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ABSTRACT

Analog dynamical accelerators (DXs) are a growing sub-field in computer ar-
chitecture research, offering order-of-magnitude gains in power efficiency and
latency over traditional digital methods in several machine learning, optimiza-
tion, and sampling tasks. However, limited-capacity accelerators require hybrid
analog/digital algorithms to solve real-world problems, commonly using large-
neighborhood local search (LNLS) frameworks. Unlike fully digital algorithms,
hybrid LNLS has no non-asymptotic convergence guarantees and no principled
hyperparameter selection schemes, particularly limiting cross-device training and
inference.
In this work, we provide non-asymptotic convergence guarantees for hybrid LNLS
by reducing to block Langevin Diffusion (BLD) algorithms. Adapting tools from
classical sampling theory, we prove exponential KL-divergence convergence for
randomized and cyclic block selection strategies using ideal DXs. With finite
device variation, we provide explicit bounds on the 2-Wasserstein bias in terms
of step duration, noise strength, and function parameters. Our BLD model pro-
vides a key link between established theory and novel computing platforms, and
our theoretical results provide a closed-form expression linking device variation,
algorithm hyperparameters, and performance.

1 INTRODUCTION

Computing research has long borrowed from the physical sciences. Sampling and optimization al-
gorithms such as simulated annealing (Kirkpatrick, 1984), parallel tempering (J. Earl & W. Deem,
2005), and Langevin Monte Carlo (LMC) (Chewi et al., 2021) were directly inspired by physical
processes observed in nature. Novel dynamical formulations of classical algorithms such as Nes-
terov accelerated gradient and Polyak’s heavy-ball method (Kovachki & Stuart, 2021) and stochastic
gradient descent (Orvieto & Lucchi, 2020) have provided optimized step-size schemes and insights
into iterate behavior.

Drawing on the close connection between computation and physics, a growing computer architec-
ture sub-field has proposed leveraging physical dynamics to accelerate computationally expensive
workloads using “dynamical accelerators” (DXs). Originally, research focused on combinatorial
optimization problems (Inagaki et al., 2016; Ushijima-Mwesigwa et al., 2017; Wang & Roychowd-
hury, 2019; Afoakwa et al., 2021; Mohseni et al., 2022) and matrix-vector multiplication Xiao et al.
(2022). However, the field has expanded to sampling for energy-based model training and infer-
ence (Vengalam et al., 2023) and generative inference in graph neural networks (Wu et al., 2024;
Song et al., 2024).

The interest in analog acceleration coincides with novel proposals for “local update” algorithms,
where layer activations h are solutions to a minimization problem h∗

ℓ = argminhf(h) (Scellier &
Bengio, 2017; Stern et al., 2021; Millidge et al., 2022; Scellier et al., 2023). While costly in digital
systems, stochastic analog optimizers can effectively solve argminhf(h) in minimal time and en-
ergy (Wu et al., 2024), making them suitable candidates for local-update learning implementations.

However, real-world problems are typically too large for dynamical accelerators to optimize in their
entirety, requiring routines to partition and iteratively sample/optimize subspaces (Booth et al., 2017;
Sharma et al., 2022; Song et al., 2024), most commonly using hybrid “large-neighborhood local
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search” (LNLS) frameworks (Ahuja et al., 2002; Booth et al., 2017). In hybrid LNLS, the DX is used
to perform alternating sampling/minimization over within-capacity subproblems. However, hybrid
LNLS has undergone little theoretical examination. No non-asymptotic convergence bounds yet
exist, limiting the appeal of hybrid LNLS compared with more well-understood digital algorithms.
Moreover, the effect of algorithm hyperparameters on convergence and their interplay with device
non-idealities is unclear. Models trained on one DX may require hyperparameter adjustment, if not
outright device-specific retraining, prior to inference on another (He et al., 2019; Long et al., 2019).
Without non-asymptotic analysis linking device variation and accelerator convergence, accelerator
adaptation reduces to trial-and-error.

In this work, we provide the first explicit probabilistic convergence guarantees for hybrid LNLS
algorithms in activation sampling and optimization: a crucial first step in optimizing and analyzing
hybrid DX frameworks. We start by reducing hybrid LNLS to block sampling with continuous-
time, Langevin diffusion-based sub-samplers, to which we can apply tools from classical sampling
analysis. Two block selection rules for “block Langevin diffusion” (BLD) are examined, randomized
and cyclic, using ideal (Secs. 3.2 and 3.3) and finite-variation (Sec 3.4) analog components. Under
a log-Sobolev inequality (LSI), we prove that ideal accelerators converge to the target distribution
exponentially fast. However, we show that finite device variation incurs a bias in W2 distance,
proportional to step duration and dependent on variation magnitude. We illustrate our findings with
numerical experiments on a toy Gaussian sampling problem, demonstrating the effect of device
variation and hyperparameter choice on W2 convergence.

Our contributions can be summarized as follows:

1. We provide novel bounds on randomized block diffusions using explicit constants (Theo-
rem 1), strengthening the results of Ding et al. (2020)

2. We provide completely novel bounds for cyclic block diffusions (Theorem 2) by proving a
novel conditional sampling lemma for Kullback-Liebler divergence (Lemma 1)

3. Using a Talagrand transportation inequality, we combine our ideal results with analysis fol-
lowing Raginsky et al. (2017) to provide non-asymptotic guarantees for DXs with analog
non-idealities (Theorem 3), applicable to both sampling and optimization tasks.

1.1 RELATED WORKS

Ding & Li (2021) and Ding et al. (2021) proposed and analyzed “randomized coordinate Langevin
Monte Carlo” (RCLMC) methods for sampling tasks using over and underdamped Langevin dy-
namics. Their methodology used Wasserstein coupling arguments akin to Dalalyan (2016), in
contrast to our interpolation arguments following Vempala & Wibisono (2019). Accordingly, the
authors assumed a strongly-log concave target distribution: a much stronger assumption than an
LSI. Moreover, Ding et al. (2021) provided insufficient analysis for the continuous-time case, focus-
ing primarily on the discrete RCLMC algorithm. DX algorithm analysis required continuous-time
bounds with explicit constants, necessitating our contributions.

Two algorithms related to BLD garnering recent interest are “coordinate ascent variational in-
ference” (CAVI), which performs variational inference over factorized “mean-field” distribu-
tions (Bhattacharya et al., 2023; Arnese & Lacker, 2024), and the split Gibbs sampler (SGS), which
alternates sampling over problem variables with augmented priors (Vono et al., 2019; 2022). CAVI
is similar to BLD, and indeed the information theoretic analysis by Lee (2022) has a similar structure
to our proof of Lemma 1. SGS has been likened to the ADMM opimization algorithm Vono et al.
(2022), indicating there may be an equivalence to BLD akin to classical block optimization Tibshi-
rani (2017).

A related class of works have analyzed the accuracy of analog matrix-vector multiplication (MVM)
accelerators in neural network inference (Klachko et al., 2019; Xiao et al., 2022). MVM accelerators
are a restricted class of DXs minimizing miny∈Rd ||y−Wx||2: equivalent to performing MVM in the
analog domain. Our analysis generalizes MVM analysis and is applicable in more complex analog
settings such as generative sampling (Vengalam et al., 2023; Melanson et al., 2023; Wu et al., 2024).

Optimization-based convergence analyses of specific DX architectures were carried out by Ere-
mentchouk et al. (2022); Pramanik et al. (2023). Asymptotic convergence in expectation to the
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global minimizer was proved by Pramanik et al. (2023) in the zero-temperature limit with decreas-
ing stepsize, echoing our results in Sec. 3.4. However, neither work accounted for the effect of device
variation or problem partitioning, and both focused on specific DX modalities (nonlinear electron-
ic/optical oscillators) rather than a general model of DX behavior. Information-theoretic analysis
conducted by Dambre et al. (2012); Hu et al. (2023) have bounded the asymptotic computational
capabilities of DX systems, but not their probabilistic convergence.

2 BACKGROUND

2.1 DYNAMICAL ACCELERATORS

The first wave of dynamics-accelerated optimizers primarily targeted the Ising Spin Glass (ISG)
Hamiltonian from statistical physics, earning the appellation “Ising Machines”. The ISG Hamilto-
nian describes quadratic interactions between binary “spins”, which can be used to solve intractable
combinatorial problems (Lucas, 2014). Ising machines have been implemented using quantum
spins (Ushijima-Mwesigwa et al., 2017), electronic (Wang & Roychowdhury, 2019; Albertsson &
Rusu, 2023) and optical (Inagaki et al., 2016; Honjo et al., 2021) oscillator phases, resistively-
coupled capacitors (Afoakwa et al., 2021), and many more besides (Mohseni et al., 2022). These
initial prototypes successfully optimized binary target functions, however recent architectures have
broader applications domains: with support for non-quadratic cost functions (Sharma et al., 2023;
Bashar & Shukla, 2023; Bybee et al., 2023) and continuous values (Brown et al., 2024; Wu et al.,
2024; Song et al., 2024). Since these designs have moved beyond the ISG Hamiltonian, we term
this broader class simply as “dynamical accelerators” (DXs).

While the physical implementation differs between DXs, several proposals can be described by a
Langevin stochastic differential equation (SDE)

dxt = −∇h(xt, t)dt+
√
2β(t)−1dWt (1)

where xt ≜ x(t) is the system state, dWt is a Brownian noise term, h(x, t) is the determinis-
tic system potential, and β(t) = 1/T (t) is the (also potentially time dependent) inverse pseudo-
temperature of the system.

x(t) represents the continuous, physical degrees of freedom of the optimizer/sampler, such as capac-
itor voltage (Afoakwa et al., 2021) or oscillator phase (Inagaki et al., 2016; Wang & Roychowdhury,
2019). Several DX prototypes have been shown to follow forms of Equation (1), either intentionally
to escape local minima (Wang & Roychowdhury, 2019; Sharma et al., 2023; Aifer et al., 2023) or
unintentionally to model dynamic environment noise (Wang et al., 2013). The potential h(x, t) in-
cludes the target function f(x) along with optional time-dependent terms, such as a sub-harmonic
injection locking potential for binary applications (Wang & Roychowdhury, 2019).

DXs are also prone to static “device variation” owing to analog non-idealities. Unlike the Brownian
term dWt, static non-idealities are not self-averaging, and result in a biased estimate gδ(x) of the
gradient ∇f(x). In a quadratic function f(x) = xTWx, for instance, the gradient estimate can
be described as gδ(x) = (W + WT )x + δx, where δij ∼ N (0,∆2) are fixed non-idealities in
device components. Previous studies have examined the impact of static variation on binary op-
timization (Albash et al., 2019) and matrix-vector multiplication (Xiao et al., 2022), but have not
extended to non-asymptotic convergence analysis for more general functions over Rd.

