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ABSTRACT

Referring Image Understanding (RIS) has been extensively studied over the past
decade, leading to the development of advanced algorithms. However, there has
been a lack of research investigating how existing algorithms should be bench-
marked with complex language queries, which include more informative descrip-
tions of surrounding objects and backgrounds (e.g., "the black car." vs. "the
black car is parking on the road and beside the bus."). Given the significant
improvement in the semantic understanding capability of large pre-trained mod-
els, it is crucial to take a step further in RIS by incorporating complex language
that resembles real-world applications. To close this gap, building upon the ex-
isting RefCOCO and Visual Genome datasets, we propose a new RIS bench-
mark with complex queries, namely RIS-CQ. The RIS-CQ dataset is of high
quality and large scale, which challenges the existing RIS with enriched, spe-
cific and informative queries, and enables a more realistic scenario of RIS re-
search. Besides, we present a nichetargeting method to better task the RIS-CQ,
called dual-modality graph alignment model (DUMOGA), which outperforms
a series of RIS methods. To provide a valuable foundation for future advance-
ments in the field of RIS with complex queries, we release the datasets, pre-
processing and synthetic scripts, and the algorithm implementations at https :
//anonymous.4open.science/r/ICLR2024-D652/README . md.

1 INTRODUCTION

Correctly comprehending the subtle alignment (i.e., grounding) between language and vision has
long been the pivotal research in the intersecting communities of computer vision and language
processing (Yang et al., |2020; [2019; Zhao et al.l|2022). Among a range of vision-language grounding
topics, Referring Image Segmentation (RIS) has been proposed with the aim to ground a given
language query onto a specific region of an image, i.e., typically represented by a segmentation map,
as exemplified in Figure[I] By precisely bridging the semantics between the images and texts, RIS
plays a crucial role in various downstream cross-modal applications, including image editing (Chen
et al.,[2018} |L1 et al.;, 2020)), and language-based human-robot interaction(Wang et al., 2019; Zhang
et al., 2020).

Although attracting increasing research attention, the existing RIS benchmarks, unfortunately, can be
subject to the simplicity and naivety of the language queries. Specifically, via data statistics of
the current popular RIS datasets, including RefCOCO and RefCOCO+ (Yu et al., 2016; Mao et al.|
2016), we find that i) 85.3% text queries have short forms (i.e., with length < 5 words), and ii) 83.8%
queries involve only one or two visual objects. We note that such characteristics would inevitably
lead to the key pitfalls that hamper the utility and applicability of RIS task.

* On the one hand, caused by the inequality between vision and language, i.e., language is
abstract and succinct while vision always entails richer details, simple short language queries
with shallow object descriptions usually trigger ambiguity for the visual coreference. The
sample in Figure[l| shows the case. More severely, in the existing RIS datasets, a significant
majority of query sentences suffer from such ambiguity. Intuitively, RIS models, being trained
on such overly simplistic data, would largely fail to disambiguate the image referring and lead
to suboptimal performance.
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Figure 1: The comparison between the existing Referring Image Segmentation (RIS) and the
complex-query RIS proposed in this work.

* On the other hand, in real-world applications, individuals are more likely to input detailed textual
descriptions in complex forms, so as to accurately locate the desired objects. Although the
recent RIS methods (Yang et al.| 2022} |Yu et al.,|2018; [Feng et al.| [2021]) achieve satisfactory
performance on the in-house testing set, they can still struggle when confronted with complex and
informative queries. Our preliminary experiment indicates that even the current top-performing
RIS model, LAVT(Yang et al.,2022), drops dramatically (74.46 vs. 10.84 in mIoU on two RIS
datasets) when testing on the complex query. In other words, being trained on existing RIS
datasets can lead to the failure of generalizing to the input queries from realistic users in the
wild.

