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ABSTRACT

The classic Hettmansperger-Randles estimator has found extensive use in robust statistical infer-
ence. However, it cannot be directly applied to high-dimensional data. In this paper, we propose a
high-dimensional Hettmansperger-Randles estimator for the location parameter and scatter matrix
of elliptical distributions in high-dimensional scenarios. Subsequently, we apply these estimators to
two prominent problems: the one-sample location test problem and quadratic discriminant analysis.
We discover that the corresponding new methods exhibit high effectiveness across a broad range of
distributions. Both simulation studies and real-data applications further illustrate the superiority of
the newly proposed methods.

1 INTRODUCTION

Estimating the mean vector and covariance matrix is a fundamental task in statistics. In low-dimensional settings,
when the data are multivariate normal, the sample mean and covariance matrix are efficient estimators (HArdleef all,
2007). Their performance, however, deteriorates under deviations from normality, motivating the development of
robust alternatives. For elliptical distributions, robust estimators such as the spatial median for location and Tyler’s
scatter matrix for dispersion have been extensively studied (Ojd, Z010). Furthermore, Hettmansperger & Randles
(P002) proposed a unified procedure for jointly and robustly estimating both location and scatter.

The increasing prevalence of high-dimensional data in areas such as genomics and finance has introduced new chal-
lenges. When the number of features approaches or exceeds the sample size, traditional estimators like the sample
covariance matrix become singular and non-invertible. This has spurred extensive research on high-dimensional co-
variance estimation, including thresholding, regularization, and shrinkage techniques (Bickel & T_evina, P00Xa;H); for a
comprehensive overview, see Fan ef all (Z0T6). Nevertheless, these approaches largely based on the sample covariance
matrix, and thus are not robust to heavy-tailed distributions.

To address these challenges, robust estimation techniques under elliptical distributions, which naturally accommodate
a broad class of heavy-tailed models such as the multivariate ¢-distribution and certain multivariate normal mixtures
(those with a common mean and proportional covariances), have garnered increasing attention in high-dimensional
statistics. Several studies have explored the properties of the sample spatial median and its use in high-dimensional
sphericity testing and location parameter testing problems, including Zou"efall (2014), Ci-& X1l (Z027), and Cheng
ef-all (Z073). However, these estimators are not scalar invariant. To address this issue, scale-invariant spatial median
estimators (Feng et all, POT6; Feng & Sun, Z0T6; Cin-ef all, 2024) were developed as extensions of the simultaneous
estimation framework of Hettmansperger & Randles (2007). However, these approaches are not affine invariant with
respect to scatter transformations, limiting their flexibility and applicability in practice. In parallel, robust scatter
estimation has advanced through the study of spatial-sign covariance matrices, known for their affine equivariance.
Recent works have developed linear shrinkage methods tailored for high-dimensional settings (Raninen_ef all, 20T,
Raninen & Olhld, D021, Dllila & Breloy, 2027; OIlla, P024), and sparse precision matrix estimation based on spatial-
sign covariance (Lu & Feng, P075), extending previous advances such as Caiefall (Z01T) and Ynan"& L (2007).
However, most existing methods address location and scatter matrix separately, lacking a unified framework that
integrates both aspects in high dimensions.

Motivated by these limitations, we propose a novel framework for robust high-dimensional inference. Specifically,
we introduce the high-dimensional Hettmansperger-Randles (HR) estimator, from which both the spatial median and
the scatter matrix estimators inherit affine equivariance. The resulting spatial median estimator is therefore affine
invariant with respect to scatter transformations, overcoming certain limitations of previous approaches and enhancing



robustness in high-dimensional inference under elliptical distributions. We demonstrate the practical utility of the HR
estimator through its applications to two core problems in modern high-dimensional statistics: one-sample location
testing and quadratic discriminant analysis.

For the high-dimensional one-sample location testing problem, substantial research has been conducted over the past
two decades, leading to three main categories of testing procedures. The first category comprises sum-type tests,
which aggregate statistics across all variables and are powerful against dense alternatives (Bai_& Saranadasa, 1996
Chen ef all, POTT; Wang et all, 2019, [Ayyala et al], Z0177; Feng et all, POI9; Feng & Surl, 2016, Feng et all, 2016, ZO2T).
The second category includes max-type tests, which focus on the maximum of individual statistics and excel under
sparse alternatives, explored in works such as (Zhong et all, 2013; Caief-all, POT3; Cheng et all, P023; Chang et all,
P017). The third category consists of adaptive type tests, which combine sum-type and max-type strategies to achieve
robustness across diverse sparsity regimes, with important contributions from Xuefall (Z0T6); He ef all (Z021); Feng
et all (2022a; 2074)); Chang et al] (2023); Chen ef all (2024)); Ma'ef all (2024)). Comprehensive overviews are available
in Huang et al] (2027) and Cinef-all (2074).

Since the seminal contribution of Chernozhukov_ef-all (Z0T3; POT7), Gaussian approximation has become a corner-
stone of high-dimensional statistical inference. Inspired by their theoretical framework, we first derive a Bahadur
representation for the standardized spatial median estimator and establish its Gaussian approximation over a class of
simple convex sets. This theoretical development provides a solid foundation for analyzing the limiting distributions
of our proposed test statistics and facilitates the verification of the asymptotic independence between the max-type
and sum-type statistics. Specifically, we introduce two types of test statistics based on the Lo and L, norms of the
corresponding standardized spatial-median estimator, which correspond to sum-type and max-type test procedures,
respectively. We rigorously establish that these statistics are asymptotically independent. Leveraging this property,
we develop a Cauchy combination test that integrates both sources of information. While Cii“ef-all (20024)) focuses
on the sparsity of the original mean vector p, our approach targets the sparsity of the transformed mean X~/2p,
which removes correlations among coordinates. This notion of sparsity is natural in settings with strong correlations
among observed variables, such as financial or gene expression data, where the underlying signal is often concentrated
in a small number of latent directions. Such sparsity assumptions on the decorrelated mean vector have been widely
used and formally justified in the high-dimensional classification and testing literature (Chen & Tang, POT; Cai X
[, DOTT). Furthermore, given that the true sparsity structure (whether in g or in £ ~1/2p) is generally unknown
in practice, we further extend our procedure by combining four test statistics to achieve greater adaptability across
various sparsity regimes. Simulation studies confirm that the resulting Cauchy combination tests perform well un-
der a wide range of distributional settings and sparsity levels, highlighting their robustness and wide applicability for
high-dimensional hypothesis testing.

We further apply the proposed HR estimator to improve quadratic discriminant analysis (QDA), which is a natural
extension of linear discriminant analysis (LDA) (Eriedman, T989; Muirhead, 200Y). When population parameters are
known, QDA achieves optimal classification by comparing likelihood ratios. In low-dimensional settings, replacing
population parameters with sample estimates generally preserves strong classification performance. However, in high-
dimensional regimes, the singularity of the sample covariance matrix renders classical QDA infeasible. To address this,
previous works have proposed sparse estimators for the covariance matrix (Wu_ef-all, P0T9; Xiong et all, PUI6) or its
inverse (Catefall, DOTT; Yuan & inl, 2007). Nonetheless, these approaches fundamentally rely on the sample covari-
ance matrix, which is highly sensitive to heavy-tailed distributions, and thus undermines robustness. To overcome this
limitation, we propose a robust QDA procedure by replacing the sample mean and precision matrix with the HR-based
spatial median and scatter matrix estimators. The resulting classifier retains high efficiency even under heavy-tailed
distributions. We rigorously establish the asymptotic properties of the proposed method under mild moment condi-
tions and demonstrate its superior performance through extensive simulations and real data application. These results
highlight the significant gains in robustness and classification accuracy offered by our framework in high-dimensional,
non-normal settings.

The remainder of this paper is structured as follows. Section I introduces the high-dimensional HR estimator. Section
B develops the corresponding theoretical results and proposes a new adaptive test for the high-dimensional one-sample
location problem. Section B presents simulation studies related to this test. Section H concludes the paper. Due
to space constraints, additional results, including the second adaptive test for the one-sample location problem, its
asymptotic theory, and simulation results, as well as the full study on high-dimensional quadratic discriminant analysis,
are provided in the Appendix.



Notations: For d-dimensional € RY, ||z|| and ||z ||~ denote its Euclidean norm and maximum-norm, respectively.
Denote a,, < b, if there exists constant C, a,, < Cb, and a,, =< b, if both a,, < b, and b, < a, hold. Let
Ya(x) = exp(z®) — 1 be a function defined on [0, 0o) for o > 0. Then the Orlicz norm || - ||, of a random variable
X is defined as || X ||, = inf {t > 0,E{a(|X|/t)} < 1}. Let tr(-) be a trace of matrix, Amin(-) and Amax(-) be
the minimum and maximum eigenvalue for symmetric matrix. For a matrix A = (a;;) € RP*9, we define the
elementwise (oo norm [|Allc = maxi<i<p1<j<q |aij], the operation norm [|Alloy = sup, <y [[Az|, the matrix

2
i,J g
AL = Y0, Z?zl |a;;]. I, represents a p-dimensional identity matrix, diag(vi,...,v,) represents the diagonal
matrix with entries v = (v1,...,v,). The notation 14 denotes a d-dimensional vector whose elements are all one.

1 norm ||Al|, = maxi<j<q > b, |ai;|, the Frobenius norm ||A |z = (3, . a?,)/2, and the elementwise /1 norm

. . d s .
And S9! represents the unit sphere in R, % stands for convergence in distribution. Unless stated otherwise, the
notation in the supplementary material are consistent with those in the main text.

2 HIGH-DIMENSIONAL HR ESTIMATOR

Let X, ..., X,, be independently and identically distributed (i.i.d) observations from p-variate elliptical distribution
with density function |3|~1/2g{||=~1/2(x — u)||}, where p is the location parameter, X is a positive definite symmet-
ric p X p scatter matrix, and g(-) is a scale function. The spatial sign function is defined as U (x) = ||x| ~!xI(x # 0).
Denote e; = X~ '/2(X; — p). The modulus ||e;|| and the direction U; = U(e;) are independent, and the direction
vector U; is uniformly distributed on SP~1. It is then well known that E(U;) = 0 and Cov(U;) = p~'I,. Without
loss of generality, we assume that the scatter matrix satisfies tr(X) = p.

The Hettmansperger-Randles (HR) (Hettmansperger & Randles, 2002) estimates for the location and scatter matrix
are the values that simultaneously satisfy the following two equations:

n

:LZU(éi):O and Zé{U(éi)U(éi)T}ZIP’

where &; = 371/2 (X, — [v). These estimators are affine equivariant and provide robust estimates of both the location
parameter and the scatter matrix. Hettmansperger & Randleg (Z002) further established their asymptotic distributions
and showed that the HR estimators possess bounded influence functions and a positive breakdown point.

The HR estimator is computed via the iterative procedure summarized in Algorithm [, which alternately updates
the residuals, location, and scatter matrix. In high-dimensional settings, however, the sample spatial-sign covariance
matrix (SSCM) S = n~! S U(&)U(&;) T becomes singular, making Step 3 infeasible. A naive workaround is to
restrict 3 to be diagonal (Feng et all, ZOI6), but this loses the full scatter structure.

Algorithm 1 HR estimator

1: procedure UPDATE(X 1, ..., Xn, f1,3,p)
2: Step 1: é; «+ 2 "V2(X,; — 1)

$11/2 n &,
3: Step2:/§,<—/§,_~_22n¢7:1’f(z)

i et
Step 3: 3« pSl/2{n=1 00 U(E)U(E;) T )12
Step 4: Repeat Steps 1 - 3 until convergence.

