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ABSTRACT

LLMs trained for logical reasoning excel at step-by-step deduction to reach verifi-
able answers. However, this paradigm is ill-suited for navigating social situations,
which induce an interpretive process of analyzing ambiguous cues that rarely yield
a definitive outcome. To bridge this gap, we introduce Cognitive Reasoning, a
paradigm modeled on human social cognition. It formulates the interpretive pro-
cess into a structured cognitive flow of interconnected cognitive units (e.g., obser-
vation or attribution), which combine adaptively to enable effective social think-
ing and responses. We then propose CogFlow, a complete framework that instills
this capability in LLMs. CogFlow first curates a dataset of cognitive flows by sim-
ulating the associative and progressive nature of human thought via tree-structured
planning. After instilling the basic cognitive reasoning capability via supervised
fine-tuning, CogFlow adopts reinforcement learning to enable the model to im-
prove itself via trial and error, guided by a multi-objective reward that opti-
mizes both cognitive flow and response quality. Extensive experiments show that
CogFlow effectively enhances the social cognitive capabilities of LLMs, and even
humans, leading to more effective social decision-making. Our repository will be
released at: https://anonymous.4open.science/r/CogFlow2025.

1 INTRODUCTION

Social cognition, the core mental process of human social intelligence, governs how individuals
perceive, interpret, and respond to social situations (Fiske & Taylor, 2020). This unique ability
allows humans to navigate complex social dynamics wisely (Thorndike, 1920). As large language
models (LLMs, OpenAI (2024); Guo et al. (2025)) have been taking on more collaborative roles with
humans, their capability of social intelligence is being actively examined (Chen et al., 2024; 2025a).
Recent studies have revealed promising signs, including evidence of human-like social behaviors
(Park et al., 2023) and lobe structure for social skills (Zhou et al., 2025a). Deeper cognitive analysis
further suggests that LLMs spontaneously exhibit human-like cognitive features, e.g., reasoning
patterns that mimic empathy (Dong et al., 2025), indicating a potential capacity for social cognition.

Despite the potential evidenced in the aforementioned observational studies, improving the social
cognitive abilities of LLMs remains underexplored. The root cause lies in the fundamental mismatch
between the LLMs’ currently implanted reasoning structures and the nature of social intelligence
(Moore et al., 2025). Specifically, LLMs excel at complex tasks like math and coding (Shao et al.,
2024; Ni et al., 2024), which rely on step-by-step logical deduction to arrive at a single verifiable
solution (Zheng et al., 2025). In contrast, reasoning in social situations is an interpretive process
that involves analyzing ambiguous cues that rarely yield a definitive answer (Gandhi et al., 2023;
Xu et al., 2025). Not to mention LLMs, even when humans try to apply rigid logic rules to the
fluid social domains, they risk falling into “cognitive rumination”(Marjanović et al., 2025), which
is a state of over-analyzing simple cues, engaging in redundant reasoning cycles, and producing
protracted internal monologues that lead to erroneous judgments or delayed responses (as shown in
Figure 1). This exposes a pivotal challenge in applying LLMs to social situations, and defining and
implementing an effective LLM reasoning paradigm to close this gap is thus urgently needed.

To this end, we pioneer a complete learning framework to instill social cognition into LLM rea-
soning. Drawing from social cognitive theory (Bandura et al., 1986), we dissect a social cognition
process into six core cognitive units that form social thinking: Observation, Attribution, Motivation,
Regulation, Efficacy, and Behavior. For example, in the social scene “choosing the last member
for a new robotics team” shown in Figure 1, one can predict Carlos’s action by first observing the
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Situation
Coach Evans and Aisha were choosing the last members for the robotics team: quiet Emma, confident Ben, and easygoing 
Carlos. Evans glanced at Carlos, raised his brows, and smiled at Aisha. Aisha quickly pointed to Emma and nodded …...

Question
What action would Carlos most likely take after observing this interaction?  Output JSON format:  {"action": 
"[Carlos's likely action]",  "reason": "[Rationale for the action]"}.

Conventional Reasoning (1,306 tokens)
There’s a robotics team selection with Coach Evans and 
Aisha choosing among Emma, Ben, and Carlos ......

Key observations: - Coach Evans tapped his pen, glancing 
at Carlos ......

Possible interpretations: - Coach glancing at Carlos: Could 
mean he's considering Carlos, or perhaps he's thinking that 
Carlos might ......
What action could Carlos take? - He may step back or 
withdraw, thinking Emma is being chosen.

- Or he might speak up to advocate for himself, but since 
he's easygoing, he might not do that ......

The scenario says "three applicants left," but it doesn't 
specify how many spots ......
The action should be something observable or inferred.