The above observations imperatively motivate the exploration of Referring Image Segmentation with
Complex Queries (RIS-CQ). In this work, we propose a novel benchmark for RIS under such complex
scenario. Specifically, we construct a RIS-CQ dataset (cf. §2), which is of high quality and large scale.
Technically, we first extract the salient objects with their pertaining relations (spatial, action, efc.)
from an image, and then generate semantically detailed and meaningful descriptions for the referring
objects towards their surrounding objects, which serve as the complex-form queries. Notedly, the
recent large language models (LLMs), e.g., ChatGPT (Lund & Wang|, 2023) have revealed the great
capability of human-level understanding of language semantics. Thus we take advantage of the LLM
to assist to generate large amounts of complex queries while without sacrificing the labeling quality.
Finally, we obtain a novel RIS-CQ dataset with 118,287 images and 13.18 words on average for each

query.

The key to accurate RIS recognition in our scenario essentially lies in the deep understanding of the
underlying semantics of different modalities, because of the intrinsic complex form of textual query
and the sophisticated visual content. To this end, we propose a novel dual-modality graph alignment
(dubbed DUMOGA) model (cf. §@ to benchmark the RIS-CQ task, where the input sentence and
image are represented with the semantic dependency graph (Peters et al., 2018)) and semantic scene
graph (Tang et al.| 2019), respectively. Meanwhile, the semantics of the two modalities should
be sufficiently interacted for deep comprehension of the inputs. Correspondingly, two levels of
cross-modal alignment learning are carried out in DUMOGA to capture the intrinsic correspondence
between the input text and vision, including the structural alignment between two semantic graphs and
the feature alignment between two semantic representations. On the RIS-CQ datasets our DUMOGA
achieves 24.4 in mloU, outperforming the current state-of-the-art (SoOTA) RIS method by more than
200%.

To sum up, this work contributes to the following three aspects. (1) We construct a novel benchmark
dataset, RIS-CQ, which challenges the existing RIS with complex queries, and enables a more
realistic scenario of RIS research. (2) We present a strong-performing system (DUMOGA) to model
the task, which brings a new SoTA results on the RIS-CQ dataset. (3) Series of in-depth analyses
are shown based on our dataset and the systems, where some important and interesting findings are
presented and concluded to shed light on the future exploration of this topic. All our data and resource
will be made open later to facilitate the follow-up research.
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2 CONSTRUCTING COMPLEX QUERY FOR REFERRING IMAGE SEGMENTATION

2.1 PROBLEM DEFINITION

Given an image 7 and a set of textual queries (i.e., long-form sentences with semantically complex
expressions) @ = {p;}}£,, RIS-CQ aims to predict a set of segmentation masks S = {s;}£,, where
each s; correspond to each query p; that localizes it in the image. Note that M is the number of
referring expressions for a given image Z, which is set as M € [1,10].

2.2 DATASET CONSTRUCTION

In this section, we elaborate on how to elicit complex and contextualized queries from large language
models (i.e., ChatGPT) by leveraging diverse structured semantics in images (e.g., inter-object
relations). First, we extract holistic semantic relations for each image and then select more significant
objects that involve diverse interactions with other objects as the candidate objects. Second, we
utilize specially tailored prompts to guide ChatGPT in generating complex queries for each candidate
object based on rich visual context. Finally, we manually filter out or revise problematic queries (e.g.,
ambiguous references), to ensure the annotation quality.

Step-1: Relation extraction. To begin with, we utilize an off-the-shelf scene graph generation
model, VC-Tree, to directly extract the objects present in the images along with their relationships.
These relationships are stored in the form of triplets, such as <person, cup, holding>, which indicates
that the person is holding the cup. Additionally, during this step, we apply a simple filter to exclude
objects that have fewer than two relationships with other objects. We believe that generating queries
to describe these objects would be relatively straightforward, increasing the probability of ambiguous
references or incorrect references.

Step-2: Complex query generation. In this section, we devise a tailored set of prompts to
efficiently leverage the in-context learning capabilities of a large language model. For each object and
its corresponding relation triplets, we generate a descriptive text query using the model. For instance,
given a set of triplets associated with the target object person, <person, cup, holding>, <person, wall,
leaning on>, <table, person, next to>, ChatGPT can provide us with the output "the person is next to
the table, holding the cup and leaning on the wall."

