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ABSTRACT

Code repair, a task of learning to detect and fix bugs, is an important application
of deep learning for source code. Previous work relies on code changes using
Transformer models to represent code as sequences. However, code is naturally
represented as a graph that encapsulates rich syntactic and semantic dependencies.
Hence, generating edits for bug fixes requires both local structural information and
global information. Inspired by GraphTrans (Wu et al., 2021), we propose FIXUR,
a new architecture for generating bug fixing edits, by complementing graph neural
networks with Transformer to encode the code graph. Our experiments show that
FIXUR obtains near the state-of-the-art results on the code refinement benchmark,
without relying on any large-scale pre-training. FIXUR achieves 20.50% and
11.01% top-1 accuracy on the small and medium datasets, respectively compared
to 19.06% and 10.92% of CodeT5-small, which has a similar size.

1 INTRODUCTION

Advances in deep learning in the past decade have sparked much interest among practitioners in
applying the technology on programming languages and big code data. Many exciting applications
such as code completion, code synthesis and program repair promise to revolutionize software
engineering. Program repair or code refinement is particularly important and intriguing thanks to the
availability of code changes in code corpora and to recent successes of pre-trained models. (Feng
et al., 2020; Ahmad et al., 2021; Wang et al., 2021) harness the power of the Transformer architecture
as well as pre-training and establish state-of-the-art results for the task using the sequence-to-sequence
formulation (i.e., generating fixed code from the buggy code sequence.)

Besides Transformer, graph neural networks (GNNs) are also widely used on source code and
program repair as graph is a natural representation of source code whose rich structures are present in
abstract syntax trees and program dependencies (Yin et al., 2018; Allamanis et al., 2017; Hellendoorn
et al., 2020; Wang et al., 2020). For example, (Yin et al., 2018; Dinella et al., 2020; Yao et al., 2021)
leverage syntactic structures in the underlying abstract syntax tree (AST) to learn bug fixing edits from
code changes. However, GNNs have limitations in capturing the long range dependency between
nodes, which are prevalent in source code. Increasing GNN depth even worsens its performance on
some graph-level prediction tasks, a phenomenon known as oversmoothing or oversquashing (Alon
& Yahav, 2021). On the other hand, Transformer architectures have achieved great success on a wide
range of tasks that typically require long range interactions (Chen et al., 2021).

In this work, we seek to complement graph neural networks with Transformer to leverage the node-
node interactions in source code for source code representation. Inspired by Wu et al. (2021); Dinella
et al. (2020), we introduce FIXUR, a graph transformation model with a tree-based LSTM decoder
for code refinement. FIXUR incorporates a Transformer architecture on top of a graph neural network
to perform self-attention among nodes on the entire graph rather than on only local neighbors. This
allows FIXUR to learn long-range dependencies. Unlike (Wu et al., 2021) which omits positional
encodings to ensure permutation invariance, we explore positional encoding to encode the node
position since the abstract syntax tree admits a natural ordering of the nodes such as the depth
first order. This information is beyond the structural information encoded by the GNN in the node
embeddings. FIXUR is learned over tree differencing edits extracted from code changes.

We evaluate FIXUR on the Java code refinement benchmark (Tufano et al., 2019b; Lu et al., 2021). We
obtain significant improvements on the benchmark over HOPPITY and achieve near state-of-the-art
results compared to large-scale pre-trained models. In summary, our contributions are as follows:
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• We show that using Transformer with positional encoding atop a graph neural network
improves the ability of FIXUR in capturing long-range interactions between nodes for bug
detection and repair. This shows the potential of complementing GNNs with Transformer
for learning effective representations of source code.

• We introduce FIXUR that leverages the GraphTrans architecture and positional encoding on
the abstract syntax tree for code repair. FIXUR achieves near the state-of-the-art results on the
code refinement benchmark, without relying on any large-scale pre-training. FIXUR obtains
20.50% and 11.01% top-1 accuracy on the small and medium benchmark, respectively,
which outperforms all the baselines with comparable sizes without the need of pre-training.

