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ABSTRACT

The classic Hettmansperger-Randles estimator has found extensive use in robust statistical infer-
ence. However, it cannot be directly applied to high-dimensional data. In this paper, we propose a
high-dimensional Hettmansperger-Randles estimator for the location parameter and scatter matrix
of elliptical distributions in high-dimensional scenarios. Subsequently, we apply these estimators to
two prominent problems: the one-sample location test problem and quadratic discriminant analysis.
We discover that the corresponding new methods exhibit high effectiveness across a broad range of
distributions. Both simulation studies and real-data applications further illustrate the superiority of
the newly proposed methods.

1 INTRODUCTION

Estimating the mean vector and covariance matrix is a fundamental task in statistics. In low-dimensional settings,
when the data are multivariate normal, the sample mean and covariance matrix are efficient estimators (Härdle et al.,
2007). Their performance, however, deteriorates under deviations from normality, motivating the development of
robust alternatives. For elliptical distributions, robust estimators such as the spatial median for location and Tyler’s
scatter matrix for dispersion have been extensively studied (Oja, 2010). Furthermore, Hettmansperger & Randles
(2002) proposed a unified procedure for jointly and robustly estimating both location and scatter.

The increasing prevalence of high-dimensional data in areas such as genomics and finance has introduced new chal-
lenges. When the number of features approaches or exceeds the sample size, traditional estimators like the sample
covariance matrix become singular and non-invertible. This has spurred extensive research on high-dimensional co-
variance estimation, including thresholding, regularization, and shrinkage techniques (Bickel & Levina, 2008a;b); for a
comprehensive overview, see Fan et al. (2016). Nevertheless, these approaches largely based on the sample covariance
matrix, and thus are not robust to heavy-tailed distributions.

To address these challenges, robust estimation techniques under elliptical distributions, which naturally accommodate
a broad class of heavy-tailed models such as the multivariate t-distribution and certain multivariate normal mixtures
(those with a common mean and proportional covariances), have garnered increasing attention in high-dimensional
statistics. Several studies have explored the properties of the sample spatial median and its use in high-dimensional
sphericity testing and location parameter testing problems, including Zou et al. (2014), Li & Xu (2022), and Cheng
et al. (2023). However, these estimators are not scalar invariant. To address this issue, scale-invariant spatial median
estimators (Feng et al., 2016; Feng & Sun, 2016; Liu et al., 2024) were developed as extensions of the simultaneous
estimation framework of Hettmansperger & Randles (2002). However, these approaches are not affine invariant with
respect to scatter transformations, limiting their flexibility and applicability in practice. In parallel, robust scatter
estimation has advanced through the study of spatial-sign covariance matrices, known for their affine equivariance.
Recent works have developed linear shrinkage methods tailored for high-dimensional settings (Raninen et al., 2021;
Raninen & Ollila, 2021; Ollila & Breloy, 2022; Ollila, 2024), and sparse precision matrix estimation based on spatial-
sign covariance (Lu & Feng, 2025), extending previous advances such as Cai et al. (2011) and Yuan & Lin (2007).
However, most existing methods address location and scatter matrix separately, lacking a unified framework that
integrates both aspects in high dimensions.

Motivated by these limitations, we propose a novel framework for robust high-dimensional inference. Specifically,
we introduce the high-dimensional Hettmansperger-Randles (HR) estimator, from which both the spatial median and
the scatter matrix estimators inherit affine equivariance. The resulting spatial median estimator is therefore affine
invariant with respect to scatter transformations, overcoming certain limitations of previous approaches and enhancing
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robustness in high-dimensional inference under elliptical distributions. We demonstrate the practical utility of the HR
estimator through its applications to two core problems in modern high-dimensional statistics: one-sample location
testing and quadratic discriminant analysis.

For the high-dimensional one-sample location testing problem, substantial research has been conducted over the past
two decades, leading to three main categories of testing procedures. The first category comprises sum-type tests,
which aggregate statistics across all variables and are powerful against dense alternatives (Bai & Saranadasa, 1996;
Chen et al., 2010; Wang et al., 2015; Ayyala et al., 2017; Feng et al., 2015; Feng & Sun, 2016; Feng et al., 2016; 2021).
The second category includes max-type tests, which focus on the maximum of individual statistics and excel under
sparse alternatives, explored in works such as (Zhong et al., 2013; Cai et al., 2013; Cheng et al., 2023; Chang et al.,
2017). The third category consists of adaptive type tests, which combine sum-type and max-type strategies to achieve
robustness across diverse sparsity regimes, with important contributions from Xu et al. (2016); He et al. (2021); Feng
et al. (2022a; 2024); Chang et al. (2023); Chen et al. (2024); Ma et al. (2024). Comprehensive overviews are available
in Huang et al. (2022) and Liu et al. (2024).

Since the seminal contribution of Chernozhukov et al. (2013; 2017), Gaussian approximation has become a corner-
stone of high-dimensional statistical inference. Inspired by their theoretical framework, we first derive a Bahadur
representation for the standardized spatial median estimator and establish its Gaussian approximation over a class of
simple convex sets. This theoretical development provides a solid foundation for analyzing the limiting distributions
of our proposed test statistics and facilitates the verification of the asymptotic independence between the max-type
and sum-type statistics. Specifically, we introduce two types of test statistics based on the L2 and L∞ norms of the
corresponding standardized spatial-median estimator, which correspond to sum-type and max-type test procedures,
respectively. We rigorously establish that these statistics are asymptotically independent. Leveraging this property,
we develop a Cauchy combination test that integrates both sources of information. While Liu et al. (2024) focuses
on the sparsity of the original mean vector µ, our approach targets the sparsity of the transformed mean Σ−1/2µ,
which removes correlations among coordinates. This notion of sparsity is natural in settings with strong correlations
among observed variables, such as financial or gene expression data, where the underlying signal is often concentrated
in a small number of latent directions. Such sparsity assumptions on the decorrelated mean vector have been widely
used and formally justified in the high-dimensional classification and testing literature (Chen & Tang, 2021; Cai &
Liu, 2011). Furthermore, given that the true sparsity structure (whether in µ or in Σ−1/2µ) is generally unknown
in practice, we further extend our procedure by combining four test statistics to achieve greater adaptability across
various sparsity regimes. Simulation studies confirm that the resulting Cauchy combination tests perform well un-
der a wide range of distributional settings and sparsity levels, highlighting their robustness and wide applicability for
high-dimensional hypothesis testing.

We further apply the proposed HR estimator to improve quadratic discriminant analysis (QDA), which is a natural
extension of linear discriminant analysis (LDA) (Friedman, 1989; Muirhead, 2009). When population parameters are
known, QDA achieves optimal classification by comparing likelihood ratios. In low-dimensional settings, replacing
population parameters with sample estimates generally preserves strong classification performance. However, in high-
dimensional regimes, the singularity of the sample covariance matrix renders classical QDA infeasible. To address this,
previous works have proposed sparse estimators for the covariance matrix (Wu et al., 2019; Xiong et al., 2016) or its
inverse (Cai et al., 2011; Yuan & Lin, 2007). Nonetheless, these approaches fundamentally rely on the sample covari-
ance matrix, which is highly sensitive to heavy-tailed distributions, and thus undermines robustness. To overcome this
limitation, we propose a robust QDA procedure by replacing the sample mean and precision matrix with the HR-based
spatial median and scatter matrix estimators. The resulting classifier retains high efficiency even under heavy-tailed
distributions. We rigorously establish the asymptotic properties of the proposed method under mild moment condi-
tions and demonstrate its superior performance through extensive simulations and real data application. These results
highlight the significant gains in robustness and classification accuracy offered by our framework in high-dimensional,
non-normal settings.

The remainder of this paper is structured as follows. Section 2 introduces the high-dimensional HR estimator. Section
3 develops the corresponding theoretical results and proposes a new adaptive test for the high-dimensional one-sample
location problem. Section 4 presents simulation studies related to this test. Section 5 concludes the paper. Due
to space constraints, additional results, including the second adaptive test for the one-sample location problem, its
asymptotic theory, and simulation results, as well as the full study on high-dimensional quadratic discriminant analysis,
are provided in the Appendix.
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Notations: For d-dimensional x ∈ Rd, ∥x∥ and ∥x∥∞ denote its Euclidean norm and maximum-norm, respectively.
Denote an ≲ bn if there exists constant C, an ≤ Cbn and an ≍ bn if both an ≲ bn and bn ≲ an hold. Let
ψα(x) = exp(xα)− 1 be a function defined on [0,∞) for α > 0. Then the Orlicz norm ∥ · ∥ψα

of a random variable
X is defined as ∥X∥ψα

= inf {t > 0,E {ψα(|X|/t)} ⩽ 1} . Let tr(·) be a trace of matrix, λmin(·) and λmax(·) be
the minimum and maximum eigenvalue for symmetric matrix. For a matrix A = (aij) ∈ Rp×q , we define the
elementwise ℓ∞ norm ∥A∥∞ = max1≤i≤p,1≤j≤q |aij |, the operation norm ∥A∥op = sup∥x∥≤1 ∥Ax∥, the matrix
ℓ1 norm ∥A∥L1

= max1≤j≤q
∑p
i=1 |aij |, the Frobenius norm ∥A∥F = (

∑
i,j a

2
ij)

1/2, and the elementwise ℓ1 norm
∥A∥1 =

∑p
i=1

∑q
j=1 |aij |. Ip represents a p-dimensional identity matrix, diag(v1, . . . , vp) represents the diagonal

matrix with entries v = (v1, . . . , vp). The notation 1d denotes a d-dimensional vector whose elements are all one.

And Sd−1 represents the unit sphere in Rd. d−→ stands for convergence in distribution. Unless stated otherwise, the
notation in the supplementary material are consistent with those in the main text.

2 HIGH-DIMENSIONAL HR ESTIMATOR

Let X1, . . . ,Xn be independently and identically distributed (i.i.d) observations from p-variate elliptical distribution
with density function |Σ|−1/2g{∥Σ−1/2(x−µ)∥}, where µ is the location parameter, Σ is a positive definite symmet-
ric p× p scatter matrix, and g(·) is a scale function. The spatial sign function is defined as U(x) = ∥x∥−1xI(x ̸= 0).
Denote εi = Σ−1/2(Xi − µ). The modulus ∥εi∥ and the direction Ui = U(εi) are independent, and the direction
vector Ui is uniformly distributed on Sp−1. It is then well known that E(Ui) = 0 and Cov(Ui) = p−1Ip. Without
loss of generality, we assume that the scatter matrix satisfies tr(Σ) = p.

The Hettmansperger-Randles (HR) (Hettmansperger & Randles, 2002) estimates for the location and scatter matrix
are the values that simultaneously satisfy the following two equations:

1

n

n∑
i=1

U
(
ε̂i
)
= 0 and

p

n

n∑
i=1

{
U
(
ε̂i
)
U
(
ε̂i
)⊤}

= Ip,

where ε̂i = Σ̂−1/2(Xi− µ̂). These estimators are affine equivariant and provide robust estimates of both the location
parameter and the scatter matrix. Hettmansperger & Randles (2002) further established their asymptotic distributions
and showed that the HR estimators possess bounded influence functions and a positive breakdown point.

The HR estimator is computed via the iterative procedure summarized in Algorithm 1, which alternately updates
the residuals, location, and scatter matrix. In high-dimensional settings, however, the sample spatial-sign covariance
matrix (SSCM) Ŝ .

= n−1
∑n
i=1 U(ε̂i)U(ε̂i)

⊤ becomes singular, making Step 3 infeasible. A naive workaround is to
restrict Σ to be diagonal (Feng et al., 2016), but this loses the full scatter structure.

Algorithm 1 HR estimator

1: procedure UPDATE(X1, . . . ,Xn, µ̂, Σ̂, p)
2: Step 1: ε̂i ← Σ̂−1/2(Xi − µ̂)

3: Step 2: µ̂← µ̂+
Σ̂1/2 ∑n

i=1 U(ε̂i)∑n
i=1 ∥ε̂i∥−1

4: Step 3: Σ̂← pΣ̂1/2
{
n−1

∑n
i=1 U(ε̂i)U(ε̂i)

⊤}Σ̂1/2

5: Step 4: Repeat Steps 1 - 3 until convergence.
6: return µ̂, Σ̂
7: end procedure

Our key insight comes from the elliptical symmetry of the population: if the initial location and precision esti-
mates are reasonable, the scaled SSCM p−1Ŝ is approximately equal to the identity matrix Ip. This implies that
most off-diagonal entries are negligible, allowing us to safely ignore them in Step 3 without imposing any struc-
tural assumptions. Therefore, we adopt the banding approach proposed by Bickel & Levina (2008b) for Ŝ, defining
Bh(M) = {mijI(|i− j| ≤ h)} with 0 ≤ h < p to simplify computation while retaining the essential scatter informa-
tion. The bandwidth parameter h exhibits low sensitivity to the final results, the relevant explanations are located in
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Appendix C. To initialize the procedure, we use the spatial median for the location parameter,

µ̂0 = arg min
µ∈Rp

n∑
i=1

∥Xi − µ∥, (1)

which is consistent in high dimensions (Zou et al., 2014; Feng et al., 2016; Feng, 2024), and the sparse graphical Lasso
(SGLASSO) for the precision matrix (Lu & Feng, 2025):

Ω̂0 = arg min
Θ≻0

tr(pΘŜ0)− log{det(Θ)}+ λn∥Θ∥1, (2)

where Θ ≻ 0 indicates Θ is positive define, Ŝ0 = n−1
∑n
i=1 U(Xi − µ̂0)U(Xi − µ̂0)

⊤ is the sample spatial-sign
covariance matrix based on the initial location estimate.

Combining these components, we present Algorithm 2, a high-dimensional extension of the HR estimator that robustly
estimates both the location and scatter matrix.

Algorithm 2 High-dimensional HR estimator

1: procedure UPDATE(X1, . . . ,Xn, µ̂, Σ̂, p)
2: Initial estimator µ̂ = µ̂0, Σ̂ = Ω̂−1

0

3: Step 1: ε̂i ← Σ̂−1/2(Xi − µ̂)

4: Step 2: µ̂← µ̂+
Σ̂1/2n−1 ∑n

i=1 U(ε̂i)

n−1
∑n

i=1 ∥ε̂i∥−1

5: Step 3: Σ̂← pΣ̂1/2Bh
{
n−1

∑n
i=1 U(ε̂i)U(ε̂i)

⊤} Σ̂1/2, Σ̂← pΣ̂

tr(Σ̂)

6: Step 4: Repeat Steps 1 - 3 until convergence.
7: return µ̂, Σ̂
8: end procedure

In the next section, we will prove the consistency of the high-dimensional HR estimator µ̂, and then apply it together
with Σ̂ to the one-sample location testing problem.

3 HIGH-DIMENSIONAL ONE-SAMPLE LOCATION PROBLEM

In this section, we consider the following one-sample hypothesis testing problem:

H0 : µ = 0 versus H1 : µ ̸= 0.

When the dimension p is fixed and the observations X1, . . . ,Xn
i.i.d.∼ N (0,ΣX), the classical Hotelling’s T 2 test

statistic commonly used: T 2 = nX̄⊤Σ̂−1
X X̄, where X̄ and Σ̂X represent the sample mean vector and the sample

covariance matrix, respectively. However, when the dimension p exceeds the sample size n, the sample covariance
matrix Σ̂X becomes singular, rendering Hotellings T 2 test inapplicable.

To overcome the limitation, Fan et al. (2015) proposed replacing the sample covariance matrix with a sparse estimator
Σ̂τ and introduced the following test statistic:

TFLY =
nX̄⊤Σ̂−1

τ X̄ − p√
2p

.