Possible actions:

- Carlos steps aside or walks away ......

/*... omit more similar analysis process as above ...*/

Final Response

{"action": "Smile slightly and step back",
"reason": 
"Easygoing Carlos sees Aisha’s firm choice of Emma as 
decisive and accepts it gracefully, avoiding conflict after 
noting Coach Evans’s uncertain glance."
}


Cognitive Reasoning (404 tokens)
Observation

Carlos notices Coach Evans tapping his pen … then raising 
his brows with a smile to Aisha. She points to Emma and 
nods. Ben watches … fidgeting nervously.

Attribution
Carlos might see Coach Evans’s pen-tapping as interest … 
but the raised brows and smile to Aisha as deferring the 
choice. Aisha’s firm gesture to Emma shows preference … 
leading Carlos to conclude his chances are low.

Behavior
Given Carlos’s easygoing nature … he likely reacts calmly. 
A slight shrug or small smile…shows no distress or protest.

Regulation
The analysis is solid … but needs refinement. It overlooks 
that Carlos’s easygoing nature might show as subtle engage- 
ment…such as a brief, friendly smile or nod toward Emma.

Final Response

{"action": "Offer a small, friendly smile or nod toward 
Emma",
"reason": "Carlos’s easygoing nature leads him to 
accept rejection calmly. Seeing Aisha endorse Emma, he 
concludes she is favored and shows subtle acknowledgment 
to maintain harmony without disappointment."
}


Repeat

Analysis


Repeat 


Conclusion

Figure 1: An example of conventional reasoning (DeepSeek-R1) falling into “cognitive rumination”,
while cognitive reasoning efficiently reaches a better response. The bar chart shows the average
reasoning length and comparative preference scores for advanced LLMs on our test set (§4.3).

situation (e.g., coach Evans smiles at Aisha), making an attribution about that behavior (e.g., the
smile signals deference), formulating Carlos’s intended behavior (e.g., a slight shrug), applying reg-
ulation (e.g., Carlos should show a friendly nod in accordance with his easygoing personality), and
finally leading to predicted actions (e.g., offer a small, friendly smile or nod toward Emma). These
cognitive units flow adaptively among each other to create an effective, structured reasoning process.
We define this process as Cognitive Reasoning, a paradigm for thinking and responding effectively
in social situations. While cognitive reasoning provides a clear blueprint for social cognition, its
implementation in LLMs presents two crucial challenges: 1) Reasoning paradigm shift: shifting
models’ training objective from optimizing verifiable logic to guiding analytical reasoning that lacks
definitive answers; 2) Cognitive flow control: teaching the model to adaptively regulate its use of
these cognitive units to avoid rumination.

To address these challenges, we teach LLMs to think socially in a form of cognitive flow. First, we
curate a cognitive reasoning dataset via cognitive flow simulation. We prompt advanced LLMs to
simulate human thoughts by crafting cognitive flows about a social situation. This process generates
cognitive units sequentially, where each unit acts as a reasoning node that enables the planning of
the next, mirroring the associative and progressive process of human cognition. The uncertainty in
social situations allows these nodes to naturally branch into a cognitive reasoning tree, and each leaf
node contains the response derived from the corresponding cognitive flow about the social situation
(as shown in Figure 2). Second, given the absence of definitive answers, we design a comparative
preference ranking principle to identify the most promising cognitive flows by the relative plausi-
bility of the responses from all leaf nodes. We then prune the flows based on criteria derived from
social cognitive theory – coherence, interpretability, predictability (Bandura et al., 1986) – to create
high-quality data for supervised fine-tuning (SFT). Finally, after instilling basic cognitive reasoning
capability via SFT, we empower the model to autonomously explore better reasoning paths using
reinforcement learning (RL), guided by a multi-objective reward function: a) a comparative prefer-
ence reward to steer the model toward flows that yield more plausible responses; and b) a cognitive
flexibility reward to encourage adaptive regulation of the cognitive flow’s diversity and depth. We
name this training framework CogFlow.

Our contributions are summarized as follows: (1) We introduce cognitive reasoning, a pioneering
paradigm designed to enable LLMs to think socially via structured interplay among cognitive units.
(2) We propose CogFlow, a training framework that instills cognitive reasoning capability into LLM,
using a combination of preference-based SFT and multi-objective RL. (3) We conduct extensive
experiments showing that CogFlow effectively enhances the social cognitive capabilities of both
LLMs and humans, leading to more effective social decision-making.