2 RELATED WORK

Deep learning for code repair. Based on the lexical similarity between source code and natural
language, previous work has successfully applied Transformers models and large-scale pre-training
for code-related tasks, including code repair. Models such as CodeBERT (Feng et al., 2020), PL-
BART (Ahmad et al., 2021) and CodeT5 (Wang et al., 2021) achieve state-of-the-art results on a
standard code refinement benchmark (Tufano et al., 2019b). Unlike these works, we build FIXUR on
the inherent abstract syntax structure of code instead of its token-based representation.

Graph neural networks. GNNs are an important architecture for graph-structured data, particularly
source code which has rich structures in abstract syntax trees and program dependencies. Yin
et al. (2018); Dinella et al. (2020); Yasunaga & Liang (2020); Yao et al. (2021) use graph neural
networks to model the program using the abstract syntax representation for downstream tasks, such
as program repair. One of the well-known approaches to incorporate global information is increasing
the depth. Alon & Yahav (2021) shows that increasing depth results in over-squashing. To combat
this issue, several work has attempted to apply Transformer architectures to graphs. Models like
GREAT (Hellendoorn et al., 2020) leverage the attention mechanism of Transformer models to encode
relational information in graph representation of the input. GraphTrans Wu et al. (2021) passes the
output of GNN to a Transformer module and significantly boosts the performance on several open
graph benchmarks.

3 FIXUR

Our goal is to learn to generate bug fixes for a given buggy AST. We use a graph neural network
module to encode the program and an autoregressive decoder to generate bug fixing edits. Inspired by
GraphTrans (Wu et al., 2021), we introduce FIXUR that combines GNNs with Transformer for graph
encoding and use LSTM-based decoding for the code refinement. FIXUR consists of three main
modules: a GNN encoder followed by a Transformer module, and a tree-based decoder. Figure 1
illustrates the high-level architecture. We will describe each of the components below and reuse some
formulas of (Wu et al., 2021).
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Figure 1: The high-level architecture of FIXUR for one edit step.

Multi-edge GNN module. We aim to learn graph representations of programs to leverage their
rich syntax and dependency structures. Given a program, we construct a directed graph G = (V, E)
where the nodes and initial edges come from the abstract syntax tree. Similar to (Allamanis et al.,
2017; Yin et al., 2018; Brockschmidt et al., 2018; Hellendoorn et al., 2020; Dinella et al., 2020), we
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augment the tree with additional data flow by connecting edges between adjacent leaf nodes as well
as between nodes of the same values, and all the connections are bidirectional.

Our goal is to compute node embeddings of G using graph neural networks. We initialize for each
node v ∈ V a feature vector h0

v ∈ Rd0 as the sum of the label and value embeddings assigned
to the node. Then, a generic GNN can be used to compute for each graph with to the edge type
k = 1, . . . ,K the following embeddings:

h(`,k)
v = f`

(
h(`−1,k)
v , {h(`−1,k)

u |u ∈ N k(v)}
)
, ` = 1, . . . , LGNN (1)

where LGNN is the total number of GNN layers, N k(v) denotes the set of nodes that connects to or
from v with an edge of type k, and f`(·) is some propagation and aggregation function parameterized
by a neural network. Then, we gather the node embeddings from each graph and produce give the
final node embeddings n = {hLGNN

v }v∈V for each node v ∈ V using another neural network g:

hLGNN
v = g([h(LGNN,1)

v , . . . ,h(LGNN,K)
v ]).

Node Transformer module. The node embeddings hLGNN
v ∈ RdLGNN are then passed to the Trans-

former module to learn attention-based representations, with a series of forward propagation steps:
First, it transforms hLGNN

v ’s to the Transformer dimension and normalize the embedding with a layer
normalization:

h0
v = LayerNorm(W ProjhLGNN

v ) + PE(v) (2)

where W Proj ∈ RdTF×dLGNN is a learnable projection matrix, dTF is the Transformer dimension and
PE(v) is the positional embedding of v. Next, it computes the attention-based node encodings, for a
single attention head in layer `:

a`v,w = (WQ
` h`−1

w )>(WK
` h`−1

u )/
√
dTF for w ∈ V,

α`
v,u = softmaxw∈V(a

`
v,w), h′`v =

∑
w∈V

α`
v,wW

V
` h`−1

w , (3)

where WQ
` ,W

K
` ,W V

` ∈ RdTF/nhead×dTF/nhead are the learnable query, key, and value matrices, respec-
tively. We use nhead attention heads and concatenate the resulting per-head encodings h′`v , as done
in Transformer. The combined encodings are then passed to a final neural network, with standard
dropout, normalization and residual layers.