2.2 LANGEVIN DIFFUSION

If we restrict our analysis to the time-homogeneous case where h(x, t) = f(x), β(t) = β, the
dynamics are Markovian with a constant stationary distribution

πβ(x) ∝ e−βf(x).

The Langevin SDE
dxt = −∇f(xt)dt+

√
2β−1dWt

produces a continuous sample path x(t) with each x(τ), τ ≥ 0 acting as a random variable. The law
of xt, µt (denoted µt = L(xt)), is described by the Fokker-Planck equation (FPE)

∂tµt = β−1∇2 · µt +∇ · [µt∇f(xt)].

3
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Figure 1: Illustration of the LNLS algorithm on a 3-block, 9-variable problem. [Left] An illustration
of the variable sample paths during algorithm execution. When a block is not being actively evolved,
the constituent variables remain fixed (gray). [Right] Logical partition of variables in an LNLS
framework, where one block is being actively evolved by the DX with the others resident in digital
memory. The digital host performs the control operations needed to read the block state, write back
to memory, and begin the next block evolution.

The Langevin SDE describes the physical evolution of xt, while the FPE describes the change in the
sample distribution µt in measure space. If πβ satisfies a log-Sobolev inequality (LSI, see Sec. 3),
then µt converges to πβ exponentially fast in measure space (Theorem 1 Vempala & Wibisono,
2019)

DKL(µt∥π) ≤ e−2γβt DKL(µ0∥π) (2)

where DKL(µt∥π) ≜
∫
µt(x) log

µt(x)
π(x) dx ≜

∫
µt log

dµt

dπ is the Kullback-Leibler (KL) divergence
between two probability measures and 1/γ is the log-Sobolev constant.

Recalling the Otto-Villani theorem (Theorem 1 Otto & Villani, 2000), an LSI inequality further
implies a Talagrand transportation inequality

W2(µt, π) ≤
(
2

γ

)1/2 √
DKL(µt∥π)

where W2(µt, π) = infν∈C(µt,π)

(∫
||x− y||22ν(x, y)dxdy

)1/2
is the 2-Wasserstein distance be-

tween µt and π and ν ∈ C(µt, π) is a coupling over µt, π. Convergence in DKL under an LSI there-
fore implies convergence in W2, allowing us to state bounds in both. Crucially for our purposes,
the 2-Wasserstein distance is a metric over probability distributions, allowing use of the triangle
inequality (Raginsky et al., 2017).

As β → ∞, πβ(x) concentrates around the minimizer(s) of f . This observation permits us to unite
optimization and sampling using annealing schemes (Kirkpatrick, 1984; Chiang et al., 1987; Chak
et al., 2023) which gradually increase β to escape early local minima and (hopefully) find the global
minimum, indicating a direction for future work extending BLD. Previous works have also used
bounds on convergence to πβ at constant β to bound optimizer hitting times Zhang et al. (2017) and
expected excess risk (Raginsky et al., 2017; Xu et al., 2020; Farghly & Rebeschini, 2021; Zhang
et al., 2023) in non-convex optimization.

3 MAIN RESULTS

3.1 LNLS AS BLOCK SAMPLING

DXs have a finite capacity. To solve problems exceeding that capacity, hybrid analog/digital
algorithms are necessary. A popular candidate for hybrid optimization/sampling is the Large-
Neighborhood Local Search (LNLS) framework (Raymond et al., 2023; Booth et al., 2017; Ahuja
et al., 2002; Sharma et al., 2022), where a local solver (the DX) is used to optimize/sample blocks
of variables {B1, B2, ..., Bb} conditioned on the rest of the problem state, illustrated in Fig. 1.

We can formalize LNLS by borrowing notation from classical coordinate descent (Nesterov, 2012;
Beck & Tetruashvili, 2013). We assume the Cartesian product decomposition Rd =×b

i=1
Bi sat-

4
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Algorithm 1 Block Langevin Diffusion (BLD)

1: procedure BLD(x0 ∈ dom(f), Decomposition {B1, ..., Bb}, Step Size Set λ ∈ Rb
+)

2: for k ≥ 0 do
3: Choose Bk (Random or Deterministic)
4: Sample:

xk+1 = xk −
∫ λk

0

Uk∇f(xk)dt+

∫ λk

0

Uk

√
2β−1dWt

5: end for
6: end procedure

isfies Bi ∩ Bj = ∅ for i ̸= j and each block subspace Bi has dimension di. LNLS frameworks
essentially perform block Gibbs sampling from each conditional distribution µBi|B1...Bb

, where
each block is chosen at random or in a deterministic order.

To express updates in Rd, we decompose Id =
∑b

i=1 Ui where each Ui ∈ Rd×d has ones along
diagonal indices corresponding to unit vectors in Bi and zeros elsewhere. Then

∑b
i=1 Ui∇f(x) =

∇f(x) and we can express the SDE for a single block Bi diffusion as

dx = −Ui∇f(x)dt+ Ui

√
2β−1dWt. (3)

Equation (3) leaves the conditioned dimensions Bi ≜ {j ∈ {1, ..., d} : j ̸∈ Bi} invariant. Each
block diffusion occurs in continuous time, but the blocks are swapped at discrete steps. Accordingly,
we denote xk

t as the iterate at time t in block step k and µk
t as its associated probability distribution.

When each block is evolved at constant β according to Equation (3), LNLS becomes equivalent
to a block sampling algorithm, Block Langevin Diffusion (BLD), shown in Algorithm 1. BLD is a
continuous-time generalization of “randomized coordinate Langevin Monte Carlo” (RCLMC) stud-
ied in Ding et al. (2021); Ding & Li (2021). By reducing LNLS to a block Langevin algorithm,
we can tractably analyze algorithm performance using well-developed tools from stochastic process
analysis. The BLD framework given in Algorithm 1 leaves open the choice of block selection. Here
we consider randomized and cyclic selection rules, denoted Randomized Block Langevin Diffusion
(RBLD) and Cyclic Block Langevin Diffusion (CBLD) respectively.

Throughout our analysis, we make the following assumptions on f .

Assumption 1. f is continuously differentiable

Assumption 2. πβ ∝ exp[−βf(x)] satisfies a log-Sobolev inequality (LSI) with CLSI =
1
γ if, for

all distributions µ with finite second moment

DKL(µ∥πβ) ≜
∫

µ(x) log
µ(x)

π(x)
dx ≤ 1

2γ

︷ ︸︸ ︷∫
µ(x)∥∇ log

µ(x)

π(x)
∥2dx FI(µ∥πβ)

where FI(µ∥πβ) is the (relative) Fisher information. An LSI condition is the sampling equivalent
of a Polyak-Łojasiewicz (PL) “gradient domination” inequality in optimization, where DKL(µ∥πβ)
is our objective function(al) and FI(µ∥πβ) is a “gradient norm”. An LSI can hold even in non-log-
concave distributions, making it a more general assumption than the strong log-concavity presumed
by Ding & Li (2021). Examples include globally strongly log-concave measures with bounded
regions of non-log concavity (Raginsky et al., 2017; Ma et al., 2019), high-temperature spin sys-
tems (Bauerschmidt & Bodineau, 2019) and heavy-tailed distributions which are not strongly log-
concave.

3.2 RANDOMIZED BLOCK LANGEVIN DIFFUSION

In the randomized case, we select the next variable block according to the probability distribution
ϕ ∈ Rb. Ding et al. (2021) analyzed RCLMC using Wasserstein coupling arguments, however our
analysis builds on the traditional proof of Equation (2) which relies on the de Bruijin identity

∂t DKL(µt∥πβ) = −β−1 FI(µt∥ν)

5
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which, when combined with the LSI, proves exponential convergence since −FI(µt∥ν) ≤
−2γDKL(µt∥πβ). In the same vein, we use probabilistic arguments in Appendix B.2 to prove a
de Bruijin inequality

∂t DKL(µt∥πβ) ≤ −ϕminβ
−1 FI(µt∥ν)

where ϕmin is the minimum block probability in ϕ.

By integrating and expanding the inequality, we easily obtain convergence in DKL(µ
k
t ∥π), expressed

in Theorem 1. We also prove convergence for a discrete-time variant (RBLMC) in Appendix B
Theorem 1 (RBLD DKL(µ

k
t ∥π) Convergence). Let θ = (B1, ..., Bb) be a given block permutation

and let λ = (λ1, ..., λb) ∈ Rb be the sampling times for each block, λi > 0. For any πβ ∝
exp[−βf(x)] satisfying Assumptions 1 and 2, and any β > 0, the sample distribution after k steps
of RBLD (µk) satisfies

DKL(µ
k∥π) ≤ e−2γβ−1ϕminλmink DKL(µ

0∥π).

3.3 CYCLIC BLOCK LANGEVIN DIFFUSION

While our randomized results tighten existing theory, real-world instances of LNLS often use cyclic
orderings Sharma et al. (2022); Song et al. (2024); Wu et al. (2024), as they are more amenable to
direct hardware and software optimization and are easier to implement in practice.

However, unlike RBLD, we cannot easily prove a “de Bruijin inequality” for CBLD. Instead, we
make extensive use of the chain lemma for DKL

DKL(µ∥ν) = EµB
[DKL(µA|B∥νA|B)] + DKL(µB∥νB).

where A,B are disjoint subspaces of Rd, A ∪ B = Rd, and µ, ν are measures supported on
Rd with µA|B denotes the measure over A conditioned on B = b for arbitrary b. Note that
if we set A = Bi, B = Bi, the CBLD diffusion will result in exponential contraction in
EµBi

[DKL(µBi|Bi
∥νBi|Bi

)] while leaving DKL(µBi
∥νBi

) constant. CBLD then trivially results
in non-increasing DKL(µ

k
t ∥πβ), however expressing descent across iterations is more subtle due to

the sub-additivity of KL-divergence.

Taking inspiration from Beck & Tetruashvili (2013), we bound descent across b steps, an entire “cy-
cle” over the problem space, expressed in a general lemma for DKL(µ

k∥π) (proved in Appendix C).

