## THINK SOCIALLY VIA COGNITIVE REASONING

Anonymous authors

Paper under double-blind review

#### **ABSTRACT**

LLMs trained for logical reasoning excel at step-by-step deduction to reach verifiable answers. However, this paradigm is ill-suited for navigating social situations, which induce an interpretive process of analyzing ambiguous cues that rarely yield a definitive outcome. To bridge this gap, we introduce Cognitive Reasoning, a paradigm modeled on human social cognition. It formulates the interpretive process into a structured cognitive flow of interconnected cognitive units (e.g., observation or attribution), which combine adaptively to enable effective social thinking and responses. We then propose CogFlow, a complete framework that instills this capability in LLMs. CogFlow first curates a dataset of cognitive flows by simulating the associative and progressive nature of human thought via tree-structured planning. After instilling the basic cognitive reasoning capability via supervised fine-tuning, CogFlow adopts reinforcement learning to enable the model to improve itself via trial and error, guided by a multi-objective reward that optimizes both cognitive flow and response quality. Extensive experiments show that CogFlow effectively enhances the social cognitive capabilities of LLMs, and even humans, leading to more effective social decision-making. Our repository will be released at: https://anonymous.4open.science/r/CogFlow2025.

#### 1 Introduction

Social cognition, the core mental process of human social intelligence, governs how individuals perceive, interpret, and respond to social situations (Fiske & Taylor, 2020). This unique ability allows humans to navigate complex social dynamics wisely (Thorndike, 1920). As large language models (LLMs, OpenAI (2024); Guo et al. (2025)) have been taking on more collaborative roles with humans, their capability of social intelligence is being actively examined (Chen et al., 2024; 2025a). Recent studies have revealed promising signs, including evidence of human-like social behaviors (Park et al., 2023) and lobe structure for social skills (Zhou et al., 2025a). Deeper cognitive analysis further suggests that LLMs spontaneously exhibit human-like cognitive features, e.g., reasoning patterns that mimic empathy (Dong et al., 2025), indicating a potential capacity for social cognition.

Despite the potential evidenced in the aforementioned observational studies, improving the social cognitive abilities of LLMs remains underexplored. The root cause lies in the fundamental mismatch between the LLMs' currently implanted reasoning structures and the nature of social intelligence (Moore et al., 2025). Specifically, LLMs excel at complex tasks like math and coding (Shao et al., 2024; Ni et al., 2024), which rely on **step-by-step logical deduction** to arrive at a single verifiable solution (Zheng et al., 2025). In contrast, reasoning in social situations is an **interpretive process** that involves analyzing ambiguous cues that rarely yield a definitive answer (Gandhi et al., 2023; Xu et al., 2025). Not to mention LLMs, even when humans try to apply rigid logic rules to the fluid social domains, they risk falling into "cognitive rumination" (Marjanović et al., 2025), which is a state of over-analyzing simple cues, engaging in redundant reasoning cycles, and producing protracted internal monologues that lead to erroneous judgments or delayed responses (as shown in Figure 1). This exposes a pivotal challenge in applying LLMs to social situations, and defining and implementing an effective LLM reasoning paradigm to close this gap is thus urgently needed.

To this end, we pioneer a complete learning framework to instill social cognition into LLM reasoning. Drawing from social cognitive theory (Bandura et al., 1986), we dissect a social cognition process into six core cognitive units that form social thinking: *Observation, Attribution, Motivation, Regulation, Efficacy, and Behavior*. For example, in the social scene "choosing the last member for a new robotics team" shown in Figure 1, one can predict Carlos's action by first observing the

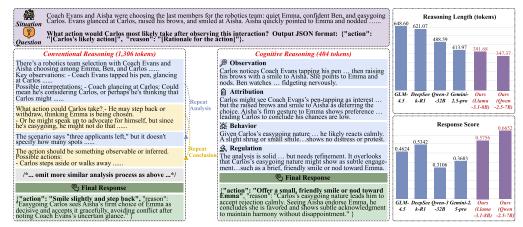


Figure 1: An example of conventional reasoning (DeepSeek-R1) falling into "cognitive rumination", while cognitive reasoning efficiently reaches a better response. The bar chart shows the average reasoning length and comparative preference scores for advanced LLMs on our test set (§4.3).

situation (e.g., coach Evans smiles at Aisha), making an attribution about that behavior (e.g., the smile signals deference), formulating Carlos's intended behavior (e.g., a slight shrug), applying regulation (e.g., Carlos should show a friendly nod in accordance with his easygoing personality), and finally leading to predicted actions (e.g., offer a small, friendly smile or nod toward Emma). These cognitive units flow adaptively among each other to create an effective, structured reasoning process. We define this process as Cognitive Reasoning, a paradigm for thinking and responding effectively in social situations. While cognitive reasoning provides a clear blueprint for social cognition, its implementation in LLMs presents two crucial challenges: 1) Reasoning paradigm shift: shifting models' training objective from optimizing verifiable logic to guiding analytical reasoning that lacks definitive answers; 2) Cognitive flow control: teaching the model to adaptively regulate its use of these cognitive units to avoid rumination.

To address these challenges, we teach LLMs to think socially in a form of cognitive flow. First, we curate a cognitive reasoning dataset via cognitive flow simulation. We prompt advanced LLMs to simulate human thoughts by crafting cognitive flows about a social situation. This process generates cognitive units sequentially, where each unit acts as a reasoning node that enables the planning of the next, mirroring the associative and progressive process of human cognition. The uncertainty in social situations allows these nodes to naturally branch into a cognitive reasoning tree, and each leaf node contains the response derived from the corresponding cognitive flow about the social situation (as shown in Figure 2). **Second**, given the absence of definitive answers, we design a comparative preference ranking principle to identify the most promising cognitive flows by the relative plausibility of the responses from all leaf nodes. We then prune the flows based on criteria derived from social cognitive theory - coherence, interpretability, predictability (Bandura et al., 1986) - to create high-quality data for supervised fine-tuning (SFT). Finally, after instilling basic cognitive reasoning capability via SFT, we empower the model to autonomously explore better reasoning paths using reinforcement learning (RL), guided by a multi-objective reward function: a) a comparative preference reward to steer the model toward flows that yield more plausible responses; and b) a cognitive flexibility reward to encourage adaptive regulation of the cognitive flow's diversity and depth. We name this training framework CogFlow.

Our contributions are summarized as follows: (1) We introduce cognitive reasoning, a pioneering paradigm designed to enable LLMs to think socially via structured interplay among cognitive units. (2) We propose CogFlow, a training framework that instills cognitive reasoning capability into LLM, using a combination of preference-based SFT and multi-objective RL. (3) We conduct extensive experiments showing that CogFlow effectively enhances the social cognitive capabilities of both LLMs and humans, leading to more effective social decision-making.

## 2 PRELIMINARIES

**Definition of Cognitive Reasoning** Humans' social cognition is a dynamic process (Fiske & Taylor, 2020) where people navigate complex social situations by building and refining internal cognitive

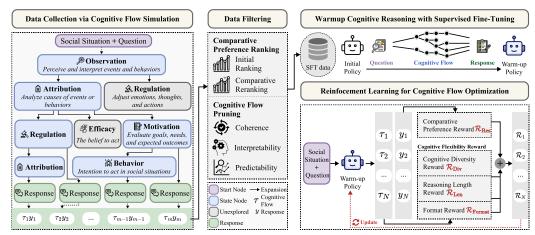


Figure 2: Overview of our CogFlow framework, which crafts cognitive flows via tree-structured planning, uses the filtered data for SFT, and then employs multi-objective RL for self-improvement.

maps (Tolman, 1948). This occurs in a feedback loop: people map social situations to their actions (Bandura & Walters, 1977), and the outcomes provide feedback that reshapes both their internal map and the external situations (Bandura et al., 1986). We formalize the mental activity within this loop as *cognitive reasoning*, and operationalize the cognitive map as a "cognitive flow", an adaptive adoption of several core cognitive units (Bandura et al., 1986), e.g., attributions about a person's intent shape one's motivation to interact, and a strong sense of efficacy can enhance regulation strategies. Definitions of the cognitive units are: (1) Observation: Perceiving and interpreting events and others' behaviors to form an initial cognitive appraisal of a situation (Lazarus, 1991). (2) Attribution: Analyzing the causes of events or behaviors (Heider, 2013). (3) Motivation: The expectations and value assessments of potential outcomes for self and others' behavior, which provide the drive to act (Vroom, 1964). (4) Regulation: Reflecting on and adjusting emotions, beliefs, and behaviors in pursuit of social goals (Carver & Scheier, 2012). (5) Efficacy: The belief to execute a specific social behavior, which influences motivational intensity (Bandura, 1997). (6) Behavior: Formulating an intention to act in response to social situations (Ajzen, 1991).

Task Formulation in Cognitive Reasoning Given a social situation  $\mathcal S$  and a query  $\mathcal Q$ , the goal is to obtain a response y by first generating an explicit cognitive flow  $\tau$ . Each reasoning step is materialized by a particular cognitive unit  $r_i = (u_i, c_i)$ , where  $u_i$  is the unit category (e.g., Observation) and  $c_i$  is the materialized text content of  $u_i$ . A complete flow  $\tau$  is thus an ordered sequence of n reasoning steps:  $\tau = \{r_1, r_2, \cdots, r_n\} = \{(u_1, c_1), (u_2, c_2), \cdots, (u_n, c_n)\}$ . We define the input x as the concatenation of  $\mathcal S$  and  $\mathcal Q$ ,  $x = [\mathcal S; \mathcal Q]$ . Our goal is to learn a policy  $\pi_\theta$  that maximizes the joint probability of generating the flow  $\tau$  and the response y:  $\pi_\theta(\tau, y|x) = \pi_\theta(y|\tau, x) \cdot \pi_\theta(\tau|x)$ , where  $\pi_\theta(\tau|x)$  depicts the generation of structured cognitive flow  $\tau$ ,  $\pi_\theta(y|\tau, x)$  measures the correspondence between cognitive reasoning content of  $\tau$  and produced response y about input x.

### 3 METHODOLOGY

As shown in Figure 2, our training framework CogFlow begins by collecting cognitive flows via treestructured planning, guided by carefully crafted instructions. We implement a dual-validated data filtering procedure: a comparative preference ranking module identifies cognitive flows that yield high-quality responses, which are then pruned under coherence, interpretability, and predictability criteria. After instilling such structured cognitive reasoning into an LLM via SFT, the model improves itself via RL, guided by a multi-objective reward that optimizes both cognitive flow and response quality. The instructions used in data collection and more details are shown in App. C.

#### 3.1 Data Collection via Cognitive Flow Simulation

**Seed Data Collection** To approach realistic and complex social situations, we collect seed data from Reddit. Unlike existing datasets, e.g., SocialIQA (Sap et al., 2019), which often feature simple situations with limited social dynamics, our collection focuses on complex multi-person interactions, presenting a more substantial challenge for LLMs. The pipeline is constructed as follows:

- **Situation curation**: We curate and anonymize Reddit posts, removing all sensitive content. Then we prompt Deepseek-R1 (hereafter R1) to distill them into concise situation descriptions (S).
- Question generation: For each situation, we prompt R1 to extract detailed social cues and generate a corresponding question (Q) that demands deep interpretation, analysis, and prediction.
- **Filtering**: To ensure high quality of our seed data, each generated situation-question pair (S,Q) is re-assessed by R1. We discard pairs rated low on situation complexity or question relevance.

**Cognitive Flow Simulation** To obtain human-like cognitive flows, we simulate the associative and progressive process of human cognition (Bandura et al., 1986). The flows are crafted by prompting R1 to sequentially plan and materialize the content of cognitive units. Each unit acts as a reasoning node, and the preceding path supports planning for the next. As a single thought can lead to multiple continuations, this process naturally forms a tree-structured exploration of reasoning flows.

- State: Each node in the tree is a state  $s_k$ , denoting a partially generated cognitive reasoning path from the root. The root node,  $s_0$ , corresponds to the initial input x = [S; Q].
- Action: At any state  $s_k$ , we prompt R1 to choose the next cognitive unit  $u_{k+1}$  from dynamic candidates,  $A(s_k) \subseteq \{u_1, \dots, u_6\}$ . The initial state  $s_0$  is constrained to be unit Observation.
- Planning: Planning begins from the root state  $s_0$  and iteratively expands the tree by: a) Generation: For the selected unit  $u_{k+1}$ , we prompt R1 to generate the unit's text content  $c_{k+1}$  with respect to the current state  $s_k$ . This forms a new reasoning node  $r_{k+1} = (u_{k+1}, c_{k+1})$  and expands the path to a new state  $s_{k+1} = [s_k; r_{k+1}]$ . b) Prediction: R1 is then prompted to analyze the reasoning path  $s_{k+1}$  and predict a set of relevant next cognitive units  $A(s_k)$  to explore. This step adaptively prunes the action space from all six possible units to only the most contextually appropriate ones. c) Expansion: Each candidate unit from the predicted set becomes a new node, expanding the tree with multiple parallel reasoning paths.
- **Completion**: This expansion process repeats until R1 determines that the reasoning has reached a terminal state, which is referred to as a leaf node. At this point, it generates a final response y based on the fully constructed chain.