Under the null, they showed that as (n, p) → ∞, TFLY
d−→ N (0, 1). As a sum-type test, TFLY is effective under

dense alternatives but deteriorates in performance under sparse ones. To better handle sparse alternatives, Chen et al.
(2024) introduced a max-type test statistic:

TCFL = max
1≤i≤p

W 2
i − 2 log p+ log log p,

4
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where W = (W1, · · · ,Wp)
⊤ = n1/2Σ̂

−1/2
τ X̄ . They show that under the null, TCFL follows a Gumbel distribution.

Both TFLY and TCFL rely on multivariate normality or an independent component model, which limits their robust-
ness under heavy-tailed distributions such as multivariate t or multivariate mixture normal. This motivates the need
for test procedures that remain effective when the data deviate from normality.

For elliptical distributions, spatial-sign methods provide a natural robust alternative and have been extensively studied
(Oja, 2010). When the dimension p is fixed, the spatial-sign test with inner standardization (Randles, 2000) is defined
as Q2 = npŪ⊤

T ŪT , ŪT = n−1
∑n
i=1 Ûi,T , Ûi,T = U(Σ̂

−1/2
T Xi). where Σ̂T denotes Tyler’s scatter matrix (Tyler,

1987). This construction standardizes the data in the spatial-sign framework, providing a test that is affine-invariant
and resistant to heavy tails.

However, in high-dimensional settings where p > n, Tylers scatter matrix is no longer well-defined, making Q2

inapplicable. To overcome this limitation, we propose novel test procedures based on high-dimensional HR estimators,
aiming to maintain robustness and efficiency under heavy-tailed distributions while adapting to the challenges of high
dimensionality.

First, we investigate some theoretical properties of the high dimensional HR estimator µ̂. Let Ui = U(εi), ri = ∥εi∥,
Ω = Σ−1, S = E{U(Xi − µ)U(Xi − µ)⊤} and ζk = E(r−ki ) for i = 1, . . . , n.

Assumption 1. There exist constants b, B̄ > 0 such that b ≤ lim supp E{(r1/
√
p)−k} ≤ B̄ for k ∈ {−1, 1, 2, 3, 4}.

And ζ−1
1 r−1

1 is sub-Gaussian distributed, i.e. ∥ζ−1
1 r−1

1 ∥ψ2
≤ K1 <∞.

Assumption 2. ∃ η, h > 0, s.t. η < λmin(Σ) ≤ λmax(Σ) < η−1, tr(Σ) = p and ∥Σ∥L1 ≤ h. The diagonal
matrix of Σ is denoted as D = diag{d21, d22, . . . , d2p}, lim infp→∞ minj=1,...,p dj > d for some constant d > 0 and
lim supp→∞ maxj=1,...,p dj < D̄ for some constant D̄ > 0.

Assumption 3. ∃T > 0, 0 ≤ q < 1, s0(p) > 0, s.t. (1) ∥Ω∥L1
≤ T, (2)max1≤i≤p

∑p
j=1 |ωij |q ≤ s0(p).

Assumption 4. lim supp ∥S∥op < 1− ψ < 1 for some positive constant ψ.

Assumption 1 aligns with Assumption 1-2 in Liu et al. (2024), which requires that ζk ≍ p−k/2. Assumptions 2 and 3
are standard conditions in high-dimensional data analysis, as seen in Bickel & Levina (2008b) and Cai et al. (2011),
ensuring the sparsity of the covariance and precision matrices. Assumption 4 corresponds to Assumption (A2) in Feng
(2024), guaranteeing the consistency of the initial sample spatial median.

The following lemma provides a Bahadur representation of the standardized estimator µ̂, which lays the foundation
for the Gaussian approximation in Lemma 2.

Lemma 1. (Bahadur representation) Under the Assumptions 1–4 and log p = o(n1/3), there exist constants Cη,T and
C, such that if we pick λn = T{

√
2C(8 + η2Cη,T )η

−2n−1/2 log1/2 p+ p−1/2Cη,T }, and λ1−qn s0(p) log
1/2 p = o(1),

then

n1/2Ω̂1/2(µ̂− µ) = n−1/2ζ−1
1

n∑
i=1

Ui + Cn,

where

∥Cn∥∞ =Op{n−1/4 log1/2(np) + n−(1−q)/2(log p)(1−q)/2 log1/2(np)s0(p)

+ p−(1−q)/2 log1/2(np)s0(p)}.

Let Asi be the class of simple convex sets (Chernozhukov et al., 2017) in Rp. Based on the Bahadur representation of
µ̂, we establish the following Gaussian approximation for Ω̂1/2 (µ̂− µ) over the class Asi, where Ω̂ = Σ̂−1.

Lemma 2. (Gaussian approximation) Assume the Assumptions 1–4 holds. If log p = o
(
n1/5

)
,then

ρn
(
Asi
)
= sup
A∈Asi

∣∣∣P{n1/2Ω̂1/2 (µ̂− µ) ∈ A
}
− P(Z ∈ A)

∣∣∣→ 0,

as n→∞, where Z ∼ N
(
0, p−1ζ−2

1 Ip
)
.

Consequently, we derive the following corollary, which establishes the limiting distributions of the L2- and L∞-norms
of n1/2Ω̂1/2(µ̂− µ).
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Corollary 1. Assume the conditions of Lemma 2 hold. Set A to {x
∣∣∥x∥∞ ≤ t}, {x

∣∣∥x∥ ≤ t} and {x
∣∣∥x∥∞ ≤

t1, ∥x∥ ≤ t2} we have

ρ̃n,∞ = sup
t∈R

∣∣P{n1/2∥Ω̂1/2(µ̂− µ)∥∞ ⩽ t
}
− P

(
∥Z∥∞ ⩽ t

)∣∣→ 0,

ρ̃n,2 = sup
t∈R

∣∣P{n1/2∥Ω̂1/2(µ̂− µ)∥ ⩽ t
}
− P

(
∥Z∥ ⩽ t

)∣∣→ 0,

ρ̃n,comb = sup
t1,t2∈R

∣∣P{n1/2∥Ω̂1/2(µ̂− µ)∥∞ ⩽ t1, n
1/2∥Ω̂1/2(µ̂− µ)∥ ⩽ t2

}
− P

(
∥Z∥∞ ⩽ t1, ∥Z∥ ⩽ t2

)∣∣→ 0,

as n→∞, where Z ∼ N
(
0, ζ−2

1 p−1Ip
)
.

We know that {x
∣∣∥x∥∞ ≤ t} and {x

∣∣∥x∥ ≤ t} are simple convex sets. The third equation holds because the
intersection of a finite number of simple convex sets is still simply convex.

From Cai et al. (2013), we can see that pζ21 max1≤i≤p Z
2
i −2 log p+log log p converges to a Gumbel distribution with

the cumulative distribution function (cdf) F (x) = exp(− 1√
π
e−x/2) as p→∞. Combining this with Corollary 1, we

obtain
P
{
n∥Ω̂1/2(µ̂− µ)∥2∞pζ21 − 2 log p+ log log p ≤ x

}
→ exp

(
− e−x/2/

√
π
)
. (3)

We estimate ζ1 by ζ̂1 := n−1
∑n
i=1 r̃

−1
i , where r̃i = ∥Ω̂1/2(Xi − µ̂)∥ and establish its consistency in Lemma 6. We

then propose the following max-type test statistic:

TMAX = n
∥∥∥Ω̂1/2µ̂

∥∥∥2
∞
ζ̂21p− 2 log p+ log log p.

It is evident that TMAX is affine invariant.

Theorem 1. Suppose the Assumptions 1-4 hold. Under the null hypothesis, as (n, p)→∞, we have

P (TMAX ≤ x)→ exp
(
− e−x/2/

√
π
)
.

According to Theorem 1, H0 will be rejected when our proposed statistic TMAX is larger than the (1 − α) quantile
q1−α = − log π − 2 log log(1 − α)−1 of the Gumbel distribution F (x). We next establish the consistency of the test
in the following theorem.

Theorem 2. Suppose the conditions assumed in Theorem 1 hold, for any given α ∈ (0, 1), if ∥Ω1/2µ∥∞ ≥
C̃n−1/2(log p+ q1−α)

1/2, for some large enough constant C̃, then

P(TMAX > q1−α|H1)→ 1, as (n, p)→∞.

Next, we consider a special case of alternative hypothesis:

H1 : Ω1/2µ = (µ1, 0, · · · , 0)⊤, µ1 > 0, (4)

which means there are only one variable with nonzero mean. Similar to the calculation in Liu et al. (2024), we can
easily show the power function of new proposed TMAX test is

βMAX(µ) ∈
(
Φ{−x1/2α + (np)1/2d−1

1 µ1ζ1},Φ
{
− x1/2α + (np)1/2d−1

1 µ1ζ1
}
+ α

)
,

where xα = 2 log p− log log p+ q1−α. Similarly, the power function of Chen et al. (2024)’s test is

βCFL(θ) ∈
(
Φ(−x1/2α + n1/2ς−1

1 µ1),Φ(−x1/2α + n1/2ς−1
1 µ1) + α

)
,

where ς2i is the variance of Xki, i = 1, · · · , p. Thus, the asymptotic relative efficiency of TMAX with respective to Cai
et al. (2013)’s test could be approximated as

ARE (TMAX , TCFL) =
{
E
(
r−1
i

)}2 E (r2i ) ≥ 1,

6
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which indicates the superior performance of spatial sign-based methods over least-square-based methods. This obser-
vation is well-documented in the literature, including Feng & Sun (2016), Feng et al. (2016), and Liu et al. (2024). If
Xi are generated from standard multivariate t-distribution with ν degrees of freedom (ν > 2),

ARE (TMAX , TCFL) =
2

ν − 2

[
Γ{(ν + 1)/2}

Γ(ν/2)

]2
.

For different ν = 3, 4, 5, 6, the above ARE are 2.54, 1.76, 1.51, 1.38, respectively. Under the multivariate normal
distribution (ν = ∞), our TMAX test is the same powerful as Chen et al. (2024)’s test. However, our TMAX test is
much more powerful under the heavy-tailed distributions.

Similarly, we can see that (2p)−1/2(
p∑
i=1

pζ21Z
2
i − p) converges to a standard Gaussian distribution with cdf Φ(x). In

combining with the Corollary 1 we can conclude that,

P
[
(2p)−1/2

{
n∥Ω̂1/2(µ̂− µ)∥2pζ21 − p

}
≤ x

]
→ Φ(x). (5)

Then we propose the sum-type test statistic

TSUM =

√
2p

2

(
nζ̂21 µ̂

⊤Ω̂µ̂− 1
)
. (6)

Theorem 3. Suppose the Assumptions 1-4 hold. Under H0 : µ = 0, as (n, p) → ∞, we have TSUM
d−→ N (0, 1).

Furthermore, under H1 : µ⊤Ωµ = o(pn−1), as (n, p)→∞, we have TSUM − 2−1/2np1/2ζ21µ
⊤Ωµ

d−→ N (0, 1).

By Theorem 3, the asymptotic power function of TSUM is

βSUM (µ) = Φ
(
− z1−α + 2−1/2np1/2ζ21µ

⊤Ωµ
)
.

After some simply calculations, we can obtain the power function of TFLY is

βFLY (µ) = Φ
(
− z1−α + 2−1/2p−1/2nµ⊤Σ−1

s µ
)
.

where Σs = E(XiX
⊤
i ) is the covariance matrix and Σs = p−1E(r2i )Σ. So the asymptotic relative efficiency

(ARE) of TSUM with repective to TFLY is ARE(TSUM , TFLY ) = {E(r−1
i )}2E(r2i ) ≥ 1, which is the same as

ARE(TMAX , TCFL).

However, when the dimension gets larger, there would be a non-negligible bias term in TSUM and TMAX . To use the
above sum-type and max-type test procedure, we adopt the bootstrap method to calculate the bias term. We simply
generate n samples z1, · · · , zn from the multivariate normal distribution N (0, Ω̂−1). Then, based on the random
sample z1, · · · , zn, we calculate the sum-type test statistic T ∗

SUM and max-type test statistic T ∗
MAX . Repeat this

procedure M times, we could get a bootstrap sample of TSUM and TMAX . Then, we calculate the sample mean and
the sample variance of these bootstrap samples, denoted as µ∗

S and σ2∗
S for T ∗

SUM and µ∗
M and σ2∗

M for T ∗
MAX . The

corresponding p-values of TSUM and TMAX are

pSUM = 1− Φ{(TSUM − µ∗
S)/σ

∗
S}, pMAX = 1− F {σ0(TMAX − µ∗

M )/σ∗
M + µ0} ,

where µ0 = − log(π)+ 2γ and σ2
0 = 3−12π2 are the expectation and variance of the Gumbel distribution F (x). Here

γ is the Euler constant. Because we only need the mean and variance of the bootstrap samples, so the bootstrap size
M = 50 is always enough for controlling the empirical sizes.

It is well known that sum-type and max-type tests are powerful against dense and sparse alternatives, respectively. To
accommodate unknown sparsity in the real world, we adopt the Cauchy combination test Liu & Xie (2020) to integrate
their advantages, leveraging their asymptotic independence.
Theorem 4. Under Assumptions 1-4, if ∥µ∥∞ = o(n−1/2) and ∥µ∥ = o(p1/4n−1/2), as n, p → ∞, TMAX and
TSUM are asymptotic independent.

Based on Theorem 4, we define the Cauchy combination test as follows:

TCC1 = 1−G [0.5 tan {(0.5− pMAX)π}+ 0.5 tan {(0.5− pSUM )π}] ,
where G(·) is the cdf of the standard Cauchy distribution. We reject H0 if TCC1 < α for a given significance level
α ∈ (0, 1).
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4 SIMULATION

We consider the following three elliptical distributions:

(i) Multivariate normal distribution: Xi ∼ N (µ,Σ);

(ii) Multivariate t-distribution: Xi ∼ t(µ,Σ, 3)/
√
3;

(iii) Multivariate mixture normal distribution: Xi ∼MN (µ,Σ, 10, 0.8)/
√
22.8.

Four covariance matrices are considered. Model I: Σ = (0.6|i−j|)1≤i,j≤p; Model II: Σ = 0.5Ip + 0.511⊤; Model
III: Ω = (0.6|i−j|)1≤i,j≤p, Σ = Ω−1. Model IV: Ω = (ωi,j)p×p where ωi,i = 2 for i = 1, . . . , p, ωi,i+1 = 0.8

for i = 1, . . . , p − 1, ωi,i+2 = 0.4 for i = 1, . . . , p − 2, ωi,i+3 = 0.4 for i = 1, . . . , p − 3, ωi,i+4 = 0.2 for
i = 1, . . . , p − 4, ωi,j = ωj,i for i, j = 1, . . . , p and ωi,j = 0 otherwise. As the performance of our method is not
sensitive to bandwidth choice, we set h = 3 throughout the paper for simplicity.

Table 1 reports the empirical sizes of the new proposed test procedures TSUM , TMAX and TCC1 with n = 100,
p = 120, 240. We found that all the tests could control the empirical sizes very well. Next, we conduct a comparison
between our proposed methods and several test procedures based on the sample covariance matrix. Specifically, Chen
et al. (2024) proposed a max-type test, denoted by TCFL, based on the sample mean and a sparse precision matrix
estimator. Fan et al. (2015) introduced a sum-type test, TFLY , which uses a sparse covariance matrix estimator. For a
fair comparison, both TCFL and TFLY adopt the graphical lasso to estimate the corresponding matrices. Furthermore,
we consider a Cauchy combination of the two, denoted by TCCF . In particular, TFLY suffers from size distortion
under heavy-tailed distributions when using its asymptotic critical value. To address this and ensure fair comparison,
we employ a size-corrected power comparison framework, where empirical critical values are computed under the null
for all tests, guaranteeing matching empirical sizes.