Lemma 1 (Cyclic KL Contraction). Let the set C = {C1, ..., Cb} ∈ Rb
+ satisfy 0 < Ci < 1, and

let Di ∈ R be arbitrary constants Di ≥ 0 and let π be an arbitrary distribution with finite second
moment. Suppose (µ0, µ1, ...) is a sequence of measures satisfying for k ≥ 1 and n = k mod b

DKL(µ
k∥πβ) ≤ Cn DKL(µ

k−1∥π) + (1− Cn)DKL(µ
k−1

Bn
∥πBn

) +Dn.

Then we can bound

DKL(µ
kb∥π) ≤ Ck

max DKL(µ
(k−1)b∥π) +

b∑
i=1

Di

where Cmax = max{C1, ..., Cb}.

When Di = 0, Lemma 1 can be seen as an information-theoretic bound on the change in global KL-
divergence from the application of factorized noise channels on µ, πβ . Lee (2022) lower bounded
the KL-divergence in Bayesian coordinate ascent variational inference by similarly comparing the
change in DKL across conditioned steps. However, their focus was on inference over mean-field
parametric distributions rather than the broader class of LSI Gibbs measures, making Lemma 1 a
stronger result.

The convergence of CBLD follows by choosing Di = 0, Cmax = e−2γβ−1λmin :
Theorem 2 (CBLD DKL(µ

k
t ∥π) Convergence). Let θ = (B1, ..., Bb) be a given block permutation

and let λ = (λ1, ..., λb) ∈ Rd be the sampling times for each block, λi > 0. For any πβ ∝
exp[−βf(x)] satisfying Assumptions 1 and 2, and any β > 0, the sample distribution after kb steps
of CBLD (µkb) satisfies

DKL(µ
kb∥π) ≤ e−2γβ−1λmink DKL(µ

0∥π).
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When Di ̸= 0, Lemma 1 accounts for biased sampling algorithms, such as Langevin Monte Carlo
(LMC). Accordingly, we combine Lemma 1 with existing LSI bounds for LMC from Chewi et al.
(2021) to prove convergence for a discrete time “cyclic block Langevin Monte Carlo” in Appendix C.

For RBLD and CBLD, the convergence is limited by the shortest step duration λmin and minimal
block probability ϕmin. For constant block sizes, the optimal choice for both CBLD and RBLD
is therefore constant λi = λj = λ and uniform ϕi = 1/b. This contrasts discrete-time block op-
timization, where distinct step sizes/probability distributions provide advantage on ill-conditioned
problems (Nesterov, 2012; Beck & Tetruashvili, 2013; Ding et al., 2021) due to the effect of varying
Lipschitz constants in discretization error terms. In the case of constant λ with uniform ϕ, RBLD
and CBLD have identical descent bounds, as we numerically demonstrate in Section 4. This con-
siderably simplifies hyperparameter selection for ideal devices, reducing from O(b) parameters to 1
(λ). In the following section we continue to assume a constant step duration λ for simplicity, though
future analyses may reveal more optimized step size selections for finite-variation devices.

3.4 FINITE VARIATION

Theorems 1 and 2 provide optimistic lower bounds for DX sampling, however a real machine will
have analog errors perturbing the target function (Albash et al., 2019; Melanson et al., 2023). As
a generalization of Albash et al. (2019), we model a DX with analog variation with a “perturbed”
gradient oracle gδ(x) : Rd → Rd, where δ ∈ D denotes a fixed perturbation from arbitrary domain
D. Unlike stochastic optimization, which assumes that the perturbation changes with each gradient
evaluation, DX perturbations are fixed for each device. To provide guarantees under device variation,
we need to restrict the perturbations and functions permitted:
Assumption 3. For fixed δ ∈ D, there exist constants M,B ≥ 0 such that

∥∇f(x(t))− gδ(x(t))∥2 ≤ M2∥x(t)∥2 +B2.

Assumption 4. f is L-smooth and, for fixed δ ∈ D, gδ is G-Lipschitz continuous. That is, for all
x, y ∈ Rd

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥,
∥gδ(x)− gδ(y)∥ ≤ G∥x− y∥.

Assumption 5. f and gδ are (m, c)-dissipative and (m, c)-dissipative respectively, i.e., there exists
positive constants m > 0, c, m, c ≥ 0 such that for all x ∈ Rd:

⟨∇f(x), x⟩≥ m∥x∥2 − c,

⟨∇gδ(x), x⟩ ≥ m∥x∥2 − c.

Assumption 3 limits the Euclidean distance between ∇f and gδ , with the constants M and B ap-
pearing in later bounds. Assumption 5 is a common assumption in analyses of stochastic gradient
sampling algorithms (Raginsky et al., 2017; Li & Wang, 2022; Zhang et al., 2023). Specifically,
it enables us to bound the ideal Langevin second moment E∥yk(t)∥2 in the proof of Theorem 3.
Assumption 4 is not directly used in our proofs, but is required for a Girsanov change of measure.
Assumptions 3 and 5 both restrict the type of perturbation with Assumption 5 also limiting the mag-
nitude. Assumptions 3 and 5 are both reasonable, as DX variation typically manifests as additive or
multiplicative perturbations in analog components implementing ∇f Xiao et al. (2022); Aifer et al.
(2023).

Take the example of a Gaussian potential f(x) = 1
2x

TΣ−1x with gδ(x) = Σ−1◦(1+δ)x, where δ ∈
Rd×d is a “perturbation matrix” with δij ∼ N (0,∆2) and ◦ denotes a component-wise Hadamard
product. Regardless of the standard deviation ∆, we satisfy Assumptions 3 and 4 with M and L
both equal to the maximal magnitude eigenvalue of δ and Σ−1 respectively with B = 0. However,
if Σ−1(1+ δ) has negative eigenvalues there is no m > 0 satisfying Assumption 5, placing an upper
limit on the perturbation strength.
Assumption 6.

The density of the initial law µ0 satisfies

κ0 ≜ log

∫
Rd

e∥x∥
d

dµ0 < ∞.
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In practice, dynamical accelerators typically operate over bounded domains, such as the unit hy-
percube (Afoakwa et al., 2021) or unit circle (Wang & Roychowdhury, 2019; Inagaki et al., 2016),
hence the iterate magnitude is bounded in any case. However, bounding over the entire space would
provide insufficiently tight upper bounds and our methodology assumes that the measures are sup-
ported on Rd. We leave consideration of domains with bounded support to future work, potentially
applying methods from reflected Langevin diffusion theory (Bubeck et al., 2018).

We begin by stating the following bound on the distance between the measures of ideal and perturbed
BLD, proved in Appendix D:
Lemma 2 (Finite Variation Block Langevin W2 Distance). Let xk(t), yk(t) be the states of non-
ideal and ideal block Langevin systems respectively, with associated probability laws µk

t , ν
k
t . For

any πβ ∝ exp[−βf(x)] satisfying Assumptions 1, 2, and 5 with β > 2
m , stochastic gradient oracle

g(x) satisfying Assumption 3, initial distribution µ0 satisfying Assumption 6, and kλ > 1 we have
the following bound

W2(µ
k, νk) ≤

√
C0

[
(C1 +

√
C1) + (C2 +

√
C2)

√
λ

]
kλ

where C0, C1, and C2 are given in Appendix D.

From previous discussions, setting ϕi = 1/b, λi = λ unifies the bounds for RBLD and CBLD. In
this regime, we can prove the following statement as a simple consequence of the triangle inequality
W2(µ, ν) ≤ W2(µ, η) +W2(η, ν) and the Otto-Villani theorem
Theorem 3 (Finite-Variation BLD W 2

2 Convergence).

W2(µ
bk, πβ) ≤

(
2

γ

)1/2

e−γβ−1λbk
√
DKL(µ0∥π)

+

√
C0

[
(C1 +

√
C1) + (C2 +

√
C2)

√
λ

]
bkλ.

Following Raginsky et al. (2017), if we choose kλ = β
bγ log

2
√

2DKL(µ0∥π)
ε
√
γ and set λ ≤(

εγ

β log[2
√

2DKL(µ0∥π)/(√γε)]

)4

, we have

W2(µ
bk, πβ) ≤

ε

2
+
√
C0

[√
C1 +

√
C1

β

γ
log

2
√
2DKL(µ0∥π)

ε
√
γ

+ ε

√
C2 +

√
C2

]
. (4)

We thereby obtain a total bound on the Wasserstein error O(log 1
ε + ε) for arbitrary ε > 0. Our

Wasserstein bound has a finite lower bound with respect to epsilon: non-ideal devices introduce
bias. Unlike discrete LMC, the bias in Equation (4) does not result from a forward-flow discretiza-
tion (Wibisono, 2018; Chewi et al., 2021). Instead, the constants C0, C1, C2 are solely due to finite
analog variation. For M = 0, B = 0, we recover exponential, unbiased convergence in W2. How-
ever, akin to LMC, practitioners can select the step size λ and the injected noise β to control the
bias. Higher temperatures (lower β) result in a lower bias, as expected from the application of a
noisy channel in measure space. Moreover, DX users/designers typically characterize M , B during
device calibration: simultaneously lowering the impact of analog non-ideality and allowing for a
rough bound on the distribution bias (See Section C.2.a of Melanson et al., 2023).

A Wasserstein bound suffices as a performance guarantee in sampling tasks such as Boltzmann
machine inference Hinton et al. (2006) or statistical physics simulation (Hamerly et al., 2019; Ng
et al., 2022; Inaba et al., 2023). For optimization, assuming quadratic function growth with β ≥ 2

m
and a dissapative gradient oracle (see Appendix D for discussion) allows the use of a continuity
inequality (Lemma 6 of Raginsky et al., 2017) and second moment bound (Proposition 11 of
Raginsky et al., 2017) to bound Eµk [f(x)]−Eπβ

[f(x)] and Eπβ
[f(x)]−minx∈Rd f(x) respectively

Eµk [f(x)]− Eπβ
[f(x)] ≤ (Mσ +B)W2(µ

bk, πβ), (5)

Eπβ
[f(x)]− min

x∈Rd
f(x) ≤ d

2β
log

(
eL

m

(
cβ

d
+ 1

))
(6)
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where σ2 = max{Eµk [x2],Eπβ
[x2]} (given in Appendix D). Combining Equations (5) and (6), we

obtain

Eµk [f(x)]− min
x∈Rd

f(x) ≤ d

2β
log

(
eL

m

(
cβ

d
+ 1

))
+ (Mσ +B)W2(µ

bk, πβ)

= O(
d

β
log βd+ (M +B)(ε+ log ε−1)).