4
5

6: return fi, by
7: end procedure

Our key insight comes from the elliptical symmetry of the population: if the initial location and precision esti-
mates are reasonable, the scaled SSCM p*1S is approximately equal to the identity matrix I,,. This implies that
most off-diagonal entries are negligible, allowing us to safely ignore them in Step 3 without imposing any struc-
tural assumptions. Therefore, we adopt the banding approach proposed by Bickel & T.evina (2008hK) for S, defining
Br(M) = {m;;I(]i — j| < h)} with 0 < h < p to simplify computation while retaining the essential scatter informa-
tion. The bandwidth parameter h exhibits low sensitivity to the final results, the relevant explanations are located in



Appendix C. To initialize the procedure, we use the spatial median for the location parameter,
1) = i Xz - ) 1
fto arg;rglg); X — p M
which is consistent in high dimensions (Zouef all, PD0T4; Feng et all, POT6; Feng, 2074), and the sparse graphical Lasso
(SGLASSO) for the precision matrix (Lu & Feng, P2075):
Qo = arg glil’(l) tr(p@®Sg) — log{det(®)} + A\u||©®||1, 2)
-
where @ > 0 indicates © is positive define, Sp = n~' .7, U(X; — fuo)U(X; — o) is the sample spatial-sign
covariance matrix based on the initial location estimate.

Combining these components, we present Algorithm [, a high-dimensional extension of the HR estimator that robustly
estimates both the location and scatter matrix.

Algorithm 2 High-dimensional HR estimator

1: procedure UPDATE(X 1, ..., X, f1,3,p)

2: Initial estimator [t = fi9, 3 = €2 !
3 Stepl: &« X VYX, — 1)

. o A BVEaTl i UE)
4: Step 2: n<— [ + 1 Z?:l Héle71

Step 3: 3« pX1/2B, {n 1 0 U(E)U(€,)T } B2, 2 %

Step 4: Repeat Steps 1 - 3 until convergence.

return fi, 3
end procedure

2 A

In the next section, we will prove the consistency of the high-dimensional HR estimator g, and then apply it together
with 3 to the one-sample location testing problem.

3 HIGH-DIMENSIONAL ONE-SAMPLE LOCATION PROBLEM

In this section, we consider the following one-sample hypothesis testing problem:

Ho:pu=0 versus Hp:p#0.

When the dimension p is fixed and the observations X1, ..., X, i1 N(0,X ), the classical Hotelling’s T? test

statistic commonly used: 72 = nX Tﬁ);(lX , where X and 3y represent the sample mean vector and the sample
covariance matrix, respectively. However, when the dimension p exceeds the sample size n, the sample covariance
matrix X x becomes singular, rendering Hotellings 72 test inapplicable.

To overcome the limitation, Fan_ef-all (Z0015) proposed replacing the sample covariance matrix with a sparse estimator
32 and introduced the following test statistic:

T nX 31X —p
FLY — — &=—
V2p

Under the null, they showed that as (n,p) — oo, Trry 4N (0,1). As a sum-type test, Trry is effective under
dense alternatives but deteriorates in performance under sparse ones. To better handle sparse alternatives, Chen ef all
(P074) introduced a max-type test statistic:

Terp = max Wf — 2logp + loglog p,
1<i<p



where W = (Wy,--- ,W,)T =n!/2%; /2 X . They show that under the null, T 7, follows a Gumbel distribution.

Both Trry and Ty, rely on multivariate normality or an independent component model, which limits their robust-
ness under heavy-tailed distributions such as multivariate ¢ or multivariate mixture normal. This motivates the need
for test procedures that remain effective when the data deviate from normality.

For elliptical distributions, spatial-sign methods provide a natural robust alternative and have been extensively studied
(O1a, 20T0). When the dimension p is fixed, the spatial-sign test with inner standardization (Randles, 2000) is defined
as Q% = npU, Ur, Ur = n~! Z?:l Ur,Ur= U(E;l/in). where X1 denotes Tyler’s scatter matrix ([Iyler,
T9R7). This construction standardizes the data in the spatial-sign framework, providing a test that is affine-invariant
and resistant to heavy tails.

However, in high-dimensional settings where p > n, Tylers scatter matrix is no longer well-defined, making Q>
inapplicable. To overcome this limitation, we propose novel test procedures based on high-dimensional HR estimators,
aiming to maintain robustness and efficiency under heavy-tailed distributions while adapting to the challenges of high
dimensionality.

First, we investigate some theoretical properties of the high dimensional HR estimator fi. Let U; = U(g;), r; = ||&i],

Q=3"1LS=E{UX;, - pwU(X; —p)" }and §, = E(r;*) fori =1,...,n.

Assumption 1. There exist constants b, B > 0 such that b < limsup, E{(r1/\/p) "} < B for k € {—1,1,2,3,4}.

And (et is sub-Gaussian distributed, i.e. ||( |y, < Ky < oo

Assumption 2. 37,7 > 0, s.t. 7 < Anin(B) < Anax(E) < 97, t2(28) = pand |2z, < h. The diagonal

matrix of X is denoted as D = diag{d%, d%, e d%}, liminf, o minj—y . ,d; > d for some constant d > 0 and
______ »d; < D for some constant D > 0.

Assumption 3. 37 >0, 0< g <1, so(p) >0, s.t. (1)]Qz, <T, (2) maxi<i<p Z?:l lwij]|? < so(p).

Assumption 4. limsup,, [|S||o, < 1 — 1 < 1 for some positive constant ).

Assumption [ aligns with Assumption 1-2 in Cinief all (7074), which requires that (;, =< p~*/2. Assumptions P and B
are standard conditions in high-dimensional data analysis, as seen in Bickel'& T-evind (2008H) and Cai_ef-all (2011),
ensuring the sparsity of the covariance and precision matrices. Assumption 8 corresponds to Assumption (A2) in Feng
(P074), guaranteeing the consistency of the initial sample spatial median.

The following lemma provides a Bahadur representation of the standardized estimator fi, which lays the foundation
for the Gaussian approximation in Lemma 0.

Lemma 1. (Bahadur representation) Under the Assumptions -8 and log p = o(nl/ 3), there exist constants Cy,1 and
C, such that if we pick \,, = T{/20(8 + n*C,, r)n~2n~1/2 log'/? p +p~ Y20, 1}, and AL "950(p) log'/? p = o(1),
then
2N 2 (f— ) = nV2¢! Z U, +C,,
i=1
where

1Cnlloe =0p{n~"*1og"/?(np) + n~=D/%(log p) 1=/ 10g'/? (np) s (p)
+ p—(l—q)/2 logl/Q(np)so(p)}.

Let A% be the class of simple convex sets (Chernozhukov ef all, 2017) in RP. Based on the Bahadur representation of
f1, we establish the following Gaussian approximation for /2 (1 — 1) over the class A, where Q = 31,

Lemma 2. (Gaussian approximation) Assume the Assumptions -8 holds. If logp = o (nl/ 5) ,then
pn (A¥) = sup

AeAsi

asn — oo, where Z ~ N (0,p‘1Cf21p).

P{nl/zﬂlﬂ (ﬂ_u) c A} —]P’(Z € A)’ — 0,

Consequently, we derive the following corollary, which establishes the limiting distributions of the Ls- and L,-norms
of n'/2QY2 (1 — p).



Corollary 1. Assume the conditions of Lemma D hold. Set A to {z|||x| < t}, {z||z| < t} and {z|||z| <
t1, ||x|| < ta} we have

pnoo—sup|19’{n”2||ﬂ”2(u e <t} = P(|Z]lo <t)] =0,
Pna = sup|]P’{n1/2llﬂl/2(M*M <t} -P(I1Z] <t)] =0,

prcomb = sup [P{n'?[ Q"2 (- p)]loo < t1,n!2QV2 (1 — p)|| < ta}
t1,t2€R

—P([|Z]loc <t1,1Z] < t2)| =0,
asn — oo, where Z ~ N (0, Cpr_le).

We know that {z|||#|« < t} and {z|||x|| < t} are simple convex sets. The third equation holds because the
intersection of a finite number of simple convex sets is still simply convex.

From [Caiefall (2013), we can see that p(? maxi <;<, Z2 — 2 log p+log log p converges to a Gumbel distribution with

the cumulative distribution function (cdf) F'(x) = exp(—Te ©/2) as p — 0o. Combining this with Corollary I, we
obtain

{nHQUQ(u w1Zp¢t —210gp+10g10gp<x}—>e><p(—e 2 /\/T). 3)

We estimate ¢; by ¢; :=n~' 327" 771, where 7; = [|2!/2(X; — ju)|| and establish its consistency in Lemma B. We

i=1"i
then propose the following max-type test statistic:

. 2
Tvax = HHQUQﬂ OOC%P— 2log p + log log p.

It is evident that T 4 x is affine invariant.

Theorem 1. Suppose the Assumptions I-B hold. Under the null hypothesis, as (n,p) — oo, we have
P(Thax <z) —exp(— B_I/Q/\/E).

According to Theorem [, Hy will be rejected when our proposed statistic Ty 4 x is larger than the (1 — «) quantile
q1—o = —logm — 2loglog(1 — o) ™1 of the Gumbel distribution (). We next establish the consistency of the test
in the following theorem.

Theorem 2. Suppose the conditions assumed in Theorem W hold, for any given o € (0,1), if | QY% p|loe >
C’n_l/Q(logp + qi—o) Y2, for some large enough constant C, then

P(Tymax > qi—olH1) — 1, as (n,p) — oo.

Next, we consider a special case of alternative hypothesis:
Hy: @2 0= (11,0, ,0) 7,y >0, “

which means there are only one variable with nonzero mean. Similar to the calculation in Lin“ef-all (2024), we can
easily show the power function of new proposed T)s 4 x test is

Brrax(p) € (R{—2l/? + (np)'?dy ' pn G}, @ — 2/ + (np)2di ' (i} + @),
where z,, = 2logp — loglog p + ¢1—«. Similarly, the power function of Chenef all (Z024)’s test is
BerL(0) € (B(—zl/? +n' 2 ), @(—al/? + 02 ) + @),

where g,? is the variance of Xy;,¢ = 1,--- | p. Thus, the asymptotic relative efficiency of T; 4 x with respective to Cai
efall (Z013)’s test could be approximated as

ARE (Tmax,Terr) = {E (Tfl)}QE (rf) >1,



which indicates the superior performance of spatial sign-based methods over least-square-based methods. This obser-
vation is well-documented in the literature, including Feng & Sun (P0016), Feng et all (2016), and Cinefall (2024). If
X; are generated from standard multivariate ¢-distribution with v degrees of freedom (v > 2),

I{(v+1)/2}]?
I'(v/2) '
For different v = 3,4, 5,6, the above ARE are 2.54,1.76,1.51,1.38, respectively. Under the multivariate normal

distribution (v = 00), our Ty ax test is the same powerful as Chen ef all (2024)’s test. However, our T 4 x test is
much more powerful under the heavy-tailed distributions.

2
ARE (Tymax,Tcrr) = — [

p
Similarly, we can see that (2p)~/2(> p(?Z2 — p) converges to a standard Gaussian distribution with cdf ®(z). In

i=1
combining with the Corollary [ we can conclude that,

B [20) 2 {nl Q2 (i - w*pet — p} < 2] - @(@). )

Then we propose the sum-type test statistic
V2D [ 0T
Tsum = 5 (n(fuTQu - 1) ) (©6)

Theorem 3. Suppose the Assumptions U-8 hold. Under Hy : p = 0, as (n,p) — oo, we have Tsy 4, N(0,1).
Furthermore, under Hy : p" Qu = o(pn=1), as (n,p) — oo, we have Tsya — 2~ 2npt 23 u" Qu 4 N(0,1).

By Theorem B, the asymptotic power function of Tsgpy is

Bsum(pm) = ‘I’( —Zl—a*t 271/2712?1/2C12HTQH)~
After some simply calculations, we can obtain the power function of Trry is

Brry(p) = (= 210 + 27 2p 2np T2 p).
where X, = E(X;X,") is the covariance matrix and X, = p~!E(r?)X. So the asymptotic relative efficiency
(ARE) of Tsy s with repective to Trry is ARE(Tsyn, Trry) = {E(r;l)}zE(rf) > 1, which is the same as
ARE(Twnax,TcrrL)-

However, when the dimension gets larger, there would be a non-negligible bias term in T's;rps and Ty 4 x . To use the
above sum-type and max-type test procedure, we adopt the bootstrap method to calculate the bias term. We simply
generate n samples 21, - - , z, from the multivariate normal distribution N (0, Qfl). Then, based on the random
sample z1,--- , 2y, we calculate the sum-type test statistic T¢;;,, and max-type test statistic T’y; 4 . Repeat this
procedure M times, we could get a bootstrap sample of T'sirps and T 4 x. Then, we calculate the sample mean and
the sample variance of these bootstrap samples, denoted as pf and o2* for T%;;,, and %, and 025 for T 4. The
corresponding p-values of Tsrar and Thyax are

psum =1—®{(Tsum — p3)/os}, pmax =1 —F{oo(Thvax — ar)/on + 1o},

where 110 = — log(7) + 27y and 03 = 371272 are the expectation and variance of the Gumbel distribution F'(z). Here
~ is the Euler constant. Because we only need the mean and variance of the bootstrap samples, so the bootstrap size
M = 50 is always enough for controlling the empirical sizes.