Specifically, we utilize the gpt-3.5-turbo model as our large language model, with the API interface
provided by OpenAl. To ensure stable outputs from the model, we set the decoding temperature to
0. The relevant prompts used are detailed in the appendix for reference. An additional noteworthy
aspect is that the presence of the large language model entirely liberates us from the manual labor of
annotating images for generating language queries. This significantly reduces our workforce costs
while ensuring the quality of queries. Moreover, it facilitates the expansion of our dataset to the
magnitude of 100k.

Step-3: Post-processing. Finally, we manually filter out or revise queries with ambiguous refer-
ences to ensure a precise one-to-one correspondence between the queries and objects within the image.
After multiple iterations in constructing prompts, we have successfully developed prompts that yield
high-quality queries generated by ChatGPT. However, it is important to note that since ChatGPT
receives input solely from the relation triplets generated by the scene graph model, it lacks certain
contextual information from the image. As a result, there may be instances where the generated
queries exhibit ambiguous references to the objects being described. Unfortunately, these queries
cannot be filtered out automatically in our automated pipeline, necessitating manual intervention for
their removal.

2.3 DATASET STATISTICS

Figure [3| presents the statistical analysis of objects and predicates in the RIS-CQ dataset, which
consists of a total of 133 object classes and 56 relation classes. The language queries generated are
solely based on the objects depicted in Figure [3|along with their corresponding relations. The objects
and relations are categorized into 9 groups and 6 groups respectively, with each group containing
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to ﬁm/her, the person is looking away.
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(c) Failed segmentation

The person is sitting on the stairs and
holding a book looking around.

(a) Misidentified referent

The pavement has a car and a motorcycle
parked on it, and dirt is beside it.

(b) Incorrect object classification
Figure 2: Failure cases of Complex-query Referring Image Segmentation.
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Figure 3: The distribution of object and relation categories, organized based on the parent classes.
Best viewed by zooming in.

elements that exhibit certain correlations. The group names represent abstract summaries of the
shared attributes among the elements within each group.

We analyze the failure cases of current models on RIS-CQ dataset. From Figure 2] we can summarize
them into three types: misidentified referent, incorrect object classification, and failure segmentation.

2.4 DATASET COMPARISON

RefCOCO/ RefCOCO+/ RefCOCOg. RefCOCO (Yu et al.,[2016), RefCOCO+ (Yu et al., 2016),
and RefCOCOg (Mao et al.| [2016)) are three visual grounding datasets with images and referred
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Figure 4: Our proposed DUMOGA framework, includes three procedures: Dual-modality Graph
Representation, Dual-modality Graph Alignment, and Prediction. Best viewed by zooming in.

objects selected from MS COCO [2014). The referred objects are selected from the MS
COCO object detection annotations and belong to 80 object classes. RefCOCO
has 19,994 images with 142,210 referring expressions for 50,000 object instances. RefCOCO+ has
19,992 images with 141,564 referring expressions for 49,856 object instances. RefCOCOg has 25,799
images with 95,010 referring expressions for 49,822 object instances.

Visual Genome. Visual Genome (VG v1.4) (Krishna et al.} 2017) contains 108, 077 images with
21 relationships on average per image, which is split into 103, 077 training images and 5, 000 testing
images.

Table 1: Statistics of current Referring Image Understanding benchmarks.

Dataset RefCOCO RefCOCO+ RefCOCOg Visual Genome RIS-CQ
# Images 19,994 19,992 26,711 108,077 118,287
# Text query 142,209 141,564 85,474 5.4M 285,781
Avg. query length 3.61 3.53 8.43 5 13.18
Avg. object / query 1.76 1.67 3.03 - 3.58
Annotation methods ~ Manual Manual Manual Manual Auto + Manual

RIS-CQ. is our proposed referring image segmentation benchmark, which targets the explanation
of image contents. The image source for RIS-CQ is the union of VG (Krishna et al.,[2017) and COCO
datasets. RIS-CQ challenges RIS models to understand the rich object interactions
in daily activities. As shown in Table[I] we summarize the details of each dataset compared with our
RIS-CQ dataset.