Controlling the first term requires increasing β (lower-magnitude Brownian noise) in tandem with
problem dimension. Conversely, controlling the second term requires λk ∝ β, λ ∝ 1

β4 , i.e., more
iterations with lower step duration with increasing β. In digital algorithms, we are free to choose
λ arbitrarily small to meet given precision requirements (though the program convergence may be
impracticably slow). Dynamical accelerators typically have a practical lower bound on λ (e.g., a
digital clock period), translating into an effective upper bound on β.

4 NUMERICAL EXPERIMENTS

As an illustrative example, we simulated CBLD and RBLD behavior in Gaussian sampling. Gaus-
sian distributions permit closed-form solutions for W2(N (x1,Σ1),N (x2,Σ2)), allowing for a quan-
titative estimate of convergence. Moreover, several proposed use cases for DXs rely on Gaussian
sampling, including matrix inversion (Aifer et al., 2023) and uncertainty quantification (Melanson
et al., 2023). Other works have also proposed using DXs to optimize strongly-convex functions of
the form f(x) = (x−µ)TW (x−µ) (Wu et al., 2024; Song et al., 2024), making Gaussian analysis
practical as well as tractable. As discussed in the preceding section, our bounds provide expected
function gap guarantees from sampling π = N (0, 2β−1W−1), where optimization would occur in
the β → ∞ limit.

We simulate DX sampling a d = 50 Gaussian with zero mean and a random covariance matrix Σ.
Simulation parameters are based on the analog electronic DX proposed in Afoakwa et al. (2021);
Sharma et al. (2023); Song et al. (2024), with time determined by the device R · C constant (6.2
ns). For each datapoint, we compute the empirical mean and covariance of the recorded sample
distribution. Appendix A gives more details on our experimental configuration.

We focus on the rates of convergence and their dependence on algorithm parameters (step duration
λ, block count b, etc.) rather than the exact W2 value. Fig. 2a shows the convergence in W2 for
ideal-component sampling using block counts b ∈ {1, 2, 5, 10} compared to simulated time (O(kb))
while Fig. 2b shows the same data relative to the number of “whole-space” cycles (O(k)). As
expected, BLD requires O(b) more time to match the W2 decay of full-gradient LD, with RBLD and
CBLD being roughly equivalent. However, normalizing by the block count demonstrates that each
method is equally efficient relative to whole-problem cycles, as expected from a simple comparison
of Equation (2) with Theorems 1 and 2. Figs. 2c and 2d compare varying step durations λ for
b = 5 BCLD. While all step sizes lead to the same convergence rate with respect to time, larger step
sizes lead to larger decay w.r.t. whole problem cycles, again as expected from Theorems 1 and 2.
Finally, we perturb the similarity matrix Σ−1 with componentwise variation Σ̃ij = Σij(1 + δij),
δij ∼ N (0,∆). Fig. 2e shows the impact on W2 convergence with increasing perturbation strength.
For small perturbations, the deviation from ideal is minimal. However, the distribution bias is clear
for δ = 0.3. At δ = 0.4, Σ is no longer positive-definite, causing the iterate to diverge (not shown
on plot). δ ∈ {0.1, 0.2, 0.3} satisfied Assumption 5, but δ = 0.4 did not, in line with discussion in
the preceding section.

5 CONCLUSION

In this work, we provide novel bounds for hybrid dynamical/digital sampling algorithms leveraging
continuous Langevin diffusion. Our bounds extend to both ideal and non-ideal components, with
the latter providing an explicit trade-off between W2 bias, step size, and device non-idealities. We
analyze randomized and cyclic selection rules, finding them to be equivalent in DKL contraction with
iteration count held constant. Our findings are supported by numerical experiments on Gaussian
sampling, observing the expected linear O(b) slowdown in measure-space convergence compared to
fully-dynamical LD. Our bounds imply concrete tradeoffs in convergence rate and bias in problem
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Figure 2: Estimated W2(µ
k
t , π) for BLD sampling methods. (c)-(e) use BLCD, given the close

similarity between BCLD and RCLD shown in (a) and (b)

and device constants, providing valuable information to device designers, potential DX adopters,
and future analyses.

5.1 LIMITATIONS AND DIRECTIONS FOR FUTURE WORK

In this work, we focused on the continuous activation inference stage. However, even in DX systems
model weights are updated in discrete time, either by the digital controller (Song et al., 2024) or by
a discrete step in the analog domain (Vengalam et al., 2023). Developing a theoretical framework
which provides convergence guarantees for both activation inference and model updates would be a
boon to DX research.

We assumed that the inference takes place over Rd, however DXs generally optimize over bounded
subspaces such as the unit circle (Inagaki et al., 2016) or unit hypercube (Afoakwa et al., 2021).
Previous work on projected (Bubeck et al., 2018) and mirror (Ahn & Chewi, 2021) Langevin dy-
namics successfully applied LMC methods to constrained sampling. Future work analyzing DX
operation using projections could provide concrete bounds for capped-voltage optimizers Afoakwa
et al. (2021) and insights from Mirror-LMC could provide insights for DX designers to increase
sampling/optimization efficiency.

Assumptions 2 and 5 provide useful bounds for many ML and optimization problems over con-
tinuous domains. However, DX applications include discrete choice problems and/or significantly
non-convex potentials, such as mixed integer programming. Future bounds necessarily involve more
general assumptions than the γ-LSI class considered here. Analog accelerators also typically use
low-precision (< 8b) DACs and ADCs for input/output (Xiao et al., 2022), making studies of quan-
tizated convergence/expected function gap critical for real-world applications.

Finally, our work focuses on a simplified LNLS framework. While dynamics-accelerated LNLS is
popular in literature (Sharma et al., 2022; Raymond et al., 2023; Wu et al., 2024), our work leaves
open the question of whether additional digital steps, such as a Metropolis-Hastings filter or replica
exchange, could improve the non-asymptotic accuracy or convergence rate.
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SUPPLEMENTARY MATERIALS

Here we provide proofs and explanations of experimental methods. Additionally, we apply our
analysis to bound DKL for discrete-time variants of RBLD and CBLD (RBLMC and CBLMC).

A EXPERIMENTAL METHODS

A.1 DIFFUSION SIMULATION

We simulate Langevin SDEs using a second-order Leimkuhler-Matthews integration
scheme (Leimkuhler & Matthews, 2013) with a time step size of 1 × 10−12 seconds. Block
diffusions are simulated for a fixed number of steps (50, 100, or 500 for the plots generated),
then the block is switched either cyclically or randomly, depending on the algorithm. The total
CBLD/RBLD step counts are chosen to ensure that each simulation has the same total simulation
time (2× 107 time steps), allowing for a 1:1 comparison in total optimizer time.

We take the resistively coupled BRIM architecture from Afoakwa et al. (2021) with the Langevin
perturbations proposed by Sharma et al. (2023) as our baseline DX. The BRIM architecture is more
easily extensible to general classes of real-valued functions (Sharma et al., 2023; Song et al., 2024;
Wu et al., 2024) than oscillator-based DXs (Wang & Roychowdhury, 2019; Inagaki et al., 2016),
motivating the selection.

We model the device using 310 kOhm resistors and 20 fF capacitors, leading to an RC time constant
of 6.2 ns and an effective step size of 6.2 psec, which we use to plot total estimated DX time. These
circuit parameters are comparable to those proposed in literature (Afoakwa et al., 2021; Zhang et al.,
2022), however different device parameters will simply rescale the x-axis.

A.2 TARGET POTENTIAL

As stated in the main text, we choose a Gaussian target measure to obtain a direct estimate of
convergence rather than using proxy statistical observables, as done in Ding & Li (2021). The
d = 50 Gaussian used to produce Fig. 2 was generated using the following procedure:

1. Generate a 50× 50 matrix Σ−1 with elements ∼ Unif[−5, 5]

2. Make the matrix symmetric by setting Σ−1 = 1
2 (Σ

−1 + (Σ−1)T )

3. If the minimum eigenvalue λmin is negative, set Σ−1 = Σ−1 + 1.2λminI50

The resulting matrix is symmetric and positive-definite, making it a valid similarity matrix. We then
invert Σ−1 to obtain the target covariance matrix Σ. We choose [−5, 5] as the distribution to test a
larger range of perturbation strengths ∆ ∈ [0.1, 0.4], as the W2 diverged much earlier (∆ < 0.2)
with a uniform [−1, 1] distribution.

As our focus is sampling rather than optimization, we set β = 1 for simplicity. We also assume the
Gaussian mean is zero, making the target distribution:

π(x)∝e−
1
2x

TΣ−1x.

A.3 SAMPLING PROCEDURE

We recorded one sample after every 10 block updates (thinning parameter of 10) to reduce the impact
of highly correlated samples and to make the subsequent steps more computationally efficient. We
neglect any burn-in period, as the purpose of our experiment is to see the convergence in distribution
(i.e., the necessary length of burn-in). The empirical mean xk ∈ Rd and covariance Σk ∈ Rd×d

after collecting k samples were computed by

xk =
1

k

k∑
i=1

X:,i,

Σk =
1

k − 1
(X − xk)(X − xk)

T
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where X ∈ Rd×k is the matrix of samples,
∑k

i=1 X:,i denotes a row(dimension)-wise summation,
and (X − xk) is a column (sample)-wise subtraction.

With our estimated distribution, we compute the W2 distance from the target Gaussian using the
closed-form expression

W 2
2 (N (xk,Σk),N (0,Σ)) = ||xk||2 +Tr

[
Σk +Σ− 2

√√
ΣΣk

√
Σ

]
. (7)

We compute Equation (7) every 5000 samples to produce the plots in Fig. 2. The 5000 sample
count was chosen to balance figure resolution (enough data points) with computational time, as the
empirical covariance matrix calculation scaled O(d2 · S(t)2), where S(t) is the total number of
samples collected up to time t (O(d · S(T )) to compute the empirical mean, then O((d · S(T ))2) to
compute the outer product).

B RANDOMIZED BLOCK LANGEVIN DIFFUSION (RBLD)

In this section we provide proofs relating to Randomized Block Langevin Diffusion (RBLD, the
focus of the main text) and a time-discretized version, Randomized Block Langevin Monte Carlo
(RBLMC). RBLMC was previously introduced in Ding et al. (2021) as a coordinate-wise scheme,
however we examine block partitions. Moreover, our results using γ-LSI target measures are more
general than the strongly log-concave convergence results given in that work.

Algorithm 2 gives the structure of RBLD/RBLMC sampling, where ϕ = {ϕ1, ..., ϕb} is a discrete
probability mass function over coordinate block indices.