It is well known that sum-type and max-type tests are powerful against dense and sparse alternatives, respectively. To
accommodate unknown sparsity in the real world, we adopt the Cauchy combination test Cin-& Xie (Z020) to integrate
their advantages, leveraging their asymptotic independence.

Theorem 4. Under Assumptions 08, if ||p|loc = o(n='/2) and ||p|| = o(p'/*n=1/?), as n,p — oo, Tarax and
Tsu v are asymptotic independent.
Based on Theorem B, we define the Cauchy combination test as follows:

Tecr =1—-G[0.5tan {(0.5 — pprax) 7} + 0.5tan {(0.5 — psyn) 7},

where G(+) is the cdf of the standard Cauchy distribution. We reject Hy if Toc1 < « for a given significance level
a € (0,1).



4 SIMULATION

We consider the following three elliptical distributions:

(i) Multivariate normal distribution: X; ~ N (u, X);
(ii) Multivariate ¢-distribution: X; ~ t(u, 3, 3)/v/3;
(iii) Multivariate mixture normal distribution: X; ~ MN (u, X, 10,0.8)/4/22.8.

Four covariance matrices are considered. Model I: ¥ = (0.6/'=7!);<; ;<,,; Model Il: & = 0.5I,, + 0.511"; Model
I Q = (0.677)1<; j<p, B = Q71 Model IV: @ = (w; ), where w;; = 2 fori = 1,...,p,w;ip1 = 0.8

pX
for ¢ = 1,...,p — 1,wi’i+2 = 04 for ¢ = 1,...,]) — 2,wi’i+3 = 0.4 for ¢ = 1,...,]) — 3,wi,i+4 = 0.2 for
1=1,...,p—4,w;; = w;,; fori,j =1,...,pand w;; = 0 otherwise. As the performance of our method is not
sensitive to bandwidth choice, we set h = 3 throughout the paper for simplicity.

Table 0 reports the empirical sizes of the new proposed test procedures Tsyar, Tarax and Toop with n = 100,
p = 120, 240. We found that all the tests could control the empirical sizes very well. Next, we conduct a comparison
between our proposed methods and several test procedures based on the sample covariance matrix. Specifically, Chen
ef-all (2024) proposed a max-type test, denoted by Ty, based on the sample mean and a sparse precision matrix
estimator. Fan_ef all (2(IT5) introduced a sum-type test, T»ry, which uses a sparse covariance matrix estimator. For a
fair comparison, both Ty, and Trry adopt the graphical lasso to estimate the corresponding matrices. Furthermore,
we consider a Cauchy combination of the two, denoted by Tccr. In particular, Trry suffers from size distortion
under heavy-tailed distributions when using its asymptotic critical value. To address this and ensure fair comparison,
we employ a size-corrected power comparison framework, where empirical critical values are computed under the null
for all tests, guaranteeing matching empirical sizes.

We focus on Model II with n» = 100 and p = 120. The power of each test procedure is evaluated under various
distributions. For the alternative hypothesis, we specify pu = x+/logp/ (ns)El/ 2(1),0] )7 to guarantee QY2 =

Rl p—S
k/logp/(ns)(1], O;LS)T, where s represents the sparsity parameter of the alternative hypothesis. Specifically, for
the normal distribution, we set x = 2, for the multivariate ¢-distribution with 3 degrees of freedom, x = 1.5, and for
the multivariate mixture normal distribution, x = 0.6.

Figure [ shows the power curves for each test across various scenarios. Under normal distribution, Tsi7as and Thsax
perform similarly to Trry and Ty, respectively. However, for non-normal distributions, our robust methods Ts¢ s,
Ty ax, and T significantly outperform Trry, Torr, and Tocor, demonstrating their robustness in heavy-tailed
settings. When the sparsity parameter s is small, max-type tests (Ias4x, Torr) exhibit higher power than sum-type
tests (T'syar, Trry). In contrast, for dense alternatives (s large), sum-type tests outperform max-type ones. The
Cauchy combination tests, Tcc1 and Tocor, consistently perform well across different sparsity levels. In conclusion,
Tcc1 demonstrates superior performance under both heavy-tailed distributions and varying sparsity levels, exhibiting
double robustness.

Table 1: Empirical sizes (%) of the three proposed test procedures under different models with n = 100.

Model 1 Model II Model III Model IV

Dist.  Test p =120 p =240 p =120 p = 240 p =120 p = 240 p=120 p =240
Tsum 43 4.9 4.2 5.7 4.4 5.5 4.7 52
@) TMAX 5.2 4.8 5.1 5.9 4.1 4.6 4.3 59
Teci 4.7 53 5.6 4.5 4.9 54 4.5 5.5
Tsum 4.5 4.1 5.8 4.6 5.1 53 53 4.8
(1)  Twmax 4.8 4.2 5.7 5.0 4.9 4.4 4.3 5.6
CCl1 5.5 4.7 4.3 5.6 4.0 52 4.8 52
Tsum 4.2 5.6 4.9 4.4 5.8 4.3 4.1 5.7
(i)  Twmax 5.2 4.7 5.5 4.1 5.0 4.6 5.1 4.7
Tcei 4.8 5.3 4.5 5.7 4.0 5.4 4.4 5.8
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Figure 1: Power curves of each method with different sparsity under Model IT and n = 100, p = 120.

5 CONCLUSION

In this paper, we proposed a high-dimensional extension of the Hettmansperger-Randles estimator and applied it
to two problems in high-dimensional statistics: the one-sample location testing problem and quadratic discriminant
analysis. Simulation studies and theoretical analysis confirm the superior efficiency and robustness of our estimator in
high-dimensional settings.

In particular, it may be fruitfully applied to other important problems such as the two-sample location test (Feng et all,
200716) and the high-dimensional linear asset pricing model (Feng et all, PZ027K). These potential extensions warrant fur-
ther investigation in future research. In addition, our methods rely on the assumption of an elliptically symmetric distri-
bution, which may limit their applicability in more general settings. Existing work has shown that under near-spherical
directional distributions and finite-moment conditions (Cheng et all, Z023; Cin-ef-all, P074)), Gaussian approximation
theory can be established, with Ciref-all (2024)) further demonstrating the asymptotic independence between sum-type
and max-type test statistics. An important direction for future research is to investigate how to maintain algorithmic
implementability while establishing Gaussian approximation on simple convex sets and the asymptotic independence
of test statistics under such general models.
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Supplemental Material of "High-Dimensional Hettmansperger-Randles Estimator
and Its Applications"

A QUADRATIC DISCRIMINANT ANALYSIS

A.1 METHOD

Consider the problem of classifying a p-dimensional normally distributed vector @ into one of two classes represented
by two p-dimensional normal distributions, NV, (p1,21) and N, (g2, E2), where p;’s are mean vectors and Z;’s are
positive definite covariance matrices. If p; and E;,¢ = 1, 2, are known, then an optimal classification rule having the
smallest possible misclassification rate can be constructed. However, p; and =;,7 = 1, 2, are usually unknown and
the optimal classification rule, the Bayes rule, classifies x to class 2 if and only if

(@—p) (B —EY) (@— ) = 2678y (2 — 1) + 8 By '8 —log (|B4]/[a]) <0, )

where § = po — p1. In practical applications, when the dimension is lower than the sample size, we substitute the
mean and covariance matrix in () with their respective sample mean and covariance matrix. Nevertheless, when the
dimension exceeds the sample size, the sample covariance matrix becomes non - invertible. As a result, a common
approach, as described in Ci-& Shad (20T5) and Wu_ef-all (2019), involves replacing the sample covariance matrix
with various sparse covariance matrix estimators (Bickel & Tevina, P(I084;H). However, it should be noted that these
methods relying on the sample covariance matrix may not be highly efficient when the underlying distribution diverges
from the normal distribution.

In fact it has been shown by Bose_ef all (Z015) that, for the class of elliptically symmetric distributions with the
probability density function having the form

flaspm8) =B Pg{(@—p} B (- p)},

the Bayes rule leads to the partition
1 =,
&

—— ——

where A%(z) = {(a: —pa2) " By (x— po) — (x— p1) B (- ul)} and k may depend on «. Therefore, let-

ting ¢, = log(|=1]/|=2|), a general classification rule (or classifier) proposed by Bose ef all (Z013), is given by

x € Ry if AS(z) > cgp,
x € Ry otherwise ,

®

for some constant ¢ > 0. Clearly, this classifier boils down to the minimum Mahalanobis distance (MMD) and the
QDA classifiers whenever c is chosen to be 0 and 1, respectively. It has a misclassification rate of

Ropa+ Ropa

5 , Opa = P(incorrectly classify x to class m).

Ropa =

In practice, the parameters in the classifier (B) are unknown and need to be estimated from the training set. Suppose we
observe two independent samples { X}, ,i = 1,2 from f(a; p;, Z;), respectively. Under the elliptical symmetric

= ptr 1 (E)Q could

distribution assumption, we have E = p~! tr(E)X. So the inverse of the covariance matrix =
be estimated by Q; = p{tr(Z;)}~1€2; with

—

tI’(EZ

il — 1 i (2
and X; = n;l 27:1 X;;. Then, we replace the parameters with its high dimensional HR estimators, i.e.

Ad(@) = (z— fi2) " Do (@ — fiz) — (2 — )" D (& — 1), = log (I60a1/16])
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where the parameter c is estimated the same as Subsection 2.1 in Bose ef-all (Z0T5), denoted as ¢. So the final
classification rule is )
x € Ry if Ai(z) > &S,
x € Ry otherwise .

&)

It has a misclassification rate of

Ryropa + Rirgpa
B )

To show the consistency of the misclassification rate of our proposed HRQDA method, we need the following addi-

tional assumptions.

Assumption 5. tr(Z;) < to(p) foreachi=1,2. And

1/2 1/2
o) = VISV DS — L% + to(p)plluz — |2 = p.

Assumption 6. r; = ||E¢_1/2 (@ — ;)| satisfies Var(r?) < py/p and Var(r;) < /p, fori =1,2.

Ryrgpa = Hropa = P(incorrectly classify x to class m).

Assumption B assume the signal of the difference between the two distribution is larger enough. Assumption B is
needed to show the consistency of the trace estimator tr(=;).

Theorem 5. Ife;, 3;, 2, S; fori = 1,2 satisfy Assumptions W-8 and Assumptions B8 hold. Assume that n; < no
and n := min{ny, na}, we have

\Rurgpa — Ropal = Op (N9 250(p) /2 + M s0(p) }.

The result in Theorem B show that HRQDA is able to mimic the optimal Bayes rule consistently under some mild
assumptions, which is similar to Theorem 4.2 in Cai & Zhang (Z021)).

A.2 SIMULATION

We compare our proposed method, HRQDA, with the SQDA method proposed by Ci-& Shaad (20T5) and the SeQDA
method proposed by Wirefall (2019). The SQDA method estimates the covariance matrix using the banding method
proposed by Bickel & Tevind (Z008H), while the SeQDA method estimates the covariance matrix of the transformed
sample by simplifying the structure of the covariance matrices.

We consider the following three elliptical distributions:

* (i): Multivariate normal distribution: X;; ~ N (1, 31), Xio ~ N (2, X9);

» (ii): Multivariate ¢-distribution: X;1 ~ t(p1, £1,3)/vV3, Xio ~ t(p2, X2, 3)/V/3;

» (iii): Multivariate mixture normal distribution: X;; ~ MN (u1,%1,10,0.8)/v/22.8,
Xin ~ MN (p2, S5, 10.0.8)/v/22 8.