Postional Embeddings. Unlike (Wu et al., 2021), which directly feeds the transformed node
embeddings h0

v into the Transformer stack without positional encoding, we instead explore positional
encoding to encode the node position since the abstract syntax tree admits a natural node ordering
such as the depth first order. The encoding is then added to h0

v. This information is beyond the
structural information encoded by the GNN in the node embeddings. We find the positional encoding
helpful in our experiments.

Finally, we need a single encoding vector that summarizes the entire graph’s local and global
structures. An interesting aspect of the Transformer architecture is a global readout in which one can
employ a special-token embedding for downstream tasks by adding the <CLS> token to the input
sequence and take its corresponding output embedding to represent the input. With the Transformer
module and the <CLS> token, the information of the whole input with node-node interactions is
aggregated into that embedding via the attention module. In our experiments, however, we found that
sum pooling works better for the bug detection and refinement tasks.

Tree-based decoder module. Once we have the graph representation, we use an auto-regressive
tree decoder to perform one bug fixing edit step. Given the graph representation gt of the program at
step t and the edit history st−1 from the previous step, an LSTM decoder is used to update the state
st = LSTM(gt|st−1) after each prediction call, based on the following probability decomposition of
an edit action:

p(at|st) = p(loct|st)p(opt|st, loct)p(typet|st, opt, loct)p(valuet|st, opt, loct, typet). (4)

More specifically, based on the updated state st, the model predicts edit actions where each node
edit includes a pointer network that acts as the node selector, an operator prediction layer as
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well as type and value prediction layer. The node selector selects a node loct, then the opera-
tor predictor decides which operator opt to apply the edit on loct among the possible operators
{DELETE, ADD, COPY, REPLACE, NO_OP}. Depending on the selected operation, the type predictor
further determines the node type/label typet for the newly added node. For terminal nodes, the value
predictor computes the node value valuet. For COPY, the node selector also finds a pointer to where
on the original AST the model should copy from. We maintain the single LSTM to encode the global
state after each of the location, operation, value and type predictions. For more details into this
grammar-based decoding, we refer the reader to (Yao et al., 2021).

4 EXPERIMENTAL RESULTS

We conduct experiments on the Patches in the Wild Java benchmark (Tufano et al., 2019b), which
is also known as the code refinement benchmark (Lu et al., 2021). We compare FIXUR against a
wide range of baselines to show its efficacy. We also analyze the performance of GraphTrans in
representing source code for bug localization, a task that aims to detect the buggy location in the
code, and demonstrate the challenge of this task.

4.1 DATASET

We use the code refinement benchmark, which consists of 123,804 bug-fix pairs and is divided into
two subsets — small and medium. The small set has 58,350 methods/functions with less than 50
tokens whereas each of the 65,454 medium function is between 50 and 100 tokens. Both datasets
come with an 8:1:1 split for training, validation and testing. A test example of buggy and fixed code
is shown in Listing 1. We parse the source code into ASTs and filter out a few un-parsable samples.
The average numbers of AST nodes on the two datasets are 65 and 142, respectively.

Buggy code:
public static boolean METHOD_1(TYPE_1 VAR_1) {

return TYPE_2.METHOD_2(VAR_2);
}

Fixed code:
public static boolean METHOD_1(TYPE_1 VAR_1) {

return TYPE_2.METHOD_2(VAR_1);
}

FIXUR edit:
1. "edit": REPLACE:::8:::VAR_1

Listing 1: A variable-misuse bug and the ground-truth fixing edit in the small dataset.