B.1 CONTINUOUS TIME ITERATION

Algorithm 2 Randomized Block Langevin Dynamics (RBLD)

1: procedure RBLD(x0 ∈ dom(f), Block Distribution ϕ over {B1, ..., Bb}, Step Size Set λ ∈
Rb

+)
2: for k ≥ 0 do
3: Choose Bk ∼ ϕ
4: Sample:

xk+1 = xk −
∫ λk

0

Uk∇f(xk)dt+

∫ λk

0

Uk

√
2β−1dWt

5: end for
6: end procedure

We first consider the case when each diffusion occurs in continuous time. For a single iteration, we
can formulate the evolution of the system by the following Itô SDE:

dx = −Uk∇
(
f(x)dt+

√
2β−1dWt

)
To prove continuous-time descent in KL-divergence, we combine standard Langevin gradient flow
arguments with methodology inspired by Ref. Vempala & Wibisono (2019) when considering ex-
pectation terms.

B.2 FOKKER-PLANCK EQUATION

Let µt be the law of x at time t, and let µt|0 be the measure jointly conditioned ① on the state at time
0 and ② the choice of block Bk. Within a single step, µt|0 will obey the Fokker-Planck continuity
equation

∂tµt|0 = Tr[Ukβ
−1∇2µt|0] + div(µt|0Uk∇f(xt)).

If we were tracking the diffusion over a single block, we would take expectation over the starting
state x0 while conditioning on the block index. However, as discussed in the main text, we take a
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“meta-Eulerian” perspective. Instead of tracking one block diffusion, our approach finds the average
behavior of an ensemble of diffusion processes, each independently sampling their blocks according
to ϕ. We therefore take expectation over both x0 and Bk to derive the change in the “ensemble”
measure µt.

Therefore we have

∂tµt = Tr[β−1Uϕ∇2µt] + E[div(µt|0Uk∇f(x))].

Where we have defined Uϕ ≜ (ϕ1U1, ..., ϕbUb) ∈ Rd×d.

Let ν be the joint law of (x0, Bk). Note that

µt(xt|x0, Bk)ν(x0, Bk) = µt(xt)ν(x0, Bk|xt)

= µt(xt)ν(x0|xt, Bk)ν(Bk|x)
= µt(xt)ν(x0|xt, Bk)ν(Bk)

= µt(xt)ν(x0|xt, Bk)ϕk.

Then we can express the second term as

E[div(µt|0Uk∇f(xt))] = div(
b∑

i=1

∫
µt(xt|x0, i)Uk∇f(xt)ν(x0, i)dx0)

= div(
b∑

i=1

ϕi

∫
µt(xt)Ui∇f(xt)ν(x0|xt, i)dx0)

= div(µt(xt)Uϕ∇f(xt))

since
b∑

i=1

ϕiUi∇f(xt) = Uϕ∇f(xt).

Therefore, the FPE of the “meta-Eulerian” RBLD process is

∂tµt = Tr[β−1Uϕ∇2µt] + div(µtUϕ∇f(xt)).

Note that the we can use the identity ∇f(x) = β−1∇ log πβ to re-express the FPE as

∂tµt = ∇ ·
(
β−1µtUϕ∇ log

µt

πβ

)
. (8)

B.3 KL-DIVERGENCE CONTRACTION

Lemma 3.
DKL(µt∥π) ≤ DKL(µ0∥π)e−2β−1γλminϕmin .

Proof. The proof follows conventional analyses of Langevin diffusion processes, e.g., see Vempala
& Wibisono (2019); Chewi (2024); Chewi et al. (2021). However, we complete the proof anew for
completeness, as well as to show the differences with baseline LD.

With the time evolution of the measure, we can now express the time evolution of the KL-divergence

∂t DKL(µt∥π) = ∂t

∫
µt(x) log

µt(x)

π(x)
dx

=

∫
∂t[µt(x) log

µt(x)

π(x)
]dx

= −
∫

∂tµt(x) log
µt(x)

π(x)
dx+

=0︷ ︸︸ ︷∫
∂tµt(x)dx
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where the second term is equal to zero since∫
∂tµt(x)dx = ∂t

∫
µt(x)dx = ∂t[1] = 0.

Using Eqn. (8), we then have

∂t DKL(µt∥π) =
∫
{∇ ·

(
β−1µtUϕ∇ log

µt

πβ

)
} log µt(x)

π(x)
dx.

Through integration by parts, we obtain

∂t DKL(µt∥π) = −β−1

∫ 〈
Uϕµt∇ log

µt

π
,∇ log

µt(x)

π(x)

〉
dx

= −β−1Eµt

[〈
Uϕ∇ log

µt

π
,∇ log

µt(x)

π(x)

〉]
.

Uϕ is positive-definite with minimum eigenvalue ϕmin, therefore

∂t DKL(µt∥π) =− β−1Eµt

[〈
Uϕ∇ log

µt

π
,∇ log

µt(x)

π(x)

〉]
≤ −β−1ϕminEµt

[∣∣∣∣∣∣∇ log
µt

π

∣∣∣∣∣∣2]
=− β−1ϕminFI(µt∥π) ≤ −2β−1γϕmin DKL(µt∥π)

where the last inequality utilizes the γ-LSI. Here we highlight a principle difference between LD
and RBLD analysis. In LD, we have the “de Brujin identity”

∂t DKL(µt∥π) = −2β−1γFI(µt∥π).

However, for RBLD we have a “de Brujin inequality”

∂t DKL(µt∥π) ≤ −β−1γϕminFI(µt∥π).

We now integrate up to λk. Since this step size depends on the choice of Bk, we take expectation of
DKL(µk∥π) over k

E[DKL(µk∥π)] ≤ E[e−2γβ−1ϕminλi ] DKL(µk−1∥π)

or deterministically
DKL(µk∥π) ≤ e−2γβ−1ϕminλmin DKL(µk−1∥π).

Expanding the inequality k times yields the result.

B.4 RCLMC: EULER-MARUYAMA DISCRETIZATION

We now extend our analysis to discrete-time Randomized Block Langevin Monte Carlo (RBLMC),
shown in Algorithm. 3. While the continuous-time diffusion can be implemented on dynamical

Algorithm 3 Randomized Block Langevin Monte Carlo (RBLMC)

1: procedure RBLMC(x0 ∈ dom(f), Block Distribution ϕ over {B1, ..., Bb}, Step Size Set λ ∈
Rb

+)
2: for k ≥ 0 do
3: Choose Bk ∼ ϕ, sample ξ ∼ N (0, 1)
4: Set:

xk+1 = xk − λkUk∇f(xk) + Uk

√
2β−1λkξ

5: end for
6: end procedure

hardware, digital applications require an error bound in the discrete-setting. The following derivation
closely follows the methods of Vempala & Wibisono (2019) by modeling the divergence of the
discrete scheme from a continuous-time interpolation.
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We now consider the SDE

dx = Uk[−∇f(x0)dt+
√
2β−1dWt]

where x0 is the initial state. The SDE has the solution

xt = x0 + Uk[−∇f(x0)t+
√
2β−1tξt]

for t ∈ [0, λn] and ξt ∼ N (0, Idi). Conditioned on the initial state x0 and the choice of i, we have
the FPE

∂tµt|k,x0
= β−1∇2 · µt|k,x0

+∇ · µt|k,x0
Ui∇f(x0).

Taking expectation over both sides (as previously) yields

∂tµ = Tr[β−1Uϕ∇2µt|k,x0
] +∇ · E[µt|k,x0

Ui∇f(x0)].

Again noting that the choice of block and the initial state x0 are independent, we can express the
expectation as

E[µt|k,x0
Uk∇f(x0)] =

b∑
i=1

ϕi

∫
µ(xt|i, x0)ν(x0)Ui∇f(x0)dx0.

Note that while x0 and ϕi are independent random variables, they are not independent when condi-
tioned on xt. We then have

ϕiµ(xt|i, x0)ν(x0) = µ(xt|i, x0)ν(x0, i)

= µ(xt)ν(x0, i|xt)

= µ(xt)ν(x0|xt, i)ϕi|xt

= µ(xt)ν(x0|xt, i)ϕi.

Then
b∑

i=1

ϕi

∫
µ(xt|i, x0)ν(x0)Ui∇f(x0)dx0 =

b∑
i=1

ϕi

∫
µ(xt)ν(x0|xt, i)Ui∇f(x0)dx0

= µ(xt)

∫
ν(x0|xt)Uϕ∇f(x0)dx0

= µtUϕE[∇f(x0)].

We then have the following FPE

∂tµt = Tr[β−1Uϕ∇2µt] +∇ · [µtUϕE[∇f(x0)]]

= ∇ · [β−1Uϕ∇µt + µtUϕE[∇f(x0)]].

Combining our previous argument with the analysis of Vempala & Wibisono (2019), we have

∂t DKL(µt∥π) = ∂t

∫
µt(x) log

µt(x)

π(x)
dx

=

∫
∂tµt(x) log

µt(x)

π(x)
dx

=

∫
∇ · [β−1Uϕ∇µt + µtUϕE[∇f(x0)]] log

µt(x)

π(x)
dx

= −
∫ 〈

β−1Uϕ∇µt + µtUϕE[∇f(x0)]],∇ log
µt(x)

π(x)

〉
dx

= −
∫ 〈

β−1Uϕµt∇ logµt + β−1Uϕµt∇ log π − β−1µt∇ log π + µtUϕE[∇f(x0)]],∇ log
µt(x)

π(x)

〉
dx

= −
∫ 〈

β−1Uϕµt∇ log
µt

π
+ µtUϕE[∇f(x0)−∇f(xt)]],∇ log

µt(x)

π(x)

〉
dx

= −β−1E[∥U1/2
ϕ ∇ log

µt(x)

π(x)
∥2] + E[

〈
U

1/2
ϕ E[∇f(xt)−∇f(x0)], U

1/2
ϕ ∇ log

µt(x)

π(x)

〉
].
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where we have used the fact that Uϕ is a diagonal matrix with non-negative entries, so Uϕ =

U
1/2
ϕ U

1/2
ϕ = (U

1/2
ϕ )TU

1/2
ϕ . Then we have (by Cauchy-Schwartz and Young’s)

E[
〈
U

1/2
ϕ E[∇f(xt)−∇f(x0)], U

1/2
ϕ ∇ log

µt(x)

π(x)

〉
] ≤ E[∥U1/2

ϕ E[∇f(xt)−∇f(x0)]∥2] +
1

4
E∥U1/2

ϕ ∇ log
µt(x)

π(x)
∥2

= E[∥U1/2
ϕ [∇f(xt)−∇f(x0)]∥2] +

1

4
E∥U1/2

ϕ ∇ log
µt(x)

π(x)
∥2.