‘We consider three models for the covariance matrix:
e Model I: 33, = (O.6‘i_j‘)1§i’j§p, o = Ip;
* Model II: 3 = (0.6/"791)1<; j<, By = 0.5I, + 0.51,1];
e Model III: 2; = (0.6|i7j|)1§7;_’j§p, Y= Q;l, o = Q4.

The covariance matrices in Model I are approximately banded. In Model II, 32, satisfies the structural assumption in
Wiref all (201Y9) but violates the sparsity condition in Ci& Shad (2019), while in Model 111, 34 satisfies the latter but
violates both. We set p11 = 0 and pp = 0.1 x 1, and generate n; = ny = 100 training and test samples of the same
size and two dimensions p = 120, 240.

Table D reports the average classification rates. HRQDA generally performs best. In Model I, SQDA benefits from the
banded structure and outperforms SeQDA; HRQDA is comparable under normality but superior under heavy-tailed
distributions. In Model II, SQDA performs worst due to structural mismatch, while HRQDA consistently outperforms
SeQDA in non-normal settings. In Model III, HRQDA still achieves the best accuracy. These results confirm that
HRQDA is robust and effective across various distributions and covariance structures.
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Table 2: Average classification rate (%) and standard deviation (in parenthesis) of each method.

p =120 p =240
Model ~ Dist. ~ HRQDA SQDA SeQDA HRQDA SQDA SeQDA
() 0.99(0.01)  0.94(0.08)  0.63(0.03) 1(0) 0.96(0.08)  0.64(0.04)

Model I (i) 0.95(0.06) 0.64(0.11) 0.55(0.04) 0.97(0.08) 0.60(0.09) 0.54(0.05)
(iii) 0.92(0.13) 0.55(0.07) 0.52(0.04) 0.96(0.10) 0.55(0.08) 0.51(0.04)

@) 1(0.01) 0.77(0.10)  0.97(0.01) 1(0) 0.78(0.14) 1(0.01)
Model IT (i) 0.99(0.01)  0.55(0.06)  0.68(0.03) 1(0) 0.55(0.05)  0.68(0.03)
(i)  0.99(0.01)  0.53(0.04)  0.54(0.05) 1(0) 0.53(0.04)  0.53(0.03)
@) 1(0) 1(0.02) 0.76(0.04) 1(0) 1(0.02) 0.76(0.04)
Model T~ (ii) 1(0) 0.82(0.11)  0.66(0.03) 1(0) 0.81(0.12)  0.65(0.03)

(iii) 0.77(0.09) 0.60(0.02) 0.52(0.05) 0.78(0.10) 0.60(0.02) 0.51(0.04)

A.3 REAL DATA APPLICATION

We used the gene expression dataset GSE12288 from Sinnaeve ef all (2009), which includes 110 coronary artery
disease (CAD) patients (CADi > 23) and 112 healthy controls. After applying two-sample ¢-tests, 297 genes with p-
values below 0.01 were retained. To evaluate performance, we compared our HRQDA method with SQDA and SeQDA
by randomly splitting the data into training (73 CAD, 75 control) and testing (37 CAD, 37 control) sets, repeating this
process 200 times. Classification accuracy was averaged over the repetitions.

The performance of classifiers was evaluated using four key metrics:

* Accuracy (Acc): Proportion of correctly classified samples:

Acc — TP+ TN .
TP+TN+FP+FN
* Specificity (Spec): Proportion of true negatives correctly identified:
Spec = A
TN+ FP
* Sensitivity (Sens): Proportion of true positives correctly identified:
Sens = L
TP+ FN

* Matthews Correlation Coefficient (MCC): Balanced measure of classification quality:
TP-TN —-FP-FN

MCC - )
V(TP + FP)(TP+FN)(TN + FP)(TN + FN)

where T P (true positive), T'N (true negative), F'P (false positive), and F'N (false negative) represent the counts of
respective classification outcomes. All metrics range between 0 and 1, except MCC which ranges between —1 and 1,
with higher values indicating better performance.

Table B shows that HRQDA outperforms SQDA and SeQDA, achieving the highest mean accuracy (0.760) and MCC
(0.527). It also has the best sensitivity (0.821) and maintains good specificity (0.708), showing strong ability to detect
CAD cases reliably.

B PERFORMANCE OF THE TEST UNDER £-CONTAMINATION

For the one-sample testing problem, we consider n = 100 and p = 120. The uncontaminated data are generated from
a multivariate ¢3 distribution with mean vector p and covariance matrix 3 with entries

Sy =087l 1< i <p.
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Table 3: Comparison of evaluation metrics and standard deviation (in parenthesis) for each method.

Method Accuracy Specificity Sensitivity MCC

HRQDA  0.760 (0.042)  0.708 (0.088)  0.821 (0.069)  0.527 (0.082)
SQDA 0.710(0.051)  0.707 (0.112) ~ 0.702 (0.111)  0.429 (0.103)
SeQDA  0.729 (0.051)  0.685(0.084)  0.772 (0.070)  0.461 (0.102)

To introduce e-contamination, we randomly select en observations and replace them by independent noise drawn from
N, (0, strength - I,,), where the contamination rate ¢ takes values in {0, 0.05,0.10,0.15,0.20} and the contamination
strength is in {5, 10,20}.

We consider three mean configurations:

1 1
I’I‘l:Opa “2:221/2(171713();"'70)1—7 /l'3:0721/2(1>"-a1a07"'70)—r7
1—c¢ 1—c¢ ~——
30

where the factor 0.15/(1 — ¢) is used to keep the effective signal strength comparable across different contamination
rates. Here pt; corresponds to the null (empirical size), (o to a sparse alternative (nonzero in the first 3 coordinates),
and w3 to a dense alternative (nonzero in the first 30 coordinates). For each setting, we repeat the experiment 500 times
and record the empirical rejection probabilities of the max-type test, the sum-type test, and the Cauchy combination
test.

The results under e-contamination are summarized in Tables B-B below. Table B reports empirical size under the null
(p1), while Tables B and B report empirical power under the sparse (u2) and dense (u3) alternatives, respectively.
Overall, the sum, max, and Cauchy combination tests maintain sizes close to the nominal level and display reasonable
power even when up to 20% of the observations are contaminated.

Table 4: Empirical size under e-contamination for pe;.

€ Stfength Qmax Qsum QCauchy
0.00 5 0.056 0.050 0.060
0.05 5 0.040 0.028 0.030
0.10 5 0.040 0.052 0.052
0.15 5 0.042 0.030 0.042
0.20 5 0.042 0.034  0.042
0.00 10 0.046 0.048  0.050
0.05 10 0.042 0.034  0.038
0.10 10 0.032 0.040 0.036
0.15 10 0.044 0.028  0.036
0.20 10 0.050 0.036  0.048
0.00 20 0.050 0.052  0.052
0.05 20 0.036 0.052 0.056
0.10 20 0.040 0.044  0.050
0.15 20 0.036 0.034  0.036
0.20 20 0.042 0.030 0.044

Notes: n = 100, p = 120. Errors are generated from a multivariate ¢3 distribution with covariance ¥;; = 0.8/"=9!, Here p,
corresponds to the null (empirical size). Contamination follows an e-contamination scheme with € € {0, 0.05,0.10,0.15,0.20}
and strength in {5, 10, 20}. Each entry is based on 500 Monte Carlo replications.

For HRQDA, we consider a two-class classification problem with p = 120 and ¢3 distribution. In each replicate, we
generate a training sample of size 100 and an independent test sample of size 100 (again 50 per class). Class 1 follows a
multivariate ¢3 distribution with mean 0,, and covariance matrix ¥;; = 0.8"=71, while Class 2 follows a multivariate ¢5
distribution with mean 0.1-1, and covariance matrix I,,. We then contaminate a fraction ¢ € {0, 0.05,0.10,0.15,0.20}
of the observations by replacing them with V,, (0, strength - I,,) noise (using the same strengths {5, 10,20} as above),
and record the classification accuracy of HRQDA on the test set. Table @ reports the average classification accuracy
(in %) over 500 replications.
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Table 5: Empirical power under e-contamination for po (sparse mean shift).

€ Strength Bmax Bsum ﬁCauchy
0.00 5 0.526 0330 0.534
0.05 5 0.542 0320 0.544
0.10 5 0.526 0304 0.510
0.15 5 0496 0.262 0.462
0.20 5 0.538 0.300  0.522
0.00 10 0.522 0332 0.532
0.05 10 0.534 0334  0.552
0.10 10 0.504 0.280 0.492
0.15 10 0.506 0.264 0.492
0.20 10 0.466 0.186  0.432
0.00 20 0.582 0350  0.560
0.05 20 0.524 0310 0.544
0.10 20 0.510 0.294  0.502
0.15 20 0498 0.250 0474
0.20 20 0.488 0.216  0.460

Notes: same data-generating mechanism as in Table B, but g2 corresponds to a sparse mean shift. Entries are empirical power
(rejection probabilities under the alternative) based on 500 Monte Carlo replications.

Table 6: Empirical power under e-contamination for p3 (dense mean shift).

€ Strength Bmax ﬁsum ﬂCauChy
0.00 5 0.336 0.526 0.524
0.05 5 0.306 0.500 0.514
0.10 5 0.310 0.518 0514
0.15 5 0.316 0512  0.532
0.20 5 0.270 0.496  0.498
0.00 10 0.326 0512 0490
0.05 10 0.342 0.544  0.546
0.10 10 0.288 0.484  0.486
0.15 10 0.280 0.528  0.496
0.20 10 0.250 0444 0444
0.00 20 0.330 0.558 0.558
0.05 20 0.314 0.560  0.528
0.10 20 0.320 0.524 0514
0.15 20 0.298 0.480  0.490
0.20 20 0.254 0.450 0.464

Notes: same data-generating mechanism as in Table B, but g3 corresponds to a dense mean shift. Entries are empirical power
based on 500 Monte Carlo replications.

Table 7: Classification accuracy (%) of HRQDA under e-contamination.
Strength 0 0.06 010 0.15 0.20

5 96.82 95.12 9290 90.72 88.50
10 96.82 95.13 9290 90.71 88.42
20 96.92 95.13 92.80 90.70 88.41

Notes: Each entry is the average test-set classification accuracy (in %) of HRQDA over 500 Monte Carlo replications. Training

and test samples have size 100 each (50 observations per class). Class 1 has mean Oy and covariance >;; = 0.8/"=9! and Class 2
has mean 0.1 - 1,, and covariance I,. A fraction e of the observations is replaced by N, (0, strength - I,) noise.
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We observe that HRQDA retains high classification accuracy under moderate levels of e-contamination, with perfor-
mance degrading only gradually as the contamination rate increases, which is consistent with the robust behavior
suggested by our theoretical developments. Due to the strict page and response-length constraints and the substantial
additional space that a full grid of cellwise contamination scenarios would require, we focused our numerical study on
e-contamination and leave a systematic investigation of cellwise contamination to future work.

C ADDITIONAL METHODS FOR ONE-SAMPLE LOCATION TEST PROBLEM

For comparison, we also consider the test procedures proposed by Feng & Sun (Z016) and Cinefall (2024), which are
designed for the sparsity structure of the location parameter p.

sy SE (077x) 0 (077,

1<J
22 ~N—1/2 ~ 2 1/2
Taraxz anIpHD_ / NH (1 —nY )7
Tcco =1—-G [0.5 tan{(0.5 _pMAX2) 7'&'} + 0.5 tan{(0.5 —pSUMQ) 7T}] ,

where parax2 and psy are are the p-values of Ty 4 x2 and Tsyara, respectively. Here 1 and ]NDZ-J- are the estimator of
spatial-median and diagonal matrix of 3 by the following algorithm:

) &« D V(X —q), j=1-.m

o B 151/22?:1U(éi).
() o= pt —=—5 =

(iii) D « pD'/2 diag {n—l Y UENU (éi)T} D'/2.