Ground-truth edits. Unlike sequence-to-sequence models, which predict the target fixed code given
the buggy code sequence, FIXUR tries to learn bug fixing edits and apply them on the buggy input.
As such, we need to extract ground-truth edit sequences between buggy and fixed code and compute
the objective function. There are multiple ways to generate edits given a pair of buggy and fixed
ASTs. HOPPITY (Dinella et al., 2020) uses JSON differencing algorithm, which produces long and
uninterpretable sequences. Instead, we implement a grammar-constrained and shortest distance tree
differencing algorithm based on a dynamic program of Yao et al. (2021) (Algorithm 3). The resulting
edit sequences are 3-4X shorter than JSON differencing edits in both datasets. Listing 1 displays the
fixing edit derived from the buggy and fixed code in which an edit includes the edit location, the edit
operation type, the node type and value (when applicable).

Metrics. We report the standard top-1 exact match (EM) accuracy for FIXUR and the baselines.
Given the buggy code, a generated fix is considered correct if it exactly matches the ground-truth. For
graph-based approaches, we compare the corresponding AST via the depth first order. In addition,
we use the bug localization accuracy of predicting the bug locations in an additional analysis.

Implementation and training details. We implement FIXUR with PyTorch and train the model
with various configurations on a machine that has 8 V100 GPUs and 32GB each. We use the Adam
optimizer and a linear learning rate scheduler with a default learning rate 0.0001 and warmup in the
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first 10% of the total training iterations. We train all FIXUR models for 20 epochs using 16 edit steps
and batch size from 32 to 128, depending on the model size. The training takes about 0.5 hour per
epoch on the small subset and about 1.5 hours per epoch on the medium set. We choose the best
model based on the validation loss and report the top-1 accuracy on the test set. During the testing
phase, we use beam search of size 5 and select the candidate with highest score normalized by the
edit sequence length as the final fix. We did not perform any exhaustive hyper-parameter search, so
we might be able to achieve better results with appropriate tuning. For HOPPITY, we use a larger
learning rate of 0.001 that allows the model to learn longer edits faster and perform better.

4.2 RESULTS

Table 1: Top-1 exact match (EM) accuracy of FIXUR and baselines without pre-training. For FIXUR,
we use graph isomorphism networks (GIN) with LGNN = 8 and dGNN = 512. The Transformer
module has the same latent dimension dTF = 512, nhead = 8 heads and LTF = 6 encoder blocks.

Model Size Small Medium
LSTM (Tufano et al., 2019b) 10M 9.22% 3.22%

GRU + Token Copy (Panthaplackel et al., 2020) 250K 14.80% 7.00%
Transformer (Drain et al., 2021) 60M 11.10% 2.70%

GRU + Span Copy (Panthaplackel et al., 2020) 250K 17.70% 8.00%
HOPPITY 73M 14.48% 5.42%

FIXUR without Transformer 43M 18.96% 9.26%
FIXUR 53M 20.50% 11.01%

First, we compare FIXUR to baselines that are all trained from scratch. The results are shown in Table
1. We can see that FIXUR significantly outperforms the traditional LSTM (Tufano et al., 2019b), and a
sequence-to-sequence model based on Transformer with the comparable number of parameters. Next,
we include edit-based approaches (Panthaplackel et al., 2020) and HOPPITY (Dinella et al., 2020)
for comparison. We run two configurations of FIXUR with and without the Transformer module,
which have 53M and 43M parameters respectively. Overall, FIXUR outperforms both models by good
margins. In particular, it is worth noting that the GRU + Span Copy model in (Panthaplackel et al.,
2020) works as competitively as FIXUR despite using much fewer parameters. It would be interesting
to see if such a model could scale and improve the performance when the model size increases.

Compared to HOPPITY, which also uses GINs for the graph encoding, FIXUR benefits from the
shorter edit sequences, and the initialization of node embeddings as the sum of type and value
embeddings, instead of one-hot encodings. We can see the improvement of FIXUR over HOPPITY
without Transformer. Adding the Transformer on top of the graph encoder boosts the performance
further, giving about 2% gain in accuracy on each dataset. We observe that increasing the GIN’s depth
and latent dimension did not help, so the performance gain given by the Transformer component is
not merely in terms of increasing the number of parameters.

