
Absolute Policy Optimization: Enhancing Lower Probability Bound of
Performance with High Confidence

Weiye Zhao * 1 Feihan Li * 1 Yifan Sun 1 Rui Chen 1 Tianhao Wei 1 Changliu Liu 1

Abstract
In recent years, trust region on-policy reinforce-
ment learning has achieved impressive results
in addressing complex control tasks and gaming
scenarios. However, contemporary state-of-the-
art algorithms within this category primarily em-
phasize improvement in expected performance,
lacking the ability to control over the worst-case
performance outcomes. To address this limita-
tion, we introduce a novel objective function, op-
timizing which leads to guaranteed monotonic
improvement in the lower probability bound of
performance with high confidence. Building upon
this groundbreaking theoretical advancement, we
further introduce a practical solution called Abso-
lute Policy Optimization (APO). Our experiments
demonstrate the effectiveness of our approach
across challenging continuous control benchmark
tasks and extend its applicability to mastering
Atari games. Our findings reveal that APO as well
as its efficient variation Proximal Absolute Policy
Optimization (PAPO) significantly outperforms
state-of-the-art policy gradient algorithms, result-
ing in substantial improvements in worst-case per-
formance, as well as expected performance.

1. Introduction
Existing reinforcement learning algorithms focus on im-
proving expected cumulative rewards (referred to as per-
formance). Within this framework, trust region-based on-
policy reinforcement learning algorithms have achieved the
most promising results. However, the representative trust-
region policy optimization (TRPO) (Schulman et al., 2015)
only ensures the monotonic improvement of the expected

*Equal contribution 1Robotics Institute, Carnegie
Mellon University, USA. Correspondence to: Weiye
Zhao <weiyezha@andrew.cmu.edu>, Changliu Liu
<cliu6@andrew.cmu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Figure 1: Explanation of APO principles. Here we
simplify the distribution of rewards to a Gaussian
distribution for displaying. Green and blue represent
the worst case and expectation respectively. Y-axis
represents the distribution of performance samples
introduced in Section 2.2. In comparison to TRPO,
APO is designed to consistently elevate the lower
bound of overall performance.

performance, it fails to exert control over the worst-case per-
formance. Simultaneously, the deployment of reinforcement
learning policies in real-world scenarios demands a high
level of consistency, where the performance distribution
must be carefully controlled to ensure that even under worst-
case conditions, undesirable outcomes are avoided. This
is particularly critical in applications such as autonomous
driving and intelligent robot manipulation, where robust
performance is essential to guarantee safety, reliability, and
adherence to desired behaviors.

Distribution control represents a prominent research area
across various domains. Existing works in this field can
be categorized into three main groups: (i) modeling the
entire performance distribution, (ii) controlling worst-case
costs, and (iii) mitigating model discrepancies during gen-
eralization. Many distributional RL methods (Bellemare
et al., 2017; Dabney et al., 2017) fall into the first category,
aiming to model the entire distribution of returns (Dabney
et al., 2018). By incorporating more information about the
distribution of rewards into policy gradients, these methods
contribute to more stable and efficient learning (Yang et al.,
2019; Zhou et al., 2020; Kuang et al., 2023; Fujimoto et al.,
2018). While distributional RL is commonly applied in the
context of off-policy methods, the convergence character-
istics of these methods are not fully understood, typically
explored under strict assumptions such as infinite sampling
and Q-updates (Fujimoto et al., 2018). It’s important to

1

Absolute Policy Optimization

note that distributional RL does not inherently provide di-
rect guarantees for worst-case performance. Risk-sensitive
RL (Alexander & Baptista, 2004), which falls into the sec-
ond category, stands as a potent class of safe RL methods
designed to ensure high-confidence satisfaction of worst-
case costs (Chow et al., 2015; Berkenkamp et al., 2017;
Chow et al., 2018; Tang et al., 2019; Jain et al., 2021; Chen
et al., 2023; Yu & Ying, 2023). However, these methods
rely on a Lagrangian approach and necessitate intricate as-
sumptions for convergence (Chow et al., 2018). In the third
category, robust RL (Peng et al., 2017) addresses the chal-
lenge of minimizing performance fluctuations caused by
applying a policy to different environments with dynamic
discrepancies (Rajeswaran et al., 2016; Jiang et al., 2021;
You et al., 2022). Typically, these methods involve training
policies on a diverse set of environments to enhance perfor-
mance robustness (Peng et al., 2017; Panaganti et al., 2022).
Nevertheless, Robust RL does not address the enhancement
of performance robustness within a single environment.

Distinct from all the aforementioned categories, ensuring
the improvement of worst-case policy performance for
a given environment remains an uncharted area. In this
paper, we address this challenge by introducing a novel trust-
region policy optimization method. Unlike distributional
RL and risk-sensitive RL, our approach is an on-policy
trust-region method that explicitly ensures the monotonic
improvement of the worst-case performance without rely-
ing on complex assumptions. In contrast to robust RL, our
method directly enhances the worst-case performance for a
given environment. We delve into existing works and estab-
lish connections to our approach in detail in Appendix A.

Specifically, we introduce a novel theoretical breakthrough
that ensures the monotonic improvement of the lower prob-
ability bound of performance with high confidence. Subse-
quently, we implement a series of approximations to trans-
form this theoretically-grounded algorithm into a practical
solution, which we refer to as Absolute Policy Optimization
(APO). The main idea of APO is illustrated in Figure 1.
Remarkably, APO exhibits scalability and can efficiently
optimize nonlinear policies characterized by tens of thou-
sands of parameters. Our experimental results underscore
the effectiveness of APO and its efficient variation PAPO,
demonstrating substantial performance improvements in
terms of both worst-case performance and expected perfor-
mance compared to state-of-the-art policy gradient algo-
rithms. These improvements are evident across challenging
continuous control benchmark tasks and extend to the realm
of playing Atari games. Our code is available on Github.1

Our contribution is summarized below:
1https://github.com/

intelligent-control-lab/
absolute-policy-optimization

• To the best of the authors’ knowledge, the proposed
approach is the first to guarantee the monotonic im-
provement of lower probability bound of performance
with high confidence.

2. Problem Formulation
2.1. Notations

Consider an infinite-horizon discounted Markov decision
process (MDP) defined by the tuple (S,A, γ,R, P, µ),
where S is the state space, and A is the control space,
R : S × A 7→ R is a bounded reward function, 0 ≤ γ < 1
is the discount factor, µ : S 7→ R is the bounded initial
state distribution, and P : S ×A× S 7→ R is the transition
probability. P (s′|s, a) is the probability of transitioning to
state s′ when the agent takes action a at state s. A stationary
policy π : S 7→ P(A) is a mapping from states to a prob-
ability distribution over actions, with π(a|s) denoting the
probability of selecting action a in state s. We denote the
set of all stationary policies by Π. Subsequently, we denote
πθ as the policy that is parameterized by the parameter θ.

The standard goal for MDP is to learn a pol-
icy π that maximizes a performance measure J (π)
which is computed via the discounted sum of reward
J (π) = Eτ∼π [

∑∞
t=0 γ

tR(st, at, st+1)], where τ =
[s0, a0, s1, · · ·], and τ ∼ π is shorthand for that the dis-
tribution over trajectories depends on π : s0 ∼ µ, at ∼
π(·|st), st+1 ∼ P (·|st, at). Mathematically,

max
π∈Π

J (π) . (1)

Additionally, a performance sample is defined here as
Rπ(s0)

.
=

∑∞
t=0 γ

tR(st, at, st+1), where the state action
sequence τ̂ = [a0, s1, . . .] ∼ π starts with an initial state
s0, which follows initial state distribution µ.

The value function is denoted as Vπ(s)
.
=

Eτ∼π[Rπ(s)|s0 = s], the action-value function as
Qπ(s, a) = Es′∼P [Qπ(s, a, s′)]

.
= Eτ∼π[Rπ(s)|s0 =

s, a0 = a], and the advantage function as
Aπ(s, a) = Es′∼P [Aπ(s, a, s′)]

.
= Qπ(s, a) − Vπ(s).

We also define Āπ′,π(s) as the expected advantage of π′

over π at state s: Āπ′,π(s)
.
= Ea∼π′ [Aπ(s, a)].

2.2. Lower Probability Bound of Performance

Notice that maximizing the expected reward performance
(J), unfortunately, does not provide control over each in-
dividual performance sample (Rπ(s0)) derived from the
policy π. In a practical reinforcement learning setting, unex-
pected poor performance samples can lead to training insta-
bility, compromising the reliability of solutions in real-world
applications. To tackle this issue, our insight is that policy
optimization should not be solely fixated on enhancing ex-

2

https://github.com/intelligent-control-lab/absolute-policy-optimization
https://github.com/intelligent-control-lab/absolute-policy-optimization
https://github.com/intelligent-control-lab/absolute-policy-optimization

Absolute Policy Optimization

pected performance, but also on improving the lower bound
originating from the distribution of the variableRπ(s0). For
the continuous random variable Rπ(s0), the best we can
do is to improve the lower probability bound (Pishro-Nik,
2014) of performance with high confidence, defined as:
Definition 1 (Lower Probability Bound of Performance).
Given a tuple (B ∈ R, p ∈ R+), B is defined as the lower
probability bound of performance with confidence p. Math-
ematically:

Pr
(
Rπ(s0) ≥ B

)
≥ p, (2)

For an unknown performance distribution of policy π, we
first define V(π) as the variance of the performance dis-
tribution. Then, we can leverage the Selberg’s inequality
theory (Saw et al., 1984) to obtain an lower probability
bound of performance as Bk(π)

.
= J (π)−kV(π), which is

guaranteed to satisfy Definition 1 (proved in Proposition 1)
with confidence pψk

.
= 1 − 1

k2ψ+1 ∈ (0, 1). Here k is the
probability factor (k ≥ 0, k ∈ R) and ψ = Vmin ∈ R+,
where Vmin is minima of V(π).
Remark 1. Definition 1 shows that more than pψk of the
samples from the distribution of Rπ(s0) will be larger than
the bound Bk(π). Given a positive constant ψ, we can
make pψk → 1 by setting a large enough k, so that Bk(π)
represents the lower probability bound of performance with
with a confidence level close to 1.

2.3. Problem

In this paper, we focus on improving the lower probabil-
ity bound of performance in Markov Decision Processes
(MDP). In accordance with Proposition 1, the overarching
objective is to identify a policy π that effectively improves
Bk(π). Mathematically,

max
π∈Π

J (π)− kV(π). (3)

3. Absolute Policy Optimization
To optimize equation 3, we need to evaluate the objective
with respect to an unknown π. Our main intuition is to
find a surrogate function for the objective, such that (i) it
represents a tight lower bound of the objective; and (ii) it
can be easily estimated from the samples on the most recent
policy. To solve large and continuous MDPs, policy search
algorithms look for the optimal policy within a set Πθ ⊂ Π
of parametrized policies. Mathematically, APO updates
solve the following optimization:

πj+1 = argmax
π∈Πθ

J lπ,πj − k
(
MV π,πj + VMπ,πj

)
(4)

where J lπ,πj represents the lower bound surrogate function
for J (π) and

(
MV π,πj + VMπ,πj

)
represents the upper

bound surrogate function for V(π) in the (j+1)-th iteration.

Remark 2. MVπ,πj reflects the upper bound of expected
variance of the return over different start states. VMπ,πj

reflects the upper bound of variance of the expected return of
different start states. The detailed interpretations are shown
in Figure 2 and discussed in Equation (14), Proposition 2,
and Proposition 4.
Remark 3 (Balance of Exploration and Exploitation). In-
tuitively, equation 4 improves performance expectation and
minimizes performance variance, where k controls the im-
portance of the two folder objectives. Higher performance
variance (decreasing k) allows for more exploration, intro-
ducing the possibility of bad outcomes, thereby hindering
exploitation. Conversely, reducing performance variance
(increase k) limits exploration, impeding exploration and
resulting in convergence to local optima. Hence, a moderate
k is desirable, which is further discussed in Section 5.6.
The objective of TRPO can be viewed as a special case
of equation 4, where k = 0.