Next, we demonstrate that, under mild regularity conditions, the sum-type test statistic Tsymp is asymptotically in-
dependent of the max-type test statistic Tyax. Furthermore, the max-type test statistic Tyaxz is also asymptotically
independent of the sum-type test statistic Tsym; -

Theorem 6. Under Assumptions B-8, if ||t 0o = o(n™/?) and ||| = o(p*/*n=1/?), as n,p — oo, and Theorem 7
in Licetall (P024) holds, Tsy a2 /0y is asymptotically independent with Th ax, Tsu i is asymptotically independent
with Tyrax2 — 2logp + loglog p.

In practice, we could not know the sparsity level of the alternative, either /2 or p, so we suggest to use Cauchy
combination test to combine all the four test procedures as follow:

1 1
Tocs =1 — G[Z tan {(0.5 — pprax) 7} + 1 tan {(0.5 — psua) 7}

1 1
+ 1 tan {(0.5 — ppraxe) w} + 1 tan {(0.5 — psum2) 71'}} (10)

We have supplemented the empirical sizes of the Cauchy combination test 7o s under the null hypothesis as described
in Section H. Table B reports the empirical sizes of T3, which are consistently around 5%, indicating that T3 can
control the empirical size very well.

Next, we compare T3 with Teooq proposed in Section B and Tooo from Lief-all (20024). Specifically, the compari-
son is carried out under distributions (i)—(iii) and Models I-IV, using the same parameter settings and data-generating
mechanisms for the alternatives as described in Section B. Figure D displays the power curves. We observe that T2
tends to outperform Tx¢1 under Model I, while the reverse holds for Models III and IV. In the case of Model II, T2
exhibits lower power than To¢; when the signal sparsity s is small, but surpasses Ty as s increases. Overall, the
relative performance of T and T2 is highly sensitive to the underlying model structure.

In contrast, the proposed T3 demonstrates uniformly strong performance across all scenarios, offering both robust-
ness to distributional variation and adaptability to different signal sparsity. It often achieves the highest power, making
it a reliable choice in practice.
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Table 8: Empirical sizes (%) of T3 under different models with n = 100.

Model 1 Model II Model 111 Model IV
Dist.  Test p =120 p = 240 p =120 p =240 p =120 p =240 p=120 p =240
@) Tees 5.8 4.3 4.7 52 5.0 44 4.1 5.6
(>i1) Tees 59 4.6 54 4.2 5.0 4.7 59 4.5
(ii1) Tees 5.1 4.9 4.2 5.6 4.7 59 4.9 55
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%,7 %,7\ ‘.r"‘ i,i‘ %,7‘\
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] ] ° dudaagaas 1 deaiaaaay

5 10 15 5 10 15 5 10 15 5 10 15

s s s s

(i) Multivariate normal distribution

Model | Model Il Model Il Model IV
- |-e— CcC1
a- cc2
o | cc3
s\
- \
& & . \
A
~ AY
<7 N nna
el T T T
s w0
.
(ii) Multivariate t3 distribution
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(iii) Multivariate mixture normal distribution

Figure 2: Power curves of three Cauchy combination tests with different sparsity, models and n = 100, p = 120.
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D INSENSITIVITY OF PARAMETERS TO THE ALGORITHM

The bandwidth parameter h exhibits low sensitivity to the final results, in contrast to the algorithm’s higher sensitivity
to the choice of initial values. Specifically, when appropriate initial values are selected, the following approximation
holds:

n
SN UE)UE) ~1,,
i=1
where I, denotes the p-dimensional identity matrix. Under such circumstances, satisfactory results can be obtained
regardless of the specific choice of bandwidth parameter h. We typically adopt h = 3 as the default value to balance
estimation accuracy and computational cost: while moderately larger values of i may yield marginal improvements
in accuracy, the benefits are limited and come with increased computational time.

SIS

To visually demonstrate the influence of h, we first present experimental results based on simulated data. Specifically,
our simulations generate observations X; from a multivariate ¢-distribution with the following specifications:

X~ t(IJ" 3, 3)/\/§a

where we set the sample size n = 100 and dimensionality p = 120. The covariance matrix 3 follows an autoregressive
structure defined by 2 = (0.6/"771);<; ;<.

Table 9: Influence of bandwidth parameter ~ on robust mean and covariance estimation.

h 1 2 3 4 5 10 20

g —pl> 176 176 176 176 176 176 1.76
|2 -3|r 382 379 377 376 374 3.66 3.65

Here, || - ||2 represents the Lo-norm for vectors, and || - || 7 denotes the Frobenius norm for matrices. These results
already indicate that the bandwidth parameter h exerts only a limited influence on the quality of the robust mean and
covariance estimators.

To further quantify the practical impact of tuning parameters on our proposed tests, we conduct a sensitivity study
for the banding width A, the number of bootstrap iterations M, the regularization parameter A in the SGLASSO step,

and the sample size (n,p). The tables below report empirical size (¢&.), empirical power (3., and average runtime
(in seconds) in a representative one-sample setting with n = 100, p = 120, multivariate t3 errors with covariance
¥ = (0.8=7), <, ;<,, and a sparse mean shift

pw=xY%1,1,1,0,...,0)"

under the alternative. Each entry is based on 500 Monte Carlo replications.

Table M0 shows that the proposed tests are quite stable with respect to the banding width h. Across h €
{1,2,3,4,5,10}, the empirical sizes of the max, sum, and Cauchy combination tests remain close to the nominal
level, and the powers are broadly comparable, with slightly better performance for moderate banding (e.g., h = 3-5).
The average runtime changes very little with . This supports our default choice & = 3 and suggests that practitioners
can safely vary h within a moderate range without materially affecting performance.

Table [ examines the number of bootstrap iterations M. For M € {20, 50, 100,200}, the empirical sizes are again
close to 0.05 and the powers increase only mildly with M, while the runtime grows approximately linearly (from about
650 to 2300 seconds in this experiment). This indicates that M around several tens already yields stable behavior, and
our default M = 50 represents a reasonable compromise between accuracy and computational cost.

Table [ studies the SGLASSO regularization parameter . We find that overly small regularization (e.g., A = 0.05)
leads to noticeable size distortion and very high rejection probabilities, whereas moderate to larger values (A =
0.1,0.2,0.3) keep empirical size closer to the nominal level but with some loss of power when A becomes too large.
The theoretically motivated choice A = 0.1 lies in a region where both size and power are well behaved, and runtime
decreases slightly as A increases. These results suggest that practitioners should avoid very small A, and that a range
around the default (e.g., A between 0.1 and 0.2) is acceptable in practice.

Finally, Table [3 reports average runtime for several combinations of (n, p). For the range of n considered, the runtime
varies only mildly with n at fixed p, whereas it increases substantially with p, reflecting that the computational cost
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is dominated by operations on p X p covariance and precision matrices. This provides a concrete indication of the
scalability of the proposed procedures: they are feasible for moderate to high dimensions, with computational burden
growing primarily in p rather than n.

Overall, these sensitivity results indicate that (i) the proposed tests are reasonably robust to moderate perturbations of
h, M, and A around the recommended defaults, and (ii) the computational cost behaves in a predictable way, which
we believe will help practitioners choose tuning parameters and anticipate run times in their own applications.

Table 10: Sensitivity to banding width h.

h &max dsum dCC Bmax 5sum /BCC runtlme
I 0.042 0.046 0.050 0.550 0.392 0572 946.28
2 0.048 0.044 0.052 0488 0.378 0.548 934.95
3 0.056 0.048 0.052 0.534 0440 0591 933.89
4
5

0.054 0.044 0.048 0.548 0.446 0.626 925.86
0.054 0.042 0.044 0.556 0.480 0.603 928.32
10 0.046 0.066 0.054 0.545 0.546 0.644 930.70

Table 11: Sensitivity to the number of bootstrap iterations M.

]\/[ é‘rnax dSul’Il OA/’CC ﬁIIlﬂX ﬁsurn ﬂcc runtime
20 0.040 0.050 0.049 0478 0.354 0584 655.14
50 0.056 0.048 0.052 0.534 0440 0.594 933.89
100 0.054 0.052 0.052 0.550 0.406 0.584 1385.56
200 0.062 0.050 0.058 0.548 0.418 0.582 2316.18

Table 12: Sensitivity to the regularization parameter .

>\ OA‘max &sum C/\kCC 511134)( 6sum ﬁCC runtime
0.05 0.172 0314 0.258 0.724 0.884 0.878 1082.52
0.1 0.056 0.048 0.052 0.544 0466 0.562 933.89
0.2 0.046 0.067 0.066 0.424 0364 0474 794.08
0.3 0.046 0.103 0.078 0.382 0.402 0470 737.93

E PROOFS OF THEORETICAL RESULTS

Recall that for i = 1,2,--- ,n,U; = U(e;) = U{QY?(X; — p)} and r; = ||e;]| = ||QY2(X; — p)| as the scale-

invariant spatial-sign and radius of X; — p, where U(X) = X /|| X||I(X # 0) is the multivariate sign function of
X, with I(-) being the indicator function. The moments of r; is defined as {; = E (ri_ k ) We denote the estimated

version U; and r; as 7; = ||QY/2(X; — )| and U; = QV/2(X; — ) /|| Q2V/2(X; — ) ||, respectively,i = 1,2, -, n.
Finally, we denote various positive constants by C, C1, Co, . .. without mentioning this explicitly.

E.1 THE LEMMAS TO BE USED

The following result is a one-sample special case of Lemma 1 in (20718).
Lemma 3. Under Assumption [, for any matrix M, we have

E[{U(e:) MU (e:)}*] = O{p~*tr(M"M)}.

As it plays a key role in our analysis, we restate Theorem 1 from (P0723) below.

Lemma 4. Under Assumptions -8, Q defined in Lemma [0 satisfies the following property. When n,p are sufficiently
large, there exist constants Cy, v and C, such that if we pick

\ _T{ V2C (8 + n*Cyr) /logp+Cn,T}
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Table 13: Average runtime (seconds) for different (n, p).

n=100 n=200 n =400 n =600
p=120 24.29 23.35 23.67 23.35
p =240 186.01 181.78 165.88 157.70
p=480 1921.63 1506.36 1405.67 1358.17

with probability larger than 1 — 2p~2, the following inequalities hold:
122 = Q| < 412/2, A,
12 = Qlop < 1€ = @z, < CaAy 50(p),
P = QIfF < CsAL s0(p),

where Cy < (1 + 2179+ 3179)(4]|2||2,) "% and Cs < 4]/, Cs.

In fact, Theorem 1 from LCu & Feng (2075) and this Lemma are not fundamentally the same. How-
ever, our algorithm is actually not sensitive to bandwidth choice. = When the initial value is well-chosen,

pn~ 1SN U{él(.k)}U{égk)}T ~ I, so a very small bandwidth is also acceptable. In this case, it can be regarded
as projecting n=! >°7 U{égk:) }U{égk) } T onto the subspace where its true value resides.

Lemma 5. Define a random matrix Q = n~' 31 #7'UU; € RP*?, and let Qi denote its (j,1)-th element.

K2

Assume N1~ 950 (p)(logp)*/? = o(1), and satisfy Assumptions B-A. Then we have
Qi P71 =) + O, {”_1/229‘3/2 + /\iquo(p)p_g/z} .

Here, the symbol < has been defined in the Notations at the end of Section [I.

Proof. Denote I = Q/251/2 Set I and Q" be the ith row of T and £2 respectively.
R 1 <& i
Qi = - 2_4:7“7 U;;Ui

1 n
A—33T 3T
:—g 7 L 1) gy
n 4 i j Sl €4
i=1

1 n R e a R
= =Y le| @ e d <)
=1

=A; + Ay + A3,

where A1, Ay and As are defined as follows

L s e o\ e .
Ay = =37 (il 7 = 11| 7*) (e (@ o)
=1

Ay

U3 (e~ ) (e )

i=1
1 & R .
A= (e ).
i=1
Given Lemma B and under Assumption [, we obtain that
[Teil|* =el =1/2(Q — )= %e; + 1]
<r? + (el'se;) Q2 — .oy
<r? + 07192 = Qlop
=ri (1+H),

22



where H = 7| Q — Q||op = O,{\L"950(p)}. Therefore, for any integer k,
e ||* ={eI'BV/2(Q — Q)% 2, 4 r2}F/2
<rk(1 + H)*/?
=r} (14 Hy), (11)
where Hy, = (1+ H)*/?2 —1 = 0,{\}"%s0(p)}.
Similar to the proof of Lemma A3 in Cheng et al] (?123), we have

E(A)) =E {; >~ (el = = J1eal =) @ e (@& >}

i=1

=E {; > <||Ei||73 H—3) (ijTEi)(izTEi)}

i=1
=E{(Ay + A3)H_3}.
Firstly, notice that,
ij =(I- I) g + €ij
:(91/2 — Ql/2)j 21/261' + €ijs

thus,
~ 1 N N
Ilei—ci 25{9_1/2(9 — )} =% o, [V - 2)} ] 212

SN2, 112 = L, 122 1, 122U o

=0, {\ %s0(p)(log p)'/*} = 0,(1).