We focus on Model II with n = 100 and p = 120. The power of each test procedure is evaluated under various
distributions. For the alternative hypothesis, we specify µ = κ

√
log p/(ns)Σ1/2(1⊤

s ,0
⊤
p−s)

⊤ to guarantee Ω1/2µ =

κ
√

log p/(ns)(1⊤
s ,0

⊤
p−s)

⊤, where s represents the sparsity parameter of the alternative hypothesis. Specifically, for
the normal distribution, we set κ = 2, for the multivariate t-distribution with 3 degrees of freedom, κ = 1.5, and for
the multivariate mixture normal distribution, κ = 0.6.

Figure 1 shows the power curves for each test across various scenarios. Under normal distribution, TSUM and TMAX

perform similarly to TFLY and TCFL, respectively. However, for non-normal distributions, our robust methods TSUM ,
TMAX , and TCC1 significantly outperform TFLY , TCFL, and TCCF , demonstrating their robustness in heavy-tailed
settings. When the sparsity parameter s is small, max-type tests (TMAX , TCFL) exhibit higher power than sum-type
tests (TSUM , TFLY ). In contrast, for dense alternatives (s large), sum-type tests outperform max-type ones. The
Cauchy combination tests, TCC1 and TCCF , consistently perform well across different sparsity levels. In conclusion,
TCC1 demonstrates superior performance under both heavy-tailed distributions and varying sparsity levels, exhibiting
double robustness.

Table 1: Empirical sizes (%) of the three proposed test procedures under different models with n = 100.

Model I Model II Model III Model IV
Dist. Test p = 120 p = 240 p = 120 p = 240 p = 120 p = 240 p = 120 p = 240

(i)
TSUM 4.3 4.9 4.2 5.7 4.4 5.5 4.7 5.2
TMAX 5.2 4.8 5.1 5.9 4.1 4.6 4.3 5.9
TCC1 4.7 5.3 5.6 4.5 4.9 5.4 4.5 5.5

(ii)
TSUM 4.5 4.1 5.8 4.6 5.1 5.3 5.3 4.8
TMAX 4.8 4.2 5.7 5.0 4.9 4.4 4.3 5.6
TCC1 5.5 4.7 4.3 5.6 4.0 5.2 4.8 5.2

(iii)
TSUM 4.2 5.6 4.9 4.4 5.8 4.3 4.1 5.7
TMAX 5.2 4.7 5.5 4.1 5.0 4.6 5.1 4.7
TCC1 4.8 5.3 4.5 5.7 4.0 5.4 4.4 5.8
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Figure 1: Power curves of each method with different sparsity under Model II and n = 100, p = 120.

5 CONCLUSION

In this paper, we proposed a high-dimensional extension of the Hettmansperger-Randles estimator and applied it
to two problems in high-dimensional statistics: the one-sample location testing problem and quadratic discriminant
analysis. Simulation studies and theoretical analysis confirm the superior efficiency and robustness of our estimator in
high-dimensional settings.

In particular, it may be fruitfully applied to other important problems such as the two-sample location test (Feng et al.,
2016) and the high-dimensional linear asset pricing model (Feng et al., 2022b). These potential extensions warrant fur-
ther investigation in future research. In addition, our methods rely on the assumption of an elliptically symmetric distri-
bution, which may limit their applicability in more general settings. Existing work has shown that under near-spherical
directional distributions and finite-moment conditions (Cheng et al., 2023; Liu et al., 2024), Gaussian approximation
theory can be established, with Liu et al. (2024) further demonstrating the asymptotic independence between sum-type
and max-type test statistics. An important direction for future research is to investigate how to maintain algorithmic
implementability while establishing Gaussian approximation on simple convex sets and the asymptotic independence
of test statistics under such general models.
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Supplemental Material of "High-Dimensional Hettmansperger-Randles Estimator
and Its Applications"

A QUADRATIC DISCRIMINANT ANALYSIS

A.1 METHOD

Consider the problem of classifying a p-dimensional normally distributed vector x into one of two classes represented
by two p-dimensional normal distributions, Np (µ1,Ξ1) and Np (µ2,Ξ2), where µi’s are mean vectors and Ξi’s are
positive definite covariance matrices. If µi and Ξi, i = 1, 2, are known, then an optimal classification rule having the
smallest possible misclassification rate can be constructed. However, µi and Ξi, i = 1, 2, are usually unknown and
the optimal classification rule, the Bayes rule, classifies x to class 2 if and only if

(x− µ1)
⊤
(Ξ−1

2 −Ξ−1
1 ) (x− µ1)− 2δ⊤Ξ−1

2 (x− µ1) + δ⊤Ξ−1
2 δ − log (|Ξ1|/|Ξ2|) < 0, (7)

where δ = µ2 − µ1. In practical applications, when the dimension is lower than the sample size, we substitute the
mean and covariance matrix in (7) with their respective sample mean and covariance matrix. Nevertheless, when the
dimension exceeds the sample size, the sample covariance matrix becomes non - invertible. As a result, a common
approach, as described in Li & Shao (2015) and Wu et al. (2019), involves replacing the sample covariance matrix
with various sparse covariance matrix estimators (Bickel & Levina, 2008a;b). However, it should be noted that these
methods relying on the sample covariance matrix may not be highly efficient when the underlying distribution diverges
from the normal distribution.

In fact it has been shown by Bose et al. (2015) that, for the class of elliptically symmetric distributions with the
probability density function having the form

f(x;µ,Ξ) = |Ξ|−1/2g
{
(x− µ}⊤Ξ−1(x− µ)

}
,

the Bayes rule leads to the partition

R1 =

{
x :

1

2
log

(
|Ξ2|
|Ξ1|

)
+ k∆2

d ≥ 0

}
,

where ∆2
d(x) =

{
(x− µ2)

⊤
Ξ−1

2 (x− µ2)− (x− µ1)
⊤
Ξ−1

1 (x− µ1)
}

and k may depend on x. Therefore, let-

ting ςp
.
= log(|Ξ1|/|Ξ2|), a general classification rule (or classifier) proposed by Bose et al. (2015), is given by

x ∈ R1 if ∆2
d(x) ≥ cςp,

x ∈ R2 otherwise ,
(8)

for some constant c ≥ 0. Clearly, this classifier boils down to the minimum Mahalanobis distance (MMD) and the
QDA classifiers whenever c is chosen to be 0 and 1, respectively. It has a misclassification rate of

RQDA =
R1
QDA +R2

QDA

2
, RmQDA = P(incorrectly classify x to class m).

In practice, the parameters in the classifier (8) are unknown and need to be estimated from the training set. Suppose we
observe two independent samples {Xil}ni

l=1, i = 1, 2 from f(x;µi,Ξi), respectively. Under the elliptical symmetric
distribution assumption, we have Ξ = p−1 tr(Ξ)Σ. So the inverse of the covariance matrix Ξ̂−1 = p tr−1(Ξ)Ω could
be estimated by Ω̃i = p{t̂r(Ξi)}−1Ω̂i with

t̂r(Ξi) =
1

ni − 1

ni∑
l=1

X⊤
ilXil −

ni
ni − 1

X̄⊤
i X̄i,

and X̄i = n−1
i

∑ni

l=1 Xil. Then, we replace the parameters with its high dimensional HR estimators, i.e.

∆̂2
d(x) = (x− µ̂2)

⊤
Ω̃2 (x− µ̂2)− (x− µ̂1)

⊤
Ω̃1 (x− µ̂1) , ς̂p = log

(
|Ω̃2|/|Ω̃1|

)
,
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where the parameter c is estimated the same as Subsection 2.1 in Bose et al. (2015), denoted as ĉ. So the final
classification rule is

x ∈ R1 if ∆̂2
d(x) ≥ ĉς̂p,

x ∈ R2 otherwise .
(9)

It has a misclassification rate of

RHRQDA =
R1
HRQDA +R2

HRQDA

2
, RmHRQDA = P(incorrectly classify x to class m).

To show the consistency of the misclassification rate of our proposed HRQDA method, we need the following addi-
tional assumptions.
Assumption 5. tr(Ξi) ≍ t0(p) for each i = 1, 2. And

σQ(p) :=

√
∥Σ1/2

1 Ω2Σ
1/2
1 − Ip∥2F + t0(p)−1p∥µ2 − µ1∥2 ≍ p.

Assumption 6. ri = ∥Ξ−1/2
i (x− µi)∥ satisfies Var(r2i ) ≲ p

√
p and Var(ri) ≲

√
p, for i = 1, 2.

Assumption 5 assume the signal of the difference between the two distribution is larger enough. Assumption 6 is
needed to show the consistency of the trace estimator t̂r(Ξi).
Theorem 5. If εi, Σi, Ωi, Si for i = 1, 2 satisfy Assumptions 1-4 and Assumptions 5,6 hold. Assume that n1 ≍ n2
and n := min{n1, n2}, we have

|RHRQDA −RQDA| = Op{λ1−q/2n s0(p)
1/2 + λ1−qn s0(p)}.

The result in Theorem 5 show that HRQDA is able to mimic the optimal Bayes rule consistently under some mild
assumptions, which is similar to Theorem 4.2 in Cai & Zhang (2021).

A.2 SIMULATION

We compare our proposed method, HRQDA, with the SQDA method proposed by Li & Shao (2015) and the SeQDA
method proposed by Wu et al. (2019). The SQDA method estimates the covariance matrix using the banding method
proposed by Bickel & Levina (2008b), while the SeQDA method estimates the covariance matrix of the transformed
sample by simplifying the structure of the covariance matrices.

We consider the following three elliptical distributions:

• (i): Multivariate normal distribution: Xi1 ∼ N (µ1,Σ1), Xi2 ∼ N (µ2,Σ2);

• (ii): Multivariate t-distribution: Xi1 ∼ t(µ1,Σ1, 3)/
√
3, Xi2 ∼ t(µ2,Σ2, 3)/

√
3;

• (iii): Multivariate mixture normal distribution: Xi1 ∼MN (µ1,Σ1, 10, 0.8)/
√
22.8,

Xi2 ∼MN (µ2,Σ2, 10.0.8)/
√
22.8.

We consider three models for the covariance matrix:

• Model I: Σ1 = (0.6|i−j|)1≤i,j≤p, Σ2 = Ip;

• Model II: Σ1 = (0.6|i−j|)1≤i,j≤p, Σ2 = 0.5Ip + 0.51p1
⊤
p ;

• Model III: Ω1 = (0.6|i−j|)1≤i,j≤p, Σ1 = Ω−1
1 , Σ2 = Ω1.

The covariance matrices in Model I are approximately banded. In Model II, Σ2 satisfies the structural assumption in
Wu et al. (2019) but violates the sparsity condition in Li & Shao (2015), while in Model III, Σ1 satisfies the latter but
violates both. We set µ1 = 0 and µ2 = 0.1× 1p, and generate n1 = n2 = 100 training and test samples of the same
size and two dimensions p = 120, 240.

Table 2 reports the average classification rates. HRQDA generally performs best. In Model I, SQDA benefits from the
banded structure and outperforms SeQDA; HRQDA is comparable under normality but superior under heavy-tailed
distributions. In Model II, SQDA performs worst due to structural mismatch, while HRQDA consistently outperforms
SeQDA in non-normal settings. In Model III, HRQDA still achieves the best accuracy. These results confirm that
HRQDA is robust and effective across various distributions and covariance structures.
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Table 2: Average classification rate (%) and standard deviation (in parenthesis) of each method.

p = 120 p = 240

Model Dist. HRQDA SQDA SeQDA HRQDA SQDA SeQDA

Model I
(i) 0.99(0.01) 0.94(0.08) 0.63(0.03) 1(0) 0.96(0.08) 0.64(0.04)
(ii) 0.95(0.06) 0.64(0.11) 0.55(0.04) 0.97(0.08) 0.60(0.09) 0.54(0.05)
(iii) 0.92(0.13) 0.55(0.07) 0.52(0.04) 0.96(0.10) 0.55(0.08) 0.51(0.04)

Model II
(i) 1(0.01) 0.77(0.10) 0.97(0.01) 1(0) 0.78(0.14) 1(0.01)
(ii) 0.99(0.01) 0.55(0.06) 0.68(0.03) 1(0) 0.55(0.05) 0.68(0.03)
(iii) 0.99(0.01) 0.53(0.04) 0.54(0.05) 1(0) 0.53(0.04) 0.53(0.03)

Model III
(i) 1(0) 1(0.02) 0.76(0.04) 1(0) 1(0.02) 0.76(0.04)
(ii) 1(0) 0.82(0.11) 0.66(0.03) 1(0) 0.81(0.12) 0.65(0.03)
(iii) 0.77(0.09) 0.60(0.02) 0.52(0.05) 0.78(0.10) 0.60(0.02) 0.51(0.04)

A.3 REAL DATA APPLICATION

We used the gene expression dataset GSE12288 from Sinnaeve et al. (2009), which includes 110 coronary artery
disease (CAD) patients (CADi > 23) and 112 healthy controls. After applying two-sample t-tests, 297 genes with p-
values below 0.01 were retained. To evaluate performance, we compared our HRQDA method with SQDA and SeQDA
by randomly splitting the data into training (73 CAD, 75 control) and testing (37 CAD, 37 control) sets, repeating this
process 200 times. Classification accuracy was averaged over the repetitions.

The performance of classifiers was evaluated using four key metrics:

• Accuracy (Acc): Proportion of correctly classified samples:

Acc =
TP + TN

TP + TN + FP + FN
.

• Specificity (Spec): Proportion of true negatives correctly identified:

Spec =
TN

TN + FP
.

• Sensitivity (Sens): Proportion of true positives correctly identified:

Sens =
TP

TP + FN
.

• Matthews Correlation Coefficient (MCC): Balanced measure of classification quality:

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
,

where TP (true positive), TN (true negative), FP (false positive), and FN (false negative) represent the counts of
respective classification outcomes. All metrics range between 0 and 1, except MCC which ranges between −1 and 1,
with higher values indicating better performance.

Table 3 shows that HRQDA outperforms SQDA and SeQDA, achieving the highest mean accuracy (0.760) and MCC
(0.527). It also has the best sensitivity (0.821) and maintains good specificity (0.708), showing strong ability to detect
CAD cases reliably.

B PERFORMANCE OF THE TEST UNDER ε-CONTAMINATION

For the one-sample testing problem, we consider n = 100 and p = 120. The uncontaminated data are generated from
a multivariate t3 distribution with mean vector µ and covariance matrix Σ with entries

Σij = 0.8|i−j|, 1 ≤ i, j ≤ p.
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Table 3: Comparison of evaluation metrics and standard deviation (in parenthesis) for each method.

Method Accuracy Specificity Sensitivity MCC

HRQDA 0.760 (0.042) 0.708 (0.088) 0.821 (0.069) 0.527 (0.082)
SQDA 0.710 (0.051) 0.707 (0.112) 0.702 (0.111) 0.429 (0.103)
SeQDA 0.729 (0.051) 0.685 (0.084) 0.772 (0.070) 0.461 (0.102)

To introduce ε-contamination, we randomly select εn observations and replace them by independent noise drawn from
Np(0, strength · Ip), where the contamination rate ε takes values in {0, 0.05, 0.10, 0.15, 0.20} and the contamination
strength is in {5, 10, 20}.
We consider three mean configurations:

µ1 = 0p, µ2 =
0.15

1− ε
Σ1/2(1, 1, 1, 0, . . . , 0)⊤, µ3 =

0.1

1− ε
Σ1/2(1, . . . , 1︸ ︷︷ ︸

30

, 0, . . . , 0)⊤,

where the factor 0.15/(1 − ε) is used to keep the effective signal strength comparable across different contamination
rates. Here µ1 corresponds to the null (empirical size), µ2 to a sparse alternative (nonzero in the first 3 coordinates),
and µ3 to a dense alternative (nonzero in the first 30 coordinates). For each setting, we repeat the experiment 500 times
and record the empirical rejection probabilities of the max-type test, the sum-type test, and the Cauchy combination
test.
The results under ε-contamination are summarized in Tables 4–6 below. Table 4 reports empirical size under the null
(µ1), while Tables 5 and 6 report empirical power under the sparse (µ2) and dense (µ3) alternatives, respectively.
Overall, the sum, max, and Cauchy combination tests maintain sizes close to the nominal level and display reasonable
power even when up to 20% of the observations are contaminated.