2 PRELIMINARIES

Definition of Cognitive Reasoning Humans’ social cognition is a dynamic process (Fiske & Taylor,
2020) where people navigate complex social situations by building and refining internal cognitive

2
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Warmup Cognitive Reasoning with Supervised Fine-TuningData FilteringData Collection via Cognitive Flow Simulation

Reinfocement Learning for Cognitive Flow Optimization
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Figure 2: Overview of our CogFlow framework, which crafts cognitive flows via tree-structured
planning, uses the filtered data for SFT, and then employs multi-objective RL for self-improvement.

maps (Tolman, 1948). This occurs in a feedback loop: people map social situations to their actions
(Bandura & Walters, 1977), and the outcomes provide feedback that reshapes both their internal
map and the external situations (Bandura et al., 1986). We formalize the mental activity within this
loop as cognitive reasoning, and operationalize the cognitive map as a “cognitive flow”, an adaptive
adoption of several core cognitive units (Bandura et al., 1986), e.g., attributions about a person’s
intent shape one’s motivation to interact, and a strong sense of efficacy can enhance regulation
strategies. Definitions of the cognitive units are: (1) Observation: Perceiving and interpreting
events and others’ behaviors to form an initial cognitive appraisal of a situation (Lazarus, 1991). (2)
Attribution: Analyzing the causes of events or behaviors (Heider, 2013). (3) Motivation:
The expectations and value assessments of potential outcomes for self and others’ behavior, which
provide the drive to act (Vroom, 1964). (4) Regulation: Reflecting on and adjusting emotions,
beliefs, and behaviors in pursuit of social goals (Carver & Scheier, 2012). (5) Efficacy: The
belief to execute a specific social behavior, which influences motivational intensity (Bandura, 1997).
(6) Behavior: Formulating an intention to act in response to social situations (Ajzen, 1991).

Task Formulation in Cognitive Reasoning Given a social situation S and a query Q, the goal is to
obtain a response y by first generating an explicit cognitive flow τ . Each reasoning step is material-
ized by a particular cognitive unit ri = (ui, ci), where ui is the unit category (e.g., Observation)
and ci is the materialized text content of ui. A complete flow τ is thus an ordered sequence of n
reasoning steps: τ = {r1, r2, · · · , rn} = {(u1, c1), (u2, c2), · · · , (un, cn)}. We define the input x
as the concatenation of S and Q , x = [S;Q]. Our goal is to learn a policy πθ that maximizes the
joint probability of generating the flow τ and the response y: πθ(τ, y|x) = πθ(y|τ, x) · πθ(τ |x),
where πθ(τ |x) depicts the generation of structured cognitive flow τ , πθ(y|τ, x) measures the corre-
spondence between cognitive reasoning content of τ and produced response y about input x.

3 METHODOLOGY

As shown in Figure 2, our training framework CogFlow begins by collecting cognitive flows via tree-
structured planning, guided by carefully crafted instructions. We implement a dual-validated data
filtering procedure: a comparative preference ranking module identifies cognitive flows that yield
high-quality responses, which are then pruned under coherence, interpretability, and predictabil-
ity criteria. After instilling such structured cognitive reasoning into an LLM via SFT, the model
improves itself via RL, guided by a multi-objective reward that optimizes both cognitive flow and
response quality. The instructions used in data collection and more details are shown in App. C.

3.1 DATA COLLECTION VIA COGNITIVE FLOW SIMULATION

Seed Data Collection To approach realistic and complex social situations, we collect seed data
from Reddit. Unlike existing datasets, e.g., SocialIQA (Sap et al., 2019), which often feature simple
situations with limited social dynamics, our collection focuses on complex multi-person interactions,
presenting a more substantial challenge for LLMs. The pipeline is constructed as follows:

3
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• Situation curation: We curate and anonymize Reddit posts, removing all sensitive content. Then
we prompt Deepseek-R1 (hereafter R1) to distill them into concise situation descriptions (S).

• Question generation: For each situation, we prompt R1 to extract detailed social cues and gener-
ate a corresponding question (Q) that demands deep interpretation, analysis, and prediction.

• Filtering: To ensure high quality of our seed data, each generated situation-question pair (S,Q) is
re-assessed by R1. We discard pairs rated low on situation complexity or question relevance.