We define a complete cognitive flow from the root node to any leaf node as a rollout. By performing multiple rollouts for each seed instance, we collect a diverse set of cognitive flows  $\{\tau_1, \cdots, \tau_m\}$  and their corresponding final responses  $\{y_1, \cdots, y_m\}$ .

**Dual-Validation based Filtering** In the absence of definitive answers, we design a two-step filtering procedure to ensure the quality of generated cognitive flows. We first identify flows landing on high quality responses via **two-stage Comparative Preference Ranking** ( $CPRank^2$ ):

- Comparison pool construction: For each seed instance, we craft a candidate pool containing responses from our rollouts and a baseline response directly from R1. The pool size is set to 10, which we found to be satisfactory in our preliminary tests. If the size of valid rollouts is fewer than 10, we create variations by perturbing the generated flows (e.g., combining flow snippets).
- **Initial ranking**: We prompt R1 to generate situation-specific criteria and then use them to assign an initial score and critique for each response in the pool, i.e., LLM-as-a-judge (Liu et al., 2025).
- Comparative reranking: To mitigate scoring biases (e.g., positional bias in R1's initial scores), we then select the median-ranked response as an anchor. We ask R1 to perform a final comparative reranking of the entire pool against this anchor, yielding a more robust preference order.

Next, we conduct **cognitive flow pruning**. We select flows with responses scored higher than those from R1, designating them as high-quality candidates. The candidates are then pruned by R1 using the following criteria constructed based on social cognitive theories (Bandura et al., 1986): *a) coherence*: logically sound and free of contradictions; *b) interpretability*: clearly explain the social dynamics; *c) predictability*: offer reasonable insight into the future evolution of social dynamics. Only cognitive flows satisfying all criteria are retained.

## 3.2 WARMUP COGNITIVE REASONING WITH SFT

To endow LLM with basic cognitive reasoning capability, we train it with the constructed cognitive flows via SFT. For each curated data instance  $(x,\tau,y)$ , we format it by concatenating all reasoning steps  $r_i=(u_i,c_i)$  within the cognitive flow  $\tau$  into a continuous text sequence  $\tau_{\rm SFT}$ :  $\tau_{\rm SFT}=\oplus_{r_i\in\tau}\langle u_i\rangle c_i\langle u_i\rangle$ , where  $\oplus$  is string concatenation. The cognitive unit tags  $\langle u_i\rangle$  and  $\langle u_i\rangle$  (e.g.,  $\langle {\tt Observation}\rangle$ ) are added to LLM's vocabulary as new special tokens, allowing them to be directly embedded and enabling the LLM to learn cognitive reasoning structure intrinsically. Policy  $\pi_\theta$  is optimized by minimizing the standard SFT loss:

$$\mathcal{L}_{SFT}(\theta) = -\mathbb{E}_{(x,\tau,y)\sim\mathcal{D}_{SFT}}[\log(\pi_{\theta}(\tau_{SFT},y|x))],\tag{1}$$

220

221

222

224

225

226

227

228

229

230

231

232

233

235

237

238

239

240 241

242

243

244

245

246

247

248

249 250 251

253

254 255

256

257

258 259

260

261 262

264

265

266

267

268

269

216 where  $\mathcal{D}_{SFT}$  is our curated data for SFT. After warmup,  $\pi_{\theta}$  is able to generate structured cognitive 217 flows using these specialized tags without relying on manually crafted prompts. 218

#### 3.3 Reinforcement Learning for Cognitive Flow Optimization

To enable the model to progressively refine its cognitive flows, we adopt RL, where the policy model learns to improve its cognitive reasoning via trial and error. We use GRPO (detailed in Appendix B, Shao et al. (2024)) to optimize policy  $\pi_{\theta}$ , which is guided by our multi-objective reward as follows:

Comparative Preference Reward ( $\mathcal{R}_{Res}$ ) While the preference ranking used for data filtering is well-suited for scenarios lacking definitive answers, it is not economically feasible for large-scale online training (which needs to execute R1 against each generated rollouts). We thus train a dedicated reward model  $RM_{\phi}$  to predict pairwise preference. For each input  $x, RM_{\phi}$  is trained to predict whether a candidate response y is preferred over a set of k reference responses  $\{y_{\text{ref}}^1, \cdots, y_{\text{ref}}^k\}$  (we use k=3). During RL, for each generated response y, we use the top-k responses from our curated data as the reference set and set the reward to be  $RM_{\phi}$ 's predicted probability of y is preferred:

$$\mathcal{R}_{\text{Res}}(y|x) = P_{\phi}(y \succ \{y_{\text{ref}}^{1}, \cdots, y_{\text{ref}}^{k}\}|x). \tag{2}$$

Cognitive Flexibility Reward Beyond response, we foster policy  $\pi_{\theta}$  to regulate its thought process.

• Cognitive diversity reward ( $\mathcal{R}_{Div}$ ): To prevent the model from falling into simplistic or repetitive reasoning patterns, we introduce  $\mathcal{R}_{Div}$  to encourage exploration of diverse cognitive flows. This design is inspired by human social cognition, where people flexibly adapt their cognitive strategies to situational nuances (Fiske & Taylor, 2020). The reward evaluates a cognitive flow  $\tau$ by incentivizing the use of rarer cognitive units within a batch of rollouts, encouraging the model to avoid over-reliance on common reasoning steps. Given m rollouts for an input x, yielding flows  $\{\tau_1,\ldots,\tau_m\}$ , the reward for a chain  $\tau$  containing v unique cognitive units  $\{u_1,\ldots,u_v\}$  is:

$$\mathcal{R}_{\text{Div}}(\tau) = -\frac{1}{v} \sum_{j=1}^{v} \log(p(u_j)), \tag{3}$$

where  $p(u_i)$  is the frequency of the cognitive unit  $u_i$  across all m sampled cognitive flows.

• Reasoning length reward ( $\mathcal{R}_{Len}$ ): While cognitive diversity is crucial, it must be balanced with conciseness to avoid cognitive rumination, i.e., overly long and unproductive reasoning. We therefore introduce  $\mathcal{R}_{Len}$  to encourage focused yet comprehensive thought by penalizing cognitive flows that are either too short or too long. For each input x, we build a dynamic target length range  $[L_{\min}, L_{\max}]$  derived from the top-k reference flows in our curated data. The reward is calculated using a soft bounding function created by multiplying two sigmoid functions. This forms a "reward window" that gently penalizes flows whose length is outside the desired length range:

$$\mathcal{R}_{\mathrm{Len}}(\tau) = \sigma\Big(\frac{|\tau| - (L_{\mathrm{min}})/2}{L_{\mathrm{min}}/8}\Big) \cdot \sigma\Big(\frac{L_{\mathrm{max}} + L_{\mathrm{min}} - |\tau|}{L_{\mathrm{max}}/8}\Big)$$
• Structural format reward ( $\mathcal{R}_{\mathrm{Format}}$ ): To maintain structural integrity, we use a rule-based binary

reward to encourage the cognitive flows to follow the required  $\langle u_i \rangle c_i \langle u_i \rangle$  structure:

$$\mathcal{R}_{\mathrm{Format}}(\tau) = \begin{cases} 1 & \text{if format of } \tau \text{ is valid} \\ 0 & \text{otherwise} \end{cases}$$
 (5)

**Weighted Reward Function** The final reward for a rollout  $(\tau, y)$  is a weighted combination of the above rewards, with the format reward acting as a gate to discard structurally invalid flows:

$$\mathcal{R} = \mathcal{R}_{\text{Format}} \cdot (\omega_1 \cdot \mathcal{R}_{\text{Res}} + \omega_2 \cdot \mathcal{R}_{\text{Div}} + \omega_3 \cdot \mathcal{R}_{\text{Len}}). \tag{6}$$

#### **EXPERIMENTS**

#### 4.1 EXPERIMENTAL SETUP

We collected 5,100 social situations from Reddit, spanning 5 major categories and 16 subcategories; and each post passed rigorous safety filtering (Kim et al., 2023). Each seed instance yielded an average of 3.6 high-quality cognition flows, with each flow containing 4 cognitive units on average. To validate data quality, we employ six domain experts (with Master's degrees or higher) to inspect 500 random instances, resulting in a 96.8% pass rate that confirms the dataset's satisfying quality. For model training, we allocate 1,000 seed instances with 3,661 cognitive flows for SFT and 3,600 instances for RL (3,200 for training and 400 for validation). Another 500 instances are used for the final evaluation. Moreover, we extract 26,676 candidate-reference response pairs to build our comparative preference reward model. More details of our dataset are provided in Appendix D.1.

Table 1: Results of consistency between evaluators and human judgments. The agreement ratio  $kappa \in [0.41, 0.6]$  denotes moderate agreement.

| Evaluators                | Easy   | Medium | Hard   | Overall |
|---------------------------|--------|--------|--------|---------|
| Score-R1                  | 0.5604 | 0.4938 | 0.4848 | 0.5141  |
| Score-Q32B                | 0.5824 | 0.5219 | 0.5152 | 0.5405  |
| CPRank-Q32B               | 0.6374 | 0.5094 | 0.6515 | 0.5669  |
| CPRank-R1                 | 0.6374 | 0.5625 | 0.4697 | 0.5757  |
| $RM_{\phi}$               | 0.5714 | 0.5781 | 0.6667 | 0.5863  |
| CPRank <sup>2</sup> -Q32B | 0.6648 | 0.6031 | 0.5909 | 0.6215  |
| CPRank <sup>2</sup> -R1   | 0.6538 | 0.6312 | 0.6212 | 0.6373  |
| kappa                     | 0.4534 | 0.4559 | 0.5041 | 0.4693  |

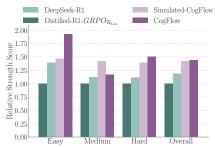


Figure 3: Pairwise results from Bradley-Terry model. The higher strength score, the better.

Baselines and LLM Evaluators We compared baselines: (1) Tuning-free Reasoning LLMs: OpenAI o3, o3-mini, GLM-4.5 (GLM et al., 2025), Qwen-3-32B (Yang et al., 2025), DeepSeek-R1, Gemini-2.5-pro/flash. (2) Fine-tuned Open-source LLMs: we trained Llama-3.1-8B (Meta, 2024) and Qwen-2.5-7B (Yang et al., 2024) backbones for CogFlow and baselines: a) Direct-SFT/GRPO: backbones trained directly on the responses in our curated dataset without cognitive flow, where GRPO relies solely on our  $\mathcal{R}_{Res}$  reward (same use below). b) Distilled-R1-SFT/GRPO/GRPO- $\mathcal{R}_{Len}$ : backbones trained on distilled R1's reasoning chains by SFT, GRPO, and GRPO using both  $\mathcal{R}_{Res}$  and  $\mathcal{R}_{Len}$ . c) CogFlow-SFT/GRPO: backbones trained on our data with cognitive flows. We use R1 and cost-effective Qwen-3-32B as our LLM evaluators to perform two-stage comparative preference ranking, called  $CPRank^2$ -R1/Q32B. For each test instance, a model's generated response is ranked within a comparison pool containing the pre-curated reference responses. The rank is normalized to a score by (M - rank)/(M-1), M=10. A model's performance is its average score across all test instances. More details about our baselines and evaluators are reported in Appendix D.2 and D.3.

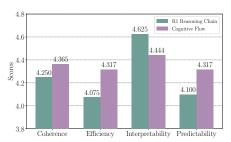
#### 4.2 Main Results by Human Evaluations

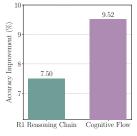
**LLM Evaluators' Consistency with Human Judgment** We evaluate 7 LLM evaluators: 1)  $CPRank^2 - Q32B\&R1$  and their variation without reranking (denoted as CPRank - Q32B&R1), 2) reward model  $RM_{\phi}$  trained on Qwen-2.5-7B, and 3) prompt-based direct scoring baselines (denoted as Score - Q32B&R1). Six experts perform pairwise comparisons on all 500 seed instances in our test set, each with 4 distinct responses from 4 models: CogFlow (trained on Llama, same use below experiments),  $Distilled - R1 - GRPO_{\mathcal{R}_{Len}}$ , DeepSeek - R1, and Simulated - CogFlow (top-ranked response in cognitive flow simulation). To balance workload, 500 instances are split into two sets, each assigned to 3 experts. Experts provide win/tie/loss judgments for all response pairs and label difficulty of each instance (easy, medium, hard). The final preference label of each pair and the difficulty label of each seed instance are determined by majority vote among human experts. We measure the consistency between the pairwise orderings of LLM evaluators and the aggregated human judgments.

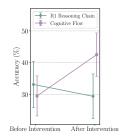
The results in Table 1 reveal: (1) two-stage ranking ( $CPRRank^2-R1\&Q32B$ ) aligns best with human judgment, achieving the highest overall consistency. Against their single-stage counterparts, the reranking step is crucial for improving alignment by mitigating initial scoring biases. (2) our trained reward model is an effective proxy.  $RM_{\phi}$  outperforms all direct scoring and single-stage ranking baselines, showing it is a cost-effective substitute for expensive LLM judges during online training.