Table 4: Empirical size under ε-contamination for µ1.
ε Strength α̂max α̂sum α̂Cauchy

0.00 5 0.056 0.050 0.060
0.05 5 0.040 0.028 0.030
0.10 5 0.040 0.052 0.052
0.15 5 0.042 0.030 0.042
0.20 5 0.042 0.034 0.042
0.00 10 0.046 0.048 0.050
0.05 10 0.042 0.034 0.038
0.10 10 0.032 0.040 0.036
0.15 10 0.044 0.028 0.036
0.20 10 0.050 0.036 0.048
0.00 20 0.050 0.052 0.052
0.05 20 0.036 0.052 0.056
0.10 20 0.040 0.044 0.050
0.15 20 0.036 0.034 0.036
0.20 20 0.042 0.030 0.044

Notes: n = 100, p = 120. Errors are generated from a multivariate t3 distribution with covariance Σij = 0.8|i−j|. Here µ1

corresponds to the null (empirical size). Contamination follows an ε-contamination scheme with ε ∈ {0, 0.05, 0.10, 0.15, 0.20}
and strength in {5, 10, 20}. Each entry is based on 500 Monte Carlo replications.

For HRQDA, we consider a two-class classification problem with p = 120 and t3 distribution. In each replicate, we
generate a training sample of size 100 and an independent test sample of size 100 (again 50 per class). Class 1 follows a
multivariate t3 distribution with mean 0p and covariance matrix Σij = 0.8|i−j|, while Class 2 follows a multivariate t3
distribution with mean 0.1·1p and covariance matrix Ip. We then contaminate a fraction ε ∈ {0, 0.05, 0.10, 0.15, 0.20}
of the observations by replacing them with Np(0, strength · Ip) noise (using the same strengths {5, 10, 20} as above),
and record the classification accuracy of HRQDA on the test set. Table 7 reports the average classification accuracy
(in %) over 500 replications.
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Table 5: Empirical power under ε-contamination for µ2 (sparse mean shift).
ε Strength β̂max β̂sum β̂Cauchy

0.00 5 0.526 0.330 0.534
0.05 5 0.542 0.320 0.544
0.10 5 0.526 0.304 0.510
0.15 5 0.496 0.262 0.462
0.20 5 0.538 0.300 0.522
0.00 10 0.522 0.332 0.532
0.05 10 0.534 0.334 0.552
0.10 10 0.504 0.280 0.492
0.15 10 0.506 0.264 0.492
0.20 10 0.466 0.186 0.432
0.00 20 0.582 0.350 0.560
0.05 20 0.524 0.310 0.544
0.10 20 0.510 0.294 0.502
0.15 20 0.498 0.250 0.474
0.20 20 0.488 0.216 0.460

Notes: same data-generating mechanism as in Table 4, but µ2 corresponds to a sparse mean shift. Entries are empirical power
(rejection probabilities under the alternative) based on 500 Monte Carlo replications.

Table 6: Empirical power under ε-contamination for µ3 (dense mean shift).
ε Strength β̂max β̂sum β̂Cauchy

0.00 5 0.336 0.526 0.524
0.05 5 0.306 0.500 0.514
0.10 5 0.310 0.518 0.514
0.15 5 0.316 0.512 0.532
0.20 5 0.270 0.496 0.498
0.00 10 0.326 0.512 0.490
0.05 10 0.342 0.544 0.546
0.10 10 0.288 0.484 0.486
0.15 10 0.280 0.528 0.496
0.20 10 0.250 0.444 0.444
0.00 20 0.330 0.558 0.558
0.05 20 0.314 0.560 0.528
0.10 20 0.320 0.524 0.514
0.15 20 0.298 0.480 0.490
0.20 20 0.254 0.450 0.464

Notes: same data-generating mechanism as in Table 4, but µ3 corresponds to a dense mean shift. Entries are empirical power
based on 500 Monte Carlo replications.

Table 7: Classification accuracy (%) of HRQDA under ε-contamination.
Strength 0 0.05 0.10 0.15 0.20
5 96.82 95.12 92.90 90.72 88.50
10 96.82 95.13 92.90 90.71 88.42
20 96.92 95.13 92.80 90.70 88.41

Notes: Each entry is the average test-set classification accuracy (in %) of HRQDA over 500 Monte Carlo replications. Training
and test samples have size 100 each (50 observations per class). Class 1 has mean 0p and covariance Σij = 0.8|i−j|, and Class 2
has mean 0.1 · 1p and covariance Ip. A fraction ε of the observations is replaced by Np(0, strength · Ip) noise.
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We observe that HRQDA retains high classification accuracy under moderate levels of ε-contamination, with perfor-
mance degrading only gradually as the contamination rate increases, which is consistent with the robust behavior
suggested by our theoretical developments. Due to the strict page and response-length constraints and the substantial
additional space that a full grid of cellwise contamination scenarios would require, we focused our numerical study on
ε-contamination and leave a systematic investigation of cellwise contamination to future work.

C ADDITIONAL METHODS FOR ONE-SAMPLE LOCATION TEST PROBLEM

For comparison, we also consider the test procedures proposed by Feng & Sun (2016) and Liu et al. (2024), which are
designed for the sparsity structure of the location parameter µ.

TSUM2 =
2

n(n− 1)

∑∑
i<j

U
(
D̃

−1/2
ij Xi

)⊤
U
(
D̃

−1/2
ij Xj

)
,

TMAX2 =nζ̂21p
∥∥∥D̃−1/2µ̃

∥∥∥2
∞

(
1− n−1/2

)
,

TCC2 =1−G [0.5 tan {(0.5− pMAX2)π}+ 0.5 tan {(0.5− pSUM2)π}] ,

where pMAX2 and pSUM2 are the p-values of TMAX2 and TSUM2, respectively. Here µ̃ and D̃ij are the estimator of
spatial-median and diagonal matrix of Σ by the following algorithm:

(i) ε̃i ← D̃−1/2 (Xi − µ̃) , j = 1, · · · , n;

(ii) µ̃← µ̃+
D̃1/2 ∑n

j=1 U(ε̃i)∑n
j=1∥ε̃i∥−1 ;

(iii) D̃← pD̃1/2 diag
{
n−1

∑n
j=1 U (ε̃i)U (ε̃i)

⊤
}
D̃1/2.

Next, we demonstrate that, under mild regularity conditions, the sum-type test statistic TSUM2 is asymptotically in-
dependent of the max-type test statistic TMAX. Furthermore, the max-type test statistic TMAX2 is also asymptotically
independent of the sum-type test statistic TSUM1.

Theorem 6. Under Assumptions 1-4, if ∥µ∥∞ = o(n−1/2) and ∥µ∥ = o(p1/4n−1/2), as n, p → ∞, and Theorem 7
in Liu et al. (2024) holds, TSUM2/σn is asymptotically independent with TMAX , TSUM is asymptotically independent
with TMAX2 − 2 log p+ log log p.

In practice, we could not know the sparsity level of the alternative, either Ω1/2µ or µ, so we suggest to use Cauchy
combination test to combine all the four test procedures as follow:

TCC3 =1−G
[1
4
tan {(0.5− pMAX)π}+ 1

4
tan {(0.5− pSUM )π}

+
1

4
tan {(0.5− pMAX2)π}+

1

4
tan {(0.5− pSUM2)π}

]
. (10)

We have supplemented the empirical sizes of the Cauchy combination test TCC3 under the null hypothesis as described
in Section 4. Table 8 reports the empirical sizes of TCC3, which are consistently around 5%, indicating that TCC3 can
control the empirical size very well.

Next, we compare TCC3 with TCC1 proposed in Section 3 and TCC2 from Liu et al. (2024). Specifically, the compari-
son is carried out under distributions (i)–(iii) and Models I–IV, using the same parameter settings and data-generating
mechanisms for the alternatives as described in Section 4. Figure 2 displays the power curves. We observe that TCC2

tends to outperform TCC1 under Model I, while the reverse holds for Models III and IV. In the case of Model II, TCC2

exhibits lower power than TCC1 when the signal sparsity s is small, but surpasses TCC1 as s increases. Overall, the
relative performance of TCC1 and TCC2 is highly sensitive to the underlying model structure.

In contrast, the proposed TCC3 demonstrates uniformly strong performance across all scenarios, offering both robust-
ness to distributional variation and adaptability to different signal sparsity. It often achieves the highest power, making
it a reliable choice in practice.
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Table 8: Empirical sizes (%) of TCC3 under different models with n = 100.

Model I Model II Model III Model IV
Dist. Test p = 120 p = 240 p = 120 p = 240 p = 120 p = 240 p = 120 p = 240

(i) TCC3 5.8 4.3 4.7 5.2 5.0 4.4 4.1 5.6
(ii) TCC3 5.9 4.6 5.4 4.2 5.0 4.7 5.9 4.5
(iii) TCC3 5.1 4.9 4.2 5.6 4.7 5.9 4.9 5.5
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(ii) Multivariate t3 distribution
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(iii) Multivariate mixture normal distribution

Figure 2: Power curves of three Cauchy combination tests with different sparsity, models and n = 100, p = 120.
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D INSENSITIVITY OF PARAMETERS TO THE ALGORITHM

The bandwidth parameter h exhibits low sensitivity to the final results, in contrast to the algorithm’s higher sensitivity
to the choice of initial values. Specifically, when appropriate initial values are selected, the following approximation
holds:

p

n

n∑
i=1

U (ε̂i)U (ε̂i)
⊤ ≈ Ip,

where Ip denotes the p-dimensional identity matrix. Under such circumstances, satisfactory results can be obtained
regardless of the specific choice of bandwidth parameter h. We typically adopt h = 3 as the default value to balance
estimation accuracy and computational cost: while moderately larger values of h may yield marginal improvements
in accuracy, the benefits are limited and come with increased computational time.

To visually demonstrate the influence of h, we first present experimental results based on simulated data. Specifically,
our simulations generate observations Xi from a multivariate t-distribution with the following specifications:

Xi ∼ t(µ,Σ, 3)/
√
3,

where we set the sample size n = 100 and dimensionality p = 120. The covariance matrix Σ follows an autoregressive
structure defined by Σ = (0.6|i−j|)1≤i,j≤p.

Table 9: Influence of bandwidth parameter h on robust mean and covariance estimation.

h 1 2 3 4 5 10 20

∥µ̂− µ∥2 1.76 1.76 1.76 1.76 1.76 1.76 1.76
∥Σ̂−Σ∥F 3.82 3.79 3.77 3.76 3.74 3.66 3.65

Here, ∥ · ∥2 represents the L2-norm for vectors, and ∥ · ∥F denotes the Frobenius norm for matrices. These results
already indicate that the bandwidth parameter h exerts only a limited influence on the quality of the robust mean and
covariance estimators.

To further quantify the practical impact of tuning parameters on our proposed tests, we conduct a sensitivity study
for the banding width h, the number of bootstrap iterations M , the regularization parameter λ in the SGLASSO step,
and the sample size (n, p). The tables below report empirical size (α̂·), empirical power (β̂·), and average runtime
(in seconds) in a representative one-sample setting with n = 100, p = 120, multivariate t3 errors with covariance
Σij = (0.8|i−j|)1≤i,j≤p, and a sparse mean shift

µ = Σ1/2(1, 1, 1, 0, . . . , 0)⊤

under the alternative. Each entry is based on 500 Monte Carlo replications.
Table 10 shows that the proposed tests are quite stable with respect to the banding width h. Across h ∈
{1, 2, 3, 4, 5, 10}, the empirical sizes of the max, sum, and Cauchy combination tests remain close to the nominal
level, and the powers are broadly comparable, with slightly better performance for moderate banding (e.g., h = 3–5).
The average runtime changes very little with h. This supports our default choice h = 3 and suggests that practitioners
can safely vary h within a moderate range without materially affecting performance.
Table 11 examines the number of bootstrap iterations M . For M ∈ {20, 50, 100, 200}, the empirical sizes are again
close to 0.05 and the powers increase only mildly withM , while the runtime grows approximately linearly (from about
650 to 2300 seconds in this experiment). This indicates that M around several tens already yields stable behavior, and
our default M = 50 represents a reasonable compromise between accuracy and computational cost.
Table 12 studies the SGLASSO regularization parameter λ. We find that overly small regularization (e.g., λ = 0.05)
leads to noticeable size distortion and very high rejection probabilities, whereas moderate to larger values (λ =
0.1, 0.2, 0.3) keep empirical size closer to the nominal level but with some loss of power when λ becomes too large.
The theoretically motivated choice λ = 0.1 lies in a region where both size and power are well behaved, and runtime
decreases slightly as λ increases. These results suggest that practitioners should avoid very small λ, and that a range
around the default (e.g., λ between 0.1 and 0.2) is acceptable in practice.
Finally, Table 13 reports average runtime for several combinations of (n, p). For the range of n considered, the runtime
varies only mildly with n at fixed p, whereas it increases substantially with p, reflecting that the computational cost
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is dominated by operations on p × p covariance and precision matrices. This provides a concrete indication of the
scalability of the proposed procedures: they are feasible for moderate to high dimensions, with computational burden
growing primarily in p rather than n.
Overall, these sensitivity results indicate that (i) the proposed tests are reasonably robust to moderate perturbations of
h, M , and λ around the recommended defaults, and (ii) the computational cost behaves in a predictable way, which
we believe will help practitioners choose tuning parameters and anticipate run times in their own applications.

Table 10: Sensitivity to banding width h.
h α̂max α̂sum α̂cc β̂max β̂sum β̂cc runtime
1 0.042 0.046 0.050 0.550 0.392 0.572 946.28
2 0.048 0.044 0.052 0.488 0.378 0.548 934.95
3 0.056 0.048 0.052 0.534 0.440 0.591 933.89
4 0.054 0.044 0.048 0.548 0.446 0.626 925.86
5 0.054 0.042 0.044 0.556 0.480 0.603 928.32

10 0.046 0.066 0.054 0.545 0.546 0.644 930.70

Table 11: Sensitivity to the number of bootstrap iterations M .
M α̂max α̂sum α̂cc β̂max β̂sum β̂cc runtime
20 0.040 0.050 0.049 0.478 0.354 0.584 655.14
50 0.056 0.048 0.052 0.534 0.440 0.594 933.89
100 0.054 0.052 0.052 0.550 0.406 0.584 1385.56
200 0.062 0.050 0.058 0.548 0.418 0.582 2316.18

Table 12: Sensitivity to the regularization parameter λ.
λ α̂max α̂sum α̂cc β̂max β̂sum β̂cc runtime

0.05 0.172 0.314 0.258 0.724 0.884 0.878 1082.52
0.1 0.056 0.048 0.052 0.544 0.466 0.562 933.89
0.2 0.046 0.067 0.066 0.424 0.364 0.474 794.08
0.3 0.046 0.103 0.078 0.382 0.402 0.470 737.93

E PROOFS OF THEORETICAL RESULTS

Recall that for i = 1, 2, · · · , n,Ui = U(εi) = U{Ω1/2(Xi − µ)} and ri = ∥εi∥ = ∥Ω1/2(Xi − µ)∥ as the scale-
invariant spatial-sign and radius of Xi − µ, where U(X) = X/∥X∥I(X ̸= 0) is the multivariate sign function of
X , with I(·) being the indicator function. The moments of ri is defined as ζk = E

(
r−ki

)
. We denote the estimated

version Ui and ri as r̂i = ∥Ω̂1/2(Xi−µ)∥ and Ûi = Ω̂1/2(Xi−µ)/∥Ω̂1/2(Xi−µ)∥, respectively, i = 1, 2, · · · , n.
Finally, we denote various positive constants by C,C1, C2, . . . without mentioning this explicitly.