Cognitive Flow Simulation To obtain human-like cognitive flows, we simulate the associative and
progressive process of human cognition (Bandura et al., 1986). The flows are crafted by prompting
R1 to sequentially plan and materialize the content of cognitive units. Each unit acts as a reasoning
node, and the preceding path supports planning for the next. As a single thought can lead to multiple
continuations, this process naturally forms a tree-structured exploration of reasoning flows.
• State: Each node in the tree is a state sk, denoting a partially generated cognitive reasoning path

from the root. The root node, s0, corresponds to the initial input x = [S;Q].
• Action: At any state sk, we prompt R1 to choose the next cognitive unit uk+1 from dynamic

candidates, A(sk) ⊆ {u1, · · · , u6}. The initial state s0 is constrained to be unit Observation.
• Planning: Planning begins from the root state s0 and iteratively expands the tree by: a) Genera-

tion: For the selected unit uk+1, we prompt R1 to generate the unit’s text content ck+1 with respect
to the current state sk. This forms a new reasoning node rk+1 = (uk+1, ck+1) and expands the
path to a new state sk+1 = [sk; rk+1]. b) Prediction: R1 is then prompted to analyze the reasoning
path sk+1 and predict a set of relevant next cognitive units A(sk) to explore. This step adaptively
prunes the action space from all six possible units to only the most contextually appropriate ones.
c) Expansion: Each candidate unit from the predicted set becomes a new node, expanding the tree
with multiple parallel reasoning paths.

• Completion: This expansion process repeats until R1 determines that the reasoning has reached
a terminal state, which is referred to as a leaf node. At this point, it generates a final response y
based on the fully constructed chain.

We define a complete cognitive flow from the root node to any leaf node as a rollout. By performing
multiple rollouts for each seed instance, we collect a diverse set of cognitive flows {τ1,· · · ,τm} and
their corresponding final responses {y1,· · · ,ym}.

Dual-Validation based Filtering In the absence of definitive answers, we design a two-step filter-
ing procedure to ensure the quality of generated cognitive flows. We first identify flows landing on
high quality responses via two-stage Comparative Preference Ranking (CPRank2):
• Comparison pool construction: For each seed instance, we craft a candidate pool containing

responses from our rollouts and a baseline response directly from R1. The pool size is set to 10,
which we found to be satisfactory in our preliminary tests. If the size of valid rollouts is fewer
than 10, we create variations by perturbing the generated flows (e.g., combining flow snippets).

• Initial ranking: We prompt R1 to generate situation-specific criteria and then use them to assign
an initial score and critique for each response in the pool, i.e., LLM-as-a-judge (Liu et al., 2025).

• Comparative reranking: To mitigate scoring biases (e.g., positional bias in R1’s initial scores),
we then select the median-ranked response as an anchor. We ask R1 to perform a final comparative
reranking of the entire pool against this anchor, yielding a more robust preference order.

Next, we conduct cognitive flow pruning. We select flows with responses scored higher than those
from R1, designating them as high-quality candidates. The candidates are then pruned by R1 us-
ing the following criteria constructed based on social cognitive theories (Bandura et al., 1986): a)
coherence: logically sound and free of contradictions; b) interpretability: clearly explain the social
dynamics; c) predictability: offer reasonable insight into the future evolution of social dynamics.
Only cognitive flows satisfying all criteria are retained.

3.2 WARMUP COGNITIVE REASONING WITH SFT

To endow LLM with basic cognitive reasoning capability, we train it with the constructed cognitive
flows via SFT. For each curated data instance (x, τ, y), we format it by concatenating all reasoning
steps ri = (ui, ci) within the cognitive flow τ into a continuous text sequence τSFT: τSFT =
⊕ri∈τ ⟨ui⟩ci⟨/ui⟩, where ⊕ is string concatenation. The cognitive unit tags ⟨ui⟩ and ⟨/ui⟩ (e.g.,
⟨Observation⟩ and ⟨/Observation⟩) are added to LLM’s vocabulary as new special tokens,
allowing them to be directly embedded and enabling the LLM to learn cognitive reasoning structure
intrinsically. Policy πθ is optimized by minimizing the standard SFT loss:

LSFT(θ) = −E(x,τ,y)∼DSFT
[log(πθ(τSFT, y|x)], (1)

4
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where DSFT is our curated data for SFT. After warmup, πθ is able to generate structured cognitive
flows using these specialized tags without relying on manually crafted prompts.

3.3 REINFORCEMENT LEARNING FOR COGNITIVE FLOW OPTIMIZATION

To enable the model to progressively refine its cognitive flows, we adopt RL, where the policy model
learns to improve its cognitive reasoning via trial and error. We use GRPO (detailed in Appendix B,
Shao et al. (2024)) to optimize policy πθ, which is guided by our multi-objective reward as follows:

Comparative Preference Reward (RRes) While the preference ranking used for data filtering is
well-suited for scenarios lacking definitive answers, it is not economically feasible for large-scale
online training (which needs to execute R1 against each generated rollouts). We thus train a dedi-
cated reward model RMϕ to predict pairwise preference. For each input x, RMϕ is trained to predict
whether a candidate response y is preferred over a set of k reference responses {y1ref , · · · , ykref} (we
use k = 3). During RL, for each generated response y, we use the top-k responses from our curated
data as the reference set and set the reward to be RMϕ’s predicted probability of y is preferred:

RRes(y|x) = Pϕ(y ≻ {y1ref , · · · , ykref}|x). (2)
Cognitive Flexibility Reward Beyond response, we foster policy πθ to regulate its thought process.
• Cognitive diversity reward (RDiv): To prevent the model from falling into simplistic or repet-

itive reasoning patterns, we introduce RDiv to encourage exploration of diverse cognitive flows.
This design is inspired by human social cognition, where people flexibly adapt their cognitive
strategies to situational nuances (Fiske & Taylor, 2020). The reward evaluates a cognitive flow τ
by incentivizing the use of rarer cognitive units within a batch of rollouts, encouraging the model
to avoid over-reliance on common reasoning steps. Given m rollouts for an input x, yielding flows
{τ1, . . . , τm}, the reward for a chain τ containing v unique cognitive units {u1, . . . , uv} is:

RDiv(τ) = −1

v

∑v

j=1
log(p(uj)), (3)

where p(uj) is the frequency of the cognitive unit uj across all m sampled cognitive flows.
• Reasoning length reward (RLen): While cognitive diversity is crucial, it must be balanced with

conciseness to avoid cognitive rumination, i.e., overly long and unproductive reasoning. We there-
fore introduce RLen to encourage focused yet comprehensive thought by penalizing cognitive
flows that are either too short or too long. For each input x, we build a dynamic target length
range [Lmin, Lmax] derived from the top-k reference flows in our curated data. The reward is cal-
culated using a soft bounding function created by multiplying two sigmoid functions. This forms
a “reward window” that gently penalizes flows whose length is outside the desired length range:

RLen(τ) = σ
( |τ | − (Lmin)/2

Lmin/8

)
· σ

(Lmax + Lmin − |τ |
Lmax/8

)
(4)

• Structural format reward (RFormat): To maintain structural integrity, we use a rule-based binary
reward to encourage the cognitive flows to follow the required ⟨ui⟩ci⟨/ui⟩ structure:

RFormat(τ) =

{
1 if format of τ is valid
0 otherwise

(5)

Weighted Reward Function The final reward for a rollout (τ, y) is a weighted combination of
the above rewards, with the format reward acting as a gate to discard structurally invalid flows:

R = RFormat · (ω1 · RRes + ω2 · RDiv + ω3 · RLen). (6)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We collected 5,100 social situations from Reddit, spanning 5 major categories and 16
subcategories; and each post passed rigorous safety filtering (Kim et al., 2023). Each seed instance
yielded an average of 3.6 high-quality cognition flows, with each flow containing 4 cognitive units
on average. To validate data quality, we employ six domain experts (with Master’s degrees or higher)
to inspect 500 random instances, resulting in a 96.8% pass rate that confirms the dataset’s satisfying
quality. For model training, we allocate 1,000 seed instances with 3,661 cognitive flows for SFT and
3,600 instances for RL (3,200 for training and 400 for validation). Another 500 instances are used
for the final evaluation. Moreover, we extract 26,676 candidate-reference response pairs to build our
comparative preference reward model. More details of our dataset are provided in Appendix D.1.

5
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Table 1: Results of consistency between evalua-
tors and human judgments. The agreement ratio
kappa ∈ [0.41, 0.6] denotes moderate agreement.

Evaluators Easy Medium Hard Overall

Score-R1 0.5604 0.4938 0.4848 0.5141
Score-Q32B 0.5824 0.5219 0.5152 0.5405
CPRank-Q32B 0.6374 0.5094 0.6515 0.5669
CPRank-R1 0.6374 0.5625 0.4697 0.5757

RMϕ 0.5714 0.5781 0.6667 0.5863
CPRank2-Q32B 0.6648 0.6031 0.5909 0.6215
CPRank2-R1 0.6538 0.6312 0.6212 0.6373

kappa 0.4534 0.4559 0.5041 0.4693

Easy Medium Hard Overall0.00
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Figure 3: Pairwise results from Bradley-Terry
model. The higher strength score, the better.