Here J lπ,πj ,MV π,πj , V Mπ,πj are defined as:

J lπ,πj
.
= J (πj) (5)

+
1

1− γ
E

s∼dπj
a∼π

[
Aπj (s, a)−

2γϵπ

1− γ

√
1

2
DKL(π∥πj)[s]

]

MV π,πj
.
=
∥µ⊤∥∞
1− γ2

max
s

∣∣∣∣∣ E
a∼π
s′∼P

[
Aπj (s, a, s

′)2
]

(6)

− E
a∼πj
s′∼P

[
Aπj (s, a, s

′)2
]
+ |H(s, a, s′)|2max

+ 2 E
a∼π
s′∼P

[
Aπj (s, a, s

′)
]
· |H(s, a, s′)|max

∣∣∣∣∣
+MVπj +

2γ2∥µ⊤∥∞
(1− γ2)2

√
1

2
DmaxKL (π∥πj) · ∥Ωπj∥∞

VMπ,πj
.
= ∥µ⊤∥∞max

s

∣∣∣∣|η(s)|2max + 2|Vπj (s)| · |η(s)|max
∣∣∣∣

(7)

−min (J (π))2 + E
s0∼µ

[V 2
πj (s0)]

where DKL(π∥πj)[s] is the KL divergence between (π, πj)
at state s and DmaxKL (π∥πj) = maxsDKL(π∥πj)[s];
ϵπ

.
= max

s
|Ea∼π[Aπj (s, a)]| is the maximum expected

advantage; dπj
.
= (1 − γ)

∑∞
t=0 γ

tP (st = s|πj)
is the discounted future state distribution; ωπj (s)

.
=

E
a∼πj
s′∼P

[
Qπj (s, a, s

′)2
]
− Vπj (s)

2 is the variance of action

value; Ωπj
.
=

[
ωπj (s

1) ωπj (s
2) . . .

]⊤
is the vector of

variance of action value; MVπj
.
= E

s0∼µ
[Var
τ̂∼πj

[Rπj (s0)] is

the expectation of performance variance over initial state

3

Absolute Policy Optimization

Figure 2: Explanation of MV and VM. Since performance from
different start states belong to a mixture of one-dimensional dis-
tributions, the variance of performance can be deconstructed into
two components: MeanVariance and VarianceMean.

distribution; min (J (π))2 .
= min

J (π)∈[J l
π,πj

,J u
π,πj

]
(J (π))2 is

the minimal squared performance, where the upper bound of

J (π) is defined asJ uπ,πj
.
= J (πj)+ 1

1−γ E
s∼dπj
a∼π

[
Aπj (s, a)+

2γϵπ

1−γ

√
1
2DKL(π∥πj)[s]

]
. Additionally,

|H(s, a, s′)|max
.
=

2γ(1 + γ)ϵ

(1− γ)2
DmaxKL (π||πj) (8)

+

∣∣∣∣∣∣γ E
s0=s

′

τ̂∼πj

[∞∑
t=0

γtĀπ,πj (st)

]
− E

s0=s
τ̂∼πj

[∞∑
t=0

γtĀπ,πj (st)

]∣∣∣∣∣∣
|η(s)|max

.
=

∣∣∣∣∣∣ E
s0=s
τ̂∼πj

[∞∑
t=0

γtĀπ,πj (st)

]∣∣∣∣∣∣
+

2γϵ

(1− γ)2
DmaxKL (π∥πj),

where ϵ .= max
s,a
|Aπj (s, a)|.

3.1. Theoretical Guarantees for APO

Theorem 1 (Monotonic Improvement of Absolute Perfor-
mance). Suppose π, π′ are related by equation 4, then abso-
lute performance bound Bk(π) = J (π)− kV(π) satisfies
Bk(π′) ≥ Bk(π).

The proof for Theorem 1 is summarized in Appendix C.
In essence, we introduce the functionMj

k(π) = J lπ,πj −
k
(
MV π,πj + VMπ,πj

)
(the right-hand side of equation 4).

Our demonstration establishes that Mj
k(π) serves as the

lower bound for the absolute bound Bk(π) through the ap-
plication of Proposition 2, Proposition 4, and Proposition 5.

Subsequently, leveraging the facts that Bk(πj) =Mj
k(πj)

(proved in [Lemma 5, Appendix C.6]) and Bk(πj+1) ≥

Mj
k(πj+1), the following inequality holds:

Bk(πj+1)− Bk(πj) ≥Mj
k(πj+1)−Mj

k(πj) (9)

Therefore, through the maximization ofMj
k at each itera-

tion (equation 4), we ensure the true absolute performance
Bk is non-decreasing. Furthermore, it is noteworthy that πj
is always a feasible solution for equation 4.

4. Practical Implementation
In this section, we show how to (i) encourage larger update
steps with trust region constraint, (ii) simplify complex
computations. The full APO pseudocode is provided as
Algorithm 1 in Appendix D.

Trust Region Constraint In practice, strictly following
the theoretical recommendations for the coefficients of KL
divergence terms in equation 4 often leads to very small
step sizes. Instead, a practical approach is to enforce a
constraint on the KL divergence between the new and old
policies (Schulman et al., 2015), commonly known as a
trust region constraint. This strategy allows for taking larger
steps in a robust way:

πj+1 = argmax
π∈Πθ

1

1− γ
E

s∼dπj
a∼π

[
Aπj (s, a)

]
(10)

− k
(
MV π,πj + VMπ,πj

)
s.t. D̄KL(π||πj) ≤ δ

where δ is the step size, MV π,πj
.
= MV π,πj −MVπj −

2γ2∥µ⊤∥∞
(1−γ2)2

√
1
2D

max
KL (π∥πj) · ∥Ωπj∥∞ and VMπ.πj =

VMπ,πj − E
s0∼µ

[V 2
πj (s0)]. The set {π ∈ Πθ :

D̄KL(π||πj) = E
s∼πj

[DKL(π∥πj)[s]] ≤ δ} is called trust

region. Notice that MVπj and E
s0∼µ

[V 2
πj (s0)] are com-

putable constant.

Special Parameters Handling When implementing Equa-
tion (10), we first treat two items as hyperparameters. (i)
∥µ⊤∥∞: Although the infinity norm of µ⊤ is theoreti-
cally equal to 1, we found that treating it as a hyperparam-
eter in R+ enhances performance in practical implemen-
tation. (ii) |H(s, a, s′)|max: We can either compute
|H(s, a, s′)|max from the most recent policy with equa-
tion 8 or treat it as a hyperparameter since |H(s, a, s′)|max
is bounded for any system with a bounded reward func-
tion. In practice, we found that the hyperparameter option
helps increase the performance. This setting will be dis-
cussed more detailedly in Section 5.5. (iii) |η(s)|max and
max

s
| · · · |: Furthermore, we find that taking the average

of the state s instead of the maximum will be more superior

4

Absolute Policy Optimization

and stable in terms of convergence results. Note that a simi-
lar trick is also applied in (Schulman et al., 2015) to handle
maximum KL divergence.

5. Experiment
In our experiments, we want to answer the following ques-
tions:
Q1: How does APO compare with state-of-the-art on-policy
RL algorithms?
Q2: What benefits are demonstrated by directly optimizing
the absolute performance?
Q3: Is treating Hmax as a hyperparameter necessary?
Q4: What are the impacts of different probability factor k
choices?
Q5: What potential does APO hold?
Q6: How does APO compare with state-of-the-art algo-
rithms in terms of computational cost?
Q7: What are the scenarios where APO is most beneficial
or less effective?

5.1. Experiment Setup

To answer the above, we run experiments on both continuous
domain and the discrete domain.

Continuous Tasks Our continuous experiments are con-
ducted on GUARD (Zhao et al., 2023), a challenging robot
locomotion benchmark build upon Mujoco (Todorov et al.,
2012) and Gym. Seven different robots are included: (i)
Point: (Figure 15a) A point-mass robot (A ⊆ R2) that
can move on the ground. (ii) Swimmer: (Figure 15b) A
three-link robot (A ⊆ R2) that can move on the ground. (iii)
Arm3: (Figure 15c) A fixed three-joint robot arm(A ⊆ R3)
that can move its end effector around with high flexibility.
(iv) Drone: (Figure 15d) A quadrotor robot (A ⊆ R4) that
can move in the air. (v) Hopper: (Figure 15e) A one-legged
robot (A ⊆ R5) that can move on the ground. (vi) Ant:
(Figure 15f) A quadrupedal robot (A ⊆ R8) that can move
on the ground. (vii) Walker: (Figure 15g) A bipedal robot
(A ⊆ R10) that can move on the ground. Furthermore, three
different types of tasks are considered, including (i) Goal:
(Figure 14a) robot navigates towards a series of 2D or 3D
goal positions. (ii) Push: (Figure 14b) robot pushes a ball
toward different goal positions. (iii) Chase: (Figure 14c)
robot tracks multiple dynamic targets. Considering these
different robots and tasks, we design 8 low-dim test suites
and 4 high-dim test suits with 7 types of robots and 3 types
of tasks, which are summarized in Table 2 in Appendix.
We name these test suites as {Task Type}_{Robot}.
Further details are listed in Appendix E.1.

Additionally, we conduct continuous control experiments on
Mujoco Openai Gym (Brockman et al., 2016b) and Gymna-
sium Robotics (Plappert et al., 2018). Five high dimensional

tasks are considered: (i) Humanoid: (Figure 14d) The 3D
bipedal robot (A ⊆ R17) is designed to simulate a human.
And the goal of the environment is to walk forward as fast
as possible without falling over. (ii) Humanoid Standup:
(Figure 14e) The robot (A ⊆ R17) is same with task Hu-
manoid, but the goal is to make the humanoid standup and
then keep it standing. These two tasks are also summarized
in Table 2. (iii) HandReach: (Figure 14f) The goal of the
task is for the fingertips of the hand (A ⊆ R24) to reach a
predefined target Cartesian position. (iv) HandManipula-
teEgg: (Figure 14g) The task is to manipulate the egg such
that a target pose is achieved (v) HandManipulateBlock:
(Figure 14h) The task is to manipulate the block such that
a target pose is achieved. Notice that tasks (iii)-(v) employ
dense rather than discrete reward setup for learning, see
(Plappert et al., 2018) for details.

Discrete Tasks We also test APO in all 62 Atari environ-
ments of (Brockman et al., 2016b) which are simulated on
the Arcade Learning Environment benchmark (Bellemare
et al., 2018). All experiments are based on ‘v5’ environ-
ments and ‘ram’ observation space.

Comparison Group We compare APO to the state-of-the-
art on-policy RL algorithms: (i) TRPO (Schulman et al.,
2015) (ii) Advantage Actor Critic (A2C) (Mnih et al., 2016)
(iii) PPO by clipping (Schulman et al., 2017) in both con-
tinuous and discrete tasks and additionally compare (iv)
AlphaPPO (Xu et al., 2023) (v) ESPO (Sun et al., 2022)
(vi) V-MPO (Song et al., 2020) on continuous tasks.For all
experiments, we take the best specific parameters mentioned
in the original (Xu et al., 2023) paper and keep the common
parameters as the same. In particular, we selected the opti-
mal parameters based on the tuning method of the paper for
each task individually. The policy π, the value V π are all
encoded in feedforward neural networks using two hidden
layers of size (64,64) with tanh activations. The full list of
parameters of all methods and tasks compared can be found
in Appendix E.2.

5.2. Comparison to Other Algorithms on the Atari
Domain

Figure 11 shows 12 representative test suites in Atari Do-
main. All 62 learning curves can be found in Appendix F.
The hyperparameters for Atari Domain are also provided
in Appendix E.2. For the other three algorithms, we used
hyperparameters that were tuned to maximize performance
on this benchmark. Then we follow the metrics of (Schul-
man et al., 2017) to quantitatively evaluate the strengths
of APO: (i) average expected reward per episode over all
epochs of training (which favors fast learning), and (ii)
average expected reward per episode over last 100 (20 of
GUARD) epochs of training (which favors final perfor-

5

Absolute Policy Optimization

Figure 3: Stacked bar chart for all 62 atari games

Performance Metrics APO PPO TRPO A2C Tie
(1) average expected reward over all epochs(Atari) 26 22 10 3 1

Expected (2) average expected reward over last 100 epochs(Atari) 29 17 12 3 1
Performance (1) average expected reward over all epochs(GUARD) 9 3 0 0 0

(2) average expected reward over last 20 epochs(GUARD) 9 2 1 0 0
(1) average worst reward over all epochs(Atari) 26 24 7 3 2

Worst (2) average worst reward over last 100 epochs(Atari) 27 20 10 3 2
Performance (3) average worst reward over all epochs(GUARD) 8 2 1 1 0

(4) average worst reward over last 20 epochs(GUARD) 9 1 2 0 0

Table 1: The number of highest evaluation scores obtained by each algorithm across all test suites

mance). Table 1 records the number of highest evaluation
scores obtained by each algorithm across all games. To com-
pare the performance of all testing algorithm to the TRPO
baseline across games, we slightly change the normalization
algorithm proposed by (van Hasselt et al., 2015) to obtain
more reasonable score (See Appendix E.3 for further expla-
nation) in percent. The score we used is average reward per
episode over last 100 (20 of GUARD) epochs of training:

∆1
.
= scoreagent − scorerandom (11)

∆2
.
= scoreTRPO − scorerandom

scorenormalized =
∆2

∆1
if ∆1 < 0 and ∆2 < 0 else

∆1

∆2

Then we use a stacked bar chart in Figure 3 to visualize
APO’s capabilities. Figure 3 show that APO has a superior
combination of capabilities compared to other algorithms.
The statistics of the algorithm in terms of expected perfor-
mance improvement are presented in Table 1. So far the
above experimental comparison answers Q1.