E.1 THE LEMMAS TO BE USED

The following result is a one-sample special case of Lemma 1 in Feng et al. (2016).
Lemma 3. Under Assumption 1, for any matrix M, we have

E[{U(εi)
⊤MU(εi)}2] = O{p−2tr(M⊤M)}.

As it plays a key role in our analysis, we restate Theorem 1 from Lu & Feng (2025) below.

Lemma 4. Under Assumptions 1-4, Ω̂ defined in Lemma 1 satisfies the following property. When n,p are sufficiently
large, there exist constants Cη,T and C, such that if we pick

λn = T

{√
2C(8 + η2Cη,T )

η2

√
log p

n
+
Cη,T√
p

}
,
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Table 13: Average runtime (seconds) for different (n, p).

n = 100 n = 200 n = 400 n = 600
p = 120 24.29 23.35 23.67 23.35
p = 240 186.01 181.78 165.88 157.70
p = 480 1921.63 1506.36 1405.67 1358.17

with probability larger than 1− 2p−2, the following inequalities hold:

∥Ω̂−Ω∥∞ ≤ 4∥Ω∥L1λn,

∥Ω̂−Ω∥op ≤ ∥Ω̂−Ω∥L1
≤ C4λ

1−q
n s0(p),

p−1∥Ω̂−Ω∥2F ≤ C5λ
2−q
n s0(p),

where C4 ≤ (1 + 21−q + 31−q)(4∥Ω∥L1
)1−q and C5 ≤ 4∥Ω∥L1

C4.

In fact, Theorem 1 from Lu & Feng (2025) and this Lemma are not fundamentally the same. How-
ever, our algorithm is actually not sensitive to bandwidth choice. When the initial value is well-chosen,
pn−1

∑n
i=1 U{ε̂

(k)
i }U{ε̂

(k)
i }⊤ ≈ I , so a very small bandwidth is also acceptable. In this case, it can be regarded

as projecting n−1
∑n
i=1 U{ε̂

(k)
i }U{ε̂

(k)
i }⊤ onto the subspace where its true value resides.

Lemma 5. Define a random matrix Q̂ = n−1
∑n
i=1 r̂

−1
i ÛiÛ

⊤
i ∈ Rp×p, and let Q̂jl denote its (j, l)-th element.

Assume λ1−qn s0(p)(log p)
1/2 = o(1), and satisfy Assumptions 1-4. Then we have

|Q̂jl| ≲ p−3/2I(j = l) +Op

{
n−1/2p−3/2 + λ1−qn s0(p)p

−3/2
}
.

Here, the symbol ≲ has been defined in the Notations at the end of Section 1.

Proof. Denote Î = Ω̂1/2Σ1/2. Set Î⊤i and Ω⊤
i be the ith row of Î and Ω respectively.

Q̂jl =
1

n

n∑
i=1

r̂−1
i ÛijÛil

=
1

n

n∑
i=1

r̂−3
i Î⊤j εiÎ

⊤
l εi

=
1

n

n∑
i=1

∥Îεi∥−3(̂ITj εi)(̂I
T
l εi)

= A1 +A2 +A3,

where A1, A2 and A3 are defined as follows

A1 =
1

n

n∑
i=1

(
∥Îεi∥−3 − ∥Iεi∥−3

)
(̂ITj εi)(̂I

T
l εi);

A2 =
1

n

n∑
i=1

(
∥Iεi∥−3 − ζ3

)
(̂ITj εi)(̂I

T
l εi);

A3 =
1

n

n∑
i=1

ζ3(̂I
T
j εi)(̂I

T
l εi).

Given Lemma 4 and under Assumption 2, we obtain that

∥Îεi∥2 =εTi Σ
1/2(Ω̂−Ω)Σ1/2εi + r2i

≤r2i + (εTi Σεi)∥Ω̂−Ω∥op
≤r2i + η−1r2i ∥Ω̂−Ω∥op
.
=r2i (1 +H) ,
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where H = η−1∥Ω̂−Ω∥op = Op{λ1−qn s0(p)}. Therefore, for any integer k,

∥Îεi∥k ={εTi Σ1/2(Ω̂−Ω)Σ1/2εi + r2i }k/2

≤rki (1 +H)k/2

:=rki (1 +Hk) , (11)

where Hk = (1 +H)k/2 − 1 = Op{λ1−qn s0(p)}.
Similar to the proof of Lemma A3 in Cheng et al. (2023), we have

E(A1) =E

{
1

n

n∑
i=1

(
∥Îεi∥−3 − ∥Iεi∥−3

)
(̂I⊤j εi)(̂I

⊤
l εi)

}

=E

{
1

n

n∑
i=1

(
∥εi∥−3

H−3

)
(̂I⊤j εi)(̂I

⊤
l εi)

}
=E {(A2 +A3)H−3} .

Firstly, notice that,

Î⊤j εi =(̂I− I)⊤j εi + εij

=(Ω̂1/2 −Ω1/2)⊤j Σ
1/2εi + εij ,

thus,

Î⊤j εi − εij =
1

2
{Ω−1/2(Ω̂−Ω)}⊤j Σ1/2εi + op

[
{Ω−1/2(Ω̂−Ω)}⊤j Σ1/2εi

]
≲∥Ω−1/2∥L1

∥Ω̂−Ω∥L1
∥Σ1/2∥L1

∥riΣ1/2Ui∥∞
=Op{λ1−qn s0(p)(log p)

1/2} = op(1).

In the above equation, the second to last equation from the following facts: (1) Since Σ is a positive define symmetric
matrix, and under the Assumption 1, we have ∥Ω−1/2∥L1

≤ {λmax(Σ)∥Σ∥L1
}1/2 = O(1). (2) Furthermore, accord-

ing to the second formula of Lemma 4, ∥Ω̂ − Ω∥L1
= Op{λ1−qn s0(p)}. (3) As for Ui is uniformly distributed on a

p-dimensional unit sphere, ∥Ui∥∞ = Op(
√

log p/p) and ri = Op(
√
p), we have ∥riΣ1/2Ui∥∞ = Op{(log p)1/2}.

Next, we analyze A2 and A3. Since E(r2i ) = p,

A2 =
1

n

n∑
i=1

(
∥Iεi∥−3 − ζ3

)
{εij + op(1)}{εil + op(1)}

=
1

n

n∑
i=1

(r−1
i − ζ3r

2
i )UijUilI(j = l) + op(1)

=ζ1p
−1I(j = l) +Op(n

−1/2p−3/2) ≲ p−3/2I(j = l) +Op(n
−1/2p−3/2).

and

A3 =
1

n

n∑
i=1

ζ3{εij + op(1)}{εil + op(1)}

≲ p−3/2I(j = l) +Op(n
−1/2p−3/2).

It follows that,
|Q̂jl| ≲

{
p−3/2I(j = l) +Op(n

−1/2p−3/2)
}
[1 +Op{λ1−qn s0(p)}].

Thus,
|Q̂jl| ≲ p−3/2I(j = l) +Op

{
n−1/2p−3/2 + λ1−qn s0(p)p

−3/2
}
.

23



1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

Lemma 6. Suppose the Assumptions in Lemma 4 hold, then ζ̂1
p→ ζ1 as (n, p) → ∞, where ζ̂1 =

n−1
∑n
i=1 ∥Ω̂1/2(X1 − µ̂1)∥−1.

Proof. Denote θ̂ = µ̂− µ.

∥Ω̂1/2(Xi − µ̂)∥ = ∥Ω1/2(Xi − µ)∥(1 + r−2
i ∥(Ω̂

1/2 −Ω1/2)(Xi − µ)∥2

+ r−2
i ∥Ω̂

1/2θ̂∥2 + 2r−2
i U⊤

i (Ω̂1/2 −Ω1/2)Ω−1/2Ui)

− 2r−1
i U⊤

i Ω̂1/2θ̂ − 2r−1
i UiΩ

−1/2(Ω̂1/2 −Ω1/2)Ω̂1/2θ̂)1/2.

By combining the third expression in Lemma 4, the Taylor expansion and Markov’s inequality, we obtain r−2
i ∥(Ω̂1/2−

Ω1/2)(Xi − µ)∥2 = Op
{
λ2−qn s0(p)

}
= op(1). Based on Lemma 1 and under the Assumption 1, we have

r−2
i ∥Ω̂1/2θ̂∥2 = Op(n

−1) = op(1). Similarly, by the Cauchy-Schwarz inequality, the other parts are also op(1).
So,

n−1
n∑
i=1

∥∥∥Ω̂1/2 (Xi − µ̂)
∥∥∥−1

=

{
n−1

n∑
i=1

∥∥∥Ω1/2 (Xi − µ)
∥∥∥−1

}
{1 + op(1)} .

Obviously, E
(
n−1

∑n
i=1 r

−1
i

)
= ζ1 and Var

(
n−1ζ−1

1

∑n
i=1 r

−1
i

)
= O

(
n−1

)
. Finally, the proof is completed.

Lemma 7. Suppose the Assumptions in Lemma 6 hold with s0(p) ≍ p1−δ for some positive constant δ ≤ 1/2 Then, if
log p = o(n1/3),

(i)

∥∥∥∥∥n−1
n∑
i=1

ζ−1
1 Ûi

∥∥∥∥∥
∞

= Op

{
n−1/2 log1/2(np)

}
,

(ii)

∥∥∥∥∥ζ−1
1 n−1

n∑
i=1

δ1,iÛi

∥∥∥∥∥
∞

= Op(n
−1).

(12)

where δ1,i is defined in the proof in Lemma 1.

Proof. From the proof of Lemma 5, we can see that Î⊤j εi − εij = Op{λ1−qn s0(p)(log p)
1/2}. Moreover, for any

integer k, we have r̂ki ≤ rki (1 + Hk), where Hk = Op{λ1−qn s0(p)}. Recall that Ûi = U{Ω̂1/2(Xi − µ)}, since
r−1
i = Op(p

−1/2), then for any j ∈ {1, 2, · · · , p},

Ûij = r̂−1
i Î⊤j εi ≤r−1

i (1 +H−1)εij + r−1
i (1 +H−1)(Î

⊤
j εi − εij)

=(1 +H−1)Uij + op{(1 +H−1)Uij}.

Therefore, we obtain that Ûi ≤ Ui(1 + H−1) for i = 1, 2, . . . , n with the assumption λ1−qn s0(p)(log p)
1/2 = o(1).

According to the Lemma A4 in Cheng et al. (2023), we have
∥∥n−1/2

∑n
i=1 ζ

−1
1 Ui

∥∥
∞ = Op{log1/2(np)} and∥∥n−1

∑n
i=1(ζ

−1
1 Ui)

2
∥∥
∞ = Op(1) with log p = o(n1/3). Therefore, we have∥∥∥∥∥n−1
n∑
i=1

ζ−1
1 Ûi

∥∥∥∥∥
∞

=

∥∥∥∥∥n−1
n∑
i=1

ζ−1
1 (1 +H−1)Ui

∥∥∥∥∥
∞

≤|1 +H−1| ·

∥∥∥∥∥n−1
n∑
i=1

ζ−1
1 Ui

∥∥∥∥∥
∞

= Op

{
n−1/2 log1/2(np)

}
.

Similarly ∥∥∥∥∥ζ−1
1 n−1

n∑
i=1

δ1,iÛi

∥∥∥∥∥
∞

≤|1 +H−1| ·

∥∥∥∥∥ζ−1
1 n−1

n∑
i=1

δ1,iUi

∥∥∥∥∥
∞

=Op{n−1(1 + n−1/2 log1/2 p)} = Op(n
−1).
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The proof of Lemma 8 can be found in Appendix A of Chernozhukov et al. (2017).
Lemma 8 (Nazarov’s inequality). Let Y0 = (Y0,1, Y0,2, · · · , Y0,p)⊤ be a centered Gaussian random vector in Rp and
E(Y 2

0,j) ≥ b for all j = 1, 2, · · · , p and some constant b > 0, then for every y ∈ Rp and a > 0,

P(Y0 ≤ y + a)− P(Y0 ≤ y) ≲ a log1/2(p).

We restate Lemma S9 in Feng et al. (2024).
Lemma 9. For each d ≥ 1, we have

lim
p→∞

H(d, p) ≤ 1

d!
π−d/2e−dy/2,

where H(d, p)
.
=
∑

1≤i1<···<id≤p P(Bi1 · · ·Bid), Bid = {|yid | ≥
√
2 log p− log log p+ y}, Y = (y1, · · · , yp)⊤ ∼

N (0,R).

Lemma 10. Let u ∈ Rp be a random vector uniformly distributed on the unit sphere Sp−1. A ∈ Rp×p is a non-
random matrix. Then we have E(u⊤Au) = p−1 tr(A) and Var(u⊤Au) ≍ p−2∥A∥2F as p→∞.

Proof. Since E(uu⊤) = p−1Ip, then E(u⊤Au) = tr{AE(uu⊤)} = p−1 tr(A). Let A = (aij)
p
i,j=1, u =

(u1, . . . , up)
⊤,

E(u⊤Au)2 =E

 p∑
i=1

aiiu
2
i +

∑
1≤i ̸=j≤p

aijuiuj

2

=E


p∑
i=1

a2iiu
4
i +

∑
1≤i ̸=j≤p

(a2ij + aiiajj)u
2
iu

2
j


=

3

p(p+ 2)

p∑
i=1

a2ii +
1

p(p+ 2)

∑
1≤i ̸=j≤p

a2ij + aiiajj ,

where the last equality because that (u21, . . . , u
2
p)

⊤ follow a Dirichlet distribution Dp(1/2, . . . , 1/2)(Oja, 2010). As a
consequence, we have E(u4i ) = 3/{p(p+2)} and E(u2iu2j ) = 1/{p(p+2)} for any i ̸= j. Combining the two results
above and after some straightforward calculations, we obtain Var(u⊤Au) ≍ p−2∥A∥2F .

Lemma 11. Under Assumption 1, for i = 1, 2, we have

t̂r(Ξi)

tr(Ξi)
− 1 = Op(n

−1/2).

Proof. Recall that t̂r(Ξi) is defined as in Section A. Notice that, for i = 1, 2,

t̂r(Ξi) =
1

ni − 1

ni∑
j=1

X⊤
ijXij −

ni
ni − 1

X̄i
⊤
X̄i

=

∑ni

j=1 X
⊤
ijXij −

∑
j,kX

⊤
ijXik

ni(ni − 1)

=

∑
j ̸=k ̸=l−X⊤

ijXik +X⊤
ikXik

ni(ni − 1)(ni − 2)

=

∑
j ̸=k ̸=lX

⊤
ijXil −X⊤

ikXil −X⊤
ijXik +X⊤

ikXik

ni(ni − 1)(ni − 2)

=

∑
j ̸=k ̸=l(Xij −Xik)

⊤(Xil −Xik)

ni(ni − 1)(ni − 2)
,

which implies that our estimate of tr(Ξi) is the same as that of Shen & Feng (2025). Thus, we complete the proof
according to Lemma 8.4 of Shen & Feng (2025).
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We next restate Lemma 8.9 from Shen & Feng (2025).
Lemma 12. For positive matrix X, Y,

log |X| ≤ log |Y|+ tr{Y−1(X−Y)}.