Baselines and LLM Evaluators We compared baselines: (1) Tuning-free Reasoning LLMs:
OpenAI o3, o3-mini, GLM-4.5 (GLM et al., 2025), Qwen-3-32B (Yang et al., 2025), DeepSeek-R1,
Gemini-2.5-pro/flash. (2) Fine-tuned Open-source LLMs: we trained Llama-3.1-8B (Meta, 2024)
and Qwen-2.5-7B (Yang et al., 2024) backbones for CogFlow and baselines: a) Direct-SFT/GRPO:
backbones trained directly on the responses in our curated dataset without cognitive flow, where
GRPO relies solely on our RRes reward (same use below). b) Distilled-R1-SFT/GRPO/GRPORLen :
backbones trained on distilled R1’s reasoning chains by SFT, GRPO, and GRPO using both RRes

and RLen. c) CogFlow-SFT/GRPO: backbones trained on our data with cognitive flows. We use R1
and cost-effective Qwen-3-32B as our LLM evaluators to perform two-stage comparative preference
ranking, called CPRank2-R1/Q32B. For each test instance, a model’s generated response is ranked
within a comparison pool containing the pre-curated reference responses. The rank is normalized to
a score by (M − rank)/(M − 1), M=10. A model’s performance is its average score across all test
instances. More details about our baselines and evaluators are reported in Appendix D.2 and D.3.

4.2 MAIN RESULTS BY HUMAN EVALUATIONS

LLM Evaluators’ Consistency with Human Judgment We evaluate 7 LLM evaluators: 1)
CPRank2-Q32B&R1 and their variation without reranking (denoted as CPRank-Q32B&R1), 2) re-
ward model RMϕ trained on Qwen-2.5-7B, and 3) prompt-based direct scoring baselines (denoted
as Score-Q32B&R1). Six experts perform pairwise comparisons on all 500 seed instances in our test
set, each with 4 distinct responses from 4 models: CogFlow (trained on Llama, same use below ex-
periments), Distilled-R1-GRPORLen

, DeepSeek-R1, and Simulated-CogFlow (top-ranked response
in cognitive flow simulation). To balance workload, 500 instances are split into two sets, each as-
signed to 3 experts. Experts provide win/tie/loss judgments for all response pairs and label difficulty
of each instance (easy, medium, hard). The final preference label of each pair and the difficulty label
of each seed instance are determined by majority vote among human experts. We measure the con-
sistency between the pairwise orderings of LLM evaluators and the aggregated human judgments.

The results in Table 1 reveal: (1) two-stage ranking (CPRRank2-R1&Q32B) aligns best with human
judgment, achieving the highest overall consistency. Against their single-stage counterparts, the
reranking step is crucial for improving alignment by mitigating initial scoring biases. (2) our trained
reward model is an effective proxy. RMϕ outperforms all direct scoring and single-stage ranking
baselines, showing it is a cost-effective substitute for expensive LLM judges during online training.

Results of Pairwise Comparison We convert experts’ pairwise win/tie/loss judgments into scalar
scores using the Bradley-Terry model (Bradley & Terry (1952), detailed in Appendix D.6). The
results in Figure 3 show that CogFlow surpasses its teacher model (DeepSeek-R1), showing our
framework enables a smaller model to internalize cognitive reasoning to produce high-quality re-
sponses effectively. More importantly, CogFlow performs on par with Simulated-CogFlow, while
Distilled-R1-GRPORLen remains inferior to its teacher. This clearly suggests that cognitive reason-
ing is consistently beneficial for social responding, and cognitive reasoning is effectively learnable.

Helpfulness of Cognitive Flow for Humans Beyond evaluating LLMs, we assess the utility of
cognitive flow for humans, including its quality and value as a cognitive aid for human decision-
making. We hired another 6 annotators to assess 100 multiple-choice instances from the experts’
curated dataset. For each instance, the golden response from expert consensus is explained by one
of two reasoning styles: our cognitive flow or R1 reasoning chain, shown in a balanced frequency.
Annotators are evenly split to perform two tasks: (1) Quality ratings with a 1-5 scale on coherence,
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Figure 4: Quantitative analysis of two types of reasoning (cognitive reasoning vs. R1 reasoning).

efficiency (conciseness of content and logic), interpretability, and predictability; (2) Value test: An-
notators first select their preferred response from four options and are then shown the reasoning
process behind the experts’ preferred response. Finally, they are asked to make their final decision.
“Helpfulness” is the average accuracy improvement before and after exposing the reasoning content.

The results in Figure 4a and 4b reveal that cognitive flows are better received by the annotators, as
they are considered more coherent, efficient, and have higher predictability, making them better tools
to understand social situations. We can also notice that there is a trade-off between interpretability
and efficiency: R1’s reasoning often includes exhaustive self-reflection that, while boosting its in-
terpretability by listing all social cues, does so at the cost of lower efficiency. Most importantly,
cognitive flows are more helpful for human decision-making, yielding a higher accuracy improve-
ment, showing the potential to augment human social intelligence.