5.3. Comparison to Other Algorithms in GUARD
Continuous Domain

Low dimension Figure 4 shows representative compari-
son results on a low dimensional system (See Appendix F
for all results). APO is successful at getting a more steady
and higher final reward. We notice that PPO only gains
faster convergence in part of the simplest task owing to its
exploration abilities, the advantage decreases rapidly with
more complex tasks such as PUSH. In difficult tasks, APO
can perform best at the combined level of convergence speed
and final performance.

High dimension Figure 5 reports the comparison results
on challenging high-dimensional {PUSH, CHASE}_Ant
and {PUSH, CHASE}_Walker tasks, where APO outper-
forms other baselines in getting higher reward and conver-
gence speed. It is worth noting that we can clearly observe
that PPO-related methods perform more erratically in com-
plex tasks (PUSH and CHASE) and are not as good as
TRPO in benchmark performance.

6

Absolute Policy Optimization

Figure 4: Comparison of results from four representative test suites in low dimensional continuous systems

Figure 5: Comparison of results from four representative test suites in high dimensional continuous systems

We also performed quantitative statistics on the 12 sets of
continuous tasks tested. The results are presented in Table 1
and metrics we used are presented in the next section.

5.4. Worst-case Performance Comparison

We use a large probability factor k in practical implemen-
tation, which means we are close to optimizing the lower
bound for all samples. Thus we use another two similar
metrics to evaluate the effectiveness of algorithms for lower
bound lifting: (iii) average worst reward per episode over
all epochs of training, and (iv) average worst reward per
episode over last 100 or 20 epochs of training. We sum-
marize the worst-case performance of APO in Atari games
and GUARD in Table 1, which answers Q2.

5.5. Ablation on Hmax Hyperparameter Trick

Figure 6: Ablation on Hmax hyperparameter trick

We chose Riverraid of discrete tasks and PUSH_Ant of
continuous tasks to perform ablation experiments against
the |H(s, a, s′)|max implementation. Figure 6 shows that
although both boosts are similar in the early stages of tasks,
hyperparameter methods can more consistently converge
to a higher reward value. Thus, the figures and description
answer Q3.

5.6. Ablation on Probability Factor k

For ablation, we selected Riverraid to investigate the impact
of different choices for the probability factor k. As illus-
trated in Figure 9, when k takes on a very small value, indi-
cating optimization of only a limited portion of performance
samples, the effectiveness diminishes. This is attributed to
the loss of control over the lower probability bound of per-
formance because of the small confidence level. Conversely,
when k becomes excessively large, the optimization shifts
its focus towards the most extreme worst-case performance
scenarios. This ultra-conservative approach tends to render
the overall optimization less effective. Therefore, a moder-
ate choice of k will be favorable to the overall improvement
of the effect, which answers Q4.

In the following subsection, we will show a simple strategy
can greatly improve the APO computation efficiency and
performance.

5.7. Proximal Absolute Policy Optimization (PAPO)

Figure 9: Ablation on probabil-
ity factor k

With APO’s proven suc-
cess in addressing de-
manding tasks in both con-
tinuous control and Atari
game playing, a natural
question arises: What po-
tential does APO hold? To
shed light on this inquiry,
we undertake a natural ex-
tension of APO by incor-
porating a successful vari-
ation from TRPO to PPO, i.e. introduction of a Clipped
Surrogate Objective (Schulman et al., 2017).

7

Absolute Policy Optimization

Figure 7: Comparison results of PAPO from five representative test suites in GUARD

Figure 8: Comparison results of PAPO from five representative test suites in Mujoco and Gymnasium benchmark

In our experiment, this clipping is implemented with a sim-
ple method: early stopping. Specifically, multiple steps
of stochastic gradient descent are taken to maximize the
objective of equation 10. If the mean KL-divergence of the
new policy from the old grows beyond a threshold (δ), we
stop taking gradient steps. We call this enhanced version of
APO as Proximal Absolute Policy Optimization (PAPO).

5.7.1. COMPARE PAPO WITH BASELINE ALGORITHMS

Next we will focus on challenging and high-dimensional
tasks in GUARD where trust-region based approaches usu-
ally struggle to get good results. The detailed test suites can
be found in Table 3. The summarized comparison results
are presented in Figure 7, highlighting PAPO’s superior per-
formance over previous baseline methods, including APO,
across all these GUARD challenging control environments.
Notably, PAPO significantly improves APO’s performance
in challenging continuous tasks and outperforms PPO by a
learning speed and converged reward, as evidenced by the
learning curves.

5.7.2. SHOWCASE IN THE CONTINUOUS DOMAIN:
MUJOCO AND GYMNASIUM BENCHMARK

To demonstrate the efficacy of PAPO in super-high dimen-
sional continuous benchmarks, we conducted additional
experiments in scenarios that were highly integrated with
the reality frontier such as dexterous hand manipulation and
humanoid robot movement. The results, compared with
all baseline methods, including APO, are presented in Ta-
ble 5 with detailed hyperparameters and learning curves in
Figure 8. We can see that the more exploratory proximal
methods can achieve better results in this type of super-
high dimensional control task compared to the trust region
methods. PAPO consistently outperforms all algorithms in-
cluding all other proximal methods, particularly showcasing
enhanced learning efficiency and converged performance

Figure 10: Computational cost(GPU occupancy, CPU occupancy
and wall-clock time) comparison

in the HumanoidStandup task and HandReach. Thus the
figures and description answer Q5.

5.8. APO, PAPO Computational Cost Comparison

We test the comparison of APO, PAPO, PPO, TRPO and
A2C in terms of GPU and CPU resource usage, wall-clock
time using TRPO as a benchmark and present in Figure 10,
where the horizontal axis is the percentage value of the rest
of the algorithms compared to TRPO. The experiments are
built on Goal_Ant task and were run and averaged over
five different seeds. We can see that APO as a trust region
method takes more significant and stable results with es-
sentially the same hardware resource footprint as TRPO
and only less than 5% additional wall-clock time spent,
demonstrating that our surrogate absolute bound may seem
complex but does not introduce additional unacceptable
computational costs. At the same time, there is basically no
difference between PAPO and PPO in terms of performance
of the indicators, but PAPO achieves better results on both
high and low dimensional, complex and simple tasks which
demonstrates the superiority of our method. Additional wall-
clock time experiment results can be found in Figures 12
and 13. Thus, all of these answers Q6.

8

Absolute Policy Optimization

5.9. Effective and Less Effective Scenarios for APO and
PAPO

Through extensive experimentation, we have found
that APO/PAPO represents a more robust iteration of
TRPO/PPO, offering significantly improved and more con-
sistent performance while maintaining the same computa-
tional efficiency (sampling efficiency). Consequently, any
application scenarios currently utilizing PPO or other on-
policy RL methods can readily benefit from the application
of APO. Real-world scenarios demanding high performance
consistency, such as video games and robotics, are particu-
larly advantageous domains for deploying APO.

For less effective scenarios, APO shares typical limitations
inherent to on-policy algorithms. Notably, its sample effi-
ciency may be poor due to the requirement of collecting
data exclusively from the current policy’s interactions with
the environment, making APO impractical for environments
where data acquisition is costly or time-consuming. This
discussion addresses Q7.

6. Conclusion and Future Work
This paper proposed APO, the first general-purpose pol-
icy search algorithm that ensures monotonic improvement
of the lower probability bound of performance with high
confidence. We demonstrate APO’s effectiveness on chal-
lenging continuous control benchmark tasks and playing
Atari games, showing its significant performance improve-
ment compared to existing methods and ability to enhance
both expected performance and worst-case performance.

Furthermore, we integrate proven techniques that enhance
TRPO into Proximal Absolute Policy Optimization (PAPO),
resulting in substantial performance improvements on con-
tinuous tasks. This effort underscores the promising capabil-
ity of APO to significantly enhance existing methodologies.

In anticipation of future endeavors, we aspire to leverage
APO as the inaugural phase in our exploration of probability
bound control employing the trust region method. Subse-
quently, our objective is to extend this investigation into a
more expansive domain within scientific research.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements
This work is partially supported by the National Science
Foundation, Grant No. 2144489.

References
Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained

policy optimization. In International conference on ma-
chine learning, pp. 22–31. PMLR, 2017.

Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M.,
McGrew, B., Petron, A., Paino, A., Plappert, M., Powell,
G., Ribas, R., et al. Solving rubik’s cube with a robot
hand. arXiv preprint arXiv:1910.07113, 2019.

Alexander, G. J. and Baptista, A. M. A comparison of var
and cvar constraints on portfolio selection with the mean-
variance model. Management science, 50(9):1261–1273,
2004.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

Bellemare, M. G., Dabney, W., and Munos, R. A dis-
tributional perspective on reinforcement learning. In
Precup, D. and Teh, Y. W. (eds.), Proceedings of
the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 449–458. PMLR, 06–11 Aug 2017.
URL https://proceedings.mlr.press/v70/
bellemare17a.html.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowl-
ing, M. The arcade learning environment: an eval-
uation platform for general agents. Journal of Artifi-
cial Intelligence Research, pp. 253–279, Jul 2018. doi:
10.1613/jair.3912. URL http://dx.doi.org/10.
1613/jair.3912.

Berkenkamp, F., Turchetta, M., Schoellig, A. P., and Krause,
A. Safe model-based reinforcement learning with stability
guarantees, 2017.

Brillinger, D. R. Information and Information Stability of
Random Variables and Processes. Journal of the Royal
Statistical Society Series C: Applied Statistics, 13(2):134–
135, 12 2018. ISSN 0035-9254. doi: 10.2307/2985711.
URL https://doi.org/10.2307/2985711.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016a.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv: Learning,arXiv: Learning, Jun 2016b.

Chen, W., Subramanian, D., and Paternain, S. Probabilis-
tic constraint for safety-critical reinforcement learning.
arXiv preprint arXiv:2306.17279, 2023.

9

https://proceedings.mlr.press/v70/bellemare17a.html
https://proceedings.mlr.press/v70/bellemare17a.html
http://dx.doi.org/10.1613/jair.3912
http://dx.doi.org/10.1613/jair.3912
https://doi.org/10.2307/2985711

Absolute Policy Optimization

Chow, Y., Ghavamzadeh, M., Janson, L., and Pavone, M.
Risk-constrained reinforcement learning with percentile
risk criteria. CoRR, abs/1512.01629, 2015. URL http:
//arxiv.org/abs/1512.01629.

Chow, Y., Ghavamzadeh, M., Janson, L., and Pavone, M.
Risk-constrained reinforcement learning with percentile
risk criteria. Journal of Machine Learning Research, 18
(167):1–51, 2018.

Dabney, W., Rowland, M., Bellemare, M. G., and Munos,
R. Distributional reinforcement learning with quantile
regression. CoRR, abs/1710.10044, 2017. URL http:
//arxiv.org/abs/1710.10044.

Dabney, W., Ostrovski, G., Silver, D., and Munos, R.
Implicit quantile networks for distributional reinforce-
ment learning. CoRR, abs/1806.06923, 2018. URL
http://arxiv.org/abs/1806.06923.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. Benchmarking deep reinforcement learning
for continuous control. In International conference on
machine learning, pp. 1329–1338. PMLR, 2016.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Interna-
tional conference on machine learning, pp. 1587–1596.
PMLR, 2018.

Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. Continu-
ous deep q-learning with model-based acceleration. In
International conference on machine learning, pp. 2829–
2838. PMLR, 2016.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

Hausknecht, M. and Stone, P. Deep recurrent q-learning for
partially observable mdps. In 2015 aaai fall symposium
series, 2015.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Os-
trovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M.,
and Silver, D. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018.

Jain, A., Patil, G., Jain, A., Khetarpal, K., and Precup, D.
Variance penalized on-policy and off-policy actor-critic,
2021.

Jiang, Y., Li, C., Dai, W., Zou, J., and Xiong, H.
Monotonic robust policy optimization with model dis-
crepancy. In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 4951–4960. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/
v139/jiang21c.html.

Kaufmann, E., Bauersfeld, L., Loquercio, A., Müller, M.,
Koltun, V., and Scaramuzza, D. Champion-level drone
racing using deep reinforcement learning. Nature, 620
(7976):982–987, 2023.