We can decompose the first term as

E[∥U1/2
ϕ [∇f(xt)−∇f(x0)]∥2] =

b∑
i=1

ϕi∥Uk∇f(xt)− Uk∇f(x0)∥2.

In line with the presentation in the draft Chewi (2024) we apply Lemma 16 from Chewi et al. (2021),
which only requires smoothness and L2 integrability in the marginal potential:

Lemma 4 (Lemma 16 of Chewi et al. (2021)). Assume probability measure π ∝ e−f(x) ∈ P2(Rd)
has L-smooth potential f . Then for any probability measure µ

Eµ[∥∇f∥2] ≤ FI(µ∥π) + 2dL.

By the smoothness of f , we have:

E∥Uk∇f(xt)− Uk∇f(x0)∥2 ≤ 2L2
iE∥xt − x0∥2 = 2L2

iE∥Ukt∇f(x0) + Uk

√
2Wt∥2

≤2L2
i t

2E∥Uk∇f(x0) + Uk∇f(xt)− Uk∇f(xt)∥2 + E[2diL2
i t]

≤2L2
i t

2E∥Uk∇f(x0)− Uk∇f(xt)∥2 + 2L2
iE∥Uk∇f(xt)∥2 + E[2diL2

i t].

Suppose t ≤ λi ≤ 1
2Li

, then

E∥Uk∇f(xt)− Uk∇f(x0)∥2 ≤ 1

2
E∥Uk∇f(x0)− Uk∇f(xt)∥2 + 2L2

iE∥Uk∇f(xt)∥2 + E[2diL2
i t].

Hence

E∥Uk∇f(xt)− Uk∇f(x0)∥2 ≤ 4L2
iE∥Uk∇f(xt)∥2 + E[4diL2

i t].

Plugging in Lemma 4 yields

E∥Uk∇f(xt)− Uk∇f(x0)∥2 ≤ 4L2
iFI(µ∥π) + E[8tdiL3

i + 4diL
2
i t].

Assume λi ≤
√
ϕmin

4Li
. Then

E[
b∑

i=1

ϕi[4t
2L2

iFI(µBi
∥πBi

) + 8dL3
i t

2 + 4diL
2
i t]] ≤ E[

b∑
i=1

ϕminϕi

4
FI(µBi

∥πBi
) +

b∑
i=1

ϕi[8dL
3
i t

2 + 4diL
2
i t]]

≤ FI(µt∥π)E[
b∑

i=1

ϕi
ϕmin

4
+

b∑
i=1

ϕi[8diL
3
i t

2 + 4diL
2
i t]]

=
ϕmin

4
FI(µt∥π) + E[

b∑
i=1

ϕi[8diL
3
i t

2 + 4diL
2
i t]]

≤ ϕmin

4
FI(µt∥π) + E[6diL2

i t].

We then have

∂t DKL(µt∥π) ≤ −ϕmin

2
FI(µt∥π) + 6E[diL2

i ]t ≤ −ϕminγDKL(µt∥π) + 6E[diL2
i t].
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We start by multiplying both sides by e−ϕminγt and integrating from t = 0 to λı

KL(µλi
∥π) ≤ e−β−1ϕminλi DKL(µ0∥π) + 3E[diL2

iλ
2
i ].

Taking expectation over i then gives the result

Ei[KL(µλi
∥π)] ≤ Ei[e

−γβ−1ϕminλi ] DKL(µ0∥π) + 3E[diL2
iλ

2
i ].

Iterating B.4 gives

E[KL(µk∥π)] ≤ E[e−β−1γϕminλmin ]k DKL(µ0∥π) + 3E[diL2
iλ

2
i ]

k∑
i=0

E[e−β−1γϕminλmin ]i

≤ e−γϕminλik DKL(µ0∥π) +
4β

γϕminλmin
E[diL2

iλ
2
i ],

where we first bound using the minimum step size, then apply the power series bound

k∑
i=0

E[e−β−1γϕminλi ]i ≤
k∑

i=0

e−γϕminλmin ≤ 1

1− e−γϕminλmin

and then apply 1
1−e−a ≤ 4

3a to obtain

1

1− e−β−1γϕminλmin
≤ 4

3β−1γϕminλmin
.

C CYCLIC BLOCK LANGEVIN DIFFUSION

In this section we provide proofs relating to Cyclic Block Langevin Diffusion (CBLD, the focus of
the main text) and a time-discretized version, Cyclic Block Langevin Monte Carlo (CBLMC).

The CBLD sampling algorithm is shown in Algorithm 4:

Algorithm 4 Cyclic Block Langevin Diffusion/Monte Carlo (CBLD)

1: procedure CBLD(x0 ∈ dom(f), Block Permutation σ = {B1, ..., Bb}, Step Sizes λ ∈ Rb
+)

2: for k ≥ 0 do
3: Set xk+1

0 = xk

4: for n = 1 to b do
5: Choose Bn = σn

6: Sample:

xn+1 = xn −
∫ λn

0

Un∇f(xk)dt+

∫ λn

0

Un

√
2β−1λndWt

7: end for
8: Set xk+1 = xk+1

b
9: end for

10: end procedure

A crucial identity used in our analysis is the “chain lemma” for KL-divergence. For any two distri-
butions µ

DKL(µt∥π) = E[DKL(µt|B∥π|B)] + DKL B(µt|π)

where B is a subspace of Rd, DKL(µt|B∥π|B) is the KL-divergence of µt and π conditioned on an
element of B, and DKL B(µt|π) is the KL-divergence of µt and π marginalized over R \ B. We
also state two trivial lemmas for any γ-LSI distribution ν. We first state an equivalent definition of
Assumption 2.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Definition 1 (Alternative LSI). πβ ∝ exp[−βf(x)] satisfies a log-Sobolev inequality (LSI) with
CLSI = 1

γ if for all smooth g:

Eπ[g
2 log g2]− Eπβ

[g2] logEπβ
[g2] ≤ 1

2γ
Eπβ

[∥∇g∥2]

where the equivalence with the previous statement follows by choosing g2(x) = µ(x)
πβ(x)

.

Lemma 5. Suppose A,B are disjoint subspaces of Rd with A ∪B = Rd. Then the A marginal νA
also satisfies γ-LSI.

Proof. By the LSI, for any smooth g : Rd → R

Eν

[
g2 log g2

]
− Eν

[
g2
]
logEν

[
g2
]
≤ Eν

[
∥∇g∥2

]
.

For g : A → R, we can re-express the terms as

EνB|AEνA[
[
g2 log g2

]
− EνB|A

(
EνA

[
g2
]
logEν

[
g2
])

≤ EνB|AEνA
[
∥∇g∥2

]
.

Since EνB|A [g(z)] = g(z) for all z ∈ A, we simplify to

EνA
[
g2 log g2

]
− EνA

[
g2
]
logEν

[
g2
]
≤ EνA

[
∥∇g∥2

]
.

Recall that the sub-step dynamics are described by the SDE

dx = Un

[
−∇f(x)dt+

√
2βdWt

]
. (9)

We can then derive the coordinate Fokker-Planck equation:

Lemma 6. Let µt|x0
be the law of x at time t ∈ [0, λn] described by the SDE in Equation (9), where

µt|x0
is conditioned on the starting state x0. Then ∂tµt,Bk|x0

= 0 and

∂tµt,Bn|Bk,x0
= β−1∇2 · µBn|Bk,x0

+∇ · (µBn|Bk,x0
∇f(xt))

is the Fokker-Planck equation for the subspace diffusion.

Proof. The second claim is trivially shown using Itô’s Lemma. Note that since µt,Bn|Bn,x0
is only

supported on Bn:

1. Tr[β−1Un∇2µt,Bn|Bn,x0
] = β−1∇2 · µt,Bn|Bn,x0

2. ∇ · µt,Bn|Bn,x0
∇f(xt) = ∇ · µt,Bn|Bn,x0

∇f(xt)

Then we have

∂tµt,Bn|Bk,x0
= β−1∇2 · µBn|Bk,x0

+∇ · (µBn|Bk,x0
∇f(xt)).

We now use this to prove the first claim.

Consider the law of x in sub-step n conditioned on the initial state x0 given by µt|x0
. Note that

µt|x0
= µt,Bn|Bn,x0

µt,Bn|x0
.

By the Fokker-Planck equation associated with the SDE and the product rule, we have:

∂tµt|x0
=β−1Tr[UT

n ∇2µt|x0
] +∇ · (µt|x0

Un∇f(x))

µt,Bn|x0
∂tµt,Bn|Bn,x0

+ µt,Bn|Bn,x0
∂tµt,Bn|x0

=β−1Tr[UT
n ∇2µt,Bn|Bn,x0

µt,Bn|x0
]

+∇ · (µt,Bn|Bn,x0
µt,Bn|x0

Un∇f(x)).
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Note that

β−1Tr[UT
n ∇2µt,Bn|Bn,x0

µt,Bn|x0
] = β−1µt,Bn|x0

∇2 · µt,Bn|Bn,x0

and
∇ · (µt,Bn|Bn,x0

µt,Bn|x0
Un∇f(x)) = µt,Bn|x0

∇ · (µt,Bn|Bn,x0
∇f(x)).

We then have

µt,Bn|x0
(

①︷ ︸︸ ︷
∂tµt,Bn|Bn,x0

− β−1∇2 · µt,Bn|Bn,x0
−∇ · (µt,Bn|Bn,x0

∇f(x))) = µt,Bn|Bn,x0
∂tµt,Bn|x0

.

We assume that µt is supported on Rd, therefore µt|x0
= µt,Bn|x0

µt,Bn|Bn,x0
> 0.

As previously discussed, Itô’s lemma implies ① is 0. For equality to hold, then, ∂tµt,Bn
= 0.

We prove the following technical lemma for later use in the descent bound:

Lemma 7. Suppose A,B are disjoint subspaces of Rd. Then we have

DKL(µA∥πA) ≤ DKL(µA|B∥πA|B).

Proof. Note that for all x ∈ A

µA(x) =

∫
B

µA,B(x, y)dy =

∫
B

µA(x|y)µB(y)dy = Ey∈B [µA(x|y)] ≜ EB [µA|B ].