Cognitive Intervention for Humans To further study cognitive reasoning’s potential on humans,
we conduct a preliminary cognitive intervention trial. We prepare two types of interventions: 1)
Cognitive flow-style guidance: emphasize key social cues and analytical steps among cognitive
units to guide humans’ social thinking. 2) R1 reasoning chain-style guidance: provide a chain-of-
thought summary. To create the guidance, we prompt R1 to convert the cognitive flow/R1 reasoning
chain into hints that illuminate the thought process without revealing the final answer (see Appendix
D.7 for examples). We recruit 20 volunteers who are randomly assigned to an experimental group
(cognitive flow-style) or a control group (R1 reasoning chain-style). Before intervention, each partic-
ipant completes 10 tasks without guidance, and then an ANOVA test (Fisher, 1970) confirms that no
statistically significant differences exist between the two groups (p = 0.42). During the intervention,
participants sequentially complete 25 instances without guidance and 25 with guidance, allowing us
to measure the change in decision-making accuracy due to the intervention. Results in Figure 4c
show the cognitive flow-style intervention significantly improves participants’ social decision-
making accuracy, while the R1 reasoning chain-style shows a slight downward trend. This reveals
the potential of structured cognitive reasoning to improve humans’ ability for social thinking.

4.3 RESULTS ON AUTOMATED EVALUATIONS

Main Results For each model, we generate 4 responses per test instance and average the scores in
Table 2. Results reveal CogFlow outperforms all baselines on both backbone models and evaluators,
showing the effectiveness of combining structured cognitive reasoning with RL. Cognitive reasoning
has a clear edge to unstructured reasoning in improving model learning, e.g., CogFlow vs. Distilled-
R1-GRPORLen

. Besides, across both model family and reasoning style, models tuned with RL
clearly outperform their SFT counterparts, showing RL’s ability to effectively refine the reasoning
strategies. Another finding is that models trained on cognitive flows produce significantly shorter yet
more effective reasoning, showing the capability of cognitive reasoning to reduce reasoning costs.

Ablation Study of Rewards Results in Table 2 reveal: (1) RDiv promotes exploration but requires
constraints. When RLen is removed, performance drops sharply and reasoning length nearly doubles
(e.g., 391.68 vs. 725.77 tokens on Llama). This shows while RDiv successfully encourages diverse
cognitive flow, it leads to inefficient reasoning if left unconstrained. (2) RLen ensures reasoning
efficiency and quality. When RDiv is removed, performance remains higher than GRPO baseline,
while reasoning length is effectively controlled (e.g., 314.03 vs. 282.73 tokens on Llama). This
shows RLen acts as a vital regularizer, guiding the model toward concise and high-quality reasoning.
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Table 2: Automatic evaluation results. The best results in the two model families are bold.

Models CPRank2-R1 (↑) CPRank2-Q32B (↑) Reasoning
Length (tokens, ↓)Overall Easy Medium Hard Overall Easy Medium Hard

Tuning-free Reasoning LLMs
o3-mini 0.2205 0.3376 0.2053 0.1185 0.3140 0.4117 0.3103 0.2189 507.87
o3 0.2933 0.4191 0.2497 0.2214 0.4096 0.4567 0.4106 0.3659 163.08
Qwen3-32B 0.3106 0.3696 0.3709 0.1912 0.4243 0.5184 0.3893 0.3875 488.59
Gemini-2.5-flash 0.3111 0.4316 0.2557 0.2460 0.4383 0.4713 0.4419 0.3977 360.42
Gemini-2.5-pro 0.3683 0.4347 0.2818 0.3883 0.5037 0.5525 0.4862 0.4835 413.97
GLM-4.5 0.4624 0.4967 0.4203 0.4702 0.5663 0.5208 0.5519 0.6395 648.60
DeepSeek-R1 0.5342 0.5220 0.4990 0.5816 0.6578 0.6267 0.6485 0.7067 621.07

Tuned Llama-3.1-8B-Instruct Series
Direct-SFT 0.3545 0.3962 0.3490 0.3193 0.5407 0.6236 0.5144 0.5011 -
Direct-GRPO 0.5041 0.5154 0.5764 0.4208 0.7196 0.7751 0.7332 0.6380 -
Distilled-R1-SFT 0.3213 0.4530 0.2202 0.2941 0.4508 0.5036 0.4383 0.4181 554.76
Distilled-R1-GRPO 0.5157 0.5603 0.5601 0.4279 0.7310 0.8127 0.7400 0.6305 568.90
Distilled-R1-GRPORLen

0.5017 0.6167 0.4438 0.4474 0.7519 0.8080 0.7423 0.7108 444.90

CogFlow-SFT 0.4024 0.4827 0.3443 0.3821 0.5999 0.6472 0.5772 0.5916 451.14
CogFlow-GRPO 0.5564 0.6974 0.5501 0.3193 0.7420 0.7534 0.7441 0.7265 314.03
CogFlow (ours) 0.5756 0.6645 0.5350 0.5294 0.7828 0.8271 0.7908 0.7232 391.68