E.2 PROOF OF MAIN LEMMAS

Proof of Lemma 1. As µ is a location parameter, we assume µ = 0 without loss of generality. Note that given Ω̂, the
estimator µ̂ satisfies

n∑
i=1

U{Ω̂1/2(Xi − µ̂)} = 0.

Therefore, the estimator µ̂ is defined as the minimizer of the following objective function:

L(θ) =

n∑
i=1

∥∥∥Ω̂1/2(Xi − θ)
∥∥∥ . (13)

Our goal is find bn,p such that ∥µ̂∥ = Op(bn,p). The existence of a b−1
n,p-consistent local minimizer is implied by the

fact that for an arbitrarily small ε > 0, there exist a sufficiently large constant C, which does no depend on n or p,
such that

lim inf
n

P
{

inf
u∈Rp,∥u∥=C

L(bn,pu) > L(0)

}
> 1− ε. (14)

Firstly, we prove Equation (14) holds when bn,p = p1/2n−1/2. Consider the expansion of ∥Ω̂1/2(Xi − bn,pu)∥:

∥Ω̂1/2(Xi − bn,pu)∥ = ∥Ω̂1/2Xi∥
(
1− 2bn,pr̂

−1
i u⊤Ω̂1/2Ûi + b2n,pr̂

−2
i u⊤Ω̂u

)1/2
.

Note that bn,pr̂−1
i u⊤Ω̂1/2Ûi = Op(n

−1/2) and b2n,pr̂
−2u⊤Ω̂u = Op(n

−1). These orders follow from the following
argument. Since we already know that r̂ki ≤ rki (1 +Hk) and Ûi ≤ Ui(1 +H−1) with Hk = Op{λ1−qn s0(p)} for any
integer k, thus,

bn,pr̂
−1
i u⊤Ω̂1/2Ûi ≤bn,p(1 +Hk)

2r−1
i u⊤Ω1/2Ui + bn,p(1 +Hk)

2r−1
i u⊤(Ω̂1/2 −Ω1/2)Ui.

For the first term, by independence between ri and Ui, we have E{(r−1
i u⊤Ω1/2Ui)

2} = E(r−2
i )E{(u⊤Ω1/2Ui)

2} =
ζ2p

−1 tr(Ω), which implies that r̂−1
i u⊤Ω̂1/2Ûi = Op(p

−1/2). Similarly, for the second term, applying Taylor expan-
sion and Lemma 4 yields:

E[{r−1
i u⊤(Ω̂1/2 −Ω1/2)Ui}2] ≲ p−2∥(Ω̂−Ω)2∥op ≤ p−2∥Ω̂−Ω∥2op ≲ p−2λ2−2q

n s20(p),

which implies that r−1
i u⊤(Ω̂1/2 −Ω1/2)Ui = Op{p−1λ1−qn s0(p)}. Hence

bn,pr̂
−1
i u⊤Ω̂1/2Ûi =Op{bn,pp−1/2 + bn,pp

−1λ1−qn s0(p)}
=Op(n

−1/2).

As the same way, we have b2n,pr̂
−2u⊤Ω̂u = Op(n

−1). Then we have

∥Ω̂1/2(Xi − bn,pu)∥ =∥Ω̂1/2Xi∥ − bn,pu⊤Ω̂1/2Ûi

+
1

2
b2n,pr̂

−1
i uΩ̂1/2

(
Ip − ÛiÛ

⊤
i

)
Ω̂1/2u+Op(p

1/2n−3/2).

So, it can be easily seen

p−1/2 {L(bn,pu)− L(0)}

=− n−1/2u⊤Ω̂1/2
n∑
i=1

Ûi

+ 2−1p1/2uΩ̂1/2

{
n−1

n∑
i=1

(
r̂−1
i Ip − r̂−1

i ÛiÛ
⊤
i

)}
Ω̂1/2u+Op(n

−1/2).

(15)
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Notice that E
(
∥n−1/2

∑n
i=1 Ûi∥2

)
= O(1) and Var

(
∥n−1/2

∑n
i=1 Ûi∥2

)
= O(1). Accordingly∣∣∣∣∣−n−1/2u⊤Ω̂1/2

n∑
i=1

Ûi

∣∣∣∣∣ ≤ ∥∥∥Ω̂1/2u
∥∥∥ ∥∥∥∥∥n−1/2

n∑
i=1

Ûi

∥∥∥∥∥ = Op(1).

Recall the definition Q̂ = n−1
∑n
i=1 r̂

−1
i ÛiÛ

⊤
i in Lemma 5. After some tedious calculation, we can obtain that

E{tr(Q̂2)} = O{p−2 + n−1p−1 + λ2−2q
n s20(p)p

−1}. Then E(u⊤Ω̂1/2Q̂Ω̂1/2u)2 ≤ E
{
(u⊤Ω̂u)2tr(Q̂2)

}
=

O{p−2+n−1p−1+λ2−2q
n s20(p)p

−1}, which leads to u⊤Ω̂1/2Q̂Ω̂1/2u = Op{p−1+n−1/2p−1/2+λ1−qn s0(p)p
−1/2}.

Thus we have

p1/2uΩ̂1/2

{
1

n

n∑
i=1

(
r̂−1
i Ip − r̂−1

i ÛiÛ
⊤
i

)}
Ω̂1/2u

=p1/2n−1
n∑
i=1

r̂−1
i uΩ̂u+ op(1),

where we use the fact that n−1
∑n
i=1 r̂

−1
i = ζ1 + Op{n−1/2p−1/2 + λ1−qn s0(p)p

−1/2}. By choosing a sufficient
large C, the second term in (15) dominates the first term uniformly in ∥u∥ = C. Hence, (15) holds and accordingly
µ̂ = Op(bn,p). The estimator µ̂ satisfies

∑n
i=1 U{Ω̂1/2(Xi−µ̂)} = 0, which is is equivalent to

n−1
n∑
i=1

(Ûi − r̂−1
i Ω̂1/2µ̂)(1− 2r̂−1

i Û⊤
i Ω̂1/2µ̂+ r̂−2

i µ̂⊤Ω̂µ̂)−1/2 = 0.

By the first-Taylor expansion, the above equation can be rewritten as:

n−1
n∑
i=1

(
Ûi − r̂−1

i Ω̂1/2µ̂
)(

1 + r̂−1
i Û⊤

i Ω̂1/2µ̂− 2−1r̂−2
i

∥∥∥Ω̂1/2µ̂
∥∥∥2 + δ1,i

)
= 0,

where δ1,i = Op
{
(r̂−1
i Û⊤

i Ω̂1/2µ̂− 2−1r̂−2
i ∥Ω̂1/2µ̂∥2)2

}
= Op(n

−1), which implies

1

n

n∑
i=1

(1− 2−1r̂−2
i µ̂⊤Ω̂µ̂+ δ1,i)Ûi +

1

n

n∑
i=1

r̂−1
i (Û⊤

i Ω̂1/2µ̂)Ûi

=
1

n

n∑
i=1

(1 + δ1,i + δ2,i)r̂
−1
i Ω̂1/2µ̂,

(16)

where δ2,i = Op(r̂
−1
i Û⊤

i Ω̂1/2µ̂−2−1r̂−2
i ∥Ω̂1/2µ̂∥2) = Op(δ

1/2
1,i ). By Assumption 1 and Markov inequality, we have

that: max r−2
i = Op(p

−1n1/2), max δ1,i = Op

(
∥Ω̂1/2µ̂∥2 max r̂−2

i

)
= Op(n

−1/2) and max δ2,i = Op(n
−1/4).

Considering the second term in Equation (16),

1

n

n∑
i=1

r̂−1
i (Û⊤

i Ω̂1/2µ̂)Ûi =
1

n

n∑
i=1

r̂−1
i (ÛiÛ

⊤
i Ω̂1/2)µ̂ = Q̂Ω̂1/2µ̂.

From Lemma 5 we acquire

|Q̂jl| ≲ p−3/2I(j = l) +Op

{
n−1/2p−3/2 + λ1−qn s0(p)p

−3/2
}
,

and this implies that,
∥Q̂Ω̂1/2µ̂∥∞
≤∥Q̂∥1∥Ω̂1/2µ̂∥∞

=Op

{
n−1/2p−1/2 + λ1−qn s0(p)p

−1/2
}
∥Ω̂1/2µ̂∥∞.

(17)

27



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455

According to Lemma 7, we obtain∥∥∥∥∥ζ−1
1 n−1

n∑
i=1

r̂−2
i ∥Ω̂

1/2µ̂∥2Ûi

∥∥∥∥∥
∞

≤ |1 +Hu| ·

∥∥∥∥∥ζ−1
1 n−1

n∑
i=1

r̂−2
i ∥Ω̂

1/2µ̂∥2Ui

∥∥∥∥∥
∞

=Op(n
−1)
[
1 +Op{λ1−qn s0(p)(log p)

1/2}
]
= Op(n

−1).

Using the fact that ζ−1
1 n−1

∑n
i=1 r

m−1
i = 1 +Op(n

−1/2) and Equation (11), we have

1

n
ζ−1
1

n∑
i=1

r̂−1
i =

1

n
ζ−1
1

n∑
i=1

r−1
i [1 +Op{λ1−qn s0(p)}]

=
{
1 +Op(n

−1/2)
} [

1 +Op{λ1−qn s0(p)}
]

=1 +Op{λ1−qn s0(p)}.
We final obtain: ∥∥∥Ω̂1/2µ̂

∥∥∥
∞

≲
∥∥∥∥∥ζ−1

1 n−1
n∑
i=1

Ûi

∥∥∥∥∥
∞

+ ζ−1
1

∥∥∥Q̂Ω̂1/2µ̂
∥∥∥
∞

≲ p−1
∥∥∥Ω̂1/2µ̂

∥∥∥
∞

+Op

{
n−1/2 log1/2(np)

}
+Op

{
n−1/2p−1 + λ1−qn s0(p)p

−1
}
∥Ω̂1/2µ̂∥∞.

Thus we conclude that: ∥∥∥Ω̂1/2µ̂
∥∥∥
∞

= Op{n−1/2 log1/2(np)},

as s0(p) ≍ p1−δ. In addition, by equation (17) we have∥∥∥ζ−1
1 Q̂Ω̂1/2µ̂

∥∥∥
∞

= Op

[
p1/2{n−1/2p−1/2 + λ1−qn s0(p)p

−1/2}n−1/2 log1/2(np)
]

= Op

{
n−1 log1/2(np) + n−1/2λ1−qn s0(p) log

1/2(np)
}
,

and

n−1
n∑
i=1

r̂−1
i (1 + δ1,i + δ2,i)

=ζ1

{
1 +Op

(
n−1/4

)} [
1 +Op{λ1−qn s0(p)}

]
=ζ1

[
1 +Op{n−1/4 + λ1−qn s0(p)}

]
.

Finally, we can write

n1/2Ω̂1/2(µ̂− µ) = n−1/2ζ−1
1

n∑
i=1

Ui + Cn,

where

Cn =ζ−1
1

{(
− 2−1n−1/2

n∑
i=1

r̂−2
i Ûi

)
µ̂Ω̂µ̂

}
+ ζ−1

1

(
n−1/2

n∑
i=1

δ1,iÛi

)
+ ζ−1

1 n1/2Q̂Ω̂1/2µ̂

+ n−1/2
n∑
i=1

(δ1,i + δ2,i)r̂
−1
i Ω̂1/2µ̂.

By previous discussion, we have

∥Cn∥∞ =Op
[
n−1/2 + n−1/2 + n−1 log1/2(np) + n−1/2λ1−qn s0(p) log

1/2(np) +
{
n−1/4

+ λ1−qn s0(p)
}
log1/2(np)

]
=Op

{
n−1/4 log1/2(np) + λ1−qn s0(p) log

1/2(np)
}
.

Then we complete the proof.
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Proof of Lemma 2. Let Ln,p = n−1/4 log1/2(np) + λ1−qn s0(p) log
1/2(np), according to Lemma 1, for any sequence

ηn →∞ and any t ∈ Rp,

P{n1/2Ω̂1/2(µ̂− µ) ≤ t} = P
(
n−1/2ζ−1

1

n∑
i=1

Ui + Cn ≤ t
)

≤ P
(
n−1/2ζ−1

1

n∑
i=1

Ui ≤ t+ ηnLn,p
)
+ P(∥Cn∥∞ > ηnLn,p).

According to Lemma A4. in Cheng et al. (2023) and E{(ζ−1
1 Ui,j)

4} ≲ 3 and E{(ζ−1
1 Ui,j)

2} ≳ B̄−2 uniformly for
all i = 1, 2, · · · , n, j = 1, 2, · · · , p, the Gaussian approximation for independent partial sums in Koike (2021) yields:

P
(
n1/2ζ−1

1

n∑
i=1

Ui ≤ t+ ηnLn,p

)
≤ P(Z ≤ t+ ηnLn,p) +O[{n−1 log5(np)}1/6]

≤ P(Z ≤ t) +O{ηnLn,p log1/2(p)}+O[{n−1 log5(np)}1/6],

where Z ∼ N
(
0, p−1ζ−2

1 Ip
)
, and the second inequality follows from Nazarov’s inequality (Lemma 8). Thus,

P{n1/2Ω̂1/2(µ̂− µ) ≤ t} ≤P(Z ≤ t) +O{ηnLn,p log1/2(p)}+O({n−1 log5(np)}1/6)
+ P(|Cn|∞ > ηnln,p).

On the other hand, we have

P{n1/2Ω̂1/2(µ̂− µ) ≤ t} ≥ P(Z ≤ t)−O{ηnLn,p log1/2(p)} −O({n−1 log5(np)}1/6)− P(∥Cn∥∞ > ηnln,p),

where P(∥Cn∥∞ > ηnln,p)→ 0 as n→∞ by Lemma 1. Then we have that, if log p = o(n1/5) ,

sup
t∈Rp

|P{n1/2Ω̂1/2(µ̂− µ) ≤ t} − P(Z ≤ t)| → 0.

Furthermore, by Corollary 3.1 in Chernozhukov et al. (2017), we have

ρn(Asi) = sup
A∈Asi

|P{n1/2Ω̂1/2(µ̂− µ) ∈ A} − P(Z ∈ A)| → 0.

The proof is thus complete.

E.3 PROOF OF MAIN THEOREMS

Proof of Theorem 1. Recall that Z ∼ N (0, pζ21Ip). Under the null hypothesis, Theorem 1 in Cai et al. (2013) estab-
lishes that as p→∞, we have

P
(
pζ21 max

1≤i≤p
Z2
i − 2 log p+ log log p ≤ x

)
→ F (x) = exp

(
− 1√

π
e−x/2

)
,

for any x ∈ R. Thus, by applying the triangle inequality, using Lemma 6 and Corollary 1, we obtain that under the
null hypothesis,∣∣∣∣P(n ∥∥∥Ω̂1/2µ̂

∥∥∥2
∞
ζ̂21p− 2 log p+ log log p ≤ x

)
− F (x)

∣∣∣∣
≤
∣∣∣∣P(n ∥∥∥Ω̂1/2µ̂

∥∥∥2
∞
ζ21p− 2 log p+ log log p ≤ x

)
− F (x)

∣∣∣∣+ o(1)

≤
∣∣∣∣P(n ∥∥∥Ω̂1/2µ̂

∥∥∥2
∞
ζ21p− 2 log p+ log log p ≤ x

)
− P

(
pζ21 max

1≤i≤p
Z2
i − 2 log p+ log log p ≤ x

)∣∣∣∣
+

∣∣∣∣P(pζ21 max
1≤i≤p

Z2
i − 2 log p+ log log p ≤ x

)
− F (x)

∣∣∣∣+ o(1)→ 0,

for any x ∈ R.