Results of Pairwise Comparison We convert experts' pairwise win/tie/loss judgments into scalar scores using the Bradley-Terry model (Bradley & Terry (1952), detailed in Appendix D.6). The results in Figure 3 show that CogFlow surpasses its teacher model (DeepSeek-RI), showing our framework enables a smaller model to internalize cognitive reasoning to produce high-quality responses effectively. More importantly, CogFlow performs on par with Simulated-CogFlow, while Distilled-RI-GRPO<sub>RLen</sub> remains inferior to its teacher. This clearly suggests that cognitive reasoning is consistently beneficial for social responding, and cognitive reasoning is effectively learnable.

**Helpfulness of Cognitive Flow for Humans** Beyond evaluating LLMs, we assess the utility of cognitive flow for humans, including its quality and value as a cognitive aid for human decision-making. We hired another 6 annotators to assess 100 multiple-choice instances from the experts' curated dataset. For each instance, the golden response from expert consensus is explained by one of two reasoning styles: our *cognitive flow* or *R1 reasoning chain*, shown in a balanced frequency. Annotators are evenly split to perform two tasks: (1) Quality ratings with a 1-5 scale on *coherence*,







- (a) Results of reasoning quality rated by humans with four criteria on a 1-5 scale.
- (b) Results of helpfulness for human decision-making.
- (c) Results of cognitive intervention for humans.

Figure 4: Quantitative analysis of two types of reasoning (cognitive reasoning vs. R1 reasoning).

efficiency (conciseness of content and logic), interpretability, and predictability; (2) Value test: Annotators first select their preferred response from four options and are then shown the reasoning process behind the experts' preferred response. Finally, they are asked to make their final decision. "Helpfulness" is the average accuracy improvement before and after exposing the reasoning content.

The results in Figure 4a and 4b reveal that cognitive flows are better received by the annotators, as they are considered more coherent, efficient, and have higher predictability, making them better tools to understand social situations. We can also notice that there is a trade-off between interpretability and efficiency: R1's reasoning often includes exhaustive self-reflection that, while boosting its interpretability by listing all social cues, does so at the cost of lower efficiency. Most importantly, cognitive flows are more helpful for human decision-making, yielding a higher accuracy improvement, showing the potential to augment human social intelligence.

Cognitive Intervention for Humans To further study cognitive reasoning's potential on humans, we conduct a preliminary cognitive intervention trial. We prepare two types of interventions: 1) Cognitive flow-style guidance: emphasize key social cues and analytical steps among cognitive units to guide humans' social thinking. 2) R1 reasoning chain-style guidance: provide a chain-of-thought summary. To create the guidance, we prompt R1 to convert the cognitive flow/R1 reasoning chain into hints that illuminate the thought process without revealing the final answer (see Appendix D.7 for examples). We recruit 20 volunteers who are randomly assigned to an experimental group (cognitive flow-style) or a control group (R1 reasoning chain-style). Before intervention, each participant completes 10 tasks without guidance, and then an ANOVA test (Fisher, 1970) confirms that no statistically significant differences exist between the two groups (p = 0.42). During the intervention, participants sequentially complete 25 instances without guidance and 25 with guidance, allowing us to measure the change in decision-making accuracy due to the intervention. Results in Figure 4c show the cognitive flow-style intervention significantly improves participants' social decision-making accuracy, while the R1 reasoning chain-style shows a slight downward trend. This reveals the potential of structured cognitive reasoning to improve humans' ability for social thinking.

#### 4.3 RESULTS ON AUTOMATED EVALUATIONS

**Main Results** For each model, we generate 4 responses per test instance and average the scores in Table 2. Results reveal CogFlow outperforms all baselines on both backbone models and evaluators, showing the effectiveness of combining structured cognitive reasoning with RL. Cognitive reasoning has a clear edge to unstructured reasoning in improving model learning, e.g., CogFlow vs. Distilled-RI- $GRPO_{\mathcal{R}_{Len}}$ . Besides, across both model family and reasoning style, models tuned with RL clearly outperform their SFT counterparts, showing RL's ability to effectively refine the reasoning strategies. Another finding is that models trained on cognitive flows produce significantly shorter yet more effective reasoning, showing the capability of cognitive reasoning to reduce reasoning costs.

Ablation Study of Rewards Results in Table 2 reveal: (1)  $\mathcal{R}_{\mathrm{Div}}$  promotes exploration but requires constraints. When  $\mathcal{R}_{\mathrm{Len}}$  is removed, performance drops sharply and reasoning length nearly doubles (e.g., 391.68 vs. 725.77 tokens on Llama). This shows while  $\mathcal{R}_{\mathrm{Div}}$  successfully encourages diverse cognitive flow, it leads to inefficient reasoning if left unconstrained. (2)  $\mathcal{R}_{\mathrm{Len}}$  ensures reasoning efficiency and quality. When  $\mathcal{R}_{\mathrm{Div}}$  is removed, performance remains higher than GRPO baseline, while reasoning length is effectively controlled (e.g., 314.03 vs. 282.73 tokens on Llama). This shows  $\mathcal{R}_{\mathrm{Len}}$  acts as a vital regularizer, guiding the model toward concise and high-quality reasoning.

Table 2: Automatic evaluation results. The best results in the two model families are **bold**.

| Models                                                      | CPRank <sup>2</sup> -R1 (†) |                    |                                                              |            | CPRank <sup>2</sup> -Q32B (↑) |        |                                        |                                           | Reasoning                |
|-------------------------------------------------------------|-----------------------------|--------------------|--------------------------------------------------------------|------------|-------------------------------|--------|----------------------------------------|-------------------------------------------|--------------------------|
| Models                                                      | Overall                     | Easy               | Medium                                                       | Hard       | Overall                       | Easy   | Medium                                 | Hard                                      | Length (tokens, ↓)       |
| Tuning-free Reasoning LLMs                                  |                             |                    |                                                              |            |                               |        |                                        |                                           |                          |
| o3-mini                                                     | 0.2205                      | 0.3376             | 0.2053                                                       | 0.1185     | 0.3140                        | 0.4117 | 0.3103                                 | 0.2189                                    | 507.87                   |
| 03                                                          | 0.2933                      | 0.4191             | 0.2497                                                       | 0.2214     | 0.4096                        | 0.4567 | 0.4106                                 | 0.3659                                    | 163.08                   |
| Qwen3-32B                                                   | 0.3106                      | 0.3696             | 0.3709                                                       | 0.1912     | 0.4243                        | 0.5184 | 0.3893                                 | 0.3875                                    | 488.59                   |
| Gemini-2.5-flash                                            | 0.3111                      | 0.4316             | 0.2557                                                       | 0.2460     | 0.4383                        | 0.4713 | 0.4419                                 | 0.3977                                    | 360.42                   |
| Gemini-2.5-pro                                              | 0.3683                      | 0.4347             | 0.2818                                                       | 0.3883     | 0.5037                        | 0.5525 | 0.4862                                 | 0.4835                                    | 413.97                   |
| GLM-4.5                                                     | 0.4624                      | 0.4967             | 0.4203                                                       | 0.4702     | 0.5663                        | 0.5208 | 0.5519                                 | 0.6395                                    | 648.60                   |
| DeepSeek-R1                                                 | 0.5342                      | 0.5220             | 0.4990                                                       | 0.5816     | 0.6578                        | 0.6267 | 0.6485                                 | 0.7067                                    | 621.07                   |
|                                                             |                             |                    | Tuned Llar                                                   | ma-3.1-8B  | -Instruct S                   | Series |                                        |                                           |                          |
| Direct-SFT                                                  | 0.3545                      | 0.3962             | 0.3490                                                       | 0.3193     | 0.5407                        | 0.6236 | 0.5144                                 | 0.5011                                    | -                        |
| Direct-GRPO                                                 | 0.5041                      | 0.5154             | 0.5764                                                       | 0.4208     | 0.7196                        | 0.7751 | 0.7332                                 | 0.6380                                    | -                        |
| Distilled-R1-SFT                                            | 0.3213                      | 0.4530             | 0.2202                                                       | 0.2941     | 0.4508                        | 0.5036 | 0.4383                                 | 0.4181                                    | 554.76                   |
| Distilled-R1-GRPO                                           | 0.5157                      | 0.5603             | 0.5601                                                       | 0.4279     | 0.7310                        | 0.8127 | 0.7400                                 | 0.6305                                    | 568.90                   |
| Distilled-R1-GRPO $_{\mathcal{R}_{\mathrm{Len}}}$           | 0.5017                      | 0.6167             | 0.4438                                                       | 0.4474     | 0.7519                        | 0.8080 | 0.7423                                 | 0.7108                                    | 444.90                   |
| CogFlow-SFT                                                 | 0.4024                      | 0.4827             | 0.3443                                                       | 0.3821     | 0.5999                        | 0.6472 | 0.5772                                 | 0.5916                                    | 451.14                   |
| CogFlow-GRPO                                                | 0.5564                      | 0.6974             | 0.5501                                                       | 0.3193     | 0.7420                        | 0.7534 | 0.7441                                 | 0.7265                                    | 314.03                   |
| CogFlow (ours)                                              | 0.5756                      | 0.6645             | 0.5350                                                       | 0.5294     | 0.7828                        | 0.8271 | 0.7908                                 | 0.7232                                    | 391.68                   |
| CogFlow (w/o R <sub>Len</sub> )                             | 0.5525                      | 0.6199             | 0.5665                                                       | 0.4727     | 0.7069                        | 0.7271 | 0.7359                                 | 0.6347                                    | 725.77                   |
| CogFlow (w/o $\mathcal{R}_{\mathrm{Div}}$ )                 | 0.5702                      | 0.5783             | 0.6250                                                       | 0.5073     | 0.7574                        | 0.8176 | 0.7431                                 | 0.7202                                    | 282.73                   |
|                                                             |                             |                    | Tuned Qw                                                     | en-2.5-7B  | -Instruct S                   | Series |                                        |                                           |                          |
| Direct-SFT                                                  | 0.3144                      | 0.3451             | 0.3239                                                       | 0.2742     | 0.5113                        | 0.5862 | 0.5016                                 | 0.4500                                    | -                        |
| Direct-GRPO                                                 | 0.6148                      | 0.7147             | 0.6407                                                       | 0.4914     | 0.7630                        | 0.8221 | 0.7605                                 | 0.7062                                    | -                        |
| Distilled-R1-SFT                                            | 0.1751                      | 0.2083             | 0.1101                                                       | 0.1984     | 0.3776                        | 0.4086 | 0.3689                                 | 0.3606                                    | 711.80                   |
| Distilled-R1-GRPO                                           | 0.5261                      | 0.6109             | 0.4682                                                       | 0.5013     | 0.7061                        | 0.7171 | 0.7395                                 | 0.6355                                    | 955.16                   |
| Distilled-R1-GRPO $_{\mathcal{R}_{\mathrm{Len}}}$           | 0.5298                      | 0.5727             | 0.5970                                                       | 0.4206     | 0.7458                        | 0.8038 | 0.7398                                 | 0.6962                                    | 437.06                   |
| CogFlow-SFT                                                 | 0.3672                      | 0.4186             | 0.4032                                                       | 0.2810     | 0.5567                        | 0.5838 | 0.5564                                 | 0.5291                                    | 368.41                   |
| CogFlow-GRPO                                                | 0.5988                      | 0.6750             | 0.5871                                                       | 0.5361     | 0.7542                        | 0.7971 | 0.7526                                 | 0.7124                                    | 237.11                   |
| CogFlow (ours)                                              | 0.6652                      | 0.6404             | 0.7531                                                       | 0.6015     | 0.7956                        | 0.8248 | 0.7963                                 | 0.7641                                    | 347.37                   |
| CogFlow (w/o $\mathcal{R}_{\mathrm{Len}}$ )                 | 0.6142                      | 0.6462             | 0.6133                                                       | 0.5840     | 0.7568                        | 0.7784 | 0.7610                                 | 0.7269                                    | 502.30                   |
| CogFlow (w/o $\mathcal{R}_{\mathrm{Div}}$ )                 | 0.6084                      | 0.6660             | 0.6249                                                       | 0.5356     | 0.7824                        | 0.7902 | 0.7930                                 | 0.7555                                    | 277.24                   |
| ervation  ribution  otivation  gulation  Efficacy  Behavior | <u>.</u>                    | ognitive Unit Type | Attribution Motivation Regulation Efficacy Behavior Response |            |                               |        | odbserva Attribu Motiva Regula in Effi | ation<br>ution<br>ation<br>icacy<br>avior |                          |
| desponse +++++++++                                          | ******                      |                    | Response                                                     |            | * * *                         | * *    | Resp                                   |                                           | 3 8 8                    |
| Depth of Cognitive                                          | e Reasoning                 | 22                 |                                                              | Depth of C | ognitive Rea                  | soning |                                        | Der                                       | oth of Cognitive Reasoni |
| a) Patterns in CogFlo                                       | ···· CET                    |                    | (b) Dot                                                      | torne in   | CogFlo                        | • • •  | (a) Dott                               | arna in 1                                 | CogFlow (w/o $R$         |

Figure 5: The transition patterns of cognitive units in reasoning. The proportion of units at different depths is denoted by node size, the transition probability between units is denoted by edge thickness.