By the convexity of the KL-divergence and Jensen’s Inequality

DKL(µA∥πA) = KL(EB [µA|B ]∥EB [πA|B ]) ≤ EB [DKL(µA|B∥πA|B)] ≜ DKL(µA|B∥πA|B).

Lemma 7 can be considered a restatement of the “data processing inequality”. Removing the con-
ditioning on subspace B effectively reduces the available information, akin to a noisy channel,
decreasing the divergence between distributions.

Lemma 8.

DKL(µn∥πβ) ≤ e−2γβ−1λn [DKL(µn−1∥π)] + (1− e−2γβ−1λn)DKL B1
(µ0∥π)

Proof. Using Lemma 6, we can show by standard arguments Vempala & Wibisono (2019); Chewi
et al. (2021) that within sub-step n:

DKL(µt|B1
∥πB1

) ≤ DKL(µ0|B1
∥πB1

)e−2γβ−1t (10)

Using (10) and the chain rule for KL-divergence

DKL(µn∥π) = E
[
DKL(µ1|B∥π|B)

]
+DKL B1

(µ0|π)

≤ e−2γλnβ
−1

E
[
DKL(µn−1|B∥π|B)

]
+DKL B1

(µn−1|π)

= e−2γλnβ
−1 [

DKL(µn−1∥π)−DKL B1
(µn−1|π)

]
+DKL B1

(µn−1|π)

= e−2γλnβ
−1

[DKL(µn−1∥π)] + (1− e−2γλnβ
−1

)DKL B1
(µn−1∥π).

An immediate consequence of Lemma 8 is that the KL-divergence is non-increasing, as stated in
the following Corollary.

Corollary 1. For all i ∈ {1, ..., b}, DKL(µi∥π) ≤ DKL(µ0∥π)
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C.1 PROOF OF LEMMA 1

Proof. We prove the claim by induction on b. The claim is immediately evident for b = 1 as a
consequence of 8 with Cmax = C1, since B1 = ∅.

Now we assume the inductive hypothesis for some b− 1 ≥ 1 and prove the claim for b ≥ 2 blocks.

We start by applying Lemma 8 twice to obtain terms relating to step b− 2, obtaining
DKL(µb∥π) ≤Cb DKL(µb−1∥π) + (1− Cb)DKL(µb−1,Bb

∥πBb
) +Db

Second descent expansion: ≤CbCb−1 DKL(µb−2∥π) + (1− Cb)DKL(µb−1,Bb
∥πBb

)

+ Cb(1− Cb−1)DKL(µb−2,Bb
∥πBb−1

) +Db + CbDb−1

.

From here, we note that DKL(µb−1,Bb
∥πBb

) satisfies the theorem conditions, since all blocks in Bb

have been sampled. We can therefore apply the inductive hypothesis and obtain

DKL(µb∥π) ≤CbCb−1 DKL(µb−2∥π) + Cmax(1− Cb)DKL(µ0,Bb
∥πBb

) + (1− Cb)

b−1∑
i=1

Di

+ Cb(1− Cb−1)DKL(µb−2,Bb−1
∥πBb−1

) +Db + CbDb−1.

Using Lemma 7, we can upper bound
DKL(µb−2,Bb−1

∥πBb−1
) ≤ DKL(µb−2,Bb−1|Bb−1

∥πBb−1|Bb−1
)

and then apply the chain lemma
DKL(µb−2,Bb−1|Bb−1

∥πBb−1|Bb−1
) = DKL(µb−2∥π)−DKL(µb−2,Bb−1

∥πBb−1
)

to obtain
DKL(µb∥π) ≤CbCb−1 DKL(µb−2∥π)

+ Cb(1− Cb−1)DKL(µb−2∥π)− Cb(1− Cb−1)DKL(µb−2,Bb−1
∥πBb−1

)

+ (1− Cb)

b−1∑
i=1

Di + Cmax(1− Cb)DKL(µ0,Bb
∥πBb

) +Db + CbDb−1.

We can define Bb,b−1 ≜ Bb ∩ Bb−1 (all variable blocks except the last two) and apply the chain
lemma

DKL(µ0,Bb
∥πBb

) = DKL(µ0,Bb,b−1|Bb−1
∥πBb,b−1|Bb−1

) + DKL(µ0,Bb−1
∥πBb−1

).

to obtain the bound
DKL(µb∥π) ≤CbCb−1 DKL(µb−2∥π)

+ Cb(1− Cb−1)DKL(µb−2∥π)− Cb(1− Cb−1)DKL(µb−2,Bb−1
∥πBb−1

)

+ (1− Cb)

b−1∑
i=1

Di

+ Cmax(1− Cb)DKL(µ0,Bb,b−1|Bb−1
∥πBb,b−1|Bb−1

) + Cmax(1− Cb)DKL(µ0,Bb−1
∥πBb−1

)

+Db + CbDb−1.

We can regroup the terms and cancel CBDb−1 − CBDb−1 = 0 yields
DKL(µb∥π) ≤Cb DKL(µb−2∥π)

− Cb(Cmax DKL(µ0,Bb,b−1|Bb−1
∥πBb,b−1|Bb−1

) +

b−2∑
i=1

Di)

− Cb(1− Cb−1)DKL(µb−2,Bb−1
∥πBb−1

)

+ Cmax DKL(µ0,Bb,b−1|Bb−1
∥πBb,b−1|Bb−1

) + Cmax(1− Cb)DKL(µ0,Bb−1
∥πBb−1

)

+Db +

b−1∑
i=1

Di.
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By applying the inductive hypothesis in reverse, we can show

−Cb(Cmax DKL(µ0,Bb−1|Bb−1
∥πBb,b−1|Bb−1

)+

b,b−1∑
i=1

Di) ≤ −Cb DKL(µb−1,Bb,b−1|Bb−1
∥πBb,b−1|Bb−1

).

Substituting this into the second line, we have

DKL(µb∥π) ≤Cb DKL(µb−2∥π)
− Cb DKL(µb−2,Bb,b−1|Bb−1

∥πBb,b−1|Bb−1
)− Cb(1− Cb−1)DKL(µb−2,Bb−1

∥πBb−1
)

+ Cmax DKL(µ0,Bb,b−1|Bb−1
∥πBb,b−1|Bb−1

) + Cmax(1− Cb)DKL(µ0,Bb−1
∥πBb−1

)

+

b∑
i=1

Di.

We can once again expand the terms

DKL(µb−2,Bb,b−1|Bb−1
∥πBb,b−1|Bb−1

)

Cmax DKL(µ0,Bb,b−1|Bb−1
∥πBb,b−1|Bb−1

).

Using the chain lemma and canceling the single block terms gives

DKL(µb∥π) ≤Cb DKL(µb−2∥π)
− Cb DKL(µb−2,Bb

∥πBb
) + CbCb−1 DKL(µb−2,Bb−1

∥πBb−1
)

+ Cmax DKL(µ0,Bb
∥πBb

)− CbCmax DKL(µ0,Bb−1
∥πBb−1

)

+

b∑
i=1

Di.

Since Cmax ≥ Cb−1 by definition, we can disregard CbCb−1 DKL(µb−2,Bb−1
∥πBb−1

) −
CbCmax DKL(µb−2,Bb−1

∥πBb−1
) ≤ 0.

We now add zero to the right hand side via

0 = CbKL(µb−2,Bb|Bb
)− CbKL(µb−2,Bb|Bb

).

We then have the three terms

Cb DKL(µb−2∥π) +
b∑

i=1

Di,

−Cb DKL(µb−2,Bb
∥πBb

)− CbKL(µb−2,Bb|Bb
), (11)

Cmax DKL(µ0,Bb
∥πBb

) + CbKL(µb−2,Bb|Bb
). (12)

Note that the previous time steps left µb−2,Bb|Bb
invariant, hence KL(µb−2,Bb|Bb

) =

KL(µ0,Bb|Bb
). Then by applying the chain lemma to (12) and (11), we obtain

DKL(µb∥π) ≤Cb DKL(µb−2∥π)− Cb DKL(µb−2∥π) + Cmax DKL(µ0∥π) +
b∑

i=1

Di

=Cmax DKL(µ0∥π) +
b∑

i=1

Di

which completes the proof.
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Algorithm 5 Cyclic Block Langevin Monte Carlo (CBLMC)

1: procedure CBLD(x0 ∈ dom(f), Block Permutation σ = {B1, ..., Bb}, Step Sizes λ ∈ Rb
+)

2: for k ≥ 0 do
3: Set xk+1

0 = xk

4: for n = 1 to b do
5: Choose Bn = σn, sample ξ ∼ N (0, Id)

xn+1 = xn − λnUn∇f(xk) + Un

√
2β−1λnξ

6: end for
7: Set xk+1 = xk+1

b
8: end for
9: end procedure

As discussed in the main text, Lemma 1 can be used to trivially bound both the continuous (Ci =

e−2γλiβ
−1

, Di = 0) and discrete (Ci = e−γλiβ
−1

, Di = 3diL
2
iλ

2
i ) cases. Discrete-time CBLMC is

shown in Algorithm 5

For CBLMC, we additionally assume that the potential is L-smooth (Assumption 4). From Beck
& Tetruashvili (2013), this implies each block has a separate smoothness constant Li ≤ L. From
applying Vempala & Wibisono (2019) with the modification using Lemma 4 proposed in Chewi
(2024), each block step has the descent

DKL(µ
kb∥π) ≤e−γλiβ

−1

DKL(µ
b−1∥π) + (1− e−γλiβ

−1

)DKL(µ
b−1

Bi
∥πBi

) + 3L2
i diλ

2
i .

When iterated for kb cycles, we obtain the bound

DKL(µ
kb∥π) ≤e−γkbλminβ

−1kb DKL(µ
0∥π) + 4

γλmin

∑
i=1

L2
i diλ

2
i .

D PROOF OF THEOREM 3

We begin by recalling the following Lemmas from literature:
Lemma 9 (Uniform L2 bound on Langevin Diffusion (Lemma 3 of Raginsky et al. (2017))). Let
f : Rd → R be a differentiable function satisfying Assumption 5. For a random variable x(t) =

x(0)−
∫ t

0
∇f(x(s))ds+

∫ t

0
dWs, we have the bound

E[∥x(t)∥2] ≤ E[∥x(0)∥2]e−mt +
d/β + c

m
(1− e−2mt).