3 PROPOSED METHOD

Unlike classic dense prediction models with complex design in RIS (e.g. LAVT [2022)),
which take expensive computational power to make inferences, the graph learning based architecture
provides efficient training process and promising results. To address the numerous descriptions of
surrounding objects and backgrounds within images, images are parsed into scene graphs, which are
treated as fine-grained image representations to analyze the relations of these objects with a graph
structure. On the other hand, following previous dependency-based RE methods 2019),
we parse the queries into syntax dependency trees, which can provide information for dual-modality
graph alignment. As a result, we propose a graph learning-based method named DUMOGA to align
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the semantics in queries and the information in images, aiming at efficiently locating the target
instances. The whole structure of our proposed DUMOGA is shown in Fig [}

3.1 DUAL-MODALITY GRAPH REPRESENTATION

Semantic Scene Graph Generation for Vision. We employ a classic SGG model (e.g. VCTree
(Tang et al,2019)) to parse images into scene graphs. The whole process can be formulated as:

P.(G|Z)=P-(S,O,R|I). 1)

An image 7 can be segmented into a set of masks S. Each mask is associated with an object
with class label O. A set of relations R between objects are predicted. We construct the node set
N; ={0,|j € [1,n]} of the scene graph, O; is the i,;, object detected in the image. n represents the
number of detected object, and we set the maximum number of detected object for each image to
N. For the edge set E; = {R,, = (14, Ip) |a € [1,n],b € [0,n — 1]}, R, denotes the a,y, object
related with the b;, object. As a result, the scene graph can be formulated as follows:

Gi = (Ni, E;) . (2)

Syntax Dependency Graph for Text. We use the syntax dependency tree to explore the dependency
between words in the sentence. Following (Peters et al.,|[2018)), we use ELMo to obtain the dependency
tree for the input text after which each word from the text is connected by its governor and obtains
its related dependency triple. For the node set N, = {T}|j € [1,[]} of the dependency tree, T
denotes the j;, token in the sentence, and [ represents the total length of the sentence. For the edge
set By, = {Gop = (T, T,) |a € [1,1]}, T, denotes the governor of the ay, token, and the graph
representation for the sentence can be formulated as follows:

Gr = (Ni, Er). 3)

3.2 DUAL-MODALITY ALIGNMENT

To accurately locate the target instance using the query sentence, the gap between visual and semantics
needs to be bridged. Thus, we propose the graph and feature alignment process to efficiently align
visual and language domains.

Graph Alignment. We approximate the node embedding matrix P by factorizing a similarity matrix
of the node identities, and align nodes between the above two graphs by greedily matching the most
similar embeddings from the other graph.

Following (Zheng et al.,|2021)), we combine N; and Ny, and count both in and out degrees of k-top
neighbors for each node Then we compute the similarity between every two nodes, gettingan x n

similarity matrix P. After that we subsets P; and P> from P. The P, and P, denote separate
representations for nodes in G; and G,.

ﬁl,ﬁQ:D(N (15)), “)
where D denotes the dividing operation of P by the number of nodes in /V; and V; in order, and N

is normalization operation. When finishing graph structure alignment, we calculate the similarity
between node i from P1 and node j from Pg using the formula below:

s = eap(— | Bulil = Pl ). ©

With the similarities between nodes, the two graphs are transformed into a similarity map «, which
can be formulated as:

a = (aig) v, vy - ©)

where a;; represents the structural similarity between the 4, word of the input text and the j;;, object
of the input image.

Feature Alignment. Though graph structure is efficient, the information within is not enough for the
task. We take the advantage of visual features from images and word embeddings from sentences to
promise a fine-grained searching space. Specifically, for each image I, we get its visual feature F;
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Table 2: Comparison with state-of-the-art methods in terms of overall IoU on three benchmark
datasets. GA represents Graph Alignment, FA represents Feature Alignment, and Full represents
Graph Alignment + Feature Alignment.

Refer Image Segmentation

Method Backbone Model — 103 P@04 P@05 P@06 P@07
MACttNet (Yu et al, 2018) ResNet-101 800 961 790 615 551 458
VPD (Zhao et al, 2023) U-Net 240 295 275 238 215 193
LAVT (Ding et al,2021) SWIN-B 202 266 216 171 137 109
UNINEXT (Yan et al,2023)  ResNet-50 198 223 218 210 199 192
DUMOGA (GA) ResNet-50 150 195 183 167 144 117
DUMOGA (FA) ResNet-50 164 211 194 178 155 134
DUMO0GA (FULL) ResNet-50 244 318 297 268 231 193

from backbone model (e.g. ResNet-50 (He et al.,[2016)). For each sentence (), we get its semantic
embedding Fj using BERT (Devlin et al.,|2019). We treat F; as the query while F] is treated as the
key and value, completing the attention process below:

. gk”
R®* = Softmax ﬁ v, @)

where d denotes the dimension of Fj.