## 4.4 In-depth Analysis of the Cognitive Flow

**Transition Patterns of Cognitive Units** To dissect the structure of cognitive flow, we plot the frequency of each cognitive unit at different reasoning depths (denoted by node size) and the transition probability between the units (denoted by edge thickness). Figure 5 reveals that: (1) *Cogflow* can guide the model to learn more ordered cognitive strategies. Against diffuse reasoning patterns from CogFlow-SFT, CogFlow exhibits a more structured and hierarchical cognitive flow, which also leads to higher-quality responses, as supported by Table 2. (2) The diversity reward  $\mathcal{R}_{Div}$  is critical for preventing pattern collapse. CogFlow (w/o  $\mathcal{R}_{Div}$ ) shows a stark collapse into a monotonous and rigid reasoning path (e.g.,  $Observation \rightarrow Attribution \rightarrow Motivation$ ). This highlights the importance of  $\mathcal{R}_{Div}$  for maintaining cognitive flexibility, supporting the results of ablation study.

Information Flow within Cognitive Flow To dissect the internal mechanism of cognitive reasoning, we visualize the information flow within our CogFlow during inference. We analyze attention patterns between four logical blocks: initial **input**, **cognitive unit tokens** (e.g.,  $\langle \texttt{Observation} \rangle$ ), **cognitive unit content** (the text generated for each unit), the final **response**. The attention weight between blocks is calculated by averaging the summed weights from all layers. For multi-token blocks (*input*, *content*, *response*), we mitigate dilution from non-essential tokens by averaging the top-10 attention weights within a block. The resulting weights (w) are then normalized ( $w' = w^{0.2}$ ) to enhance the visibility of all connections. For clarity, we separate this information flow into 3 patterns: *unit-to-unit*, *unit-to-content*, and *content-to-content*. A flow, shown in Figure 6, reveals: (1) The structural unit-to-unit flow dominates the reasoning process, with the highest attention weights

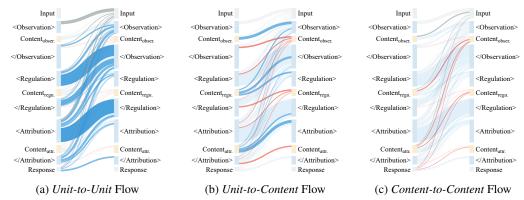


Figure 6: Visualization of three information flow patterns (a-c) in performing cognitive reasoning. The patterns are composed of cognitive units (blue blocks) and their unit content (yellow blocks). The connecting line width reflects the degree of influence from the right block to the left.

among all patterns. (2) Cognitive unit tokens actively steer content generation. The unit-to-content flow shows a strong link between a unit token and its unit content (e.g., Contentattribution to (Attribution)), confirming that the unit tokens are not just placeholders but actively guide the generation of relevant thoughts. (3) Reasoning exhibits a hierarchical "structure-first" attention flow. When generating new content, the model consistently attends more to the structural tokens of previous steps than to the textual content of those steps, e.g., Contentregulation attends more strongly to the (/Observation) token than to the Contentobservation. This shows that the structured scaffold built by unit tokens is the primary driver of the model's cognitive flow generation.

#### 5 RELATED WORK

Recent works have revealed parallels between LLMs and human social behavior (Park et al., 2023; Zhou et al., 2023; 2025b), social skills (Zhou et al., 2025a), and deeper cognitive habits in reasoning (Dong et al., 2025), inspiring ideas to integrate cognitive theories (Chen et al., 2024; 2025a) like simulation theory (Wilf et al., 2024; Sarangi et al., 2025), to guide LLM reasoning (Wang et al., 2024a; AlKhamissi et al., 2025). Yet, most methods rely on prompting to enforce specific strategies (Wang et al., 2024a; Park et al., 2025) While externally shaping an LLM's reasoning, it brings superficial mimicry of prompt's format instead of instilling adaptive reasoning (Zhou et al., 2023).

A practical solution is to internalize reasoning into LLM's parameters via training (Magister et al., 2023; Paliotta et al., 2025), adapting prompt-based CoT (Wei et al., 2023; Yao et al., 2023) for reasoning models (OpenAI, 2024; Guo et al., 2025). This paradigm has proven effective for tasks like math (Shao et al., 2024), which rely on step-by-step logical deductions to reach verifiable outcomes (Zheng et al., 2025). Yet, it can induce over-thinking (Chen et al., 2025b; Kumar et al., 2025; Cuadron et al., 2025), a state of repetitive thought cycling (Gandhi et al., 2025), prompting efforts to improve efficiency (Wang et al., 2024b; 2025). More critically, such logical reasoning is ill-suited for social situations, which involve an interpretive process of analyzing ambiguous cues that rarely yield a definitive answer (Gandhi et al., 2023; Xu et al., 2025; Moore et al., 2025). Applying this deductive paradigm to the fluid social domain risks "cognitive rumination", i.e., over-analysis simple social cues (Marjanović et al., 2025). Thus, we introduce cognitive reasoning to bridge this gap.

#### 6 Conclusions

In this paper, we introduce cognitive reasoning, a paradigm that models human social cognition by formulating it into a structured cognitive flow of interconnected cognitive units. We then propose CogFlow, a complete framework that instills the cognitive reasoning capability in LLMs using a combination of preference-based SFT and multi-objective RL. Our extensive experiments show that CogFlow significantly enhances the social cognitive capabilities of LLMs, leading to more effective social decision-making. Furthermore, our findings from the human intervention trial reveal that the structured cognitive flow also holds promise as a tool for augmenting human social intelligence.

## ETHICS STATEMENT

We have carefully considered the ethical implications of our work throughout the entire research process, from data collection to human evaluation and potential societal impact.

**Data Sourcing and Privacy** The seed data for our research was sourced from public Reddit posts. To uphold the principle of respecting privacy and avoiding harm, we implemented a strict data processing pipeline. This pipeline included (1) the complete anonymization of all posts, removing any personally identifiable information, usernames, or sensitive content, and (2) the application of rigorous safety filters as described by (Kim et al., 2023) to eliminate potentially harmful or offensive content. The resulting dataset consists of distilled, non-personal social situations intended solely for academic research.

**Human Participant Engagement** Our study involved human participation in several evaluation stages: 6 domain experts (different individuals with a master's degree or higher) for data validation, 6 annotators for evaluating reasoning chains, and 20 volunteers for a cognitive intervention trial. For all human-involved experiments, we adhered to the following: (1) All participants were fully informed about the nature and purpose of the study, the type of tasks they would perform, and how their data would be used. (2) All data collected from participants were anonymized to protect their privacy. (3) All participants were fairly compensated for their time and contribution based on the market price. (4) All participants were given full autonomy to exit the experiments at any time without any penalty.

**Potential Risks** We recognize that a model designed to reason about social situations could be misused or generate harmful advice if deployed improperly. To mitigate this risk, we state clearly that our work is foundational research. The CogFlow model is not intended to be a substitute for professional human judgment, nor is it designed for therapeutic, crisis intervention, or high-stakes social decision-making applications. Our goal is to enhance the transparency and interpretability of LLM reasoning in social situations, not to automate social interaction.

#### REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we will release our full implementation of the CogFlow framework, which includes full data and code for data collection, SFT, and RL. The prompts used for data generation are provided in Appendix C. Crucial hyperparameters for training our models and the baselines are documented in Appendix D.2. The complete source code and model checkpoints will be made publicly available upon publication. We provide a temporary anonymized git repository at https://anonymous.4open.science/r/CogFlow2025.

#### REFERENCES

- Icek Ajzen. The theory of planned behavior. *Organizational behavior and human decision processes*, 50(2):179–211, 1991.
- Badr AlKhamissi, C. Nicolò De Sabbata, Zeming Chen, Martin Schrimpf, and Antoine Bosselut. Mixture of cognitive reasoners: Modular reasoning with brain-like specialization, 2025. URL https://arxiv.org/abs/2506.13331.
- Albert Bandura. Self-efficacy: The exercise of control. Macmillan, 1997.
- Albert Bandura and Richard H Walters. *Social learning theory*, volume 1. Prentice hall Englewood Cliffs, NJ, 1977.
- Albert Bandura et al. Social foundations of thought and action. *Englewood Cliffs*, *NJ*, 1986(23-28): 2, 1986.
- Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

Charles S Carver and Michael F Scheier. *Attention and self-regulation: A control-theory approach to human behavior*. Springer Science & Business Media, 2012.

Ruirui Chen, Weifeng Jiang, Chengwei Qin, and Cheston Tan. Theory of mind in large language models: Assessment and enhancement, 2025a. URL https://arxiv.org/abs/2505.00026.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do not think that much for 2+3=? on the overthinking of o1-like llms, 2025b. URL https://arxiv.org/abs/2412.21187.

Zhuang Chen, Jincenzi Wu, Jinfeng Zhou, Bosi Wen, Guanqun Bi, Gongyao Jiang, Yaru Cao, Mengting Hu, Yunghwei Lai, Zexuan Xiong, and Minlie Huang. Tombench: Benchmarking theory of mind in large language models, 2024. URL https://arxiv.org/abs/2402.15052.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, Nicholas Thumiger, Aditya Desai, Ion Stoica, Ana Klimovic, Graham Neubig, and Joseph E. Gonzalez. The danger of overthinking: Examining the reasoning-action dilemma in agentic tasks, 2025. URL https://arxiv.org/abs/2502.08235.

Jianshuo Dong, Yujia Fu, Chuanrui Hu, Chao Zhang, and Han Qiu. Towards understanding the cognitive habits of large reasoning models. *CoRR*, abs/2506.21571, 2025. doi: 10.48550/ARXIV. 2506.21571. URL https://doi.org/10.48550/arXiv.2506.21571.

Ronald Aylmer Fisher. Statistical methods for research workers. In *Breakthroughs in statistics: Methodology and distribution*, pp. 66–70. Springer, 1970.

Susan T Tufts Fiske and Shelley E Taylor. Social cognition: From brains to culture. 2020.

Kanishk Gandhi, Jan-Philipp Fränken, Tobias Gerstenberg, and Noah D. Goodman. Understanding social reasoning in language models with language models, 2023. URL https://arxiv.org/abs/2306.15448.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D. Goodman. Cognitive behaviors that enable self-improving reasoners, or, four habits of highly effective stars, 2025. URL https://arxiv.org/abs/2503.01307.

GLM, Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang, Da Yin, Hao Zeng, Jiajie Zhang, Kedong Wang, Lucen Zhong, Mingdao Liu, Rui Lu, Shulin Cao, Xiaohan Zhang, Xuancheng Huang, Yao Wei, Yean Cheng, Yifan An, Yilin Niu, Yuanhao Wen, Yushi Bai, Zhengxiao Du, Zihan Wang, Zilin Zhu, Bohan Zhang, Bosi Wen, Bowen Wu, Bowen Xu, Can Huang, Casey Zhao, Changpeng Cai, Chao Yu, Chen Li, Chendi Ge, Chenghua Huang, Chenhui Zhang, Chenxi Xu, Chenzheng Zhu, Chuang Li, Congfeng Yin, Daoyan Lin, Dayong Yang, Dazhi Jiang, Ding Ai, Erle Zhu, Fei Wang, Gengzheng Pan, Guo Wang, Hailong Sun, Haitao Li, Haiyang Li, Haiyi Hu, Hanyu Zhang, Hao Peng, Hao Tai, Haoke Zhang, Haoran Wang, Haoyu Yang, He Liu, He Zhao, Hongwei Liu, Hongxi Yan, Huan Liu, Huilong Chen, Ji Li, Jiajing Zhao, Jiamin Ren, Jian Jiao, Jiani Zhao, Jianyang Yan, Jiaqi Wang, Jiayi Gui, Jiayue Zhao, Jie Liu, Jijie Li, Jing Li, Jing Lu, Jingsen Wang, Jingwei Yuan, Jingxuan Li, Jingzhao Du, Jinhua Du, Jinxin Liu, Junkai Zhi, Junli Gao, Ke Wang, Lekang Yang, Liang Xu, Lin Fan, Lindong Wu, Lintao Ding, Lu Wang, Man Zhang, Minghao Li, Minghuan Xu, Mingming Zhao, Mingshu Zhai, Pengfan Du, Qian Dong, Shangde Lei, Shangqing Tu, Shangtong Yang, Shaoyou Lu, Shijie Li, Shuang Li, Shuang-Li, Shuxun Yang, Sibo Yi, Tianshu Yu, Wei Tian, Weihan Wang, Wenbo Yu, Weng Lam Tam, Wenjie Liang, Wentao Liu, Xiao Wang, Xiaohan Jia, Xiaotao Gu, Xiaoying Ling, Xin Wang, Xing Fan, Xingru Pan, Xinyuan Zhang, Xinze Zhang, Xiuqing Fu, Xunkai Zhang, Yabo Xu, Yandong Wu, Yida Lu, Yidong Wang, Yilin Zhou, Yiming Pan, Ying Zhang, Yingli Wang, Yingru Li, Yinpei Su, Yipeng Geng, Yitong Zhu, Yongkun Yang, Yuhang Li, Yuhao Wu, Yujiang Li, Yunan Liu, Yunqing Wang, Yuntao Li, Yuxuan Zhang, Zezhen

Liu, Zhen Yang, Zhengda Zhou, Zhongpei Qiao, Zhuoer Feng, Zhuorui Liu, Zichen Zhang, Zihan Wang, Zijun Yao, Zikang Wang, Ziqiang Liu, Ziwei Chai, Zixuan Li, Zuodong Zhao, Wenguang Chen, Jidong Zhai, Bin Xu, Minlie Huang, Hongning Wang, Juanzi Li, Yuxiao Dong, and Jie Tang. Glm-4.5: Agentic, reasoning, and coding (arc) foundation models, 2025. URL https://arxiv.org/abs/2508.06471.

- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforcement learning. *Nature*, 645(8081):633–638, 2025.
- Fritz Heider. The psychology of interpersonal relations. Psychology Press, 2013.
- David R. Hunter. MM algorithms for generalized Bradley-Terry models. *The Annals of Statistics*, 32(1):384 406, 2004. doi: 10.1214/aos/1079120141. URL https://doi.org/10.1214/aos/1079120141.
- Hyunwoo Kim, Jack Hessel, Liwei Jiang, Peter West, Ximing Lu, Youngjae Yu, Pei Zhou, Ronan Le Bras, Malihe Alikhani, Gunhee Kim, Maarten Sap, and Yejin Choi. Soda: Million-scale dialogue distillation with social commonsense contextualization, 2023. URL https://arxiv.org/abs/2212.10465.
- Abhinav Kumar, Jaechul Roh, Ali Naseh, Marzena Karpinska, Mohit Iyyer, Amir Houmansadr, and Eugene Bagdasarian. Overthink: Slowdown attacks on reasoning llms, 2025. URL https://arxiv.org/abs/2502.02542.
- Richard S Lazarus. Emotion and adaptation. Oxford University Press, 1991.
- Zijun Liu, Peiyi Wang, Runxin Xu, Shirong Ma, Chong Ruan, Peng Li, Yang Liu, and Yu Wu. Inference-time scaling for generalist reward modeling, 2025. URL https://arxiv.org/abs/2504.02495.
- Lucie Charlotte Magister, Jonathan Mallinson, Jakub Adamek, Eric Malmi, and Aliaksei Severyn. Teaching small language models to reason, 2023. URL https://arxiv.org/abs/2212.08410.
- Sara Vera Marjanović, Arkil Patel, Vaibhav Adlakha, Milad Aghajohari, Parishad BehnamGhader, Mehar Bhatia, Aditi Khandelwal, Austin Kraft, Benno Krojer, Xing Han Lù, Nicholas Meade, Dongchan Shin, Amirhossein Kazemnejad, Gaurav Kamath, Marius Mosbach, Karolina Stańczak, and Siva Reddy. Deepseek-r1 thoughtology: Let's think about Ilm reasoning, 2025. URL https://arxiv.org/abs/2504.07128.
- Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/blob/main/MODEL\_CARD.md.
- Jared Moore, Ned Cooper, Rasmus Overmark, Beba Cibralic, Nick Haber, and Cameron R. Jones. Do large language models have a planning theory of mind? evidence from mindgames: a multistep persuasion task, 2025. URL https://arxiv.org/abs/2507.16196.
- Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin Deng, Kensen Shi, Charles Sutton, and Pengcheng Yin. Next: Teaching large language models to reason about code execution, 2024. URL https://arxiv.org/abs/2404.14662.
- OpenAI. Openai o1 system card, 2024. URL https://cdn.openai.com/o1-system-card.pdf.
- Daniele Paliotta, Junxiong Wang, Matteo Pagliardini, Kevin Y. Li, Aviv Bick, J. Zico Kolter, Albert Gu, François Fleuret, and Tri Dao. Thinking slow, fast: Scaling inference compute with distilled reasoners, 2025. URL https://arxiv.org/abs/2502.20339.
- Eunkyu Park, Wesley Hanwen Deng, Gunhee Kim, Motahhare Eslami, and Maarten Sap. Cognitive chain-of-thought: Structured multimodal reasoning about social situations, 2025. URL https://arxiv.org/abs/2507.20409.

Joon Sung Park, Joseph C. O'Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior. In Sean Follmer, Jeff Han, Jürgen Steimle, and Nathalie Henry Riche (eds.), *Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, UIST 2023, San Francisco, CA, USA, 29 October 2023- 1 November 2023*, pp. 2:1–2:22. ACM, 2023. doi: 10.1145/3586183. 3606763. URL https://doi.org/10.1145/3586183.3606763.

- Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Socialiqa: Commonsense reasoning about social interactions. *CoRR*, abs/1904.09728, 2019. URL http://arxiv.org/abs/1904.09728.
- Sneheel Sarangi, Maha Elgarf, and Hanan Salam. Decompose-ToM: Enhancing theory of mind reasoning in large language models through simulation and task decomposition. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), *Proceedings of the 31st International Conference on Computational Linguistics*, pp. 10228–10241, Abu Dhabi, UAE, January 2025. Association for Computational Linguistics. URL https://aclanthology.org/2025.coling-main.682/.
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.03300.
- Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint arXiv:* 2409.19256, 2024.
- EL Thorndike. Intelligence and its uses. Harper's magazine, 1920.
- Edward C Tolman. Cognitive maps in rats and men. Psychological review, 55(4):189, 1948.
- Victor H Vroom. Work and motivation. John Willey & Sons, 1964.
- Chenlong Wang, Yuanning Feng, Dongping Chen, Zhaoyang Chu, Ranjay Krishna, and Tianyi Zhou. Wait, we don't need to "wait"! removing thinking tokens improves reasoning efficiency, 2025. URL https://arxiv.org/abs/2506.08343.
- Xin Wang, Boyan Gao, Yi Dai, Lei Cao, Liang Zhao, Yibo Yang, and David Clifton. Cognition chain for explainable psychological stress detection on social media, 2024a. URL https://arxiv.org/abs/2412.14009.
- Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi Yuan, William Yang Wang, and Alessandro Sordoni. Guiding language model reasoning with planning tokens, 2024b. URL https://arxiv.org/abs/2310.05707.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023. URL https://arxiv.org/abs/2201.11903.
- Alex Wilf, Sihyun Lee, Paul Pu Liang, and Louis-Philippe Morency. Think twice: Perspective-taking improves large language models' theory-of-mind capabilities. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 8292–8308, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.451. URL https://aclanthology.org/2024.acl-long.451/.
- Zixiang Xu, Yanbo Wang, Yue Huang, Jiayi Ye, Haomin Zhuang, Zirui Song, Lang Gao, Chenxi Wang, Zhaorun Chen, Yujun Zhou, Sixian Li, Wang Pan, Yue Zhao, Jieyu Zhao, Xiangliang Zhang, and Xiuying Chen. Socialmaze: A benchmark for evaluating social reasoning in large language models, 2025. URL https://arxiv.org/abs/2505.23713.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023. URL https://arxiv.org/abs/2305.10601.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jingren Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical reasoning, 2025. URL https://arxiv.org/abs/2412.06559.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)*, Bangkok, Thailand, 2024. Association for Computational Linguistics. URL http://arxiv.org/abs/2403.13372.

Jinfeng Zhou, Zhuang Chen, Dazhen Wan, Bosi Wen, Yi Song, Jifan Yu, Yongkang Huang, Libiao Peng, Jiaming Yang, Xiyao Xiao, Sahand Sabour, Xiaohan Zhang, Wenjing Hou, Yijia Zhang, Yuxiao Dong, Jie Tang, and Minlie Huang. Characterglm: Customizing chinese conversational AI characters with large language models. *CoRR*, abs/2311.16832, 2023. doi: 10.48550/ARXIV. 2311.16832. URL https://doi.org/10.48550/arxiv.2311.16832.

Jinfeng Zhou, Yuxuan Chen, Yihan Shi, Xuanming Zhang, Leqi Lei, Yi Feng, Zexuan Xiong, Miao Yan, Xunzhi Wang, Yaru Cao, Jianing Yin, Shuai Wang, Quanyu Dai, Zhenhua Dong, Hongning Wang, and Minlie Huang. Socialeval: Evaluating social intelligence of large language models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, *ACL 2025, Vienna, Austria, July 27 - August 1, 2025*, pp. 30958–31012. Association for Computational Linguistics, 2025a. URL https://aclanthology.org/2025.acl-long.1496/.

Jinfeng Zhou, Yongkang Huang, Bosi Wen, Guanqun Bi, Yuxuan Chen, Pei Ke, Zhuang Chen, Xiyao Xiao, Libiao Peng, Kuntian Tang, Rongsheng Zhang, Le Zhang, Tangjie Lv, Zhipeng Hu, Hongning Wang, and Minlie Huang. Characterbench: Benchmarking character customization of large language models. In Toby Walsh, Julie Shah, and Zico Kolter (eds.), AAAI-25, Sponsored by the Association for the Advancement of Artificial Intelligence, February 25 - March 4, 2025, Philadelphia, PA, USA, pp. 26101–26110. AAAI Press, 2025b. doi: 10.1609/AAAI.V39I24. 34806. URL https://doi.org/10.1609/aaai.v39i24.34806.

#### A USE OF LLMS

During paper writing, we used LLMs as an assistive tool to enhance the quality of the presentation. We employed LLMs to provide suggestions for grammatical corrections and polishing of the

757

758

759

760

761 762

763 764

765

766

767

768

769 770

771 772

773 774

775

776777778779

780

782

783

784

785

786

787

788

manuscript. The core ideas, scientific arguments, and the overall structure of the paper were developed exclusively by the authors. All suggestions generated by LLMs were carefully reviewed, edited, and approved by the authors to ensure they accurately reflect our meaning.

The authors take full responsibility for all content presented in this paper, including any parts that were refined with the assistance of an LLM.

### B GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

We adopt the GRPO (Shao et al., 2024) algorithm to optimize  $\pi_{\theta}$  with respect our reward function  $\mathcal{R}$ . Let  $\pi_{\theta_{old}}$  denote the behavior policy from the previous iteration. For each input x, GRPO samples a group of cognitive flows  $G = \{o_1, o_2, \cdots, o_N\}$ , where each flow  $o_i = (\tau_i, y_i)$ . It then computes a relative advantage for each flow by normalization its reward:

$$A_{i} = \frac{\mathcal{R}(o_{i}|x) - \underset{o_{j} \in G}{\operatorname{mean}}(\mathcal{R}(o_{j}|x))}{\underset{o_{j} \in G}{\operatorname{std}}(\mathcal{R}(o_{j}|x))}$$
(7)

GRPO then optimizes the following objective (denote  $p_{i,j} = \frac{\pi_{\theta}(o_{i,j}|x,o_{i,< j})}{\pi_{\theta_{old}}(o_{i,j}|x,o_{i,< j})}$ ):

$$\mathbb{E}_{G \sim \pi_{\theta_{old}}} \left[ \frac{1}{N} \sum_{i=1}^{N} \frac{1}{|o_i|} \sum_{j=1}^{|o_i|} \left( \min \left( p_{i,j} A_i, \text{clip}_{\epsilon} \left( p_{i,j} \right) A_i \right) - \beta D_{KL} [\pi_{\theta} || \pi_{ref}] \right) \right]$$
(8)

#### C PROMPTS FOR METHODOLOGY

#### C.1 PROMPTS FOR SEED DATA COLLECTION

We used R1 (Guo et al., 2025) to generate the seed data. Each data instance consists of three components: a situation (describing the background and story), a question (based on the situation), and format constraints (specifying the required output format). First, we used the Prompt 1 to generate the situation and question. Next, we used the Prompt 2 to generate the format constraint. Finally, we used the Prompt 3 to validate the quality of the resulting data instance. If it met our quality standards, it was stored; otherwise, it was discarded, and the process was repeated from the beginning.

```
789
      ## **[Task] **
790
791
      Given a scenario description and suggestions related to the scenario, you
           are required to generate a scenario and a question for the COGNITION
793
           TEST. You should just use the description and suggestions as
794
          triggers; you can convert the scenario arbitrarily by yourself:
795
      1. **Summarize the Scenario**:
           - Objective: Craft a scene of dynamic social interaction focusing on
797
          several with motion-driven engagement. Describe the scenario using
          plain words.
          - It should focus on social interactions, with enough details, for
          example:
800
               - Environmental Context: Describe a specific time/place.
801
               - Specific Task: Clearly state efficient information. For example
802
          , the problem they are facing or the activity they are doing.
              - Character Relationship: Clearly state the relationship between
804
          the roles.
               - Character Dynamics: Establish clear profiles of the characters.
    11
805
          - IMPORTANT: The scenario should be concise with enough details (not
806
          necessarily related to the original scenario or the question). It's
807
          better to include either relevant or irrelevant details to the
808
          question stated in the next step.
    14 2. **State the question**:
```