Kuang, Q., Zhu, Z., Zhang, L., and Zhou, F. Vari-
ance control for distributional reinforcement learning.
In Krause, A., Brunskill, E., Cho, K., Engelhardt,
B., Sabato, S., and Scarlett, J. (eds.), Proceedings of
the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learn-
ing Research, pp. 17874–17895. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/kuang23a.html.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Lin, Z., Wu, X., Sun, M., Ye, D., Fu, Q., Yang, W., and
Liu, W. Sample dropout: A simple yet effective variance
reduction technique in deep policy optimization. arXiv
preprint arXiv:2302.02299, 2023.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013a.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013b.

Mnih, V., Badia, A., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. arXiv:
Learning,arXiv: Learning, Feb 2016.

Pajarinen, J., Thai, H. L., Akrour, R., Peters, J., and Neu-
mann, G. Compatible natural gradient policy search.
Machine Learning, 108:1443–1466, 2019.

Panaganti, K., Xu, Z., Kalathil, D., and Ghavamzadeh, M.
Robust reinforcement learning using offline data, 2022.

10

http://arxiv.org/abs/1512.01629
http://arxiv.org/abs/1512.01629
http://arxiv.org/abs/1710.10044
http://arxiv.org/abs/1710.10044
http://arxiv.org/abs/1806.06923
https://proceedings.mlr.press/v139/jiang21c.html
https://proceedings.mlr.press/v139/jiang21c.html
https://proceedings.mlr.press/v202/kuang23a.html
https://proceedings.mlr.press/v202/kuang23a.html

Absolute Policy Optimization

Papini, M., Binaghi, D., Canonaco, G., Pirotta, M., and
Restelli, M. Stochastic variance-reduced policy gradi-
ent. In International conference on machine learning, pp.
4026–4035. PMLR, 2018.

Peng, X. B., Andrychowicz, M., Zaremba, W., and Abbeel,
P. Sim-to-real transfer of robotic control with dynam-
ics randomization. CoRR, abs/1710.06537, 2017. URL
http://arxiv.org/abs/1710.06537.

Pishro-Nik, H. Introduction to probability, statistics, and
random processes. Kappa Research, LLC Blue Bell, PA,
USA, 2014.

Plappert, M., Andrychowicz, M., Ray, A., McGrew,
B., Baker, B., Powell, G., Schneider, J., Tobin, J.,
Chociej, M., Welinder, P., Kumar, V., and Zaremba,
W. Multi-goal reinforcement learning: Challenging
robotics environments and request for research. CoRR,
abs/1802.09464, 2018. URL http://arxiv.org/
abs/1802.09464.

Queeney, J., Paschalidis, Y., and Cassandras, C. G. Gener-
alized proximal policy optimization with sample reuse.
Advances in Neural Information Processing Systems, 34:
11909–11919, 2021.

Rajeswaran, A., Ghotra, S., Levine, S., and Ravindran, B.
Epopt: Learning robust neural network policies using
model ensembles. CoRR, abs/1610.01283, 2016. URL
http://arxiv.org/abs/1610.01283.

Saw, J. G., Yang, M. C., and Mo, T. C. Chebyshev inequal-
ity with estimated mean and variance. The American
Statistician, 38(2):130–132, 1984.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In International
conference on machine learning, pp. 1889–1897. PMLR,
2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Schulman, J., Zoph, B., Kim, C., Hilton, J., Menick, J.,
Weng, J., Uribe, J. F. C., Fedus, L., Metz, L., Pokorny,
M., et al. Chatgpt: Optimizing language models for
dialogue. OpenAI blog, 2022.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and
Riedmiller, M. Deterministic policy gradient algorithms.
In International conference on machine learning, pp. 387–
395. Pmlr, 2014.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the

game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Sobel, M. J. The variance of discounted markov decision
processes. Journal of Applied Probability, 19(4):794–802,
1982.

Song, H., Abdolmaleki, A., Springenberg, J., Clark, A.,
Soyer, H., Rae, J., Noury, S., Ahuja, A., Liu, S., Tiru-
mala, D., Heess, N., Belov, D., Riedmiller, M., and
Botvinick, M. V-mpo: On-policy maximum a poste-
riori policy optimization for discrete and continuous con-
trol. International Conference on Learning Representa-
tions,International Conference on Learning Representa-
tions, Apr 2020.

Sun, M., Kurin, V., Liu, G., Devlin, S., Qin, T., Hofmann,
K., and Whiteson, S. You may not need ratio clipping in
ppo. 2022.

Sun, M., Ellis, B., Mahajan, A., Devlin, S., Hofmann, K.,
and Whiteson, S. Trust-region-free policy optimization
for stochastic policies. arXiv preprint arXiv:2302.07985,
2023.

Tang, Y. C., Zhang, J., and Salakhutdinov, R. Worst cases
policy gradients, 2019.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics en-
gine for model-based control. In 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, Sep
2012. doi: 10.1109/iros.2012.6386109. URL http://
dx.doi.org/10.1109/iros.2012.6386109.

Tomczak, M. B., Kim, D., Vrancx, P., and Kim, K.-E. Policy
optimization through approximate importance sampling.
arXiv preprint arXiv:1910.03857, 2019.

van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning, 2015.

Wang, Y., He, H., and Tan, X. Truly proximal policy op-
timization. In Uncertainty in Artificial Intelligence, pp.
113–122. PMLR, 2020.

Xu, H., Yan, Z., Xuan, J., Zhang, G., and Lu, J. Improv-
ing proximal policy optimization with alpha divergence.
Neurocomputing, 534:94–105, 2023.

Xu, T., Liu, Q., and Peng, J. Stochastic variance re-
duction for policy gradient estimation. arXiv preprint
arXiv:1710.06034, 2017.

Yang, D., Zhao, L., Lin, Z., Qin, T., Bian, J., and Liu, T.
Fully parameterized quantile function for distributional
reinforcement learning. CoRR, abs/1911.02140, 2019.
URL http://arxiv.org/abs/1911.02140.

11

http://arxiv.org/abs/1710.06537
http://arxiv.org/abs/1802.09464
http://arxiv.org/abs/1802.09464
http://arxiv.org/abs/1610.01283
http://dx.doi.org/10.1109/iros.2012.6386109
http://dx.doi.org/10.1109/iros.2012.6386109
http://arxiv.org/abs/1911.02140

Absolute Policy Optimization

You, H., Yu, B., Jin, H., Yang, Z., and Sun, J. User-oriented
robust reinforcement learning, 2022.

Yu, X. and Ying, L. On the global convergence of risk-
averse policy gradient methods with expected conditional
risk measures, 2023.

Yuan, H., Li, C. J., Tang, Y., and Zhou, Y. Policy optimiza-
tion via stochastic recursive gradient algorithm, 2019. In
URL https://openreview. net/forum, 2019.

Zhao, W., Chen, R., Sun, Y., Liu, R., Wei, T., and Liu, C.
Guard: A safe reinforcement learning benchmark. arXiv
preprint arXiv:2305.13681, 2023.

Zhou, F., Wang, J., and Feng, X. Non-crossing
quantile regression for deep reinforcement learning.
2020. URL https://api.semanticscholar.
org/CorpusID:231187649.

Zhu, W. and Rosendo, A. Proximal policy optimization
smoothed algorithm. CoRR, abs/2012.02439, 2020. URL
https://arxiv.org/abs/2012.02439.

12

https://api.semanticscholar.org/CorpusID:231187649
https://api.semanticscholar.org/CorpusID:231187649
https://arxiv.org/abs/2012.02439

Absolute Policy Optimization

A. Related Works
Model-Free Deep Reinforcement Learning Model-free deep reinforcement learning (RL) algorithms have found appli-
cations from the realm of games (Mnih et al., 2013b; Silver et al., 2016) to the intricate domain of robotic control (Schulman
et al., 2015).

The leading contenders of the model free reinforcement learning algorithms include (i) deep Q-learning (Mnih et al., 2013a;
Hausknecht & Stone, 2015; van Hasselt et al., 2015; Hessel et al., 2018), (ii) off-policy policy gradient methods (Silver et al.,
2014; Lillicrap et al., 2015; Gu et al., 2016; Fujimoto et al., 2018; Haarnoja et al., 2018), and (iii) trust region on-policy
policy gradient methods (Schulman et al., 2015; 2017).

Among those categories, Q-learning-based techniques (Mnih et al., 2013a) , augmented with function approximation, have
exhibited remarkable prowess over tasks with discrete action spaces, e.g. Atari game playing (Bellemare et al., 2013).
However, these methods perform poorly in the realm of continuous control benchmarks, notably exemplified in OpenAI
Gym (Brockman et al., 2016a; Duan et al., 2016).

In contrast, off-policy policy gradient methods extend Q-learning-based strategies via introducing an independent actor
network to handle continuous control tasks, as exemplified by the Deep Deterministic Policy Gradient (DDPG)(Lillicrap
et al., 2015). However, off-policy methods suffer from stability issues and susceptibility to hyperparameter tuning nu-
ances(Haarnoja et al., 2018). Recently, enhancements have been made to incorporate entropy to foster exploration (Haarnoja
et al., 2018) and mitigate the overestimation bias through target networks (Fujimoto et al., 2018). Additionally, Distributional
RL emerges as powerful off-policy methods to model the entire distribution of returns instead of focusing solely on expected
values, providing more information about the distribution of rewards, leading to potentially more stable and efficient learning.
Early efforts try to model the distribution of value function with various parameterizations, such as quartiles, in algorithms
like C51 (Bellemare et al., 2017), QR-DQN(Dabney et al., 2017), IQN(Dabney et al., 2018) and FQF (Yang et al., 2019).
Recent advancements address issues like the non-decreasing property of learned quartiles (Zhou et al., 2020) and use
distributional RL to reduce bias and variance in Q function estimation (Kuang et al., 2023). Despite these advancements, the
convergence characteristics of off-policy policy gradient methods remain incompletely understood, primarily explored under
stringent assumptions such as infinite sampling and Q-updates (Fujimoto et al., 2018). Moreover, off-policy policy gradient
methods are primarily tailored for continuous action spaces.

Conversely, trust region on-policy policy gradient methods harmoniously accommodate both continuous and discrete
action spaces while showcasing superior stability and dependable convergence properties. Notably, the representative
Trust Region Policy Optimization (TRPO) (Schulman et al., 2015), complemented by its pragmatic counterpart, Proximal
Policy Optimization (PPO) (Schulman et al., 2017), have consistently delivered impressive performance across an array
of demanding benchmark tasks. Furthermore, PPO has largely helped training of groundbreaking artificial intelligence
applications, including ChatGPT (Schulman et al., 2022), the automated Rubik’s Cube solver with a robotic hand (Akkaya
et al., 2019), and the championship-level drone racing (Kaufmann et al., 2023), thereby reaffirming their profound impact on
advancing the frontiers of AI technology.

Attempts to Improve Trust Region Methods Recently, many efforts are made to improve trust region on-policy methods,
including (i) improve computation efficiency. TREFree (Sun et al., 2023) introduced a novel surrogate objective that
eliminates trust region constraints. (ii) encourage exploration. COPOS (Pajarinen et al., 2019) applied compatible value
function approximation to effectively control entropy during policy updates. (iii) improve training stability and data-
efficiency. Truly PPO (TR-PPO) (Wang et al., 2020) introduced a new clipping function and trust region-based triggering
condition. PPO Smooth (PPOS) (Zhu & Rosendo, 2020) use a functional clipping method instead of a flat clipping method.
Generalized PPO (GePPO) (Queeney et al., 2021) extended PPO to an off-policy variant, thereby enhancing sampling
efficiency through data reuse. Early Stopping Policy Optimization (ESPO) (Sun et al., 2022) argued that the clip method
in PPO is not reasonable and proposed an early stopping method to replace it. AlphaPPO (Xu et al., 2023) introduced
alpha divergence, a metric that offers a more effective description of policy differences, resulting in more stable training
performance.

More relevantly, there are improvements considering variance control, including (i) variance reduction of policy gradient.
Xu et al. and Papini et al. applied the stochastic variance reduced gradient descent (SVRG) technique for getting stochastic
variance-reduced version of policy gradient (SVRPO) to improve the sample efficiency. Yuan et al. incorporates the
StochAstic Recursive grAdient algoritHm (SARAH) into the TRPO framework to get more stable variance. Song et al.
uses on-policy adaptation of Maximum a Posteriori Policy Optimization to replace policy gradients which may have

13

Absolute Policy Optimization

large variance. (ii) variance reduction of performance update. Tomczak et al. introduced a surrogate objective with
approximate importance sampling to strike a balance between performance update bias and variance. (iii) variance reduction
of importance sampling. (Lin et al., 2023) introduced sample dropout to bound the variance of importance sampling estimate
by dropping out samples when their ratio deviation is too high.