Feature Fusion and Prediction. After obtaining the results from graph alignment and feature
alignment processes, we fuse them to make the final prediction.
Rl = MLP([R*;aF)]), s=j"=Argmax(R{,..R, .. R}), 8)
1<G<N
Where [;] denotes concatenation, and we use the MLPs to project the feature to N dimension. s
denotes the output of the referring objects from the input with the largest probability.

3.3 TRAINING LOSS

For the N detected objects in the image, we match their masks with the ground truth mask and obtain
the gy, object that share the most intersection over union with the ground truth. To maximize the
probability on the g;;, dimension of R/, we employ a cross-entropy loss function below:

L=y [-K'log(R]) — (1 - K")log(1— R])]. )

K represents a one-hot vector with all zeros except for the g4, dimension, and K i denotes the i
dimension of K. As a result, the probability on the g;;, dimension of R/ is maximized.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

We employ a VCTree (Tang et al.,[2019) with ResNet-50 (He et al.,[2016) as its backbone for scene
graph generation and visual feature extraction. The maximum detected object in one image is set to
10. Specifically, the feature dimension for each of the detected object is 1024. For the query sentence,
we append the [CLS] and [SEP] tokens to the beginning and end of the sentence respectively. Then a
pre-trained BERT is used to generate sentence embedding and the dimension is set to 768. For our
DUMOGA model, it is trained with Adamw optimizer, where we set the base learning rate at 2e-5
and the batch size at 64.

4.2 EVALUATION METRICS

For the Referring Image Segmentation task, we follow previous works (Liu et alJ, 2017} Margtfoy-
Tuay et al.,|2018) and adopt Precision@ X and IoU to verify the effectiveness. The IoU calculates
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DuMoGA (Ours) Ground Truth

E

4

(b) Complex Query‘ 2: The person is standing on the rock, in front of the truck, and beside the pavement.

Figure 5: Visualization result of our proposed DUMOGA model on RIS-CQ dataset. It is noteworthy
that invalid prediction for LAVT was observed in the case of sample (b).

intersection regions over union regions of the predicted segmentation mask and the ground truth. The
Precision@ X measures the percentage of test images with an IoU score higher than the threshold
X €{0.3,0.4,0.5,0.6,0.7}, which focuses on the location ability of the method.

4.3 PERFORMANCE COMPARISON

Table 2] shows the performance comparison with other SOTA methods on the RIS-CQ dataset, which
includes the following models:

LAVT (Yang et al.|[2022)) is a Transformer-based framework for referring image segmentation. Unlike
traditional approaches that fuse cross-modal information after feature extraction, LAVT incorporates
language-aware visual encoding directly into the model architecture;

VPD (Zhao et al. [2023) proposed a new framework that exploits the semantic information of a
pre-trained text-to-image diffusion model in visual perception tasks;

UNINEXT (Yan et al.| [2023)) reformulates diverse instance perception tasks into a unified object
discovery and retrieval paradigm and can flexibly perceive different types of objects by simply
changing the input prompts;

MACttNet is a two-stage method that first extracts multiple instances by using an
instance segmentation network Mask RCNN 2017), then utilizes language features to
select the target from the extracted instances. Due to the space limitation, we only list selected SoTA
methods, more details can be found in Supplementary Materials.

As shown in Table 2] our method achieves remarkably superior performance on RIS-CQ dataset
compared with other SOTA methods. Also our DUMOGA model is based on ResNet-50
[2016), which is not so strong as Swin-B 2021), DUMOGA achieves over 100% to 200%
performance gain in all metrics compared with LAVT on RIS-CQ dataset. With
stronger backbone models, the performance of our DUMOGA model can be further improved.