841

842

843

```
810
          - Concisely state the question based on the scenario in one sentence
811
          using the third person perspective. But you should only state the
          question simply, using words of mouth.
          - You should double-check that the answer is NOT stated in the
813
          scenario. There should also be no direct/indirect hints in the
814
          scenario.
815
          - The question should be suitable for a cognitive test. You should
816
          ignore the original question stated in [Scenario Description].
817
    18
818
    19 3. **Output Format**:
          Present your result in JSON format using the following structure and
819
          respond in English. You should only use simpler vocabulary at a high
820
          school level to form your answers. Make sure that quotes inside all
821
          strings are escaped with backslashes:
      '''json
822
    21
    22 { {
823
           "scenario": "Scenario Summary",
    23
824
           "question": "Question in one sentence"
    24
825
    25 } }
826
    26 111
827
828 28 ## **#Possible Tests#**
    29 These examples are way too brief and easy; your output should be more
829
          detailed and harder. For example, you should not give any hints, and
830
          it had better be open-ended.
831
    30 \\\json
832
    31 {examples}
833
    32
    33
834
    34 ## **[Scenario Description]**
835
    35 {scenario_description}
836
837
    37 ## **[Suggestion] **
838
    38 {suggestion}
839
```

Prompt 1: The prompt template for social situation and question generation. {examples}, {suggestion}, {scenario\_description} are placeholders. {examples} is the examples randomly sampled from a manually crafted set, {suggestion} are the comments of the Reddit post, {scenario\_description} is the original Reddit post.

```
844
845
     1 ## **[Task]**
846
847
     3 Given a [User Input] containing a Story and an open-ended Question,
          please propose an appropriate constraint on the output format for the
848
           answer to the Question containing all constraints in [Required
849
          Constraints]. The proposed constraint should be concise.
850
851
     5 Note:
852
    6 - The generated instructions cannot contain any content related to or
          hinting at the answer.
853
      - The output format should follow [Output Format].
854
855
    9 ## **[User Input] **
856
    10 {user_input}
857
    11
858
    12 ## ** [Required Constraints] **
    13 {required_constraints}
859
    14
860
    15 ## **[Output Format] **
    16 You should directly output the instruction as natural sentences without
862
          any additional words or explanations (especially explain how you
          generate the output). In one word, your whole output can be directly
863
          used as a constraint.
```

Prompt 2: Prompt template for constraint generation. {user\_input} is the generated situation and question. {required\_constraints} is randomly sampled from the options in Table 3.

Table 3: Prompts for generating output constraints.

| <b>Constraint Type</b>                                                                                                                                                                                                                                                                      | Prompt Template Options                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Format                                                                                                                                                                                                                                                                                      | The output should be formatted in JSON / YAML / Markdown/ Bullet or any other suitable format. To state this constraint, you should choose one specific format and give a brief demonstration of the format of the output to make it clear. Note that your instructions should be concise. **IMPORTANT: You should make sure that your demonstration is just formal, without any hint of the real answer. ** |
| <ul> <li>High: The output should be of high verbosity, which means detail still needs to be concise).</li> <li>Medium: The output should be of medium verbosity, which means detail and detailed.</li> <li>Low: The output should be of low verbosity, which means brief a cise.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                              |

```
883
       ## **[Task] **
885
      Please check the scenario, question, and constraint given in the [User
          Input], determine in order whether the following conditions are met,
887
          and provide your response following the output requirements in [Check
           Output Format].
889
890
     5 1. Please check if the question is relevant to the scenario. For example,
891
           the content involved must be mentioned in the scenario.
      2. Please check if the constraint does not imply the answer to the
892
          question, but only provides formatting content or restates the
893
          content of the question.
894
     7 3. Please check if the constraint does not contain confusing content. The
895
           constraint must be a reasonable format restriction for someone
          answering the question. For example, the act of "requiring in the
896
          constraint not to imply the answer" does not meet the requirement.
897
      ## **[User Input] **
899
    10
900
      {user_input}
    11
901
    13 ## **[Check Output Format] **
902
903
      Please use JSON format for the output, with only one key named 'result',
904
          and the value being a boolean type. true indicates that all
905
          requirements are met, and false indicates that at least one
906
          requirement is not met. Please follow the structure below:
    16
907
      '''json
    17
908
    18 { {
909
    19
               "result": true / false
910
    20 } }
911
```

Prompt 3: The prompt template for seed data quality validation. {user\_input} is a placeholder for the social situation, question, and format constraints.

#### C.2 PROMPTS FOR COGNITIVE FLOW SIMULATION

We used R1 to perform the following tasks:

919

920

921

922

960

961

962

963

964 965

966

967

968

969

970

971

• **Planning**: LLMs are used in the following two operations: **Generation**: To generate a cognitive unit's thought content, we use the Prompt 4. **Prediction**: The Prompt 5 to identify the most relevant subsequent units. The choice Terminate stands for the reasoning has reached a terminal state.

• Completion: We prompted the LLMs using the Prompt 6 to get the final response.

```
923
924
     1 ## **[Task] **
     2 - Background: You are an assistant helping to answer problems. You need
925
          to carry out the next step [{node_name}] of a reasoning chain to help
926
           respond to [User Input].
927
      - Requirements:
928
          * follow the instructions in **Reasoning Step: [{node_name}]** which
          defines the reasoning step.
929
          * It should be the next step of the half-finished reasoning chain in [
930
          Existing Analysis]. The result can only be not aligned with the
931
          analysis in [Existing Analysis] if you need to fix mistakes or
932
          explore aspects not considered. You can refer to [Analysis
933
          Expectation] for guidance, but you do not need to strictly follow it.
          * **Important**: Your output should be specific, without fake
934
          information.
935
          * **Important**: Your output should be comprehensive, including any
936
          possible aspects.
937
          * **Important**: Your output should only contain one step. If other
938
          things are in need, state the need and reserve the reasoning for the
939
          next steps.
          * You should only use simpler vocabulary at a high school level to
940
          form your answers.
941
    10
942
      ## **[User Input] **
    11
943
    12 {user_input}
944
    14 ## ** [Existing Analysis] **
945
    15 {previous_nodes}
946
947
    ## **[Analysis Expectation]**
948
    18 {analyze_expect}
949
    19
    20 ## **Reasoning Step: [{node_name}] **
950
    21 {node_description}
951
952
    23 ## **[Output Format] **
953
    24 Please output in English. The content should be a smooth and coherent
954
          paragraph, following the format below:
       '''json
955
    26 { {
956
               "content": "the content of the required step"
    27
957
    28 } }
958
959
```

Prompt 4: The prompt template for generating cognitive units in the cognitive flow simulation. {user\_input}, {previous\_nodes}, {analyze\_expect}, {node\_description}, {node\_name} are placeholders. The {node\_name} and {node\_description} are prompts from Table 4. The {analyze\_expect} is the justification for choosing this unit, which was generated during the unit selection.

```
## **[Task]**
- Background: You are an assistant helping with problems. You need to
    choose the next step of a reasoning chain to help respond to the user
    's input in [User Input]. The chain should be comprehensive.
- Requirements:
    * You should select **ALL** possible candidates from [Candidate Next
    Steps] that can be a reasonable next ONE step of the half-finished
    reasoning chain provided in [Existing Analysis]. You could visit the
    same step several times to get more information or analyze further.
```

972 973

Table 4: Prompt templates for cognitive units.

| 9 | 7 | 4 |
|---|---|---|
| 9 | 7 | 5 |
| 9 | 7 | 6 |
| 9 | 7 | 7 |

979

- \*\*Task\*\*: Observe and interpret the specific behaviors, attitudes, or other information from the current context. The extracted facts must be precise and detailed without vague information. \*\*NOTE: ALL THE INFORMATION MUST BE ALIGNED WITH THE CONTEXT. DO NOT MAKE UP FAKE INFORMATION.\*\*

- \*\*Output\*\*: State observation comprehensively.

### 980 981 982 983

984

985

986

987

988

989

992

993

994

995

996

997

998

999

# - \*\*Task\*\*: Attribute and evaluate the events or behaviors. It might include: Causal reasoning for others' actions / Impact assessment on current context / Further analysis and explanation.

- \*\*Output\*\*: State the specific reason comprehensively.

**Prompt Template** 

## Motivation

**Prompt Type** 

Observation

Attribution

- \*\*Task\*\*: Generate motivation and goals, addressing the main problem discovered in other steps.
- \*\*Output\*\*: State the goal and motivation.

## 990 991 Regulation

- -\*\*Task\*\*: Check and adjust the previous thought to form a revised motivation or perception, or action plan. You should check (1) whether it lacks consideration, (2) whether other requirements need to be noticed. Think of the effect of the current plan or behavior, and check if there exists any risk. You should also check if there are any misunderstandings and be suspicious of the information in the analysis.
- \*\*Output\*\*: Accurately and comprehensively state the problem and how to solve it.

## Efficacy

- \*\*Task\*\*: Assess the internal perceptions, emotions, and beliefs of the actor of some behavior, and adjust the perception or action plan.
- \*\*Output\*\*: State the efficacy and adjustment of action.

#### Behavior

- \*\*Task\*\*: Determine a more complete behavior based on the current environment and the analysis.

1000 1001 1002

1024

```
1003
          * If analysis is sufficient for responding to the [User Input], and
1004
          there are no concerns, DIRECTLY select the [Terminate] step. (NOTE:
          If you are not certain or you think there might be other potentials,
1005
          you must choose other nodes along with Terminate. )
1006
          * If you find some bad steps in [Existing Analysis] (for example:
1007
          misinformation, unclear statement, etc. ), redoing it again might
          refine it.
1009
          \star If more than one valid options exist, list the most applicable 2 or
1010
          3 steps, and put the most applicable one in the first place.
          * The names of the next steps should be exactly the same as the name,
1011
          e.g., Attribution and Evaluation.
1012
```

 $^{*}$  You should first review the prior steps in [Existing Analysis], and then determine the candidates for the next step.

```
1015 11
1016 12 ## **[User Input] **
1017 13
(user_input)
```

1021 18 ## \*\*[Candidate Next Steps]\*\*

\* Observe the specific behaviors or attitudes from the current context

1025 22 23 - \*\*[Regulation]\*\*

```
* Validate and refine previous thoughts: (1) consider twice to polish
1027
          the thought, behavior, or motivation, (2) check if there exists more
1028
          information in the scenario that needs to be considered.
1029 25
      - **[Behavior]**
1030 <sup>26</sup>
          * derive context-specific behaviors.
1031
1032
      - **[Efficacy] **
    29
1033 30
         * analyze and adjust internal perceptions of the scene and action plan
1034
1035 31
       - **[Attribution] **
1036
         * further interprets the result of previous steps, may include Causal
1037
          reasoning for others' actions, or Impact assessment on the current
1038
          context.
1039 34
1040 35 - **[Terminate] **
          * Terminate analysis, synthesize final conclusion, and respond to the
    36
1041
          user.
1042
    37
1043 <sub>38</sub> - **[Motivation]**
1044 39
        * formulate one's primary drivers of oneself, based on their needs/
          desires identified in other steps.
1045
1046 <sup>40</sup>
    41 ## **[Output Format] **
1047
    42 \\\ison
1048 43 { {
           "rationale": "Concise justification for selecting the next one step
1049 44
           candidates, and choose the most likely one",
1050
           "next_step_candidates": ["step name", ...]
1051
    46 } }
1052
1053
```

Prompt 5: The prompt template for choosing the next cognitive units in the cognitive flow simulation. {user\_input}, {previous\_nodes} are placeholders. {user\_input} is the social situation, {previous\_units} is a linear chain of existing cognitive units. LLMs are required to predict the units that directly follow the end of the sequence.

Prompt 6: The prompt template for generating a response under the guidance of cognitive flow. {user\_input}, {previous\_units} are placeholders. {user\_input} is the social situation, {previous\_units} is the simulated cognitive flow.