In the above equation, the second to last equation from the following facts: (1) Since X is a positive define symmetric
matrix, and under the Assumption [, we have || 27'/2||1, < {A\nax(2)[| X2, }/2 = O(1). (2) Furthermore, accord-
ing to the second formula of Lemma @, ||Q2 — ||, = Op,{\L"%so(p)}. (3) As for U; is uniformly distributed on a

»(v/log p/p) and r; = O,(,/p), we have | 22U |0 = Op{(logp)1/2}.

Next, we analyze A, and As. Since ]E(rf) =p,

n

A= 2 (Tl =) fes +op (D Heu + 0p(1)}

- Z - <3T UZJUZIH(] = l) + Op( )
=G IH(J = 1)+ 0p(n~2p7%2) S p* 213 = 1) + Op(n ™ 2p/2).

and
As == 3" Gofeig + 0p(DHeu + 0p(1)}

< p—B/QH(j =)+ Op(n_l/Qp_?’/z),
It follows that,
1Qal 3 {p_3/2ﬂ(j =0+ Op(n_l/Qp‘g/Q)} [1 4+ Op{ A\, %s0(p)}]-
Thus,
Qi Sp721G =1+ O, {”71/211*3/2 + /\}quo(p)pfm} :
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Lemma 6. Suppose the Assumptions in Lemma B hold, then CAl LS ¢ as (n,p) — oo, where 61 =
T V(X = )|

Proof. Denote 0= o— .
I22(Xi = )l = 1922(X — ) (1 + 7721212 — QV2)(Xi — )|
+ T’i_2||f21/20A||2 + 2Ti_2UiT(Ql/2 _ 91/2)971/2Ui)
2 WUT Q120 — 2 U0 V2@ V2)01/26)12,
By combining the third expression in Lemma 8, the Taylor expansion and Markov’s inequality, we obtain 7;” 2 | (Ql/ 2_
Q1/2)(X; H2 0, {\279s0(p)} = o0,(1). Based on Lemma 0 and under the Assumption I, we have
2| QY 20||2 = O,(n~!') = 0,(1). Similarly, by the Cauchy-Schwarz inequality, the other parts are also o,(1).

So,
> (X:—p)|| = {n—leQl/z (Xi—u)Hl}{l—i—op(l)}.

Obviously, E (n=t 31" 77 ") = ¢ and Var (n=1¢; " >0 7)) = O (n™!) . Finally, the proof is completed. [

111

n

1 -1
n_ i

Lemma 7. Suppose the Assumptions in Lemma B hold with so(p) < p'~° for some positive constant § < 1/2 Then, if
logp = o(n'/?),

= 0 {n 108" 2(np) },

n”! Zn: ¢ '
i=1

n (12)
11’L—1 Z(SMUZ = Op(n_l).
i=1 oo
where 01 ; is defined in the proof in Lemma .
Proof. From the proof of Lemma B, we can see that i;rez —eij = Op{A\L79s0(p )( )1/ 2}. Moreover, for any
integer k, we have ¥ < r%(1 + Hy), where Hy = O,{\:"%s0(p)}. Recall that U; = U{Q2/?(X; — p)}, since

r;l = Op(p’l/Q), then for any j € {1,2,-- ,p},

Uij = f';li;—Ez ST;l(]. + H*l)gij + 7’;1(1 + Hfl)(i;-r&'i — Eij)

=(L+ H_1)Usj + op{(1 + H_1)Uy}.
Therefore, we obtain that U; < U;(1 4+ H_,) fori = 1,2,...,n with the assumption A}~ %s¢(p)(log p)*/? = o(1).
According to the Lemma A4 in Cheng et all (2023), we have ||7f1/2 S <1_1Ui||oo = Op{logl/Q(np)} and
[n =t 2 (U2 (1) with logp = o(n'/3). Therefore, we have

n
-1 —17
n E ¢ U
i=1 o

n Y G+ HA)U;

i=1

<|1+4+ H_4|- nflzgflUi =0, {nfl/zloglﬂ(np)}.
i=1 00
Similarly
n . n
Gt 0O <+ Ho | |Gt Y 6.
i=1 00 i=1 00

=0,{n " (1 +n""?10g"?p)} = 0,(n1).
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The proof of Lemma B can be found in Appendix A of Chernozhukov et all (Z0177).
Lemma 8 (Nazarov’s inequality). Ler Yy = (Yo1,Y0,2, - -, Yoyp)T be a centered Gaussian random vector in RP and
E(YOQJ) >bforallj =1,2,---  pand some constant b > 0, then for every y € RP and a > 0,

P(Yy <y +a) — P(Yy <y) < alog?(p).

We restate Lemma S9 in Feng et al] (2024).
Lemma 9. Foreach d > 1, we have

L a2 ,—ay/2
pl;lgo H(d,p) < o™ e ,
where H(d’p) = Zl§i1<---<idﬁp P(Bh T Bid)’ iq {|yid| > \/2 Ing - IOglogp + y}’ Y = (yla T 7yp)T ~
N(O,R).

Lemma 10. Let w € RP be a random vector uniformly distributed on the unit sphere SP~1. A € RP*P is a non-
random matrix. Then we have E(u' Au) = p~1 tr(A) and Var(u' Au) < p~2|A||% as p — oo.

Proof. Since E(uu') = p~'I,, then E(u’Au) = tr{AE(uu')} = p~ltr(A). Let A = (aij)} j=> v =

(ul,...,up)T

b}

E(u'Au)? Za”u + Z Qi Ui

1<i#5<p

2 2
=K g a“ ; E aj—|—a,',-ajj)uiuj

1<1#J<p
3 =~ 1 2
:p(p 9 2 ag; + s +2) IS;SP ag; + Qi 0,
where the last equality because that (u3, ..., u2)" follow a Dirichlet distribution D), (1/2,...,1/2)(0jd, 20110). As a

consequence, we have E(u}) = 3/{p(p+2)} and E(uu?) = 1/{p(p+2)} for any i # j. Combining the two results
above and after some straightforward calculations, we obtain Var(u " Au) =< p~2||A|2. O

Lemma 11. Under Assumption, for i = 1,2, we have

= 1 T T Ty
tr(.:.l) :nL_lle”X”_ _1X7, Xz
j=
Enz XTX Ej,k X;]erk

nz(nz -1)
_Zj;ﬁk;ﬁl —XJXNC + X1 Xik
N ni(n; — 1)(n; — 2)
e X5 X~ X X~ X X+ X X
ni(n; — 1)(n; — 2)
(X — Xin) T (X — X
N ni(n; — 1)(n; — 2) ’

which implies that our estimate of tr(Z;) is the same as that of Shen & Feng (Z0025). Thus, we complete the proof
according to Lemma 8.4 of Shen & Feng (Z075). O
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We next restate Lemma 8.9 from Shen & Feng (Z075).
Lemma 12. For positive matrix X, Y,

log |X| < log Y|+ tr{Y (X -Y)}

E.2 PROOF OF MAIN LEMMAS

Proof of Lemma ll.. As p is a location parameter, we assume g = 0 without loss of generality. Note that given Q, the
estimator [ satisfies

> U{QYAX - @)} =0,
i=1
Therefore, the estimator £ is defined as the minimizer of the following objective function:

L(9) = i HQ1/2(XZ- - e)H. (13)

Our goal is find by, ;, such that ||fi]| = Oy (by ;). The existence of a b;, 1 -consistent local minimizer is implied by the

fact that for an arbitrarily small € > 0, there exist a sufficiently large constant C, which does no depend on n or p,
such that

limi%fP{ L(by pu) > L(O)} >1—¢c. (14)

1mn
weR?,|[uf=C

Firstly, we prove Equation (I@) holds when b,, , = p'/2n~'/2. Consider the expansion of [|2'/2(X; — b, pu)||:
. . e N 1)2
J92(Xs = b )| = 127251 (1= 20,7 0 Q20 482 70T )

Note that bnvpfflu—rﬂl/gﬁi = Op(n~Y/?) and b%,pf’gu—rflu = O,(n~1). These orders follow from the following

argument. Since we already know that 7#¥ < r¥(1 + Hy) and U; < U;(1+ H_1) with Hy, = O,{\L"%s¢(p)} for any
integer k, thus,

byt QY 2U; <b, (1 + Hy) 2 " QY2U; + b, (1 + Hy) 27 T (QY2 — QYU
For the first term, by independence between r; and U;, we have E{(r; 'u " Q'/2U;)?} = E(r; *)E{(u " Q'/2U,)?} =

Cop~t tr(€2), which implies that 7 LuTQV2U; = O, (p~'/?). Similarly, for the second term, applying Taylor expan-
sion and Lemma B yields:

El{r; T (2 = QU] S p72 (2 — Q)% [lop < p72)1Q - QU1Z, S p72AT 55 (p),
which implies that r; 'u T (QY2 — QY2)U; = 0,{p~ "\, ~9s0(p)}. Hence
byt QY2U; =0, {bp pp™ Y2 + b pp AL 950 (p)}
=Op(n71/2).
As the same way, we have bfhpf*Qqulu = O,(n~1). Then we have

1€272(X; = bopw) | =192 | = by T QYU
1 N ~ A A
LR plyOl/2 (Ip _ Uz'UZ-T) Q1 2u 4+ 0, (p"/2n3/2).

2n,pi

So, it can be easily seen

p~ 2 {L(bapu) — L(0)}

_ . —1/2 TA1/2Z o
=—n u' U;
i=1 (15)
oLl 212 {n S (7, - i 007 } Q20 1 0, (n=1/?).

i=1
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Notice that E ( |[n=1/2 37 U;||?) = O(1) and Var (|[n= Y237, U;||?) = O(1). Accordingly
i=1 i=1

n71/2 zn: Uz
i=1

Recall the definition Q = n~! S U, UT in Lemma B. After some tedious calculation, we can obtain that
E{tr(Q%)} = O{p~2 + n'p~! + A22482(p)p~'}. Then E(u’ QV/2Q0/2u)? < E{( T )2 tr(Q2)} -

O{p~2+n~1p~ 1+ A2-2452(p)p~1}, which leads to u Q2Q0 2y = Op{p~  +n=V2p=1/2 p N =a5,(p)p=1/2}.
Thus we have

< HfzmuH = 0,(1).

_n71/2uTQI/2ZUi
=1

. 1 & o R
12,012 ) 2 (Afll _AflU,U'T) aL/2
P U {ng v, L, — 7, UU; U

i=1
=p*/ 12 P uQu + 0,(1),
=1

where we use the fact that n=' Y7 771 = ¢ + Op{n~/2p~1/2 4 AL~ qso( )p~'/2}. By choosing a sufficient
large C, the second term in (I3) dominates the first term uniformly in ||u|| = (. Hence, () holds and accordingly

ft = Op(by, ). The estimator f satisfies S| U{Q2/2(X,;—f1)} = 0, which is is equivalent to

T (U - ARy 20O QY+ i T Q)R = o,

,'> =0,

By the first-Taylor expansion, the above equation can be rewritten as:

712( s -10)1/2, )(1+7211Ui—rﬂ1/2ﬂ_2lf'iQHQI/zﬂ

where §; ; = Op{(ffleTfllmﬂ . 2’172;2”@1/2;1“2)2} = O,(n™1), which implies

n
AT _ 1T L2 AT
o Z(l — 2717%» 2/LTQ,u + 5171')Uz’ + E T 1(Ui—rﬂl/2/1,)UL
121 i=1 (16)
=L SO by + 00,0)F 12
where 0y ; = O, (77 U QY2 — 271772 Q2 a)|?) = (5%2) By Assumption [ and Markov inequality, we have

that: maxr; 2 = O,(p~ nl/z) maxdy; = O, (||Ql/2ﬂ||2maxf;2) = 0,(n"Y?) and maxdy; = O,(n~1/%).
Considering the second term in Equation (I6),

1 & 1 <& o Ao A A

- YOO\ 20, = = w YOO Q) = QY2 4.