Lemma 10 (Wasserstein bound from Relative Entropy (Corollary 2.3 of Bolley & Villani (2005))).
Let µ, ν be two probability measures on some measurable space X equipped with measurable
distance D , and let ϕ : X → R+ be a non-negative measurable function. Assume that ∃x0 ∈ X ,
α > 0 such that

∫
eαD(x0,x)

p

dν(x) is finite. Then

W2 ≤ C

[
DKL(µ∥ν)1/2 +

(
DKL(µ∥ν)

2

)1/4
]

where

C ≜ 2 inf
x0∈X

(
1

α
(
3

2
+ log

∫
eαD(x0,x)

p

dν(x))

)1/p

.

In addition, we adapt the following Lemma from Raginsky et al. (2017)
Lemma 11 (Exponential L2 Integrability of Block Langevin Diffusion). Let f : Rd → R be a dif-
ferentiable function satisfying Assumption 5, and let xk(t) = x(0)−

∫ t

0
Uk∇f(x(s))ds+

∫ t

0
UkdWs
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be a random variable in Rd across some number of iterations k, where
∑b

i=1 Ui = Id. Suppose the
initial state x0 is drawn from some µ0 satisfying Assumption 6 and β > 2/m. Then on iteration k

logE
[
e∥x

k
λ∥

2
]
≤ κ0 + 2(c+

dmax

β
)kλ.

Proof. Define G(xk
t ) ≜ e∥x

k
t ∥

2

. By Itô’s lemma, on iteration k of BLD we have

dG(xk
t ) =− 2

〈
xk
t , Uk∇f(xk

t )
〉
e∥x

k
t ∥

2

dt+
2β−1

2
Tr

[
U2
k (2e

∥xk
t ∥

2

I + 4xTxe∥x
k
t ∥

2

)
]
dt

+
√
2β

〈
xk
t , Uk

〉
e∥x

k
t ∥

2

dWt

=− 2
〈
xk
t , Uk∇f(xk

t )
〉
G(t)dt

+ 2dkβ
−1G(xk

t )dt+ 4∥Ukx
k
t ∥2β−1G(xk

t )dt+
√
2β

〈
xk
t , Uk

〉
G(xk

t )dWt.

Integrating and summing across k steps, we obtain

G(xk
λ) =G(x0) +

k∑
i=1

[
2

∫ λ

0

[
−
〈
xk
t , Uk∇f(xk

t )
〉
+ 2β−1∥Ukx

k
t ∥2)

]
G(xk

t )dt

+

∫ λ

0

2dkβ
−1G(xk

t )dt+

∫ λ

0

√
2β

〈
xk
t , Uk

〉
G(xk

t )dWt

]
.

Applying the dissapativity condition and assuming β > 2/m, we can bound the first integrand as

−
〈
xk
t , Uk∇f(xk

t )
〉
+ 2β−1∥Ukx

k
t ∥2 ≤ (2β−1 −m)

∑
j∈Bi

(xk
t,j)

2 + c ≤ c

which results in

G(xk
λ) = G(x0) +

k∑
i=1

2(c+ dkβ
−1)

∫ λ

0

G(xk
t )dt+

∫ λ

0

√
2βG(xk

t )
〈
xk
t , UkdWt

〉
.

As stated in Raginsky et al. (2017), each Itô integral
∫ λ

0

√
2βG(xk

t )
〈
xk
t , UkdWt

〉
is a zero-mean

Martingale. Taking expectations over both sides and applying Assumption 6 yields

E[G(xk
λ)] = E[G(x0)] +

k∑
i=1

2(c+ dkβ
−1)

∫ λ

0

E[G(xk
t )]dt

≤ eκ0 + 2(c+ dmaxβ
−1)

∫ kλ

0

E[G(xk
t )]dt.

where the integrability of E[G(xk
t )] across block steps follows from the continuity of xk

t across each
block step k. By Grönwell’s Lemma, we then have the result.

Theorem 3 follows as a consequence of Lemma 2 by applying the Otto-Villani theorem coupled
with the triangle inequality for W2 as stated in the main text.

D.1 PROOF OF LEMMA 2

Proof. Let µk
t and νkt be the laws of SGBLD and BLD at times t and iteration k respectively with

iterates xk(s), yk(s). We assume that each process selects the same variable blocks at each iteration,
i.e. Bk

x = Bk
y .
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Using the Girsanov formula, we can express the Radon-Nikodym derivative dνk
t

dµk
t

as

dνkt
dµk

t

=exp

[
β

4

∫ t

0

〈
Uk∇f(yk(s))− Ukgz(y

k(t)),−Uk∇f(yk(s))ds+ UkdWs

〉
+

β

4

∫ t

0

〈
Uk∇f(yk(s))− Ukgz(y

k(t)), Uk∇f(yk(s)) + Ukgz(y
k(t))

〉]
=exp

[
β

4

∫ t

0

〈
Uk∇f(yk(s))− Ukgz(y

k(s)), dWs

〉
− β

4

∫ t

0

∥Uk∇f(yk(s))− Ukgz(y
k(s))∥2ds

]
.

Setting t = λk, we can express DKL(µ
k
t ∥νkt ) as

DKL(µ
k
t ∥νk) = −

∫
dµk

t log
dνkt
dµk

t

=

k∑
i=1

E

[
β

4

∫ λ

0

∥Uk∇f(yk(s))− Ukgz(y
k(s))∥2ds

]
.

Using Assumption 3, we obtain

DKL(µ
k
t ∥νkt ) =

k∑
i=1

E

[
β

4

∫ λ

0

∥Uk∇f(yi(s))− Ukgz(y
i(s))∥2ds

]

≤
k∑

i=1

[
β

4

∫ λ

0

M2E∥yi(s)∥2 +B2ds

]

≤
k∑

i=1

[
β

4

∫ λ

0

M2(e−msE∥yi(0)∥2 + di + c

m
(1− e−ms)) +B2ds

]
.

where we have applied Lemma 9 in the last line. Integrating, we obtain

DKL(µ
k
t ∥νkt ) ≤

k∑
i=1

β

4
E
[
M2

m
(1− e−mλ)E∥yi(0)∥2 + M2(di/β + c)

m2
(mt+ e−mλ − 1)) +B2λ

]
.

Expanding e−mλ and leveraging that mλ ≥ 1− e−mλ ≥ mλ− m2λ2

2

DKL(µ
k
λ∥νkλ) ≤

k∑
i=1

βM2λ

4
E∥yi(0)∥2 + M2λ2(di + cβ)

4
+

βB2t

4
.

By repeatedly expanding Lemma 9, we obtain

DKL(µ
k
t ∥νkt ) ≤

k−1∑
i=0

M2βλ

4
κ0 + e−m(i−1)λM

2λ2(di + βc)

8
+

M2λ2(di + βc)

8
+

βB2λk

4

≤ M2βλk

4
κ0 +

M2λ2(dmax + βc)k

4
+

βB2λk

4

≜ (C1 + C2λ)λk.

where we have defined for convenience

C1 ≜
M2βκ0

4
+

βB2

4

and

C2 ≜
M2(dmax + βc)

4

By Lemma 10, we can bound W 2
2 (µ

k
t , ν

k
t ) as

W 2
2 (µ

k
t , ν

k
t ) ≤4C2

[
DKL(µ∥ν)1/2 +

(
DKL(µ∥ν)

2

)1/4
]2

.
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Setting α = 1, d(x) = ∥x∥1/2, and p = 1/2, we obtain from Lemma 11

4C2 ≤ (12 + 4κ0 + 8(2c+
dmax

β
)kλ).

Note that for any a ≥ 0, we have (
√
a+ (a2 )

1/4)2 ≤ 2a+ 2
√
a, since

(
√
a+ (

a

2
)1/4)2 = a+ 23/4a3/4 +

a1/2

21/2
= a+ (21/4a1/4)(21/2a1/2) +

a1/2

21/2
+

a1/2

21/2
.

By Young’s inequality, (21/4a1/4)(21/2a1/2) ≤
√
a

23/4
+ a

21/2
, hence

(
√
a+ (

a

2
)1/4)2 = a+ (21/4a1/4)(21/2a1/2) +

a1/2

21/2
≤ a(1 +

1√
2
) +

2
√
a√
2

≤ 2a+ 2
√
a.

plugging in Lemma 11, and assuming kλ ≥ 1, k > λ we have

W 2
2 (µ

k
t , ν

k
t ) ≤ 2C2

[
DKL(µ∥ν) +

√
DKL(µ∥ν)

]

≤(12 + 8(κ0 + (2c+ dmax/β)))

[
(C1 + C2λ)kλ+

√
(C1 + C2λ)kλ

]
(kλ)

≤(12 + 8(κ0 + (2c+ dmax/β)))

[
(C2 +

√
C2)

√
λk + (C1 +

√
C1)

]
(kλ)2

=C2
0

[
(C2 +

√
C2)

√
λk + (C1 +

√
C1)

]
(kλ)2.

We thereby obtaining Lemma 2 with:

C0 ≜ (12 + 8(κ0 + (2c+ dmax/β))),

C1 ≜
M2βκ0

4
+

βB2

4
,

C2 ≜
M2(dmax + βc)

4
.

D.2 CONSTANTS IN EXPECTED FUNCTION GAP BOUNDS

We start by recalling the Lemma from Polyanskiy & Wu (2016):
Lemma 12 (Wasserstein Continuity for Quadratic-Growth Potentials). Let µ, π be probability dis-
tributions with finite second moments and let f : Rd → R+ be a continuously differentiable function
satisfying ∥∇f(x)∥2 ≤ c1∥x∥2 + c2. Then we have∣∣∣∣∫ f(x)dµ(x)−

∫
f(x)dπ(x)

∣∣∣∣ ≤ (c1σ + c2)W2(µ, π)

where σ =
√
max[Eµ[∥x∥2], Eπ[∥x∥2]].

Raginsky et al. (2017) bound the constant σ2 = maxEµk [x2],Eπβ
[x2] using an unbiased oracle. As

discussed in the main text, DXs have fixed device variation from analog errors, precluding unbiased
estimation. However, DX errors take the form of perturbations in the underlying function, i.e. the
target function characteristics are intact. For instance, DXs with quadratic potential targets (Aifer
et al., 2023; Song et al., 2024) are still optmizing/sampling quadratic functions. Accordingly, As-
sumptions 4 and 5, that the DX gradient retains both Lipschitz continuity and dissipativity, are
reasonable. Assuming gδ is (m, c)-dissipative, we have from Lemma 3 of Raginsky et al. (2017):

∥x(t)∥2 ≤ κ0 +
c+ d/β

m
.

Then

σ2 = κ0 +max

[
c+ d/β

m
,
c+ d/β

m

]
.
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