb{P}(A_p(x)B_1 \cdots B_d) \\ 1839 \quad = \mathbb{P}\left(\frac{\mathbf{Y}_1^\top \mathbf{P}_1 \mathbf{Y}_1 - p + \Theta_p}{\sqrt{2p}} \leq x, B_1 \cdots B_d\right) \\ 1840 \quad \leq \mathbb{P}\left(\frac{\mathbf{Y}_1^\top \mathbf{P}_1 \mathbf{Y}_1 - p + \Theta_p}{\sqrt{2p}} \leq x, |\Theta_p| \leq \sqrt{2p}\epsilon, B_1 \cdots B_d\right) + \mathbb{P}(|\Theta_p| > \sqrt{2p}\epsilon) \\ 1841 \quad \leq \mathbb{P}\left(\frac{\mathbf{Y}_1^\top \mathbf{P}_1 \mathbf{Y}_1 - p}{\sqrt{2p}} \leq x + \epsilon, B_1 \cdots B_d\right) + K^d \exp(-c_\epsilon p^{1/2}) \\ 1842 \quad \leq \mathbb{P}\left(\frac{\mathbf{Y}_1^\top \mathbf{P}_1 \mathbf{Y}_1 - p}{\sqrt{2p}} \leq x + \epsilon\right) P(B_1 \cdots B_d) + K^d \exp(-c_\epsilon p^{1/2}) \\ 1843 \quad \leq \left\{ \mathbb{P}\left(\frac{\mathbf{Y}_1^\top \mathbf{P}_1 \mathbf{Y}_1 - p}{\sqrt{2p}} \leq x + \epsilon, |\Theta_p| \leq \sqrt{2p}\epsilon\right) + \mathbb{P}(|\Theta_p| > \sqrt{2p}\epsilon) \right\} P(B_1 \cdots B_d) \\ 1844 \quad + K^d \exp(-c_\epsilon p^{1/2}) \\ 1845 \quad \leq \mathbb{P}\left(\frac{\mathbf{Y}_1^\top \mathbf{P}_1 \mathbf{Y}_1 - p + \Theta_p}{\sqrt{2p}} \leq x + 2\epsilon\right) \mathbb{P}(B_1 \cdots B_d) + 2K^d \exp(-c_\epsilon p^{1/2}) \\ 1846 \quad = \mathbb{P}\{A_p(x + 2\epsilon)\} \mathbb{P}(B_1 \cdots B_d) + 2K^d \exp(-c_\epsilon p^{1/2}).$$

1847 Similarly, we can prove that

$$1848 \quad \mathbb{P}(A_p(x)B_1 \cdots B_d) \geq \mathbb{P}\{A_p(x - 2\epsilon)\} \mathbb{P}(B_1 \cdots B_d) - 2K^d \exp(-c_\epsilon p^{1/2}).$$

1849 So, we have

$$1850 \quad |\mathbb{P}(A_p(x)B_1 \cdots B_d) - \mathbb{P}\{A_p(x)\} \cdot \mathbb{P}(B_1 \cdots B_d)| \leq \Delta_{p,\epsilon} \cdot \mathbb{P}(B_1 \cdots B_d) + 2K^d \exp(-c_\epsilon p^{1/2}),$$

1851 where

$$1852 \quad \Delta_{p,\epsilon} = |\mathbb{P}\{A_p(x)\} - \mathbb{P}\{A_p(x + 2\epsilon)\}| + |\mathbb{P}\{A_p(x)\} - \mathbb{P}\{A_p(x - 2\epsilon)\}| \\ 1853 \quad = \mathbb{P}\{A_p(x + 2\epsilon)\} - \mathbb{P}\{A_p(x - 2\epsilon)\}.$$

1854 Obviously, the equation discussed above holds for all i_1, \dots, i_d . Thus,

$$1855 \quad \sum_{1 \leq i_1 < \dots < i_d \leq p} |\mathbb{P}(A_p(x)B_{i_1} \cdots B_{i_d}) - \mathbb{P}\{A_p(x)\} \cdot \mathbb{P}(B_{i_1} \cdots B_{i_d})| \\ 1856 \quad \leq \sum_{1 \leq i_1 < \dots < i_d \leq p} \{\Delta_{p,\epsilon} \cdot \mathbb{P}(B_{i_1} \cdots B_{i_d}) + 2K^d \exp(-c_\epsilon p^{1/2})\} \\ 1857 \quad \leq \Delta_{p,\epsilon} \cdot H(d, p) + \binom{p}{d} \cdot 2K^d \exp(-c_\epsilon p^{1/2}).$$

1872 Because $\mathbb{P}\{A_p(x)\} \rightarrow \Phi(x)$ as $p \rightarrow \infty$. So $\Delta_{p,\epsilon} \rightarrow \Phi(x + 2\epsilon) - \Phi(x - 2\epsilon)$. By letting $\epsilon \rightarrow 0$, we have $\Delta_{p,\epsilon} \rightarrow 0$.
 1873 By Lemma 9 as $p \rightarrow \infty$ we have
 1874

$$1875 \sum_{1 \leq i_1 < \dots < i_d \leq p} |\mathbb{P}(A_p(x)B_{i_1} \cdots B_{i_d}) - \mathbb{P}\{A_p(x)\} \cdot \mathbb{P}(B_{i_1} \cdots B_{i_d})| \rightarrow 0.$$

1877 Then, repeat the procedure in proof of Theorem 2.2 in Chen et al. (2024) we have
 1878

$$1879 \limsup_{p \rightarrow \infty} \mathbb{P}\left(\|\mathbf{R}^{-1/2}\mathbf{Y}\|^{2*} \leq x, \|\mathbf{Y}\|_\infty^{*2} \leq y\right) = \limsup_{p \rightarrow \infty} \mathbb{P}\left(\frac{\mathbf{Y}^\top \mathbf{R}^{-1} \mathbf{Y} - p}{\sqrt{2p}} \leq x, \max_{1 \leq i \leq p} |Y_i| > l_p\right) \\ 1880 \leq \Phi(x) \cdot \{1 - F(y)\} + \lim_{p \rightarrow \infty} H(p, 2k + 1),$$

$$1884 \liminf_{p \rightarrow \infty} \mathbb{P}\left(\|\mathbf{R}^{-1/2}\mathbf{Y}\|^{2*} \leq x, \|\mathbf{Y}\|_\infty^{*2} \leq y\right) = \liminf_{p \rightarrow \infty} \mathbb{P}\left(\frac{\mathbf{Y}^\top \mathbf{R}^{-1} \mathbf{Y} - p}{\sqrt{2p}} \leq x, \max_{1 \leq i \leq p} |Y_i| > l_p\right) \\ 1885 \leq \Phi(x) \cdot \{1 - F(y)\} - \lim_{p \rightarrow \infty} H(p, 2k + 1).$$

1888 Then we can get $\|\mathbf{Y}\|_\infty^*$ is asymptotically independent with $\|\mathbf{R}^{-1/2}\mathbf{Y}\|^*$ by sending $p \rightarrow \infty$ and then sending $k \rightarrow \infty$. \square
 1889

1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923