- E: i) - E 7 (U, )b = Q"
From Lemma B we acquire

1Quil 77710 = 1) 4+ 0 {n ™2™ 4+ X s o2}

and this implies that,
QO 1|
<[QIL IRl (17)
=0, {n 2712 £ X0 ()2} 92l
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According to Lemma [, we obtain

GlnT Y FPIQVRAIPUL| < 1+ H|- - Z o [0 08
i=1 00 00
=0p(n~")[1+0 {Alquo(P)(logP)l/Q}] = Op(nh).
Using the fact that ¢; 'n =t 3°1, /"' = 1 4+ O,(n~'/2) and Equation (IT)), we have

R DU _
541_1 ;Ti ! :ﬁcl ! ;Ti "1+ Op{A) 9s0(p)}]
= {140,073} [1+ 0N 950 (p)}]
=14 O0p{N\, %s0(p)}.
1n—1zn:f]i
i=1 oo e
+ 0, {nil/z logl/Q( )}

+0p {27+ A o (p)p ! | I 2l

‘We final obtain:
Hﬂl /2

| s
OON

Sp! Hfl”Qﬂ

+ Qe

Thus we conclude that:
H Q 1/2ﬂ

as so(p) < p' . In addition, by equation (I7) we have
Hcl—lQQUzﬂ - 0, {pl/z{nf1/2p71/2 4 A}quso(p)pfl/z}nfl/zlog1/2(np)]

_=0p{n712 log'/?(np)},

= Oy {n ™" log!*(np) + 0™\ 50 (p) log (np) }
and

1+§11+521)

HM:

:Q{ ( S+ 0N s0(p))]
G [+ Oy 4 AT s ().

Finally, we can write
n
n1/2ﬁl/2(ﬂ —p) = n—1/2<1—1 Z U, +C,,
i=1
where

Cn :Cl_l{ 2_1 —-1/2 Z’r I’I’QIJ’} 4+ C (n—l/Q Z(sl,iﬁi> + Cl—lnl/QQﬂl/Qﬂ
i=1
0N (B 2007 QY2
i=1
By previous discussion, we have

[Crllce =0y [nil/z + 02 £ 0 Nog 2 (np) + n~ Y 2AL 90 (p) log? (np) + {n*1/4
+ A %s0(p) } log'/% (np)]
:Op{rfl/4 1og1/2(np) + A7 (p) logl/Q(np)}.

Then we complete the proof.
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Proof of Lemma . Let L,, , = n~"/*1og"/?(np) + AL~ %s,(p) log?(np), according to Lemma [, for any sequence
Nn, — o0 and any t € RP,

P{n' P2 (o — p) <t} =P(n 2T Ui+ G < t)

i=1

<P VPG Ui < t+nnlngy) +P([Culloe > 1nLny)-

i=1
According to Lemma A4. in Cheng et all (2023) and E{(¢; 'U; ;)*} < 3 and E{(¢; 'U;;)?} 2 B2 uniformly for
alli =1,2,--- ,n,5=1,2,---,p, the Gaussian approximation for independent partial sums in Koike (Z021) yields:

P(W G U< t+ nnLn,p> <P(Z < t+m.Loy) + Ol{n " log”(np)}'/°]
i=1

<P(Z < )+ O{nnLnplog"?(p)} + O[{n~ " log® (np)}'/°],
where Z ~ N (O, p i 2Ip), and the second inequality follows from Nazarov’s inequality (Lemma B). Thus,
P{n'/?Q'2(p — p) <t} <P(Z < ) + OfnuLaplog"?(p)} + O({n ™" log® (np)}'/%)
+ P(|On‘oo > nnln,p)-
On the other hand, we have
P{n'?Q2 (- p) <t} 2 P(Z < ) = OfnuLnplog'?(p)} — O({n” " 1og”(np)}/) = P(|Cullow > ln,p):
where P(||Cyu|/o0 > Mnln,p) — 0asn — oo by Lemma . Then we have that, if logp = o(n'/®),

sup IP{n/2QY2 (1 — p) <t} —P(Z < t)| — 0.
€

Furthermore, by Corollary 3.1 in Chernozhukov ef all (20017), we have

pn(A%) = sup [P{n'/2QY2 (s — p) € A} —P(Z € A)| — 0.
AecAst

The proof is thus complete. l

E.3 PROOF OF MAIN THEOREMS

Proof of Theorem II. Recall that Z ~ N(0, p(?1,). Under the null hypothesis, Theorem 1 in Caiefall (Z0I3) estab-
lishes that as p — oo, we have

1
P (p(f max Z? —2logp + loglogp < x) — F(x) = exp <—\/77_6I/2> ,

for any x € R. Thus, by applying the triangle inequality, using Lemma B and Corollary [, we obtain that under the
null hypothesis,

A 2
P(n QY2a| (2p—2logp +loglogp < a:) — F(x)
(oo}

IN

. 2
]P’(n QY24 C%p—210gp+loglogp§a:> — F(x)| 4+ 0o(1)

IN

. 2
P (n Q240 (Zp —2logp +loglogp < x) -P (pCf max Z? —2logp + loglogp < x)‘
[e%e] ISP

+ ‘]P’ (p(l2 max Z? —2logp +loglogp < x> — F(z)|+0o(1) = 0,
SUSP

for any x € R. O
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Proof of Theorem B. Under alternative hypothesis for small «, we have
H, )

=P (n]|Q/2)2,8p - 2logp + loglogp > 1«

P (TMAX > ql-a

n)

nl ||ﬂl/2l—l'||oo<1p1/2 (210gp+10g10gp+q17a I/Q‘Hl)

=P (
P(ﬂl 12 )| Cip' /2 = 0222 (1 — p) || oo Cip?/? > (2log p + loglog p + q1—a /‘H)
P( 1225 — )| 2 CEp — 21log p + loglog p

< 0|2 |2 CEp — 2(21logp + loglog p + qi—a)/* 02| 2 )| o (102 + g1 Hl)

By Lemma B, Lemma B and Theorem [, we have
Hl)

< P(n]22( — )|2.G3p — 2logp + loglog p

P (TMAX > q1—qa

> n||QY2u||2 Cp — 2(2log p + loglog p + q1—a) /20 2|V 2 1| o 602 + q1—a

Hl)
= P(nl|Q"2(i — ) |%CEp ~ 21ogp + loglogp
< nl|QV2ul2 G — 2(2logp + loglogp + a1-) /20! 2@ 2] cCup 2 + 1o + (1) H1 )
=F (n||91/2u||§oC12p —2(2logp +loglogp + q1-a)/*n' 2|V plcc 1" + g1 0 + 0(1)) +o(1) =1,
when || QY2 p o0 > én_l/Q{logp —2loglog(1 — o)~ 1}1/2, O

Proof of Theorem B. By Lemma D, we have the Gaussian approximation

P (oG e 4) -2 (G a0 A)| o

sup
Ae_Are

where G := p'/2(;Z ~ N(0,1,). Then

. 2 . 2
s (st ) (o wransan )
€
A 2 R 2
:iuﬂﬁi ]P( w21 2c 2 < t) —IP’{X2 <p7 Hnl/2pl/2C191/2HH ) < t}’
€
. 2
%Suﬂg ]P’( R 2pl 20, 012 St> IP’{ (p H 12p1/2¢, 91/2MH ) < H
te
e 12 )
’ 1/2171/2(191/2#’ —p— |[n2pt 2 012y
=sup |P - <
teR \/2p+4Hn1/2p1/2C191/2NH
A 2 2
22 <p, Hn1/2p1/2<191/2uH ) —p— [|nt/2pM 20 012y
_p : o]
\/2p+4Hn1/2p1/2<191/2“‘H
H 2p1/2¢, Ql/QMH _p— Hn1/2 1/2¢, 91/2'“”
=sup P —®(t)| — 0,
teR \/2p+4Hn1/2 1/2C191/2uH

30



as (n,p) — oo. Therefore, under the null hypothesis, we have Ty 4N (0,1); Under the alternative hypothesis,
assuming Hn1/2p1/2C191/2uH2 = o(p), we have

Tsun — 27 2np 2" Qu 4, N(0,1).
Then we complete the proof. O

Proof of Theorem B. Recall that Corollary [, as n — oo, we have

ﬁn,comb = Sup
t1,t2€R

P (n!2[Q2(5 = oo < 11,0 2[RV — )] < t2)

“P([[Z]loc <11, [1Z]] < t2)| = 0.

By ||tt]|oo = 0o(n=1/2), ||| = o(p'/*n~1/?), Assumption B and Lemma B we have

sup_ ’P (nl/Qpl/zclllﬂl/QﬂHoo +o(1) < ty,n?p' 2G| 2 )| + o(p*/?) < t2)
1,t2€

P (/21 Z]loe < 11,2"2G11Z] < 12) | = 0.

Hence, applying the continuous mapping theorem, we obtain that

sup
t1,t2€ER

P (Tarax +o(1) <t1,Tsym + o(1) < t)

~-P (pCfIIleio —2logp +loglogp < t1, (20) "2 (p¢E|| Z|* - p) < t2) ’ — 0.

By Theorem 3 in Feng et al! (2024), we have p'/2(;||Z||%, — 2logp + loglogp and (2p)~/2(p¢}||Z||> — p) are
asymptotic independent as p — oo, so we have Ty 4 x and Tsyrps are asymptotic independent as n, p — oo. O

Proof of Theorem B. Set Q(z) = A%(x) — cs, and Q(z) = A%(x) — ¢,. Thus we have
Ryropa — Rgpa

1 1 1 1
- [ aiet [ Lnae- ( |y [ ez )

= [ Sih@ - hehdet [ A - be)de.
Qa)>0 2 O(z)<0 2
Notice that [ 2{f1(z) — f2(x)}dx = 0, we have
|Rrrropa — Ropal (18)

:’ /Q<w>>o,62<m)<o % th@) = f2(=) dm’

< 3B 10 < Q&) < Q) — Qo)) + 3Eanp, 10 < Q(a) < Q@) — Q@)
:%E»Ml {0 < %Q(w) < ;M(w)} + %mefz {0 < %Q(az) < ;M(w)} 7 (19)
where M (z) := Q() — Q(x). By calculations, we can get
M(z) =(x — ) {Ey' —E7! = (Q2 — Q) H@ — p1) = 2(p1 — 2) (D2 — 1) (@ — pa)
+2(0725" =8 ) (@ — 1) + (1 — 1) " (D2 — ) (g1 — o) — 20 Qa1 — 1)
+072,10 676 — c(sp — Sp).
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Next we calculate the variance of p~1Q(x)
1
Varg.r ¢ —Q(x }
#{30@

1 — o 1 —
Varae { Sl - ) (@5 B e ) - 2675 - )

:Em’\’fl

FCENCARE IR m)}Q +{ 2275 m)}Z

P b
2
+ Var (7"2) E{v7&/* (=" - E;UE}“UH + Var ( 2r ) {E (15TE;15}/2U)} .
p VP VP

By Assumptions [I, B and Lemma [0 we have
1 1 fio1/2/mm1 me1yml/2 —_—1ml/2
Varmfl{pcx:c)}x s {18! - 20)= 1% + =7 1E 601

By Assumptions @ and B we have |Z./%(Z;! — 27 |» = |IEY2(E — 25 HEY|p Hzl/?(m -
QS < 220 — Q)22 p and ||B5 126 < /p/to()|8]|. Thus, wehaveVarmel{p Qz)} =

p 205 (p) < 1. Similarly, Varg~z,p~ ' Q(2)} < p~203 (p) < 1.