Although trust-region-based methods have achieved notable success, there hasn’t been any approach to exert control over the
worst case performance. Unforeseen instances of poor performance can result in training instability, thereby jeopardizing
the reliability of solutions in real-world applications. In our research, we bridge this gap by introducing novel theoretical
results that ensure a monotonic improvement of the lower bound of near-total performance samples.

Simultaneously, there exist additional domains warranting our consideration, particularly those aligned with the conceptual
framework of optimizing worst-case performance. However, it is crucial to acknowledge the fundamental distinctions
between these areas and our chosen approach.

Risk-sensitive RL / Probabilistic-constrained RL This method primarily operates in the realm of safe RL, focusing
on minimizing risk-sensitive criteria like variance-related measures or percentile performance. Common metrics include
Value-at-Risk (VaR) and conditional Value-at-Risk (CVaR) (Alexander & Baptista, 2004), aiming to quantify costs in the tail
of a distribution. (Chow et al., 2015; Berkenkamp et al., 2017; Chow et al., 2018; Tang et al., 2019; Jain et al., 2021; Chen
et al., 2023; Yu & Ying, 2023) addressed gradient computation under the Lagrangian function for percentile risk-constrained
Markov Decision Processes (MDPs). While the objective of risk-sensitive RL aligns with ours, it is noteworthy that (i)
Our commitment lies in the enhancement of rewards, excluding consideration for safe constraints. (ii) Diverging from the
paradigm of risk-sensitive Reinforcement Learning, we employ surrogate functions and trust region methods to optimize
confidence lower bounds. This strategic choice inherits the advantages inherent in trust region methods while preserving
the extensibility of our broader research framework. (iii) Our approach, devoid of intricate assumptions, guarantees the
monotonic ascent of the lower probability bound, surpassing mere adherence to constraints.

Robust Reinforcement Learning Robust RL research on the topic of mitigating the model discrepancy in the process
of model generalization. (Peng et al., 2017) propose domain randomization (DR) method to solve the problem, which
randomizes the simulator to generate a variety of environments for training a same policy in the source domain to get better
generalization performance. (Rajeswaran et al., 2016) takes another way to learn policies that are robust to environment
perturbations. They train the policy solely on the worst performance subset to get better worst case performance at the
cost of sacrificing average performance. (Jiang et al., 2021) (MRPO) concurrently improve the average and worst-case
performance by derive a lower bound for worst performance which is related to the expected performance. (Panaganti
et al., 2022) proposes Robust Fitted Q-Ieration (RFQI) algorithm which uses only offline data and solves problems of
data collection, optimization over models and unbiased estimation. (You et al., 2022) integrate user preference into policy
learning in robust RL, and propose a novel User-Oriented Robust RL (UOR-RL) framework which gets rid of traditional
max-min robustness. It is noteworthy that their emphasis lies on variable environments as opposed to a fixed and stable
setting. This nuanced choice implies that their interpretation of "worst performance" pertains to the most adverse outcome
arising from performance fluctuations induced by model generalization, diverging from a conventional reliance on the lower
bound within a distribution.

14

Absolute Policy Optimization

B. Additional Experiment Results

Figure 11: Comparison results from part of the total test suites in Atari Domain

Figure 12: Comparison of wall-clock time from four representative test suites in continuous and discrete domain

Figure 13: Comparison of wall-clock time of PAPO

15

Absolute Policy Optimization

C. Lower Probability Bound
C.1. Preliminaries

First we define Rπ(s) =
∑∞
t=0 γ

tR(st, at, st+1) as infinite-horizon discounted return starts at state s and define expected
return Vπ(s) = E

τ̂∼π

(
Rπ(s)

)
as the value of state s. Then for all trajectories τ̂ ∼ π start from state s0 ∼ µ, the expectation

and variance of Rπ(s0) can be respectively defined as J (π) and V(π). Formally:

J (π) = E
s0∼µ
τ̂∼π

[
Rπ(s0)

]
= E
s0∼µ

[
Vπ(s0)

]
(12)

V(π) = E
s0∼µ
τ̂∼π

[(
Rπ(s0)− J (π)

)2]
(13)

= E
s0∼µ

[
Var
τ̂∼π

[
Rπ(s0)

]
+

[
E
τ̂∼π

[
Rπ(s0)

]]2]
− J (π)2

= E
s0∼µ

[
Var
τ̂∼π

[
Rπ(s0)

]
+ Vπ(s0)

2

]
− J (π)2

= E
s0∼µ

[
Var
τ̂∼π

[
Rπ(s0)

]]
+ E
s0∼µ

[
Vπ(s0)

2

]
− J (π)2

= E
s0∼µ

[
Var
τ̂∼π

[
Rπ(s0)

]]
︸ ︷︷ ︸

MeanV ariance

+ Var
s0∼µ

[Vπ(s0)]︸ ︷︷ ︸
V arianceMean

Note that for the derivation of V(π) we treat the return of all trajectories as a mixture of one-dimensional distributions. Each
distribution consists of the returns of trajectories from the same start state. The variance can then be divided into two parts:
1. MeanVariance reflects the expected variance of the return over different start states.
2. VarianceMean reflects the variance of the average return of different start states.

Proposition 1. Bk(π) = J (π) − kV(π) is guaranteed to be an lower probability bound of performance defined by
Definition 1.

Proof. According to Selberg’s inequality theory (Saw et al., 1984), if random variable Rπ(s0) has finite non-zero variance
V(π) and finite expected value J (π). Then for any real number k ≥ 0, following inequality holds:

Pr(Rπ(s0) < J (π)− kV(π))) ≤
1

k2V(π) + 1
, (14)

which equals to:

Pr
(
Rπ(s0) ≥ Bk(π)

)
≥ 1− 1

k2V(π) + 1
. (15)

Considering that π ∈ Π, then V(π) belongs to a corresponding variance space which has a non-zero minima of V(π) denoted
as Vmin ∈ R+. Therefore, by treating ψ = Vmin, the following condition holds:

There exists ψ > 0, s.t. Pr
(
Rπ(s0) ≥ Bk(π)

)
≥ 1− 1

k2V(π) + 1
(16)

≥ 1− 1

k2Vmin + 1

= 1− 1

k2ψ + 1︸ ︷︷ ︸
pψk

.

16

Absolute Policy Optimization

Now to prove Theorem 1, we need to prove the optimization object in equation 4 serves as the lower bound of Bk(π′). To
do this, we first try to obtain the following terms:
1. Upper bound of MeanVariance with π′. (Appendix C.2)
2. Upper bound of VarianceMean with π′. (Appendix C.3)
3. Lower bound of J (π′).(Appendix C.4)
And then we can proof our theorem by leveraging this lower bound in Appendix C.5

C.2. MeanVariance Bound

Proposition 2 (Bound of MeanVariance). Denote MeanVariance of policy π as MVπ = E
s0∼µ

[Var[Rπ(s0)]. Given two

policies π′, π, the following bound holds:

|MVπ′ −MVπ| ≤ ∥µ⊤∥∞
(

1

1− γ2
max
s

∣∣∣∣ E
a∼π
s′∼P

[(
π′(a|s)
π(a|s)

− 1

)
Aπ(s, a, s

′)2
]

(17)

+ 2 E
a∼π
s′∼P

[(
π′(a|s)
π(a|s)

)
Aπ(s, a, s

′)

]
|H(s, a, s′)|max + |H(s, a, s′)|2max

∣∣∣∣
+

2γ2

(1− γ2)2

√
1

2
DmaxKL (π′∥π) · ∥Ωπ∥∞

)

where Ωπ =

ωπ(s
1)

ωπ(s
2)

...

 and ωπ(s) = E
a∼π
s′∼P

[
Qπ(s, a, s

′)2
]
− Vπ(s)2 is defined as the variance of the state-action value

function Qπ at state s. Additionally,

|H(s, a, s′)|max = |L(s, a, s′)|+ 2(1 + γ)γϵ

(1− γ)2
DmaxKL (π′∥π) (18)

L(s, a, s′) = γ E
s0=s

′

τ̂∼π

[∞∑
t=0

γtĀπ′,π(st)

]
− E
s0=s
τ̂∼π

[∞∑
t=0

γtĀπ′,π(st)

]
ϵ = max

s,a
|Aπ(s, a)|

where DmaxKL (π′∥π) = maxsDKL(π′∥π)[s].

Proof. According to (Sobel, 1982), the following Proposition holds

Proposition 3 (Theorem 1, (Sobel, 1982)). Define Xπ =

Var[Rπ(s
1)]

Var[Rπ(s2)]
...

 and P̂π = P⊤
π , where P̂π(i, j) denotes the

probability of the transfer from i-th state to j-th state, the following equation holds

Xπ = (I − γ2P̂π)−1Ωπ . (19)

With Xπ , MeanVariance can be computed via

MVπ = E
s0∼µ

[Var[Rπ(s0)] (20)

= µ⊤Xπ

= µ⊤((I − γ2P̂π)−1Ωπ

)

17

Absolute Policy Optimization

The divergence of MeanVariance we want to bound can be written as:

|MVπ′ −MVπ| =
∣∣ E
s0∼µ

[Var[Rπ′(s0)]− E
s0∼µ

[Var[Rπ(s0)]
∣∣ (21)

= ∥µ⊤(Xπ′ −Xπ)∥∞
≤ ∥µ⊤∥∞∥Xπ′ −Xπ∥∞

To bound ∥Xπ′ −Xπ∥∞, consider the following conditions:

Xπ − γ2P̂πXπ = Ωπ (22)

Xπ′ − γ2P̂π′Xπ′ = Ωπ′

Let Gπ = (I − γ2P̂π)−1, then Xπ can be written as:

Xπ = GπΩπ (23)

Then we have:

Xπ′ −Xπ = Gπ′Ωπ′ −GπΩπ (24)
= Gπ′Ωπ′ −Gπ′Ωπ +Gπ′Ωπ −GπΩπ

= Gπ′
(
Ωπ′ −Ωπ

)
+

(
Gπ′ −Gπ

)
Ωπ

Now ∥Xπ′ −Xπ∥∞ can be bounded by:

∥Xπ′ −Xπ∥∞ ≤ ∥Gπ′∥∞∥Ωπ′ −Ωπ∥∞ + ∥Gπ′ −Gπ∥∞∥Ωπ∥∞ . (25)

Notice that ∥Gπ∥∞ is bounded by:

∥Gπ∥∞ = ∥(I − γ2P̂π)−1∥∞ ≤
∞∑
t=0

(γ2)t∥P̂π∥t∞ = (1− γ2)−1 . (26)

Therefore, ||Gπ||∞ = ||Gπ′ ||∞ = (1− γ2)−1 and ∥Ωπ∥∞ can be obtained with Ωπ. We only need to tackle with
∥Gπ′ −Gπ∥∞ and ∥Ωπ′ −Ωπ∥∞.
To get ∥Gπ′ −Gπ∥∞, we have

G−1
π −G−1

π′ =
(
I − γ2P̂π)−

(
I − γ2P̂π′) (27)

= γ2
(
P̂π′ − P̂π

)
= γ2∆

where ∆ = P̂π′ − P̂π . Then we have

Gπ′ −Gπ = γ2Gπ′∆Gπ (28)

With ∥∆∥∞ = 2DmaxTV (π′∥π), where DmaxTV (π′∥π) = maxsDTV (π′∥π)[s], we have

∥γ2Gπ′∆Gπ∥∞ ≤ γ2∥Gπ′∥∞∥∆∥∞∥Gπ′∥∞ (29)

= γ2 · 1

1− γ2
· 2DmaxTV (π′∥π) · 1

1− γ2

=
2γ2

(1− γ2)2
DmaxTV (π′∥π)

18

Absolute Policy Optimization

According to (Brillinger, 2018), DmaxTV (π′∥π) ≤
√

1
2D

max
KL (π′∥π), and given equation 21, we have

|MVπ′ −MVπ| =
∣∣ E
s0∼µ

[Var[Rπ′(s0)]− E
s0∼µ

[Var[Rπ(s0)]
∣∣ (30)

≤ ∥µ⊤∥∞∥Xπ′ −Xπ∥∞

≤ ∥µ⊤∥∞
(1

1− γ2
∥Ωπ′ −Ωπ∥∞ +

2γ2

(1− γ2)2
DmaxTV (π′∥π)∥Ωπ∥∞

)
≤ ∥µ⊤∥∞

(1

1− γ2
∥Ωπ′ −Ωπ∥∞ +

2γ2

(1− γ2)2

√
1

2
DmaxKL (π′∥π) · ∥Ωπ∥∞

)
To address ∥Ωπ′ −Ωπ∥, we notice that ωπ(s) = Var

a∼π
s′∼P

[Qπ(s, a, s
′)] = Var

a∼π
s′∼P

[Aπ(s, a, s
′)], which means:

∥Ωπ′ −Ωπ∥∞ = max
s

∣∣∣∣Var
a∼π′

s′∼P

[Aπ′(s, a, s′)]− Var
a∼π
s′∼P

[Aπ(s, a, s
′)]

∣∣∣∣ (31)

Where

Aπ(s, a, s
′) = R(s, a, s′) + γVπ(s

′)− Vπ(s) (32)
Aπ′(s, a, s′) = R(s, a, s′) + γVπ′(s′)− Vπ′(s)

Define H(s, a, s′) = Aπ′(s, a, s′)−Aπ(s, a, s′), we have:

H(s, a, s′) = γ(Vπ′(s′)− Vπ(s′))− (Vπ′(s)− Vπ(s)) (33)

Similar to TRPO (Schulman et al., 2015):

E
s0=s
τ̂∼π′

[∞∑
t=0

γtAπ(st, at, st+1)

]
(34)

= E
s0=s
τ̂∼π′

[∞∑
t=0

γt(Rπ(st, at, st+1) + γVπ(st+1)− Vπ(st))
]

= E
s0=s
τ̂∼π′

[
− Vπ(s0) +

∞∑
t=0

γtRπ(st, at, st+1)

]

= E
s0=s

[
− Vπ(s0)

]
+ E
s0=s
τ̂∼π′

[∞∑
t=0

γtRπ(st, at, st+1)

]
= −Vπ(s) + Vπ′(s)

Then H(s, a, s′) can be written as:

H(s, a, s′) = γ E
s0=s

′

τ̂∼π′

[∞∑
t=0

γtAπ(st, at, st+1)

]
− E
s0=s
τ̂∼π′

[∞∑
t=0

γtAπ(st, at, st+1)

]
(35)

Define Āπ′,π(s) to be the expected advantage of π′ over π at state s:

Āπ′,π(s) = E
a∼π′

[
Aπ(s, a)

]
(36)

19

Absolute Policy Optimization

Now H(s, a, s′) can be written as:

H(s, a, s′) = γ E
s0=s

′

τ̂∼π′

[∞∑
t=0

γtĀπ′,π(st)

]
− E
s0=s
τ̂∼π′

[∞∑
t=0

γtĀπ′,π(st)

]
(37)

Define L(s, a, s′) as:

L(s, a, s′) = γ E
s0=s

′

τ̂∼π

[∞∑
t=0

γtĀπ′,π(st)

]
− E
s0=s
τ̂∼π

[∞∑
t=0

γtĀπ′,π(st)

]
(38)

With ϵ = maxs,a|Aπ(s, a)|, we have:

|H(s, a, s′)− L(s, a, s′)| (39)

=

∣∣∣∣γ(E
s0=s

′

τ̂∼π′

[∞∑
t=0

γtĀπ′,π(st)

]
− E
s0=s

′

τ̂∼π

[∞∑
t=0

γtĀπ′,π(st)

])

−
(

E
s0=s
τ̂∼π′

[∞∑
t=0

γtĀπ′,π(st)

]
− E
s0=s
τ̂∼π

[∞∑
t=0

γtĀπ′,π(st)

])∣∣∣∣
≤ γ

∣∣∣∣ E
s0=s

′

τ̂∼π′

[∞∑
t=0

γtĀπ′,π(st)

]
− E
s0=s

′

τ̂∼π

[∞∑
t=0

γtĀπ′,π(st)

]∣∣∣∣
+

∣∣∣∣ E
s0=s
τ̂∼π′

[∞∑
t=0

γtĀπ′,π(st)

]
− E
s0=s
τ̂∼π

[∞∑
t=0

γtĀπ′,π(st)

]∣∣∣∣
≤ 4γ(1 + γ)ϵ

(1− γ)2
(DmaxTV (π′∥π))2 ← ([Lemma3, (Schulman et al., 2015)])

Then according to (Brillinger, 2018) DmaxTV (π′∥π) ≤
√

1
2D

max
KL (π′∥π), we can then bound |H(s, a, s′)| with:

|H(s, a, s′)| ≤ |L(s, a, s′)|+ 4γ(1 + γ)ϵ

(1− γ)2
(DmaxTV (π′∥π))2 (40)

≤ |L(s, a, s′)|+ 2γ(1 + γ)ϵ

(1− γ)2
DmaxKL (π′∥π) .= |H(s, a, s′)|max

With Aπ′(s, a, s′) = Aπ(s, a, s
′) +H(s, a, s′), we have:

20

Absolute Policy Optimization

Var
a∼π′

s′∼P

[Aπ′(s, a, s′)]− Var
a∼π
s′∼P

[Aπ(s, a, s
′)] (41)

= E
a∼π′

s′∼P

[Aπ′(s, a, s′)2]− E
a∼π
s′∼P

[Aπ(s, a, s
′)2]

= E
a∼π′

s′∼P

[(Aπ(s, a, s
′) +H(s, a, s′))2]− E

a∼π
s′∼P

[Aπ(s, a, s
′)2]

= E
a∼π′

s′∼P

[Aπ(s, a, s
′)2]− E

a∼π
s′∼P

[Aπ(s, a, s
′)2] + 2 E

a∼π′

s′∼P

[Aπ(s, a, s
′)H(s, a, s′)] + E

a∼π′

s′∼P

[H(s, a, s′)2]

= E
a∼π
s′∼P

[(
π′(a|s)
π(a|s)

− 1

)
Aπ(s, a, s

′)2
]
+ 2 E

a∼π′

s′∼P

[Aπ(s, a, s
′)H(s, a, s′)] + E

a∼π′

s′∼P

[H(s, a, s′)2]

≤ E
a∼π
s′∼P

[(
π′(a|s)
π(a|s)

− 1

)
Aπ(s, a, s

′)2
]
+ 2 E

a∼π
s′∼P

[(
π′(a|s)
π(a|s)

)
Aπ(s, a, s

′)

]
|H(s, a, s′)|max + |H(s, a, s′)|2max

Then we can bound ∥Ωπ′ −Ωπ∥∞ with:

∥Ωπ′ −Ωπ∥∞ (42)

≤max
s

∣∣∣∣ E
a∼π
s′∼P

[(
π′(a|s)
π(a|s)

− 1

)
Aπ(s, a, s

′)2
]

+ 2 E
a∼π
s′∼P

[(
π′(a|s)
π(a|s)

)
Aπ(s, a, s

′)

]
|H(s, a, s′)|max + |H(s, a, s′)|2max

∣∣∣∣
By substituting Equation (42) into Equation (30), Proposition 2 is proved.

C.3. VarianceMean Bound

Proposition 4 (Bound of VarianceMean). Denote VarianceMean of policy π as VMπ = Var
s0∼µ

[Vπ(s0)]. Given two policies

π′, π, the VarianceMean of π′ can be bounded by:

VMπ′ ≤ E
s0∼µ

[V 2
π (s0)] + ∥µ⊤∥∞max

s

∣∣∣∣|η(s)|2max + 2|Vπ(s)| · |η(s)|max
∣∣∣∣ (43)

−
(
min

{
max

{
0, J lπ′,π

}
,J uπ′,π

})2
Proof.

VMπ′ = E
s0∼µ

[V 2
π′(s0)]− J (π′)2 (44)

Since both terms on the right of Equation (44) are non-negative, we can bound VMπ′ with the upper bound of E
s0∼µ

[V 2
π′(s0)]

and the lower bound of J (π′)2.

Define Yπ =

V
2
π (s

1)
V 2
π (s

2)
...

, where E
s0∼µ

[V 2
π (s0)] = µ⊤Yπ . Then we have

∣∣ E
s0∼µ

[V 2
π′(s0)]− E

s0∼µ
[V 2
π (s0)]

∣∣ (45)

= ∥µ⊤(Yπ′ − Yπ)∥∞
≤ ∥µ⊤∥∞∥Yπ′ − Yπ∥∞

21

Absolute Policy Optimization

To address ∥Yπ′ − Yπ∥∞, we have:

V 2
π′(s)− V 2

π (s) =

(
Vπ′(s)− Vπ(s)

)(
Vπ′(s) + Vπ(s)

)
(46)

According to equation 34:

Vπ′(s)− Vπ(s) = E
s0=s
τ̂∼π′

[∞∑
t=0

γtAπ(st, at, st+1)

]
(47)

= E
s0=s
τ̂∼π′

[∞∑
t=0

γtĀπ′,π(st)

]
=̇ η(s)

Define T (s) = E
s0=s
τ̂∼π

[∑∞
t=0 γ

tĀπ′,π(st)

]
, then we have:

|η(s)− T (s)| =
∣∣∣∣ E
s0=s
τ̂∼π′

[∞∑
t=0

γtĀπ′,π(st)

]
− E
s0=s
τ̂∼π

[∞∑
t=0

γtĀπ′,π(st)

]∣∣∣∣ ≤ 4γϵ

(1− γ)2
(DmaxTV (π′∥π))2 (48)

And according to (Brillinger, 2018), we can bound |η(s)| with:

|η(s)| ≤ |T (s)|+ 4γϵ

(1− γ)2
(DmaxTV (π′∥π))2 (49)

≤ |T (s)|+ 2γϵ

(1− γ)2
DmaxKL (π′∥π)) .= |η(s)|max

Further, we can obtain:

|Vπ′(s) + Vπ(s)| ≤ |Vπ′(s)|+ |Vπ(s)| (50)
= |Vπ′(s)| − |Vπ(s)|+ 2|Vπ(s)|
≤ |Vπ′(s)− Vπ(s)|+ 2|Vπ(s)|
≤ |η(s)|max + 2|Vπ(s)|

Thus the following inequality holds:

∥Yπ′ − Yπ∥∞ (51)

≤max
s

∣∣∣∣|Vπ′(s)− Vπ(s)| · |Vπ′(s) + Vπ(s)|
∣∣∣∣

≤max
s

∣∣∣∣|η(s)|max · (|η(s)|max + 2|Vπ(s)|)
∣∣∣∣

= max
s

∣∣∣∣|η(s)|2max + 2|Vπ(s)| · |η(s)|max
∣∣∣∣

Substitute Equation (51) into Equation (45) the upper bound of E
s0∼µ

[V 2
π′(s0)] is obtained:

E
s0∼µ

[V 2
π′(s0)] ≤ E

s0∼µ
[V 2
π (s0)] + ∥µ⊤∥∞max

s

∣∣∣∣|η(s)|2max + 2|Vπ(s)| · |η(s)|max
∣∣∣∣ (52)

The lower bound of J (π′)2 can then be obtained according to (Achiam et al., 2017):

J (π′)2 ≥
(
min

{
max

{
0, J lπ′,π

}
,J uπ′,π

})2
(53)

22

Absolute Policy Optimization

where

J lπ′,π = J (π) + 1

1− γ
E

s∼dπ
a∼π′

[
Aπ(s, a)−

2γϵπ
′

1− γ

√
1

2
DKL(π′∥π)[s]

]

J uπ′,π = J (π) + 1

1− γ
E

s∼dπ
a∼π′

[
Aπ(s, a) +

2γϵπ
′

1− γ

√
1

2
DKL(π′∥π)[s]

]
By substituting Equation (52) and Equation (53) into Equation (44) Proposition 4 is proved.

C.4. Expectation Bound [Theorem 1, (Achiam et al., 2017)]

Proposition 5. For any policies π′, π, with ϵπ
′ .
= max

s
| E
a∼π′

[Aπ(s, a)]|, and define dπ = (1− γ)
∞∑
t=0

γtP (st = s|π) as the

discounted state distribution using π, then the following bound holds:

J (π′)− J (π) ≥ 1

1− γ
E

s∼dπ
a∼π′

[
Aπ(s, a)− 2γϵπ

′

1− γ
DTV (π′∥π)[s]

]
(54)

Proof. dπ we used is defined as

dπ(ŝ) = (1− γ)
∞∑
t=0

γtP (st = s|π). (55)

Then it allows us to express the expected discounted total reward compactly as:

J (π) = 1

1− γ
E

s∼dπ
a∼π
s′∼P

[R(s, a, s′)] , (56)

where by a ∼ π, we mean a ∼ π(·|s), and by s′ ∼ P ,we mean s′ ∼ P (·|s, a). We drop the explicit notation for the sake of
reducing clutter, but it should be clear from context that a and s′ depend on s.

Define P (s′|s, a) is the probability of transitioning to state s′ given that the previous state was s and the agent took
action a at state s, and µ : S 7→ [0, 1] is the initial augmented state distribution. Let ptπ ∈ R|S| denote the vector with
components ptπ(s) = P (st = s|π), and let Pπ ∈ R|S|×|S | denote the transition matrix with components Pπ(s′|s) =∫
P (s′|s, a)π(a|s)da; then ptπ = Pπp

t−1
π = P tπµ and

dπ = (1− γ)
∞∑
t=0

(γPπ)
tµ (57)

= (1− γ)(I − γPπ)−1µ

This formulation helps us easily obtain the following lemma.