29



1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559

Proof of Theorem 2. Under alternative hypothesis for small α, we have

P
(
TMAX > q1−α

∣∣∣H1

)
= P

(
n∥Ω̂1/2µ̂∥2∞ζ̂21p− 2 log p+ log log p > q1−α

∣∣∣H1

)
= P

(
n1/2∥Ω̂1/2µ̂∥∞ζ̂1p1/2 > (2 log p+ log log p+ q1−α)

1/2
∣∣∣H1

)
≥ P

(
n1/2∥Ω̂1/2µ∥∞ζ̂1p1/2 − n1/2∥Ω̂1/2(µ̂− µ)∥∞ζ̂1p1/2 > (2 log p+ log log p+ q1−α)

1/2
∣∣∣H1

)
= P

(
n∥Ω̂1/2(µ̂− µ)∥2∞ζ̂21p− 2 log p+ log log p

≤ n∥Ω̂1/2µ∥2∞ζ̂21p− 2(2 log p+ log log p+ q1−α)
1/2n1/2∥Ω̂1/2µ∥∞ζ̂1p1/2 + q1−α

∣∣∣H1

)
.

By Lemma 4, Lemma 6 and Theorem 1, we have

P
(
TMAX > q1−α

∣∣∣H1

)
≤ P

(
n∥Ω̂1/2(µ̂− µ)∥2∞ζ̂21p− 2 log p+ log log p

≥ n∥Ω̂1/2µ∥2∞ζ̂21p− 2(2 log p+ log log p+ q1−α)
1/2n1/2∥Ω̂1/2µ∥∞ζ̂1p1/2 + q1−α

∣∣∣H1

)
= P

(
n∥Ω̂1/2(µ̂− µ)∥2∞ζ21p− 2 log p+ log log p

≤ n∥Ω1/2µ∥2∞ζ21p− 2(2 log p+ log log p+ q1−α)
1/2n1/2∥Ω1/2µ∥∞ζ1p1/2 + q1−α + o(1)

∣∣∣H1

)
= F

(
n∥Ω1/2µ∥2∞ζ21p− 2(2 log p+ log log p+ q1−α)

1/2n1/2∥Ω1/2µ∥∞ζ1p1/2 + q1−α + o(1)
)
+ o(1)→ 1,

when ∥Ω1/2µ∥∞ ≥ C̃n−1/2{log p− 2 log log(1− α)−1}1/2.

Proof of Theorem 3. By Lemma 2, we have the Gaussian approximation

sup
A∈Are

∣∣∣P(n1/2p1/2ζ1Ω̂1/2µ̂ ∈ A
)
− P

(
G+ n1/2p1/2ζ1Ω̂

1/2µ ∈ A
)∣∣∣→ 0,

where G := p1/2ζ1Z ∼ N (0, Ip). Then

sup
t∈R

∣∣∣∣P(∥∥∥n1/2p1/2ζ1Ω̂1/2µ̂
∥∥∥2 ≤ t)− P

(∥∥∥G+ n1/2p1/2ζ1Ω̂
1/2µ

∥∥∥2 ≤ t)∣∣∣∣
=sup
t∈R

∣∣∣∣P(∥∥∥n1/2p1/2ζ1Ω̂1/2µ̂
∥∥∥2 ≤ t)− P

{
χ2

(
p,
∥∥∥n1/2p1/2ζ1Ω̂1/2µ

∥∥∥2) ≤ t}∣∣∣∣
→ sup

t∈R

∣∣∣∣P(∥∥∥n1/2p1/2ζ1Ω̂1/2µ̂
∥∥∥2 ≤ t)− P

{
χ2

(
p,
∥∥∥n1/2p1/2ζ1Ω1/2µ

∥∥∥2) ≤ t}∣∣∣∣
=sup
t∈R

∣∣∣∣P

∥∥∥n1/2p1/2ζ1Ω̂1/2µ̂

∥∥∥2 − p− ∥∥n1/2p1/2ζ1Ω1/2µ
∥∥2√

2p+ 4
∥∥n1/2p1/2ζ1Ω1/2µ

∥∥2 ≤ t



− P


χ2

(
p,
∥∥∥n1/2p1/2ζ1Ω̂1/2µ

∥∥∥2)− p− ∥∥n1/2p1/2ζ1Ω1/2µ
∥∥2√

2p+ 4
∥∥n1/2p1/2ζ1Ω1/2µ

∥∥2 ≤ t


∣∣∣∣

=sup
t∈R

∣∣∣∣∣∣∣P

∥∥∥n1/2p1/2ζ1Ω̂1/2µ̂

∥∥∥2 − p− ∥∥n1/2p1/2ζ1Ω1/2µ
∥∥2√

2p+ 4
∥∥n1/2p1/2ζ1Ω1/2µ

∥∥2 ≤ t

− Φ(t)

∣∣∣∣∣∣∣→ 0,
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as (n, p) → ∞. Therefore, under the null hypothesis, we have TSUM
d−→ N(0, 1); Under the alternative hypothesis,

assuming
∥∥n1/2p1/2ζ1Ω1/2µ

∥∥2 = o(p), we have

TSUM − 2−1/2np1/2ζ21µ
⊤Ωµ

d−→ N (0, 1).

Then we complete the proof.

Proof of Theorem 4. Recall that Corollary 1, as n→∞, we have

ρ̃n,comb = sup
t1,t2∈R

∣∣∣∣P(n1/2∥Ω̂1/2(µ̂− µ)∥∞ ⩽ t1, n
1/2∥Ω̂1/2(µ̂− µ)∥ ⩽ t2

)
−P (∥Z∥∞ ⩽ t1, ∥Z∥ ⩽ t2)

∣∣∣∣→ 0.

By ∥µ∥∞ = o(n−1/2), ∥µ∥ = o(p1/4n−1/2), Assumption 3 and Lemma 4 we have

sup
t1,t2∈R

∣∣∣P(n1/2p1/2ζ1∥Ω̂1/2µ̂∥∞ + o(1) ⩽ t1, n
1/2p1/2ζ1∥Ω̂1/2µ̂∥+ o(p1/2) ⩽ t2

)
−P
(
p1/2ζ1∥Z∥∞ ⩽ t1, p

1/2ζ1∥Z∥ ⩽ t2

) ∣∣∣→ 0.

Hence, applying the continuous mapping theorem, we obtain that

sup
t1,t2∈R

∣∣∣∣P (TMAX + o(1) ⩽ t1, TSUM + o(1) ⩽ t2)

− P
(
pζ21∥Z∥2∞ − 2 log p+ log log p ⩽ t1, (2p)

−1/2(pζ21∥Z∥2 − p) ⩽ t2

) ∣∣∣∣→ 0.

By Theorem 3 in Feng et al. (2024), we have p1/2ζ1∥Z∥2∞ − 2 log p + log log p and (2p)−1/2(pζ21∥Z∥2 − p) are
asymptotic independent as p→∞, so we have TMAX and TSUM are asymptotic independent as n, p→∞.

Proof of Theorem 5. Set Q(x) = ∆2
d(x)− cςp and Q̂(x) = ∆̂2

d(x)− cς̂p. Thus we have

RHRQDA −RQDA

=

∫
Q̂<0

1

2
f1(x)dx+

∫
Q̂≥0

1

2
f2(x)dx−

(∫
Q<0

1

2
f1(x)dx+

∫
Q≥0

1

2
f2(x)dx

)
=

∫
Q(x)≥0

1

2
{f1(x)− f2(x)} dx+

∫
Q̂(x)<0

1

2
{f1(x)− f2(x)} dx.

Notice that
∫

1
2{f1(x)− f2(x)}dx = 0, we have

|RHRQDA −RQDA| (18)

=
∣∣∣ ∫
Q(x)≥0,Q̂(x)<0

1

2
{f1(x)− f2(x)} dx

∣∣∣
≤1

2
Ex∼f11{0 ≤ Q(x) < Q(x)− Q̂(x)}+ 1

2
Ex∼f21{0 ≤ Q(x) < Q(x)− Q̂(x)}

=
1

2
Px∼f1

{
0 ≤ 1

p
Q(x) <

1

p
M(x)

}
+

1

2
Px∼f2

{
0 ≤ 1

p
Q(x) <

1

p
M(x)

}
, (19)

where M(x) := Q(x)− Q̂(x). By calculations, we can get

M(x) =(x− µ1)
⊤{Ξ−1

2 −Ξ−1
1 − (Ω̃2 − Ω̃1)}(x− µ1)− 2(µ1 − µ̂)⊤(Ω̃2 − Ω̃1)(x− µ1)

+ 2(δ⊤Ξ−1
2 − δ̂⊤Ω̃2)(x− µ1) + (µ1 − µ̂1)

⊤(Ω̃2 − Ω̃1)(µ1 − µ̂1)− 2δ̂⊤Ω̃2(µ1 − µ̂1)

+ δ⊤Ξ−1
2 δ − δ̂⊤Ω̃2δ̂ − c(ςp − ς̂p).
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Next we calculate the variance of p−1Q(x)

Varx∼f1

{
1

p
Q(x)

}
=Varx∼f1

{
1

p
(x− µ1)

⊤(Ξ−1
2 −Ξ−1

1 )(x− µ1)−
1

p
2δ⊤Ξ−1

2 (x− µ1)

}
=Ex∼f1

[{
1

p
(x− µ1)

⊤(Ξ−1
2 −Ξ−1

1 )(x− µ1)

}2

+

{
1

p
2δ⊤Ξ−1

2 (x− µ1)

}2
]

−
[
Ex∼f1

{
1

p
(x− µ1)

⊤(Ξ−1
2 −Ξ−1

1 )(x− µ1)

}]2
=Varx∼f1

{
1

p
(x− µ1)

⊤(Ξ−1
2 −Ξ−1

1 )(x− µ1)

}
+ Ex∼f1

{
1

p
2δ⊤Ξ−1

2 (x− µ1)

}2

=Var

{
r2

p
U⊤Ξ

1/2
1 (Ξ−1

2 −Ξ−1
1 )Ξ

1/2
1 U

}
+Var

{
2r

p
δ⊤Ξ−1

2 Ξ
1/2
1 U

}
=E

(
r4

p2

)
Var

{
U⊤Ξ

1/2
1 (Ξ−1

2 −Ξ−1
1 )Ξ

1/2
1 U

}
+ E

(
4r2

p

)
Var

(
1
√
p
δ⊤Ξ−1

2 Ξ
1/2
1 U

)
+Var

(
r2

p

)[
E
{
U⊤Ξ

1/2
1 (Ξ−1

2 −Ξ−1
1 )Ξ

1/2
1 U

}]2
+Var

(
2r
√
p

){
E
(

1
√
p
δ⊤Ξ−1

2 Ξ
1/2
1 U

)}2

.

By Assumptions 1, 6 and Lemma 10 we have

Varx∼f1

{
1

p
Q(x)

}
≍ 1

p2

{
∥Ξ1/2

1 (Ξ−1
2 −Ξ−1

1 )Ξ
1/2
1 ∥2F + ∥Ξ−1

2 Ξ
1/2
1 δ∥2

}
.

By Assumptions 2 and 3 we have ∥Ξ1/2
1 (Ξ−1

2 − Ξ−1
1 )Ξ

1/2
1 ∥F ≍ ∥Ξ

1/2
2 (Ξ−1

1 − Ξ−1
2 )Ξ

1/2
2 ∥F ≍ ∥Σ

1/2
1 (Ω2 −

Ω1)Σ
1/2
1 ∥F ≍ ∥Σ

1/2
2 (Ω1 −Ω2)Σ

1/2
2 ∥F and ∥Ξ−1

2 Ξ
1/2
1 δ∥ ≍

√
p/t0(p)∥δ∥. Thus, we have Varx∼f1{p−1Q(x)} ≍

p−2σ2
Q(p) ≍ 1. Similarly, Varx∼f2p

−1Q(x)} ≍ p−2σ2
Q(p) ≍ 1.

Next, we bound the discrepancy between Ω̃i and Ξ−1
i by Lemma 4 and 11.

∥Ω̃i −Ξ−1
i ∥∞ =

∥∥∥∥∥ p

t̂r(Ξi)
Ω̂i −

p

tr(Ξi)
Ωi

∥∥∥∥∥
∞

≤

(
p

t̂r(Ξi)

∣∣∣∣∣ t̂r(Ξi)tr(Ξi)
− 1

∣∣∣∣∣
)
∥Ω̂i∥∞ + ∥Ω̂i −Ωi∥∞

=Op(λn + n−1/2) = Op(λn).

Similarly, we have ∥Ω̃i −Ξ−1
i ∥op ≤ ∥Ω̃i −Ξ−1

i ∥L1
= Op{λ1−qn s0(p)}. And p−1∥Ω̃i −Ξ−1

i ∥2F ≤ ∥Ω̃i −Ξ−1
i ∥L1

,
∥Ω̃i −Ξ−1

i ∥∞ = Op{λ2−qn s0(p)}. By the proof of Lemma 1 we have ∥µ− µ̂∥ = Op(p
1/2n−1/2) and ∥µ− µ̂∥∞ =

Op{n−1/2 log1/2(np)}. Then we bound the p−1M(x) under x ∼ f1.

1

p
(x− µ1)

⊤{Ξ−1
2 −Ξ−1

1 − (Ω̃2 − Ω̃1)
}
(x− µ1) =

r2

p
U⊤Σ

1/2
1

{
Ξ−1

2 −Ξ−1
1 − (Ω̃2 − Ω̃1)

}
Σ

1/2
1 U

≤r
2

p
∥Σ1/2

1 (Ξ−1
2 −Ξ−1

1 − (Ω̃2 − Ω̃1))Σ
1/2
1 ∥op

=Op{λ1−qn s0(p)},

1

p
(µ1 − µ̂)⊤(Ω̃2 − Ω̃1)(x− µ1) ≤

1
√
p
∥µ1 − µ̂1∥

r
√
p
∥(Ω̃2 − Ω̃1)Σ

1/2
1 U∥

=Op(n
−1/2),
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1

p
(δ⊤Ξ−1

2 − δ̂⊤Ω̃2)(x− µ1) ≤
1

p
(∥δΞ−1

2 − δΩ̃2∥+ ∥δΩ̃2 − δ̂Ω̃2∥)∥x− µ1∥

≤1

p
(∥δ∥∥Ξ−1

2 − Ω̃2∥op + ∥δ − δ̂∥∥Ω̃∥op)∥x− µ1∥

=Op(λ
1−q
n s0(p) + n−1/2) = Op{λ1−qn s0(p)},

1

p
(µ1 − µ̂1)

⊤(Ω̃2 − Ω̃1)(µ1 − µ̂1) ≤
1

p
∥µ1 − µ̂1∥2∥Ω̃2 − Ω̃1∥op = Op(n

−1),

1

p
δ̂⊤Ω̃2(µ1 − µ̂1) ≤

1

p
∥δ̂∥∥Ω̃2∥op∥µ1 − µ̂1∥ = Op(n

−1/2),

1

p
(δ⊤Ξ−1

2 δ − δ̂⊤Ω̃2δ̂) ≤
1

p
(δ⊤Ξ−1

2 δ − δ⊤Ω̃2δ + δ⊤Ω̃2δ − δ⊤Ω̃2δ̂ + δ⊤Ω̃2δ̂ − δ̂⊤Ω̃2δ̂)

=Op{λ1−qn s0(p) + n−1/2} = Op{λ1−qn s0(p)}.