#### C.3 PROMPTS FOR DUAL-VALIDATION BASED FILTERING

We used R1 to perform the following tasks:

1054

1055

1056

1057

1064

1065

1066 1067 1068

1069

1070

1071

1072

1073

1074

- **Comparison Pool Construction**: We randomly gathered snippets from the generated cognitive flows, and reused the Prompt 6 to get the final response under the guidance of the reconstructed fake cognitive flow.
- **Two-stage Comparative Preference Ranking**: For both two stages in preference ranking, we use a unified Prompt 7, which can score the first response listed to be 5 as an anchor.

```
1080
1081
      (1) Based on the [User Input] and all the answers in [Answers], propose
           evaluation criteria that can assess the quality of the given answers.
            Ensure that under these criteria, the first answer listed receives a
1083
            score of 5.
1084
     6 (2) Explain the scoring principle for each score value sequentially.
1085
     (3) Score all the answers in [Answers] based on the established
1086
           evaluation criteria. You must use the first listed answer as a 5-
1087
           point reference sample and provide a reason for each score.
1088 8 (4) Refer to the [Output Format] for the output structure.
1089
    10 Note: You must ensure that the scores for the [Answers] are well-
1090
          differentiated.
1091 11
1092 12 Special Attention: You must ensure that the first answer listed receives
          a score of 5 under your scoring standard. Use this first answer as a
           baseline (referred to as "Baseline"). For subsequent answers, a score
1094
           greater than 5 must mean it is better than the first answer, and a
1095
           score less than 5 must mean it is worse than the first answer.
1096 <sub>13</sub>
1097 14 ** [User Input] **
1098 15 {user_input}
1099 16
1100 17 **[Answers]**
    18 {answers}
1101 <sub>19</sub>
1102 20 ** [Output Format] **
1103 21 Output in JSON format, with every answer giving one score in 1-10. The
          answer is identified by 'id'.
23 { {
1106 <sub>24</sub>
           "think": "analyze the user's input, come up with some criterion",
1107 25
           "standard": [
1108 26
               { {
                    "score": 10,
1109 27
1110 28
                    "standard": "standard of score 10"
    29
                } } ,
1111 <sub>30</sub>
1112 31
                { {
                    "score": 5,
1113 32
1114 33
                    "standard": "standard of score 5"
1115 34
               } } ,
    35
                . . .
1116 36
                { {
1117 37
                    "score": 1,
                    "standard": "standard of score 1"
1118 38
               } } ,
1119 39
1120 <sup>40</sup>
           "result": [
1121 42
               { {
                    "id": ...,
1122 43
                    "reason": "compare with the first answer (Baseline), and then
1123 44
            judge the quality of this answer",
1124
1125 45
                    "score": evaluated socre
    46
                } } ,
1126 <sub>47</sub>
                . . .
1127 48
                { {
                    "id": ...,
1128 49
1129 50
                    "reason": "compare with the first answer (Baseline), and then
            judge the quality of this answer",
1130 <sub>51</sub>
                    "score": evaluated score
1131 <sub>52</sub>
               } }
1132 53
1133 54 } }
    55 \ \ \ \
```

1137

1138

Prompt 7: The prompt template for Two-Stage Comparative Preference Ranking. {user\_input}, {answers} are placeholders. {answers} is a list of answers to be evaluated, each with a unique integer id. {user\_input} is the social situation with question and format constraint.

113911401141

1142

1143 1144

1145

1146

#### C.4 PROMPTS FOR COGNITIVE FLOW PRUNING

LLMs were used to evaluate the quality of cognitive flows with Prompt 8. We screened out those who scored below 4 in at least one category.

```
1147
     1 **[Task] **
1148
1149
      Please evaluate the cognitive flow provided in the [Reasoning Flow] based
1150
           on the three core criteria listed below. You need to score each
1151
           criterion independently on a scale of 1-10 (the higher the score, the
1152
           better) and provide a reason for each score.
1153
     5 Evaluation Criteria:
1154
     6 - **Coherence**: Is it logically sound and free of internal
1155
          contradictions?
1156
     7 - **Interpretability**: Does it clearly explain the social dynamics or
1157
          core mechanisms involved?
    8 - **Predictability**: Does it offer reasonable insight into the future
1158
          evolution of the social dynamics?
1159
1160
    10 Please strictly follow the JSON format required in the [Output Format].
1161 <sub>11</sub>
1162 12 ** [Reasoning Flow] **
1163 13 {reasoning_flow}
1164 <sup>14</sup>
    15 ** [Output Format] **
1165
    16 Please output in JSON format. The JSON structure should include your
1166
           thought process, the independent scores, and reasons for each
1167
          criterion.
1168 17 '''json
    18 { {
1169
           "think": "evaluation process",
1170
           "evaluation_result": {{
    20
1171 21
               "coherence": {{
                    "reason": "Explain your reasoning",
1172 22
                    "score": evaluated_score
1173 23
               } } ,
1174 <sup>24</sup>
                "interpretability": {{
1175
                    "reason": "Explain your reasoning",
1176 27
                    "score": evaluated_score
1177 28
               } } ,
                "predictability": {{
1178 29
                    "reason": "Explain your reasoning",
    30
1179
                    "score": evaluated_score
    31
1180
               } }
1181 33
           } }
1182 34 } }
    35 111
1183
1184
```

Prompt 8: The prompt template for cognitive flow evaluation. {reasoning\_flow} is a placeholder for the cognitive flow to be evaluated.

1186 1187

1185

Table 5: Distribution of social situations. Percentages represent the proportion of the total dataset.

| Category / Subcategory           | Count | Percentage |  |
|----------------------------------|-------|------------|--|
| Romance                          | 819   | 16.06%     |  |
| Dating & Courtship               | 108   | 2.12%      |  |
| Romantic Challenges              | 620   | 12.16%     |  |
| Long-term Partnership            | 91    | 1.78%      |  |
| Family                           | 1,414 | 27.73%     |  |
| Parent-Child Interaction         | 351   | 6.88%      |  |
| Major Family Events & Issues     | 663   | 13.00%     |  |
| Extended Family Relations        | 295   | 5.78%      |  |
| Household & Logistics            | 105   | 2.06%      |  |
| Public                           | 690   | 13.53%     |  |
| Stranger Encounters              | 184   | 3.61%      |  |
| Community Life                   | 422   | 8.27%      |  |
| Service Interactions             | 84    | 1.65%      |  |
| Friendship                       | 1,265 | 24.80%     |  |
| Intimate Friendship              | 723   | 14.18%     |  |
| Group Activities & Events        | 383   | 7.51%      |  |
| Casual Hangouts                  | 159   | 3.12%      |  |
| Professional                     | 912   | 17.88%     |  |
| Professional/Academic Challenges | 396   | 7.76%      |  |
| Professional Relationships       | 274   | 5.37%      |  |
| Task-Oriented Collaboration      | 242   | 4.75%      |  |
| Total                            | 5,100 | 100.00%    |  |

### D EXPERIMENTS

#### D.1 More Details of Our Dataset

**Detailed Information of Reddit Data** We use anonymized Reddit<sup>1</sup> posts as our seed situations. The subreddits we used are as follows: FriendshipAdvice, LifeAdvice, Advice, AskWomenOver30, emotional support, family, relationship\_advice, confessions, socialskills, AmItheAsshole, AskMenOver30, AskMen, DecidingToBeBetter, mentalhealth, Anxiety, AskWomen, SocialEngineering, and familyadvice.

**Distribution of Social Situations** The distribution of social situation categories in our dataset is listed in Table 5.

**Distribution of Test Set Difficulty** Following experts' annotations, the test set instances were classified into three levels of difficulty: Easy (137), Medium (232), and Hard (131).

#### D.2 IMPLEMENTATION DETAILS OF OUR MODELS AND BASELINES

**Experimental Setup** All experiments were conducted on 8x NVIDIA H20 GPUs, using Llama-3.1-8B-Instruct (Meta, 2024) and Qwen-2.5-7B-Instruct (Yang et al., 2024) as base models. For the training pipeline, we employed the LLaMA-Factory framework<sup>2</sup> (Zheng et al., 2024) for the SFT and the veRL<sup>3</sup>(Sheng et al., 2024) engine for RL.

**Training Hyperparameters** For the **SFT** stage, the model was trained for 2 epochs with a batch size of 8, a learning rate of  $5 \times 10^{-5}$ , and a context length of 8,192. The **preference reward** 

<sup>&</sup>lt;sup>1</sup>https://www.reddit.com

<sup>&</sup>lt;sup>2</sup>https://github.com/hiyouga/LLaMA-Factory

<sup>&</sup>lt;sup>3</sup>https://github.com/volcengine/verl

**model**, based on Qwen-2.5-7B-Instruct, was augmented with a linear classifier head to predict reward scores. It was trained for 1 epoch with a batch size of 8 and other hyperparameter settings the same as SFT. During the **RL** stage, we generated trajectories by performing 6 rollouts for each of the 24 social situations in a training batch. The policy was subsequently updated using a mini-batch size of 4 situations, resulting in 6 gradient updates per collection batch. We use a learning rate of  $10^{-6}$ , and a KL divergence coefficient to  $10^{-3}$ . By default, we set  $\omega_1 = 1$ ,  $\omega_2 = 0.05$ , and  $\omega_3 = 0.1$ .

**CogFlow Models** Our primary models are fine-tuned from the base model using cognitive flow.

- CogFlow-SFT: The base model fine-tuned on our SFT dataset.
- CogFlow: The final model, fine-tuned from CogFlow-SFT using our complete RL reward function.
- CogFlow-GRPO: An ablation of our method, fine-tuned from CogFlow-SFT using only the response quality reward ( $\omega_1 = 1, \omega_2 = 0, \omega_3 = 0$ ). This is equivalent to the GRPO algorithm.
- CogFlow (w/o  $\mathcal{R}_{Div}$ ): An ablation fine-tuned from CogFlow-SFT, excluding the diversity reward component ( $\omega_1 = 1, \omega_2 = 0, \omega_3 = 0.1$ ).
- CogFlow (w/o  $\mathcal{R}_{\mathrm{Len}}$ ): An ablation fine-tuned from CogFlow-SFT, excluding the length penalty component ( $\omega_1 = 1, \omega_2 = 0.05, \omega_3 = 0$ ).

**Tuning-free Models** For models that do not have a native long chain-of-thought ability, such as GPT-4o and DeepSeek-V3, we employed a zero-shot Chain-of-Thought (CoT) prompting strategy to elicit step-by-step reasoning. Specifically, we appended the following instruction to the end of each input prompt: Let's think step by step, and use <FINAL RESPONSE> before you give the final answer.

**'Direct-' Models** These models are trained to generate the final response directly, without any explicit reasoning process.

- **Direct-SFT**: It is fine-tuned from the base model using the CogFlow SFT dataset, but with the reasoning process removed.
- **Direct-GRPO**: Fine-tuned from Direct-SFT using GRPO. It only used response quality reward  $\mathcal{R}_{\mathrm{Res}}$ .

**'Distilled-R1-' Models** These models are designed to emulate the R1-style reasoning format, effectively serving as distilled versions of R1.

- **Distilled-R1-SFT**: Fine-tuned from the base model using all the social situations of CogFlow's SFT data, but DeepSeek-R1 directly generates the reasonings and responses.
- **Distilled-R1-GRPO**: Fine-tuned from Distilled-R1-SFT using GRPO. The reward function combines response quality with a format-checking reward,  $\mathcal{R}'_{Format}$ , which verifies the presence of  $\langle \text{think} \rangle$  and  $\langle \text{think} \rangle$  tags. The total reward is:

$$\mathcal{R} = \mathcal{R}'_{\text{Format}} \cdot \mathcal{R}_{\text{Res}} \tag{9}$$

• Distilled-R1-GRPO  $\mathcal{R}_{\mathrm{Len}}$ : This configuration is identical to Distilled-R1-GRPO but incorporates our reasoning length reward,  $\mathcal{R}_{\mathrm{Len}}$ , to encourage more concise reasoning paths. The total reward is:

$$\mathcal{R} = \mathcal{R}'_{\text{Format}} \cdot (\omega_1 \cdot \mathcal{R}_{\text{Res}} + \omega_3 \cdot \mathcal{R}_{\text{Len}}) \tag{10}$$

#### D.3 IMPLEMENTATION DETAILS OF LLM EVALUATORS

We detail the LLM-based and reward model-based evaluators referenced in Table 1, Table 2, and Table 6 below:

**Prompt-Based Direct Scoring Evaluators** These evaluators generate a direct score for each response individually. They use R1 (Guo et al., 2025) (Score-R1) and Qwen3-32B (Yang et al., 2025) (Score-Q32B) as the evaluators, both prompted with the template from Prompt 9.

```
1294 <sub>1</sub>
1295 <sub>2</sub> **[Task]**
```

```
1296
     4 Given a [User Input] and its corresponding [Answer], please provide a
1297
          comprehensive score between 1 and 10 based on the quality of the
1298
          answer, where a higher score indicates a better answer. A score of 5
          indicates that the answer is basically correct but may be incomplete,
1299
           unclear, or partially inaccurate.
1300
1301
      Scoring Criteria Explanation (for reference; please make a comprehensive
1302
          judgment):
1303
1304
    8 - 10: Perfect answer. Entirely accurate, informative, well-structured,
          and appropriately worded. Effectively addresses the user's query,
1305
          potentially even exceeding expectations.
1306
    9 - 8-9: Excellent answer. Accurate and complete in information, logically
1307
         clear, fluently expressed, fully satisfying the user's needs.
1308 _{10} - 6-7: Good answer. Basically correct and relevant, but may lack depth in
           certain details or contain minor inaccuracies.
1310 II - 5: Passable answer. Generally correct but potentially incomplete,
          somewhat unclear, or containing individual errors that do not
          severely impact understanding.
1312_{12} - 3-4: Insufficient answer. Partially relevant but missing key
         information, containing significant errors, or failing to address the
          core issue.
1314
1315 13 - 1-2: Poor answer. Severely off-topic, containing incorrect information,
          or entirely unhelpful.
1316
1317 _{15} When evaluating, you may comprehensively consider the following
         dimensions (not all are required):
1319 16 - Accuracy: Whether the answer is factually correct and non-misleading.
1320 17 - Completeness: Whether it covers the key points of the user's question.
    18 - Relevance: Whether the answer stays closely aligned with the user's
          question without deviating from the topic.
1322 19 - Clarity: Whether the expression is clear, easy to understand, and well-
1323
         organized.
1324 20 - Practicality: Whether it offers practical help to the user and is
          actionable (if applicable).
1325
1326
    22 ** [User Input] **
1327 23 {user_input}
1329 25 **[Answer] **
1330 <sup>26</sup> {answer}
1331
    28 **[Output Format] **
1332 _{29} Output in JSON format, with the answer given one integer score in 1-10.
1333 30 '''json
1334 31 {{
          "score": evaluated score
1335 32
    33 } }
1336
1337
```

Prompt 9: The prompt template for direct scoring response. {user\_input}, {answer} are placeholders. {answer} is the answer to be evaluated. {user\_input} is the social situation with question and format constraint.