Next, we bound the discrepancy between Q, and E E; ~1 by Lemma B and [LT.

- b & p
12 = B oo = | === - @)%
tr(._.l) (i
p
< 1€ 10 + 162 — illoo
tr( tr ._.Z
=0, (M +n—1/2 O0p(An
Similarly, we have [[€2; — ;! lop < € — 57|z, :op{A;-Qs()(p )} And p € — Z7 % < 19 - 57

€ — E; Moo = Op{A27950(p)}. By the proof of Lemma [ we have || — fi|| = Op(pl/2 ’1/2) and H [J,Hoo =
0,{n=/%10g"/?(np)}. Then we bound the p~' M (z) under  ~ f;.

r2

1 1= =1 =
];(w—ul)—r =t -Et (Qg—ﬂl)}(w—ul) ZEUTE}M BB (- ) }21/2

2
r 1/2 jm— _— 0, ))5L/2
<ImE - B - (- )%y

=0, {\ " "s0(p)},

lop

! =) (D — Q) (@ — ) <=1 — ] —=(Q2 — O s2U
p(u a) )@ — p1) < \fllu MH\fH( )Z,7U||

:Op(nilﬂ)a
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1 1 . -
5(5“‘1 6T )(z — ) S;(\\é”‘l 0S| +110Q2 — 02 |)[|= — pui
L i1 o
5(\\5\\” L= Qallop + 116 — 0] [120]0p) [l — pua|

=0, (M 9s0(p) + 1 2) = 0,{\) %s0(p)},

1 e & e e .
;(HI_NI)T(Q2_91)( — f11) *Hul f1]?(|€22 = Q1]lop = Op(n71),
1.ra _
28 D — i) < —||6||||ﬂz||op||m ]| = O, (n172),

%(ﬁagla —8760) g%(ﬁaglfs — 8 6+ 6706 — 6 Q6+ Qb — 5700)
=0, {1 s0(p) + 12} = Op{AL 950(p)}-

! ‘—‘1 ’DQ QQ _Qli

Denote D = Z5
(Sp — sp) = log |]f)§2§2171 +1I,| — log [DoE; + I
< tr{(DoE; +1,) (Do ' — DoEy)}
= tr{(-DoEs + I,)(DaQ; ' — DoE1)}
= tr{(-DaE2) (Do ' — DoE1)} + tr(DaQ; ' — DoEy)
< |DoBslr - Do — Do r + tr(Day ' — DoE,)
S Dol #lIZ2llop - Dy — DoEi | r,

where
—_ S o1
|Do=1 - Doty |,

< |Pagi - Doz |+ [DaE: -0

< [[Da - Dﬂ||F||~1||op +[DallFIE1 — Q7" op-

Then, we can find p~1(¢; — cq) = Op{ A “?s0(p)"/2 + AL=%s0(p)}. Thus, under & ~ f; we have p~' M (x) =
Op{ A "250(p)1/? + AL=%54(p)}. Similarly, we can get the same solution under & ~ f,. From the previous
discussion, we know that p_lQ(:c) is non-degenerate. Recall (II¥) we have

1 1 1 1 1 1
- < P, <= M “P,. <z M
|Ruropa — Ropal < JPonp, {0 < pQ(w) <5 (fv)} + 5P {0 pQ(w) <5 (w)} 0)

= 0, (AL 250 (p) + AL %s0(p) ).
O

Proof of Theorem B. From the proof of Theorem 7 in Lin‘ef-all (2024) we can find that
_ 2 T 2, Ty—1
TSUMQ—WZ;UZ' Uj-f—Clu D H+Op(0n),

with 02 = 2/{n(n — 1)p} + o(n=?), and

n
n1/2D71/2ﬂ _ nfl/ch—l Z ﬁi n n1/2D71/2H 1C,,

=1
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where U; := U(D~1/221/2U;) = (R1/2U~)/HR1/2UZ»||, R = D '/2XD~!/2 Thus, we have
/> =12 370 Uil|* =

Tsunr2 P
= —-n|+0(1) = +0(1),
On n\/2tr R?) ( ) M) 2tr(R?) 1)
and
n 2
Traxe —2logp+loglogp = H\/EZU — 2logp + loglog p.

Notice that

n n n
pl/ 212 Z U; = pt/2p~1/2 Z RY2U, + p'/2n1/2 Z Rl/QUi(l/”Rl/QUiH —1).

i=1 i=1 =1

Denote v; = 1/||RY2U;|| — 1, Var(v;) = 2. We have

H\f A f%lZWU‘ < \FZ o s VBIUs | = Oplor Towp).

For a random variable X, denote X* = (X —EX)/4/Var(X). Thus the original proposition is equivalent to proving
that | S°7_, U; |15 is asymptotically independent with | RY/2 3P U;[|* and || Y°F_, U;||* is asymptotically indepen-
dent with | RY/23°P_| U;||%,. Then for any sequence 7,,, — oc and any ¢ € RP

p N - . p & 1/2 p - 1/2
P = U, <t)| =P = R“U; = R7U,; <t
(VES o) (B S mevs Eumew <
p S 1/2
<P = RY°U; <t+n,,0,1
< <\/;Z <t N po ng>
—HP’(H[Z R'2U;
p - 1/2
P = RY/°U,; <t 1).
< <\/;§_; < >+0()

Similarly, we have P (fzz L ) P (/X" RY2U; <t)+o(1). We have

U, <
p = - p = 1/2
sup |P \/7 U, <t]|-—P \/7 R/7“U,; <t]|—0.
ol ({23 00ee) r 2y
o B (/2300 e [ZRUZU ca)| o
AeAs gt i=1

From the proof of Lemma & we have

> 1, p0y log p)

Further,

sup
AecAst

A
3\*@

ZU eA) P(ZeA|—0

where Z ~ N(0,1,). Thus

P (\/giww € Al,\/gzn:w € A2> —IP(R”QZ €A, Zc Az) — 0
=1 1=1

Thus the original proposition is equivalent to proving that || Z||%, is asymptotically independent with [|R/2Z||* and
|RY2Z||%, is asymptotically independent with || Z||*. From Theorem 2.2 in Chen ef all (2024) we have || Z||%, is

sup
Aq,AseAst

3
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asymptotically independent with |R'/2Z||*. Consider that R'/?Z ~ N(0,R). Next we prove || Y||%, is asymptoti-
cally independent with |[R~Y/2Y||* where Y = R'/2Z ~ N(0,R).

DefineY = (Y;",Y,' )" € R? where Y; = (Y1,...,Yy) " and Yo = (Yay1,...,Y,) . And

_(Rs R12) -1 7<P1 P12)
_(R21 Ry /)’ R :=P= Py Py

K — (Kl Klg) _ <R1/2P1R1/2 Ri/2P12R;/2> '

Ko Ko R/7PyR? RY?P,RL
So,
Y'PY =Y, P1Y; +2Y, P1,Ys + Y, PyYs.
For € > 0, set z; are i.i.d. Gaussian random variables. Define z; = (21, - ,24)" € RY, 21 = (2q41,+,2p) | €

RP~4. Then there exist > 0 and K > 0 such that E{exp(nz?)} < K. According to Assumptions of Theorem 7 in
Cinefall (2024), we can get Apax (K1) < Anax(K) < ¢; for a constant ¢; > 0.

P(Y, P1Y] > \/2pe) < P(c1z] 21 > \/2pe)

d
= P(WZZ? > \/%ecllnE)

< exp(—+/2pecy 776 enZ, 1 1)
= exp(—+/2pecy 'ne){B( e"zi)}
< K% exp(—+/2pecy *ne).

Define K = OT AO where O = (gij)1<i, ]<p is an orthogonal matrix and A = diag{\1,..., A\p}, Ni,i =1,...,pare
the eigenvalues of K. Note that 3, ;. k: is the i-th diagonal element of K? = OTAZO We have Z1<J<p k»?j =

P @22 < 3. Next, define 6 = \/W We have
P(Y; P12Y> > \/2pe) < exp(—+/2pfe)E(exp(0z] Ki222)

7\/796 Ei:l Zj:d-H kijzi,zj)
(V2O B{B( Zmars (s 20512,

= exp(—+/2pfe)E H E{e(ezle kis2i)25) 20}

| j=d+1
P 02 d 237
< exp(—+/2pbe)E H exp | o <Z kijzi>
j*d+1 i=1

= exp(—+/2pfe)E % Z Zk:”zg)

j=d+1

< exp(—+/2pbe)E

J 14=1

(54}
(%))

do? &
oo | G D0 SOk
j=d+

=N

< exp(—+/2pbe)E

[\]
—

= exp(—+/2pfe)E
4 exp(—+/2phe).

exp

— N

—
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So

4n
]P(leTP12Y72 Z \/@6) S Kd exp (_ \/;Epl/Q) )

Similarly, we also can prove that

4
P{(-Y1)"P12Y2 > /2pe} < K%exp ( dZepl/z),
‘1

Let O, = Y,"P1Y] +2Y,  P1,Y5.

B0, > v/250) <B(YTP1Y: > /2pe/2) + B(|Y, PraYa| > v/2pe/4)
<P(Y;'P1Y1 > /2pe/2) + P(Y; P12Ys > \/2pe/8)
+P(—Y, P1oYs > /2pe/8).
Denote A, (7) = {%} <, B; = {|v1] > v/2logp — loglogp}, so there exist a constant ¢, > 0
P(|©,] > /2pe) < K* exp(—ccp'/?),

P(Ap(2)B1 - Ba)
Y, P.Y: —p+0©

V2p

Y. P,Y, — S
2 72 \j%“ P <200, < \/Qpe,Bln-Bd) +P(|10,] > /2pe)

(
( T

cp (WP
(

”sﬂ:,Bl---Bd)

<ateB Bd> + K exp(—cp'/?)
<z+ 6) P(Bl L Bd) + Kd GXp(—Cepl/Q)

T_p <z+4¢€0,] < \/%6) +P(|@p| > \/%6)} P(B;---Byg)

p S-T+2€> P(Bl"'Bd)+2KdeXp(—C€p1/2)

= P{A,(z + 2¢)}P(B; - -- By) + 2K exp(—c.p'/?).
Similarly, we can prove that

P(A,(z)By--- Ba) > P{Ay(x — 2€)}P(B:1 --- Bgq) — 2K¢4 eXp(—CEp1/2),

So, we have
IP(Ap(2)By -+ Ba) — P{Ay(x)} - P(By -+ Ba)| < Ay - P(By -+ Bg) + 2K % exp(—cp'/?),
where
Ape = [P{Ap(z)} — P(Ap(z + 2¢))| + [P{Ay(2)} — P{A,(z — 2¢)}]
=P{A,(z+2¢)} — P{A,(z — 2¢)}.
Obviously, the equation discussed above holds for all iy, ..., ¢4. Thus,
Z UP)(Ap(x)Bh "'Bi.i) _P{Ap(x)}'P(Bil "'Bid)|

1<ty < <ig<p

< > {8 BBy, By + 2K exp(—ep?)}

1<i1 < <ig<p

< By H(dp)+ ( §) - 2K exp(—cap'/?).
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Because P{A,(z)} — ®(x) asp — 0. So Ay — P(x + 2¢) — (x — 2¢). By letting ¢ — 0, we have A, . — 0.
By Lemma B as p — oo we have

Y [P(Ay(2)Bi, - Bi,) —P{Ay(x)} - B(By, -+ Bi,)| = 0.
1< <---<ig<p

Then, repeat the procedure in proof of Theorem 2.2 in Chen efall (P024) we have

Y'R'Y —
limsup P (\|R_1/2Y||2* <z |Y[2 < y) = limsupP (p <z, max |Y;| > lp>
p—oo p—roo V2p 1<i<p

< @(2)-{1-F(y}+ lim H(p, 2k +1),

YTRY -
lim inf P (HR*I/?Y”?* <z, ||Y|2 < y) = liminf P (p <z, max |Yj| > zp>
P00 p—00 v2p 1<i<p

< 0(x) {1-F(y)}— lim H(p,2k +1).

Then we can get ||Y'||%_ is asymptotically independent with |R~'/2Y’||* by sending p — oo and then sending k& —
0. O
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