Table 2: Top-1 exact match (EM) accuracy of FIXUR and to larger-scale pre-trained models. For
FIXUR, we use GINs with LGNN = 8 and dGNN = 512. The Transformer module has the same latent
dimension dTF = 512, nhead = 8 heads and LTF = 6 encoder blocks.

Model Pre-trained Size Small Medium
CodeBERT (Feng et al., 2020), 3 180M 16.40% 5.20%

GraphCodeBERT (Guo et al., 2020) 3 110M 17.30% 9.10%
BART (Drain et al., 2021) 3 400M 16.70% 6.70%

PL-BART (Ahmad et al., 2021) 3 140M 19.21% 8.98%
CodeT5-small (Wang et al., 2021) 3 60M 19.06% 10.92%
CodeT5-base (Wang et al., 2021) 3 220M 21.61% 13.96%

FIXUR 7 53M 20.50% 11.01%

Finally, we benchmark FIXUR against several large-scale models that are based on the Transformer
architecture and pre-trained on unlabeled code corpuses. Without pre-training, FIXUR beats most
of these baselines. For example, it outperforms CodeBERT by 4.10% (in absolute terms) on the
small subset and 5.50% on the medium subset. We also see similar accuracy gains of FIXUR over

5



Under review as a conference paper at ICLR 2022

BART and PL-BART. With comparable model sizes, FIXUR is better than CodeT5-small on both
datasets. CodeT5-base with 220M parameters is currently the state-of-the-art performance on both
datasets. Compared to CodeT5-base, FIXUR has 4X fewer parameters and is trained from scratch. In
other words, FIXUR achieves competitive results without pre-training. Using careful hyper-parameter
tuning and pre-training strategies, we may be able to beat the state-of-the-art CodeT5-base models.

4.3 BUG LOCALIZATION ANALYSIS

We aim to reason about the overall performance on the bug fixing task and understand the accuracy
gap between the two small and medium datasets in FIXUR. To that end, we run FIXUR for bug
localization, which is a simplified task. Specifically, we train the models to predict the location of
the first bug location without attempting to generate the fix. We do so by discarding the two fully
connected layers for the type and value predictions in the decoder while keeping the LSTM decoder
as is. The number of parameters are therefore slightly smaller than the full models presented in the
previous section. We run each of the models with several hyper-parameter and readout variations on
the small and medium datasets. We report the location accuracy on the test set.

Table 3: Experiments of FIXUR with different readouts and model sizes. Here, we use GINs with
LGNN = 8 and dGNN = 512, and the Transformer module with the same latent dimension dTF,
nhead = 8 heads and LTF = 6 encoder blocks. Without the LSTM layer, FIXUR has 47M parameters.

Model Model Size Readout Positional Avg. Graph Size Small MediumEncoding Small Medium
FIXUR 47M <CLS> 7 65 142 29.89% 16.52%
FIXUR 47M <CLS> 3 65 142 30.11% 16.14%
FIXUR 47M sum 3 65 142 30.69% 17.28%

The results are shown in Table 3. First, we can see that the model with positional encoding and sum
pooling works better than the ones using the <CLS>-style readout. Second, the location accuracy
reported in this Table gives an upper bound on the overall accuracy of the full corresponding models
presented earlier. Improving the decoder, which has only one LSTM layer, may bridge the accuracy
gap between the localization and the bug fix performance. Also, we include the average number of
nodes of the graph in both test sets. We can see that there is a significant difference in the location
accuracy between two sets because buggy code in medium set has significant more nodes than that in
the small set. Finally, we also observe when the first bug location is predicted correctly, then the fix is
often correct. Hence, improving the bug localization is crucial for solving the code refinement task.

5 CONCLUSION

Program repair or code refinement is an important application of deep learning on source code. In this
work, we build on the recent GraphTrans model and propose FIXUR, a model for the bug fix prediction
task, which requires modeling both the graph structure and long-range relational information. We
show the efficacy of FIXUR on the code refinement benchmark that achieves near state-of-the-art
performance despite smaller size and without pre-training. We find that positional encodings are
helpful for the bug fix prediction task and that <CLS>-based pooling does not exploit the structure
present in AST-based representation.
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