1339

1340 1341 1342

1343

1344

1345

1346

1347

1348

1349

**Comparative Preference Ranking Evaluators** These evaluators generate scores for a batch of responses simultaneously using comparative ranking methods. We apply two distinct methodologies to both R1(Guo et al., 2025) and Qwen3-32B(Yang et al., 2025) models:

- **CPRank**: This is a direct comparison method. The evaluator is prompted (using Prompt 7) to rank all responses within a given batch from best to worst in a single pass, thereby establishing a complete preference order at once. It results in CPRank-R1 and CPRank-Q32B.
- **CPRank**<sup>2</sup>: This method, as described in the main text, involves two steps to refine the evaluation. First, for **initial ranking**, the model generates situation-specific criteria and uses them to assign an initial score and critique for each response. Second, for **comparative reranking**, it selects the

Table 6: Results of automatic evaluation for more tuning-free models with CoT strategy.

| Models CPRank <sup>2</sup> -R1 (†) |         | <b>k</b> <sup>2</sup> - <b>R1</b> (↑) | CPRank²-Q32B (↑) |           |          |        | Reasoning |        |                    |
|------------------------------------|---------|---------------------------------------|------------------|-----------|----------|--------|-----------|--------|--------------------|
| Models                             | Overall | Easy                                  | Medium           | Hard      | Overall  | Easy   | Medium    | Hard   | Length (tokens, ↓) |
|                                    |         |                                       | Т                | uning-fre | e Models |        |           |        |                    |
| Llama-3.1-70B (CoT)                | 0.0619  | 0.1016                                | 0.0577           | 0.0264    | 0.1256   | 0.2016 | 0.1173    | 0.0607 | 231.33             |
| Qwen-2.5-7B (CoT)                  | 0.0820  | 0.1208                                | 0.0849           | 0.0403    | 0.1340   | 0.2178 | 0.1255    | 0.0612 | 184.90             |
| Llama-3.1-8B (CoT)                 | 0.0885  | 0.1000                                | 0.0882           | 0.0772    | 0.1679   | 0.2467 | 0.1575    | 0.1039 | 253.12             |
| Qwen-2.5-72B (CoT)                 | 0.1401  | 0.2010                                | 0.1703           | 0.0465    | 0.1487   | 0.2588 | 0.1338    | 0.0598 | 242.75             |
| DeepSeek-V3 (CoT)                  | 0.2443  | 0.3077                                | 0.2390           | 0.1862    | 0.3591   | 0.3854 | 0.3662    | 0.3192 | 927.40             |
| GPT-4o (CoT)                       | 0.2542  | 0.3366                                | 0.2407           | 0.1876    | 0.3489   | 0.3861 | 0.3521    | 0.3035 | 918.55             |

Table 7: Results of pairwise comparison. The three numbers are the percentage of *win/tie/loss* for the paired models.

| Models                | Compared Models                                                                 | Easy (%)                                                    | Medium (%)                                                  | Hard (%)   Overall (%)                                                                                                |
|-----------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| CogFlow<br>vs.        | Simulated-CogFlow DeepSeek-R1 Distilled-R1-GRPO $_{\mathcal{R}_{\mathrm{Len}}}$ | 56.9 / 0.8 / 42.3<br>55.5 / 0.0 / 44.5<br>64.6 / 4.4 / 31.0 | 43.1 / 0.9 / 55.9<br>49.7 / 1.0 / 49.2<br>54.7 / 3.0 / 42.3 | 50.6/1.9/47.4       49.1/1.2/49.7         52.2/1.6/46.2       51.9/1.0/47.0         62.6/3.7/33.7       59.9/3.6/36.5 |
| Simulated-CogFlow vs. | DeepSeek-R1<br>Distilled-R1-GRPO $_{\mathcal{R}_{\mathrm{Len}}}$                | 47.1 / 4.3 / 48.6<br>61.1 / 1.6 / 37.3                      | 55.2 / 1.7 / 43.1<br>56.1 / 1.7 / 42.2                      | 54.9 / 4.7 / 40.4       52.9 / 3.6 / 43.6         54.8 / 1.3 / 43.9       56.9 / 1.6 / 41.5                           |
| DeepSeek-R1 vs.       | Distilled-R1-GRPO $_{\mathcal{R}_{\mathrm{Len}}}$                               | 54.0 / 0.7 / 45.3                                           | 52.2 / 0.0 / 47.8                                           | 49.2 / 1.6 / 49.2   51.6 / 0.8 / 47.6                                                                                 |

median-ranked response as an anchor to mitigate scoring biases (e.g., positional bias). The model then performs a final comparative reranking of the entire pool against this anchor, yielding a more robust preference order. It results in CPRank<sup>2</sup>-R1 and CPRank<sup>2</sup>-Q32B.

•  $\mathbf{RM}_{\phi}$ : This evaluator is the reward model specifically trained to score responses described in 3.3. The implementation details are described in D.2.

#### D.4 DETAILED INFORMATION OF MODELS USED IN HUMAN EVALUATION

We detail the models mentioned in the pairwise comparison here:

- CogFlow: Llama-3.1-8B-Instruct fine-tuned using the whole CogFlow pipeline.
- Distilled-R1-GRPO<sub>RLen</sub>: Llama-3.1-8B-Instruct fine-tuned using the Distilled-R1-GRPO<sub>RLen</sub> method.
- Simulated-CogFlow: The pruned results of cognitive flow simulation (crafted by prompting R1).
- DeepSeek-R1: The native DeepSeek-R1 model.

#### D.5 MORE BASELINE PERFORMANCE

More baseline results (GPT-40, DeepSeek-V3, Qwen-2.5-7B/72B-Instruct and LLama-3.1-8B/70B-Instruct using CoT strategy stated in D.2) are shown in Table 6.

#### D.6 PERFORMANCE OF PAIRWISE COMPARISON

We show the precise pairwise results from the experts' pairwise evaluation in Table 7.

To quantitatively assess the relative strength of our models from pairwise comparison data, we employ the Bradley-Terry (BT) model(Bradley & Terry, 1952), a statistical method for converting pairwise preferences into a continuous capability scale. The results are provided in Figure 3.

**Objective Function** The core assumption of the BT model is that each model i possesses an unobserved strength parameter  $p_i \in \mathbb{R}_{>0}$ . The probability of model i winning against model j is given by:

$$P(i \text{ defeats } j) = \frac{p_i}{p_i + p_j}. \tag{11}$$

Given the observed number of model i defeats model  $jW_{ij}$ , our objective is to find the set of strength parameters  $p = \{p_1, p_2, ..., p_n\}$  that maximizes the log-likelihood of the observed outcomes. The

total log-likelihood function is:

$$\mathcal{L}(\mathbf{p}) = \sum_{i=1}^{n} \sum_{j \neq i}^{n} W_{ij} \log \left( \frac{p_i}{p_i + p_j} \right)$$
 (12)

$$= \sum_{i=1}^{n} \left( \left( \sum_{j \neq i} W_{ij} \right) \log(p_i) - \sum_{j \neq i} W_{ij} \log(p_i + p_j) \right). \tag{13}$$

**Optimization Method** Since a closed-form solution for maximizing this likelihood is not available, we use an iterative algorithm to find the Maximum Likelihood Estimates (MLE) for the parameters p. The update rule for each parameter  $p_i$  at each iteration is derived from the likelihood equations, resulting in the following fixed-point iteration scheme:

$$p_i^{\text{(new)}} = \frac{\sum_{j \neq i} W_{ij}}{\sum_{j \neq i} \frac{W_{ij} + W_{ji}}{p_i^{\text{(old)}} + p_i^{\text{(old)}}}}.$$
(14)

The proof of its convergence and optimality is detailed in (Hunter, 2004). Here, we initialize all  $p_i$  to 1 and then perform iterative updates. Each update step first applies Eq. 14 for i=1,...,n, and then normalizes the resulting parameter vector  $\left(p_1^{(\text{new})},...,p_n^{(\text{new})}\right)$ . This process is repeated until the parameters converge, defined as when the  $L_2$  norm of the parameter vector change is below a tolerance of  $10^{-6}$ . Finally, to ensure a unique solution, the parameters are normalized such that the weakest model has a score of 1.

#### D.7 PROMPTS AND EXAMPLES FOR COGNITIVE INTERVENTION FOR HUMANS

We use R1 to translate reasoning chains into natural language interventions, following the Prompt 10. To illustrate this, Table 8 presents two intervention examples derived from two reasoning styles.

```
1431
1432
      ## **[Task]**
      You are a thoughtful and persuasive mentor. Your friend encountered a
1433
          task: [Question]
1434
      He has been provided with several responses, the best one is [
1435
          best_response], and the rest are [other_responses].
1436
     4 But he did not choose the best one.
     5 Now, you plan to persuade his friend to reconsider. But you should be
1437
          gentle, so you should take a reasoning procedure [Best Reasoning]
1438
          leading to the best response, and try to (1) figure out based on the
1439
          chosen response, what may not he considered in each step of the
1440
          reasoning procedure, and (2) try to teach him to think in better ways
1441
          . You can guide him to build up the reasoning procedure (You should
1442
          assume that he is a beginner, and he may not know the reasoning
          procedure. ), and make every node of the reasoning procedure better.
1443
1444
      ## **[Question] **
1445
     8 {question}
1446
1447 10 ## **[other_responses] **
      {other_responses}
    11
1448
1449
      ## **[best_response] **
    13
1450
      {best_response}
1451
    15
1452 16 ## ** [Best Reasoning] **
1453 17 {best_reasoning}
1454 18
    19 ## **[Requirement] **
1455
    20 - YOU SHOULD NEVER MENTION OR HINT AT THE EXISTENCE OF THE [best_response
1456
1457
    21
    22 ## **[Output format] **
```

```
1458
24
You should persuade him to reconsider. The persuasion should be concise.
Please provide the persuasion in JSON format like this:

1461
25
1462
26
{
    "words": "Your persuasion"
}
1463
28
1464
29
1465
```

Prompt 10: Prompt converting reasoning to intervention. {question}, {other\_responses}, {best\_responses}, {best\_reasoning} are placeholders. {other\_responses} is a list of all four candidate responses from CogFlow, Simulated-CogFlow, DeepSeek-R1, and Distilled-R1-GRPO $_{\mathcal{R}_{Len}}$ . {question} is a social situation and question. {best\_responses} and {best\_reasoning} are the response content and reasoning of the ground truth model in the situation, respectively.

Table 8: Example of guidance for intervention for two styles of reasoning, i.e., cognitive reasoning vs. R1 reasoning.

| Туре                    | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cognitive Flow Style    | Hi there! I noticed you analyzing that school scenario - great focus on the visible emotions. Let's build your analysis step by step together. First, we should collect every observable fact neutrally, like Leo would: Maya's bracelet-twisting, the folded note exchange, Chris's smirk-to-whisper sequence, her abrupt step back and neartrip, the library retreat, Chris's chuckle, and the bell ringing. Now, when interpreting, we might consider adding layers: Could the note's secrecy create uncertainty about its purpose? Might Chris's immediate chuckle after her exit amplify concerns about intent? And importantly, does Maya's established anxiety before the interaction suggest potential patterns? The time pressure from the bell could also heighten Leo's urgency. This method helps ensure we connect all details to concerns without speculation. Want to walk through how this changes your interpretation?                                                                                                                                      |
| R1 Reaoning Chain Style | Hey, let's walk through this step-by-step together. First, consider Maya's nervousness before the interaction - her bracelet-twisting, darting eyes, and untied shoelace show she's already anxious. Many beginners might overlook how these details establish vulnerability. Next, Chris's smirk while reading the note and his whispered comment are crucial - they suggest negative intent rather than kindness. Maya's physical reaction of stepping back abruptly and nearly tripping reveals shock or fear, directly linking to what Chris said. Then note her hasty retreat to the library (a safe space) instead of staying social, showing deep distress. Chris's solitary chuckle afterward confirms he wasn't being supportive. Finally, Leo's stopped eating and wrinkled forehead prove he's connecting these dots in real-time. By building the analysis this way - starting with initial cues, then reactions, then consequences - we see how every detail points to Leo worrying about emotional harm to Maya. What stands out most to you in this sequence? |