Lemma 1. For any function f : S 7→ R and any policy π,

(1− γ) E
s∼µ

[f(s)] + E
s∼dπ
a∼π
s′∼P

[γf(s′)]− E
s∼dπ

[f(s)] = 0. (58)

Proof. Multiply both sides of equation 57 by (I − γPπ) and take the inner product with the vector f ∈ R|S|.

Combining Lemma 1 with equation 56, we obtain the following, for any function f and any policy π:

J (π) = E
s∼µ

[f(s)] +
1

1− γ
E

s∼dπ
a∼π
s′∼P

[R(s, a, s′) + γf(s′)− f(s)] (59)

Then we will derive and present the new policy improvement bound. We will begin with a lemma:

23

Absolute Policy Optimization

Lemma 2. For any function f 7→ R and any policies π′ and π, define

Lπ,f (π
′)
.
= E
s∼dπ
a∼π
s′∼P

[(
π′(a|s)
π(a|s)

− 1

)
(R(s, a, s′) + γf(s′)− f(s))

]
, (60)

and ϵπ′f
.
= max

s
| E
a∼π′

s′∼P

[R(s, a, s′) + γf(s′)− f(s)]|. Then the following bounds hold:

J (π′)− J (π) ≥ 1

1− γ

(
Lπ,f (π

′)− 2ϵπ
′

f DTV (d
π′
||dπ)

)
, (61)

J (π′)− J (π) ≤ 1

1− γ

(
Lπ,f (π

′) + 2ϵπ
′

f DTV (d
π′
||dπ)

)
, (62)

where DTV is the total variational divergence. Furthermore, the bounds are tight(when π′ = π, the LHS and RHS are
identically zero).

Proof. First, for notational convenience, let δf (s, a, s′)
.
= R(s, a, s′) + γf(s′) − f(s). By equation 59, we obtain the

identity

J (π′)− J (π) = 1

1− γ

 E
s∼dπ

′

a∼π′

s′∼P

[δf (s, a, s
′)]− E

s∼dπ
a∼π
s′∼P

[δf (s, a, s
′)]

 (63)

Now, we restrict our attention to the first term in equation 63. Let †δπ′

f ∈ R|S| denote the vector of components, where
†δπ′

f (s) = E
a∼π′

s′∼P

[δf (s, a, s
′)|s]. Observe that

E
s∼dπ

′

a∼π′

s′∼P

[δf (s, a, s
′)] =

〈
dπ

′
, †δπ

′

f

〉

=
〈
dπ, †δπ

′

f

〉
+

〈
dπ

′
− dπ, †δπ

′

f

〉
With the Hölder’s inequality; for any p, q ∈ [1,∞] such that

1

p
+

1

q
= 1, we have

〈
dπ, †δπ

′

f

〉
+
∥∥∥dπ′

− dπ
∥∥∥
p

∥∥∥†δπ′

f

∥∥∥
q
≥ E
s∼dπ

′

a∼π′

s′∼P

[δf (s, a, s
′)] ≥

〈
dπ, †δπ

′

f

〉
−
∥∥∥dπ′

− dπ
∥∥∥
p

∥∥∥†δπ′

f

∥∥∥
q

(64)

We choose p = 1 and q =∞; With
∥∥∥dπ′ − dπ

∥∥∥
1
= 2DTV (d

π′ ||dπ) and
∥∥∥†δπ′

f

∥∥∥
∞

= ϵπ
′

f , and by the importance sampling
identity, we have 〈

dπ, †δπ
′

f

〉
= E
s∼dπ
a∼π′

s′∼P

[δf (s, a, s
′)] (65)

= E
s∼dπ
a∼π
s′∼P

[

(
π′(a|s)
π(a|s)

)
δf (s, a, s

′)]

After bringing equation 65,
∥∥∥dπ′ − dπ

∥∥∥
1
,
∥∥∥†δπ′

f

∥∥∥
∞

into equation 64, then substract E
s∼dπ
a∼π
s′∼P

[δf (s, a, s
′)], the bounds are

obtained. The lower bound leads to equation 61, and the upper bound leads to equation 62.

24

Absolute Policy Optimization

Then we will bound the divergence term, ||dπ′ − dπ||1, i.e. 2DTV (d
π′ ||dπ).

Lemma 3. The divergence between discounted future state visitation distributions, ||dπ′ − dπ||1, is bounded by an average
divergence of the policies π′ and π:

∥dπ
′
− dπ∥1 ≤

2γ

1− γ
E

ŝ∼dπ
[DTV (π

′||π)[s]] , (66)

where DTV (π
′||π)[s] = 1

2

∑
a |π′(a|s)− π(a|s)|.

Proof. Firstly, we introduce an identity for the vector difference of the discounted future state visitation distributions on two
different policies, π′ and π. Define the matrices G .

= (I − γPπ)−1, Ḡ
.
= (I − γPπ′)−1, and ∆ = Pπ′ − Pπ . Then:

G−1 − Ḡ−1 = (I − γPπ)− (I − γPπ′) (67)
= γ∆,

left-multiplying by G and right-multiplying by Ḡ, we obtain

Ḡ−G = γḠ∆G. (68)

Thus, the following equality holds:

dπ
′
− dπ = (1− γ)

(
Ḡ−G

)
µ (69)

= γ(1− γ)Ḡ∆Gµ
= γḠ∆dπ.

Using equation 69, we obtain

∥dπ
′
− dπ∥1 = γ∥Ḡ∆dπ∥1 (70)

≤ γ∥Ḡ∥1∥∆dπ∥1,

where ||Ḡ||1 is bounded by:

∥Ḡ∥1 = ∥(I − γPπ′)−1∥1 ≤
∞∑
t=0

γt∥Pπ′∥t1 = (1− γ)−1. (71)

Next, we bound ∥∆dπ1∥ as following:

∥∆dπ∥1 =
∑
s′

∣∣∣∣∣∑
s

∆(s′|s)dπ(s)

∣∣∣∣∣ (72)

≤
∑
s,s′

|∆(s′|s)|dπ(s)

=
∑
s,s′

∣∣∣∣∣∑
a

P (s′|s, a) (π′(a|s)− π(a|s))

∣∣∣∣∣ dπ(s)
≤

∑
s,a,s′

P (s′|s, a)|π′(a|s)− π(a|s)|dπ(s)

=
∑
s,a

|π′(a|s)− π(a|s)|dπ(s)

= 2 E
s∼dπ

[DTV (π
′||π)[s]].

By taking equation 72 and equation 71 into equation 70, this lemma is proved.

The new policy improvement bound follows immediately.

25

Absolute Policy Optimization

Lemma 4. For any function f : S 7→ R and any policies π′ and π, define δf (s, a, s′)
.
= R(s, a, s′) + γf(s′)− f(s),

ϵπ
′

f
.
= max

s
| E
a∼π′

s′∼P

[δf (s, a, s
′)]|,

Lπ,f (π
′)
.
= E
s∼dπ
a∼π
s′∼P

[(
π′(a|s)
π(a|s)

− 1

)
δf (s, a, s

′)

]
, and

D±
π,f (π

′)
.
=
Lπ,f (π

′)

1− γ
±

2γϵπ
′

f

(1− γ)2
E

s∼dπ
[DTV (π

′||π)[s]],

where DTV (π
′||π)[s] = 1

2

∑
a |π′(a|s)− π(a|s)| is the total variational divergence between action distributions at s. The

following bounds hold:
D+
π,f (π

′) ≥ J (π′)− J (π) ≥ D−
π,f (π

′).

Furthermore, the bounds are tight (when π′ = π, all three expressions are identically zero)

Proof. Begin with the bounds from Lemma 2 and bound the divergence DTV (d
π′ ||dπ) by Lemma 3.

The choice of f = Vπ in Lemma 4 leads to following inequality:

For any policies π′, π, with ϵπ
′ .
= max

s
| E
a∼π′

[Aπ(s, a)]|, the following bound holds:

J (π′)− J (π) ≥ 1

1− γ
E

s∼dπ
a∼π′

[
Aπ(s, a)−

2γϵπ
′

1− γ
DTV (π

′||π)[s]

]

At this point, the Proposition 5 is proved.

C.5. Proof of Theorem 1

With Proposition 2, Proposition 4, and Proposition 5, we have the following surrogate function of lower probability bound
Bk(π′):

Bk(π′) ≥ J lπ′,π − k (MV π′,π + VMπ′,π) (73)

where

MV π′,π =
∥µ⊤∥∞
1− γ2

max
s

∣∣∣∣∣ E
a∼π′

s′∼P

[
Aπ(s, a, s

′)2
]
− E

a∼π
s′∼P

[
Aπ(s, a, s

′)2
]
+ |H(s, a, s′)|2max

+ 2 E
a∼π′

s′∼P

[Aπ(s, a, s
′)] · |H(s, a, s′)|max

∣∣∣∣∣+MVπ +
2γ2∥µ⊤∥∞
(1− γ2)2

√
1

2
DmaxKL (π′∥π) · ∥Ωπ∥∞

VMπ′,π = ∥µ⊤∥∞max
s

∣∣∣∣|η(s)|2max + 2|Vπ(s)| · |η(s)|max
∣∣∣∣+ E

s0∼µ
[V 2
π (s0)]

−
(
min

{
max

{
0, J lπ′,π

}
,J uπ′,π

})2
J lπ′,π = J (π) + 1

1− γ
E

s∼dπ
a∼π′

[
Aπ(s, a)−

2γϵπ
′

1− γ

√
1

2
DKL(π′∥π)[s]

]

We defineMj
k(π) = J lπ,πj −k

(
MV π,πj + VMπ,πj

)
, and it can be found that Bk(πj) =Mj

k(πj). Then by Equation (73),
we have Bk(πj+1) ≥Mj

k(πj+1) and the following holds:

Bk(πj+1)− Bk(πj) ≥Mj
k(πj+1)−Mj

k(πj) (74)

26

Absolute Policy Optimization

Thus, by maximizing Mj
k at each iteration, we guarantee that the true lower probability bound of performance Bk is

non-decreasing. So far Theorem 1 has been proved.
Remark 4. Mj

k(π) is the objective function in our optimization problem which we can guarantee its monotonic improvement
theoretically. Thus the RHS greater than or equal to zero, which can lead to the monotonic improvement of lower probability
bound Bk(π).

27

Absolute Policy Optimization

C.6. Additional Results

Lemma 5. Bk(πj) =Mj
k(πj), where Bk(πj) = J (πj)− kV(πj) andMj

k(π) = J lπ,πj − k
(
MV π,πj + VMπ,πj

)
.

Proof. To prove Lemma 5, we will show that (i) J lπj ,πj = J (πj), and (ii)
(
MV π,πj + VMπ,πj

)
= V(πj).

Expectation Part For the same policy πj , the following two conditions hold:

E
s∼dπj
a∼πj

[
Aπj (s, a)

]
= 0 (75)

DKL(πj∥πj)[s] = 0 . (76)

With equation 76 and equation 75, the following equality holds:

J lπj ,πj = J (πj) +
1

1− γ
E

s∼dπj
a∼πj

[
Aπj (s, a)−

2γϵπ

1− γ

√
1

2
DKL(πj∥πj)[s]

]
(77)

= J (πj) .

Similarly,

J uπj ,πj = J (πj) +
1

1− γ
E

s∼dπj
a∼πj

[
Aπj (s, a) +

2γϵπj

1− γ

√
1

2
DKL(πj∥πj)[s]

]
(78)

= J (πj) .

Variance Part For the same policy πj , the following conditions hold:

E
a∼πj
s′∼P

[
Aπj (s, a, s

′)2
]
− E
a∼πj
s′∼P

[
Aπj (s, a, s

′)2
]
= 0 (79)

E
a∼πj
s′∼P

[
Aπj (s, a, s

′)
]
= 0 (80)

∀s, Āπj ,πj (s) = 0 . (81)

equation 76, equation 80 and equation 81 indicate that:

|H(s, a, s′)|max =

∣∣∣∣∣∣γ E
s0=s

′

τ̂∼πj

[∞∑
t=0

γtĀπj ,πj (st)

]
− E

s0=s
τ̂∼πj

[∞∑
t=0

γtĀπj ,πj (st)

]∣∣∣∣∣∣+ 2γ(1 + γ)ϵ

(1− γ)2
DmaxKL (πj ||πj) (82)

= 0

|η(s)|max =

∣∣∣∣∣∣ E
s0=s
τ̂∼πj

[∞∑
t=0

γtĀπj ,πj (st)

]∣∣∣∣∣∣+ 2γϵ

(1− γ)2
DmaxKL (πj∥πj) (83)

= 0 .