We also provide the visualization of the output of our DUMOGA model in Figure[5} Compared with
LAVT 2021), our DUMOGA can accurately locate the referring object based on the
comprehensive understanding of visual-textual data, rather than response to partial words in the query
(such as the stop sign in FigureEl (a)).

4.4 IN-DEPTH ANALYSIS

Q1: How to control the annotation quality? The annotation process for the RIS-CQ dataset
spanned over a period of 6 months and involved the collaboration of 5 undergraduate students. To
ensure the production of high-quality annotations, the annotators were supervised and adhered to
specific principles. Firstly, all annotators underwent rigorous training before commencing the actual
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annotation process. Secondly, separate annotators were assigned for query and object selection
annotations. Annotators responsible for object selection were instructed to review the quality of
queries, ensuring that unclear or poor queries were either rectified or eliminated. This approach
simulated the evaluation process, guaranteeing the reasonableness of the queries while avoiding
subjective annotations. Lastly, guidelines were provided for the maximal lengths of language queries,
specifying limits of over 20 words for queries and over 5 for objects/background labels. We provide
more details in the Supplementary Materials.

Q2: What is the necessity of complex query? On the one hand, current RIS models are sensitive
to language queries. Even input two different queries which refer to the same object but contain
information in different granularities, current RIS models will output different regions. So we need
to construct a new RIS dataset with complex queries to validate the robustness of the proposed RIS
models. On the other hand, it is not the final path to general RIS model if restricted to train models
with downstream annotated benchmark datasets, such as RefCOCO with limited object classes and
short query length. It’s time to make a further step to real applications by combining with large
pre-trained models and propose a novel and informative RIS dataset with more relations among
objects.

5 WHAT To Do NEXT?

With the emergence of large pre-trained models (such as GPT-4 (Bubeck et al., 2023)) and SAM (Kir+
illov et al.| 2023)), the semantic understanding ability of dealing with multi-modal data has been
rapidly enhanced. Then, utilizing large pre-trained models is an irresistible trend due to their superi-
ority in open-vocabulary scenarios. In the next step, we can develop lightweight RIS modules (based
on the Graph Alignment and Feature Alignment modules in our DUMOGA model) to adapt large
pre-trained models in a plug-and-play manner. Besides, on the basis of our proposed RIS-CQ dataset,
we can explore more scenarios in real applications, such as referring object understanding in video
and audio modality. And evaluate the robustness of proposed RIS models even with none or multiple
referring objects according to the complex queries.

6 RELATED WORK

Referring image segmentation aims to segment a target region (e.g., object or stuff) in an image by
understanding a given natural linguistic expression, which was first introduced by (Hu et al., [2016).
Early works (Liu et al., [2017; Li et al.l 2018 Margffoy-Tuay et al.| 2018)) first extracted visual and
linguistic features by CNN and LSTM, respectively, and directly concatenated two modalities to
obtain final segmentation results by an FCN (Long et al., [2015). In MAttNet (Yu et al.| 2018), Yu et
al. proposed a two-stage method that first extracts instances using Mask R-CNN (He et al.,|2017),
and then adopts linguistic features to choose the target from those instances. Then, a series of works
are proposed to adopt the attention mechanism. EFNet (Feng et al.l [2021)) designs a co-attention
mechanism to use language to refine the multi-modal features progressively, which can promote the
consistency of the cross-modal information representation. Some recent works leverage transformer
(Vaswani et al. |2017) to deal with the RES task with satisfying performance. VLT (Ding et al.|
2021)) employs a transformer to build a network with an encoder-decoder attention mechanism for
enhancing the global context information. All these methods are trained with RIS datasets with
simple queries.

7 CONCLUSION

In this paper, we propose a novel benchmark dataset for Referring Image Segmentation with Complex
Queries (RIS-CQ). The RIS-CQ dataset is of high quality and large scale, which challenges the
existing RIS with complex, specific and informative language queries, and enables a more realistic
scenario of RIS research. Besides, we propose a novel SoTA framework to task the RIS-CQ dataset,
called dual-modality graph alignment model (DUMOGA), which effectively captures the intrinsic
correspondence of the semantics of the two modalities. Experimental results and analyses demonstrate
the necessity of our proposed dataset and the model.
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