Denote DΩ = Ξ−1
2 −Ξ−1

1 , D̃Ω = Ω̃2 − Ω̃1,

(ς̂p − ςp) = log |D̃ΩΩ̃
−1
1 + Ip| − log |DΩΞ1 + Ip|

≤ tr
{
(DΩΞ1 + Ip)

−1(D̃ΩΩ̃
−1
1 −DΩΞ1)

}
= tr

{
(−DΩΞ2 + Ip)(D̃ΩΩ̃

−1
1 −DΩΞ1)

}
= tr

{
(−DΩΞ2)(D̃ΩΩ̃

−1
1 −DΩΞ1)

}
+ tr(D̃ΩΩ̃

−1
1 −DΩΞ1)

≤ ∥DΩΞ2∥F · ∥D̃ΩΩ̃
−1
1 −DΩΞ1∥F + tr(D̃ΩΩ̃

−1
1 −DΩΞ1)

≲ ∥DΩ∥F ∥Ξ2∥op · ∥D̃ΩΩ̃
−1
1 −DΩΞ1∥F ,

where ∥∥∥DΩΞ1 − D̃ΩΩ̃
−1
1

∥∥∥
F

≤
∥∥∥DΩΞ1 − D̃ΩΞ1

∥∥∥
F
+
∥∥∥D̃Ω(Ξ1 − Ω̃−1

1 )
∥∥∥
F

≤ ∥DΩ − D̃Ω∥F ∥Ξ1∥op + ∥D̃Ω∥F ∥Ξ1 − Ω̃−1
1 ∥op.

Then, we can find p−1(ς̂d − ςd) = Op{λ1−q/2n s0(p)
1/2 + λ1−qn s0(p)}. Thus, under x ∼ f1 we have p−1M(x) =

Op{λ1−q/2n s0(p)
1/2 + λ1−qn s0(p)}. Similarly, we can get the same solution under x ∼ f2. From the previous

discussion, we know that p−1Q(x) is non-degenerate. Recall (18) we have

|RHRQDA −RQDA| ≤
1

2
Px∼f1

{
0 ≤ 1

p
Q(x) <

1

p
M(x)

}
+

1

2
Px∼f2

{
0 ≤ 1

p
Q(x) <

1

p
M(x)

}
= Op{λ1−q/2n s

1/2
0 (p) + λ1−qn s0(p)}.

(20)

Proof of Theorem 6. From the proof of Theorem 7 in Liu et al. (2024) we can find that

TSUM2 =
2

n(n− 1)

∑∑
i<j

Ũ⊤
i Ũj + ζ21µ

⊤D−1µ+ op(σn),

with σ2
n = 2/{n(n− 1)p}+ o(n−3), and

n1/2D−1/2µ̂ = n−1/2ζ−1
1

n∑
i=1

Ũi + n1/2D−1/2µ+ Cn,
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where Ũi := U(D−1/2Σ1/2Ui) = (R1/2Ui)/∥R1/2Ui∥, R = D−1/2ΣD−1/2 Thus, we have

TSUM2

σn
=

p

n
√
2 tr(R2)

(∥∥∥∥ n∑
i=1

Ũi

∥∥∥∥2 − n
)

+O(1) =
∥p1/2n−1/2

∑n
i=1 Ũi∥2 − p√

2tr(R2)
+O(1),

and

TMAX2 − 2 log p+ log log p =

∥∥∥∥√ p

n

n∑
i=1

Ũi

∥∥∥∥2
∞
− 2 log p+ log log p.

Notice that

p1/2n−1/2
n∑
i=1

Ũi = p1/2n−1/2
n∑
i=1

R1/2Ui + p1/2n−1/2
n∑
i=1

R1/2Ui(1/∥R1/2Ui∥ − 1).

Denote vi = 1/∥R1/2Ui∥ − 1, Var(vi) = σ2
v . We have∥∥∥∥√ p

n

n∑
i=1

viR
1/2Ui

∥∥∥∥
∞

=

√
p

n
max
i≤j≤p

∣∣ n∑
i=1

viUij
∣∣ ≤ 1√

n

n∑
i=1

∣∣vi∣∣ max
i≤j≤p

√
p
∣∣Uij∣∣ = Op(σv log p).

For a random variable X , denote X⋆ = (X −EX)/
√

Var(X). Thus the original proposition is equivalent to proving
that ∥

∑p
i=1 Ui∥⋆∞ is asymptotically independent with ∥R1/2

∑p
i=1 Ui∥⋆ and ∥

∑p
i=1 Ui∥⋆ is asymptotically indepen-

dent with ∥R1/2
∑p
i=1 Ui∥⋆∞. Then for any sequence ηn,p →∞ and any t ∈ Rp

P

(√
p

n

n∑
i=1

Ũi ≤ t

)
=P

(√
p

n

n∑
i=1

R1/2U i +

√
p

n

n∑
i=1

viR
1/2U i ≤ t

)

≤P

(√
p

n

n∑
i=1

R1/2U i ≤ t+ ηn,pσv log p

)

+ P

(∥∥∥∥√ p

n

n∑
i=1

viR
1/2U i

∥∥∥∥
∞
> ηn,pσv log p

)

≤P

(√
p

n

n∑
i=1

R1/2U i ≤ t

)
+ o(1).

Similarly, we have P
(√

p
n

∑n
i=1 Ũi ≤ t

)
≥ P

(√
p
n

∑n
i=1 R

1/2U i ≤ t
)
+ o(1). We have

sup
t∈Rp

∣∣∣∣∣P
(√

p

n

n∑
i=1

Ũi ≤ t

)
− P

(√
p

n

n∑
i=1

R1/2U i ≤ t

)∣∣∣∣∣→ 0.

Further,

sup
A∈Asi

∣∣∣∣∣P
(√

p

n

n∑
i=1

Ũi ∈ A

)
− P

(√
p

n

n∑
i=1

R1/2U i ∈ A

)∣∣∣∣∣→ 0.

From the proof of Lemma 2 we have

sup
A∈Asi

∣∣∣∣∣P
(√

p

n

n∑
i=1

U i ∈ A

)
− P (Z ∈ A)

∣∣∣∣∣→ 0,

where Z ∼ N(0, Ip). Thus

sup
A1,A2∈Asi

∣∣∣∣∣P
(√

p

n

n∑
i=1

R1/2U i ∈ A1,

√
p

n

n∑
i=1

U i ∈ A2

)
− P

(
R1/2Z ∈ A1,Z ∈ A2

)∣∣∣∣∣→ 0,

Thus the original proposition is equivalent to proving that ∥Z∥⋆∞ is asymptotically independent with ∥R1/2Z∥⋆ and
∥R1/2Z∥⋆∞ is asymptotically independent with ∥Z∥⋆. From Theorem 2.2 in Chen et al. (2024) we have ∥Z∥⋆∞ is
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asymptotically independent with ∥R1/2Z∥⋆. Consider that R1/2Z ∼ N(0,R). Next we prove ∥Y ∥⋆∞ is asymptoti-
cally independent with ∥R−1/2Y ∥⋆ where Y = R1/2Z ∼ N(0,R).

Define Y = (Y ⊤
1 ,Y ⊤

2 )⊤ ∈ Rp where Y1 = (Y1, . . . , Yd)
⊤ and Y2 = (Yd+1, . . . , Yp)

⊤. And

R =
(
R1 R12
R21 R2

)
, R−1 := P =

(
P1 P12
P21 P2

)
.

K :=
(
K1 K12
K21 K2

)
=

(
R

1/2
1 P1R

1/2
1 R

1/2
1 P12R

1/2
2

R
1/2
2 P21R

1/2
1 R

1/2
2 P2R

1/2
2

)
.

So,
Y ⊤PY = Y ⊤

1 P1Y1 + 2Y ⊤
1 P12Y2 + Y ⊤

2 P2Y2.

For ϵ > 0, set zi are i.i.d. Gaussian random variables. Define z1 = (z1, · · · , zd)⊤ ∈ Rd, z1 = (zd+1, · · · , zp)⊤ ∈
Rp−d. Then there exist η > 0 and K > 0 such that E{exp(ηz2i )} ≤ K. According to Assumptions of Theorem 7 in
Liu et al. (2024), we can get λmax(K1) ≤ λmax(K) < c1 for a constant c1 > 0.

P(Y ⊤
1 P1Y1 >

√
2pϵ) ≤ P(c1z⊤

1 z1 >
√

2pϵ)

= P
(
η

d∑
i=1

z2i >
√

2pϵc−1
1 ηϵ

)
≤ exp(−

√
2pϵc−1

1 ηϵ)E(eη
∑d

i=1 z
2
i )

= exp(−
√
2pϵc−1

1 ηϵ){E(eηz
2
i )}d

≤ Kd exp(−
√
2pϵc−1

1 ηϵ).

Define K = O⊤ΛO where O = (qij)1≤i,j≤p is an orthogonal matrix and Λ = diag{λ1, . . . , λp}, λi, i = 1, . . . , p are
the eigenvalues of K. Note that

∑
1≤j≤p k

2
ij is the i-th diagonal element of K2 = O⊤Λ2O. We have

∑
1≤j≤p k

2
ij =∑p

l=1 q
2
liλ

2
l ≤ c21. Next, define θ =

√
(2η)/(dc21). We have

P(Y ⊤
1 P12Y2 ≥

√
2pϵ) ≤ exp(−

√
2pθϵ)E(exp(θz⊤

1 K12z2)

= exp(−
√
2pθϵ)E(eθ

∑d
i=1

∑p
j=d+1 kijzizj )

= exp(−
√

2pθϵ)E{E(eθ
∑p

j=d+1(
∑d

i=1 kijzi)zj |z1)}

= exp(−
√

2pθϵ)E

 p∏
j=d+1

E{e(θ
∑d

i=1 kijzi)zj |z1}


≤ exp(−

√
2pθϵ)E

 p∏
j=d+1

exp

θ22
(

d∑
i=1

kijzi

)2



= exp(−
√

2pθϵ)E

exp
θ22

p∑
j=d+1

(
d∑
i=1

kijzi

)2



≤ exp(−
√
2pθϵ)E

exp

dθ2
2

p∑
j=d+1

d∑
i=1

k2ijz
2
i


≤ exp(−

√
2pθϵ)E

{
exp

(
dc21θ

2

2

d∑
i=1

z2i

)}

= exp(−
√

2pθϵ)E

{
exp

(
η

d∑
i=1

z2i

)}
≤ Kd exp(−

√
2pθϵ).
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So

P(Y ⊤
1 P12Y2 ≥

√
2pϵ) ≤ Kd exp

(
−

√
4η

dc41
ϵp1/2

)
.

Similarly, we also can prove that

P
{
(−Y1)

⊤P12Y2 ≥
√
2pϵ
}
≤ Kd exp

(
−

√
4η

dc41
ϵp1/2

)
.

Let Θp = Y ⊤
1 P1Y1 + 2Y ⊤

1 P12Y2.

P(|Θp| >
√
2pϵ) ≤P(Y ⊤

1 P1Y1 >
√

2pϵ/2) + P(|Y ⊤
1 P12Y2| >

√
2pϵ/4)

≤P(Y ⊤
1 P1Y1 >

√
2pϵ/2) + P(Y ⊤

1 P12Y2 >
√
2pϵ/8)

+ P(−Y ⊤
1 P12Y2 >

√
2pϵ/8).

Denote Ap(x) =
{

Y R−1Y −p√
2p

}
≤ x, Bi =

{
|Y1| ≥

√
2 log p− log log p

}
, so there exist a constant cϵ > 0

P(|Θp| >
√
2pϵ) ≤ Kd exp(−cϵp1/2),

P(Ap(x)B1 · · ·Bd)

= P
(
Y ⊤
2 P2Y2 − p+Θp√

2p
≤ x,B1 · · ·Bd

)
≤ P

(
Y ⊤
2 P2Y2 − p+Θp√

2p
≤ x, |Θp| ≤

√
2pϵ,B1 · · ·Bd

)
+ P(|Θp| >

√
2pϵ)

≤ P
(
Y ⊤
2 P2Y2 − p√

2p
≤ x+ ϵ, B1 · · ·Bd

)
+Kd exp(−cϵp1/2)

= P
(
Y ⊤
2 P2Y2 − p√

2p
≤ x+ ϵ

)
P (B1 · · ·Bd) +Kd exp(−cϵp1/2)

≤
{
P
(
Y ⊤
2 P2Y2 − p√

2p
≤ x+ ϵ, |Θp| ≤

√
2pϵ

)
+ P(|Θp| >

√
2pϵ)

}
P (B1 · · ·Bd)

+Kd exp(−cϵp1/2)

≤ P
(
Y ⊤
2 P2Y2 − p+Θp√

2p
≤ x+ 2ϵ

)
P(B1 · · ·Bd) + 2Kd exp(−cϵp1/2)

= P{Ap(x+ 2ϵ)}P(B1 · · ·Bd) + 2Kd exp(−cϵp1/2).
Similarly, we can prove that

P(Ap(x)B1 · · ·Bd) ≥ P{Ap(x− 2ϵ)}P(B1 · · ·Bd)− 2Kd exp(−cϵp1/2).

So, we have
|P(Ap(x)B1 · · ·Bd)− P{Ap(x)} · P(B1 · · ·Bd)| ≤ ∆p,ϵ · P(B1 · · ·Bd) + 2Kd exp(−cϵp1/2),

where
∆p,ϵ = |P{Ap(x)} − P(Ap(x+ 2ϵ))|+ |P{Ap(x)} − P{Ap(x− 2ϵ)}|

= P{Ap(x+ 2ϵ)} − P{Ap(x− 2ϵ)}.
Obviously, the equation discussed above holds for all i1, . . . , id. Thus,∑

1≤i1<···<id≤p

|P(Ap(x)Bi1 · · ·Bid)− P{Ap(x)} · P(Bi1 · · ·Bid)|

≤
∑

1≤i1<···<id≤p

{∆p,ϵ · P(Bi1 · · ·Bid) + 2Kd exp(−cϵp1/2)}

≤ ∆p,ϵ ·H(d, p) +
(
p
d

)
· 2Kd exp(−cϵp1/2).
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Because P{Ap(x)} → Φ(x) as p → ∞. So ∆p,ϵ → Φ(x + 2ϵ) − Φ(x − 2ϵ). By letting ϵ → 0, we have ∆p,ϵ → 0.
By Lemma 9 as p→∞ we have∑

1≤i1<···<id≤p

|P(Ap(x)Bi1 · · ·Bid)− P{Ap(x)} · P(Bi1 · · ·Bid)| → 0.

Then, repeat the procedure in proof of Theorem 2.2 in Chen et al. (2024) we have

lim sup
p→∞

P
(
∥R−1/2Y ∥2∗ ≤ x, ∥Y ∥∗2∞ ≤ y

)
= lim sup

p→∞
P
(
Y ⊤R−1Y − p√

2p
≤ x, max

1≤i≤p
|Yi| > lp

)
≤ Φ(x) · {1− F (y)}+ lim

p→∞
H(p, 2k + 1),

lim inf
p→∞

P
(
∥R−1/2Y ∥2∗ ≤ x, ∥Y ∥∗2∞ ≤ y

)
= lim inf

p→∞
P
(
Y ⊤R−1Y − p√

2p
≤ x, max

1≤i≤p
|Yi| > lp

)
≤ Φ(x) · {1− F (y)} − lim

p→∞
H(p, 2k + 1).

Then we can get ∥Y ∥⋆∞ is asymptotically independent with ∥R−1/2Y ∥⋆ by sending p → ∞ and then sending k →
∞.

37


	Introduction
	High-dimensional HR estimator
	High-dimensional one-sample location problem
	Simulation
	Conclusion
	Quadratic discriminant analysis
	Method
	Simulation
	Real data application

	Performance of the Test Under -Contamination
	Additional methods for one-sample location test problem
	Insensitivity of Parameters to the Algorithm
	Proofs of theoretical results
	The lemmas to be used
	Proof of main lemmas
	Proof of main theorems