28

Absolute Policy Optimization

With equation 77, equation 78, equation 79, equation 82 and equation 83, we have the following condition hold:

MV πj ,πj + VMπj ,πj (84)

=
∥µ⊤∥∞
1− γ2

max
s

∣∣∣∣∣ E
a∼πj
s′∼P

[
Aπj (s, a, s

′)2
]
− E
a∼πj
s′∼P

[
Aπj (s, a, s

′)2
]
+ |H(s, a, s′)|2max

+ 2 E
a∼πj
s′∼P

[
Aπj (s, a, s

′)
]
· |H(s, a, s′)|max

∣∣∣∣∣+MVπj +
2γ2∥µ⊤∥∞
(1− γ2)2

√
1

2
DmaxKL (πj∥πj) · ∥Ωπj∥∞

+ ∥µ⊤∥∞max
s

∣∣∣∣|η(s)|2max + 2|Vπj (s)| · |η(s)|max
∣∣∣∣−min (J (π))2 + E

s0∼µ
[V 2
πj (s0)]

=MVπj −min (J (π))2 + E
s0∼µ

[V 2
πj (s0)]

= E
s0∼µ

[Var
τ̂∼πj

[Rπj (s0)]− min
J (π)∈[J l

πj,πj
,J u
πj,πj

]
(J (π))2 + E

s0∼µ
[V 2
πj (s0)]

= E
s0∼µ

[Var
τ̂∼πj

[Rπj (s0)]− min
J (π)∈[J (πj),J (πj)]

(J (π))2 + E
s0∼µ

[V 2
πj (s0)]

= E
s0∼µ

[Var
τ̂∼πj

[Rπj (s0)] + E
s0∼µ

[V 2
πj (s0)]− J (πj)

2

= V(πj)

Summarize With equation 77 and equation 84, we have the following condition hold:

Bk(πj) = J (πj)− kV(πj) = J lπj ,πj − k
(
MV πj ,πj + VMπj ,πj

)
=Mj

k(πj) , (85)

which proves the Lemma.

29

Absolute Policy Optimization

D. APO Pseudocode

Algorithm 1 Absolute Policy Optimization

Input: Initial policy π0 ∈ Πθ.
for j = 0, 1, 2, . . . do

Sample trajectory τ ∼ πj = πθj
Estimate gradient g ← ∇θOπ,πj

∣∣
θ=θj

{Define Oπ,πj =
(

1
1−γ E

s∼dπj
a∼π

[
Aπj (s, a)

]
− k

(
MV π,πj + VMπ,πj

))
}

Estimate Hessian H ← ∇2
θEs∼πj [DKL(π∥πj)[s]]

∣∣
θ=θj

Solve convex programming {(Achiam et al., 2017)}

θ∗j+1 = argmax
θ

g⊤(θ − θj)

s.t.
1

2
(θ − θj)⊤H(θ − θj) ≤ δ

Get search direction ∆θ∗ ← θ∗j+1 − θj
for k = 0, 1, 2, . . . do {Line search}
θ′ ← θj + ξk∆θ∗ {ξ ∈ (0, 1) is the backtracking coefficient}
if Es∼πj [DKL(πθ′∥πj)[s]] ≤ δ and {Trust Region}

Oπθ′ ,πj ≥ Oπj ,πj then {Objective}
θj+1 ← θ′ {Update policy}
break

end if
end for

end for

30

Absolute Policy Optimization

E. Expeiment Details

(a) Goal (b) Push (c) Chase (d) Humanoid (e) H.Standup (f) HandReach (g) H.M.Egg (h) H.M.Block

Figure 14: Tasks of continuous experiments

(a) Point (b) Swimmer (c) Arm3 (d) Drone (e) Hopper (f) Ant (g) Walker

Figure 15: Robots of continuous tasks benchmark GUARD.

E.1. GUARD Environment Settings

Goal Task In the Goal task environments, the reward function is:

r(xt) = dgt−1 − d
g
t + 1[dgt < Rg] ,

where dgt is the distance from the robot to its closest goal and Rg is the size (radius) of the goal. When a goal is achieved,
the goal location is randomly reset to someplace new while keeping the rest of the layout the same.

Push Task In the Push task environments, the reward function is

r(xt) = drt−1 − drt + dbt−1 − dbt + 1[dgt < Rg] ,

where dr and db are the distance from the robot to its closest goal and the distance from the box to its closest goal, and Rg is
the size (radius) of the goal. The box size is 0.2 for all the Push task environments. Like the goal task, a new goal location is
drawn each time a goal is achieved.

Chase Task In the Chase task environments, the reward function is

r(xt) = drt−1 − drt + 1[dgt < Rg] ,

where dr is the distance from the robot to its closest goal and Rg is the size (radius) of the goal. Those targets continuously
move away from the robot at a slow speed. The dense reward component provides a bonus for minimizing the distance
between the robot and the targets. The targets are constrained to a circular area.

The test suites of APO and PAPO continuous experiments are summarized in Table 2 and Table 3, respectively.

State Space The internal state spaces describe the state of the robots, which can be obtained from standard robot sensors
(accelerometer, gyroscope, magnetometer, velocimeter, joint position sensor, joint velocity sensor and touch sensor). The
details of the internal state spaces of the robots in our test suites are summarized in Table 4.

Control Space For all the experiments, the control space of all robots are continuous, and linearly scaled to [-1, +1].

E.2. Policy Settings

The hyper-parameters used in our experiments are listed in Table 5 as default.

31

Absolute Policy Optimization

Table 2: The test suites environments of APO continuous experiments

Task Settings Moving Area Task Dimension
Ground Aerial Fixed Goal Push Chase Low High

Arm3 (R3) ✓ ✓ ✓
Drone (R4) ✓ ✓ ✓

GUARD Point (R2) ✓ ✓ ✓ ✓
Swimmer (R2) ✓ ✓ ✓ ✓

Robot Hopper (R5) ✓ ✓ ✓ ✓
Ant (R8) ✓ ✓ ✓ ✓

Walker (R10) ✓ ✓ ✓ ✓

Mujoco Humanoid (R17) ✓ ✓
Robot HumanoidStandup (R17) ✓ ✓

Table 3: The test suites environments of PAPO continuous experiments

Task Settings Moving Area Task Dimension
Ground Aerial Fixed Goal Chase Low High

Arm3 (R3) ✓ ✓ ✓
Drone (R4) ✓ ✓ ✓

GUARD Point (R2) ✓ ✓ ✓
Swimmer (R2) ✓ ✓ ✓

Robot Hopper (R5) ✓ ✓ ✓
Ant (R8) ✓ ✓ ✓ ✓

Walker (R10) ✓ ✓ ✓ ✓

Mujoco Humanoid (R17) ✓ ✓
Robot HumanoidStandup (R17) ✓ ✓

Gymnasium HandReach (R24) ✓ ✓
HandManipulateEgg (R24) ✓ ✓

Robot HandManipulateBlock (R24) ✓ ✓

Our experiments use separate multi-layer perceptrons with tanh activations for the policy network and value network.
Each network consists of two hidden layers of size (64,64). Policy networks and value networks are trained using Adam
optimizer. Policy networks are trained with a learning rate of 1e-3 while value networks are trained with 3e-4.

We apply an on-policy framework in our experiments. During each epoch the agent interacts B times with the environment
and then performs a policy update based on the experience collected from the current epoch. The maximum length of the
trajectory is set to 1000. The steps in each epoch are set to 30000. The total epoch number N is set to 200 in continuous
tasks and 500 in atari tasks as default.

The policy update step is based on the scheme of TRPO, which performs up to 100 steps of backtracking with a coefficient
of 0.8 for line searching.

For all experiments, we use a discount factor of γ = 0.99, an advantage discount factor λ = 0.97, and a KL-divergence step
size of δKL = 0.02.

Other unique hyper-parameters for each algorithm follow the original paper to attain best performance.

Each model is trained on a server with a 48-core Intel(R) Xeon(R) Silver 4214 CPU @ 2.2.GHz, Nvidia RTX A4000 GPU
with 16GB memory, and Ubuntu 20.04.

32

Absolute Policy Optimization

Table 4: The internal state space components of different test suites environments.

Internal State Space Point Swimmer Walker Ant Drone Hopper Arm3
Accelerometer (R3) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Gyroscope (R3) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Magnetometer (R3) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Velocimeter (R3) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Joint position sensor (Rn) n = 0 n = 2 n = 10 n = 8 n = 0 n = 6 n = 3
Joint velocity sensor (Rn) n = 0 n = 2 n = 10 n = 8 n = 0 n = 6 n = 3

Touch sensor (Rn) n = 0 n = 4 n = 2 n = 8 n = 0 n = 1 n = 1

Table 5: Important hyper-parameters of different algorithms in our experiments

Policy Parameter A2C TRPO PPO APO PAPO ESPO α-PPO V-MPO
Epochs in continuous tasks N1 200 200 200 200 200 200 200 200
Epochs in discrete tasks N2 500 500 500 500 - - - -
Steps per epoch B 30000 30000 30000 30000 30000 30000 30000 30000
Maximum length of trajectory L 1000 1000 1000 1000 1000 1000 1000 1000
Discount factor γ 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Advantage discount factor λ 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
backtracking steps - 100 - 100 - - - -
backtracking coefficient - 0.8 - 0.8 - - - -
Target KL δKL - 0.02 0.02 0.02 0.02 - 0.02 0.02
Stopping Threshold δ - - - - - 0.25 - -
Clip Ratio ϵ - - 0.2 - 0.2 - 0.2 -
Probability factor k - - - 7 7 - - -
Policy network hidden layers (64, 64) (64, 64) (64, 64) (64, 64) (64, 64) (64, 64) (64, 64) (64, 64)
Policy network iteration 80 - 80 - 80 80 80 80
Policy network optimizer Adam - Adam - Adam Adam Adam Adam
Policy learning rate 3e-4 - 3e-4 - 3e-4 3e-4 3e-4 3e-4
Value network hidden layers (64, 64) (64, 64) (64, 64) (64, 64) (64, 64) (64, 64) (64, 64) (64, 64)
Value network iteration 80 80 80 80 80 80 80 80
Value network optimizer Adam Adam Adam Adam Adam Adam Adam Adam
Value learning rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3

33

Absolute Policy Optimization

E.3. Normalized Score Settings

We intend to use 100% as the TRPO baseline measure. Thus the score we used is slightly changed from the normalization
algorithm proposed by (van Hasselt et al., 2015) with the form as follow:

∆1
.
= scoreagent − scorerandom

∆2
.
= scoreTRPO − scorerandom

scorenormalized =
∆2

∆1
if ∆1 < 0 and ∆2 < 0 else

∆1

∆2

The difference is that we take the inverse of the metrics used in (van Hasselt et al., 2015) when ∆1 < 0 and ∆2 < 0. For
further explanation, we need to address the positive and negative cases of ∆1 and ∆2:

• ∆1 > 0 and ∆2 > 0 In this case, ∆1

∆2
can effectively demonstrate the ability of algorithms.

• ∆1 < 0 and∆2 < 0 Practically in this case, assuming scoreagent > scoreTRPO, scorenormalized should be greater
than 1 to demonstrate that agent is more capable than baseline TRPO. However, we will get a decimal if we obey the
original score algorithms in (van Hasselt et al., 2015) which is incorrect. Thus we take the inverse of it in this situation.

• ∆1 < 0 and∆2 > 0 In this case we will get a negative number which is reasonable to show the negative effects in
terms of reward enhancement.

• ∆1 > 0 and∆2 < 0 The changed normalization algorithm is still incorrect in this situation. However, we have not
encountered such cases in all of our atari game statistics.

F. Total Experiment results

Figure 16: All continuous GUARD tasks expected performance learning curves for APO test suites.

34

Absolute Policy Optimization

Figure 17: All continuous GUARD tasks worst performance learning curves for APO test suites.

Figure 18: All continuous GUARD tasks expected performance learning curves for PAPO test suites.

35

Absolute Policy Optimization

Figure 19: All continuous GUARD tasks worst performance learning curves for PAPO test suites.

36

Absolute Policy Optimization

Figure 20: Comparison of expected performance on Atari Game No.1 - No. 32

37

Absolute Policy Optimization

Figure 21: Comparison of expected performance on Atari Game No.33 - No. 62

38

Absolute Policy Optimization

Figure 22: Comparison of worst performance on Atari Game No.1 - No. 32

39

Absolute Policy Optimization

Figure 23: Comparison of worst performance on Atari Game No.33 - No. 62

40