CogFlow (w/o RLen) 0.5525 0.6199 0.5665 0.4727 0.7069 0.7271 0.7359 0.6347 725.77
CogFlow (w/o RDiv) 0.5702 0.5783 0.6250 0.5073 0.7574 0.8176 0.7431 0.7202 282.73

Tuned Qwen-2.5-7B-Instruct Series
Direct-SFT 0.3144 0.3451 0.3239 0.2742 0.5113 0.5862 0.5016 0.4500 -
Direct-GRPO 0.6148 0.7147 0.6407 0.4914 0.7630 0.8221 0.7605 0.7062 -
Distilled-R1-SFT 0.1751 0.2083 0.1101 0.1984 0.3776 0.4086 0.3689 0.3606 711.80
Distilled-R1-GRPO 0.5261 0.6109 0.4682 0.5013 0.7061 0.7171 0.7395 0.6355 955.16
Distilled-R1-GRPORLen

0.5298 0.5727 0.5970 0.4206 0.7458 0.8038 0.7398 0.6962 437.06

CogFlow-SFT 0.3672 0.4186 0.4032 0.2810 0.5567 0.5838 0.5564 0.5291 368.41
CogFlow-GRPO 0.5988 0.6750 0.5871 0.5361 0.7542 0.7971 0.7526 0.7124 237.11
CogFlow (ours) 0.6652 0.6404 0.7531 0.6015 0.7956 0.8248 0.7963 0.7641 347.37

CogFlow (w/o RLen) 0.6142 0.6462 0.6133 0.5840 0.7568 0.7784 0.7610 0.7269 502.30
CogFlow (w/o RDiv) 0.6084 0.6660 0.6249 0.5356 0.7824 0.7902 0.7930 0.7555 277.24
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(c) Patterns in CogFlow (w/o RDiv)

Figure 5: The transition patterns of cognitive units in reasoning. The proportion of units at different
depths is denoted by node size, the transition probability between units is denoted by edge thickness.

4.4 IN-DEPTH ANALYSIS OF THE COGNITIVE FLOW

Transition Patterns of Cognitive Units To dissect the structure of cognitive flow, we plot the
frequency of each cognitive unit at different reasoning depths (denoted by node size) and the tran-
sition probability between the units (denoted by edge thickness). Figure 5 reveals that: (1) Cogflow
can guide the model to learn more ordered cognitive strategies. Against diffuse reasoning patterns
from CogFlow-SFT, CogFlow exhibits a more structured and hierarchical cognitive flow, which also
leads to higher-quality responses, as supported by Table 2. (2) The diversity reward RDiv is critical
for preventing pattern collapse. CogFlow (w/o RDiv) shows a stark collapse into a monotonous and
rigid reasoning path (e.g., Observation→Attribution→Motivation). This highlights the importance
of RDiv for maintaining cognitive flexibility, supporting the results of ablation study.

Information Flow within Cognitive Flow To dissect the internal mechanism of cognitive reason-
ing, we visualize the information flow within our CogFlow during inference. We analyze attention
patterns between four logical blocks: initial input, cognitive unit tokens (e.g., ⟨Observation⟩),
cognitive unit content (the text generated for each unit), the final response. The attention weight be-
tween blocks is calculated by averaging the summed weights from all layers. For multi-token blocks
(input, content, response), we mitigate dilution from non-essential tokens by averaging the top-10
attention weights within a block. The resulting weights (w) are then normalized (w′ = w0.2) to en-
hance the visibility of all connections. For clarity, we separate this information flow into 3 patterns:
unit-to-unit, unit-to-content, and content-to-content. A flow, shown in Figure 6, reveals: (1) The
structural unit-to-unit flow dominates the reasoning process, with the highest attention weights
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Figure 6: Visualization of three information flow patterns (a-c) in performing cognitive reasoning.
The patterns are composed of cognitive units (blue blocks) and their unit content (yellow blocks).
The connecting line width reflects the degree of influence from the right block to the left.

among all patterns. (2) Cognitive unit tokens actively steer content generation. The unit-to-
content flow shows a strong link between a unit token and its unit content (e.g., Contentattribution

to ⟨Attribution⟩), confirming that the unit tokens are not just placeholders but actively guide
the generation of relevant thoughts. (3) Reasoning exhibits a hierarchical “structure-first” at-
tention flow. When generating new content, the model consistently attends more to the structural
tokens of previous steps than to the textual content of those steps, e.g., Contentregulation attends
more strongly to the ⟨/Observation⟩ token than to the Contentobservation. This shows that the
structured scaffold built by unit tokens is the primary driver of the model’s cognitive flow generation.

5 RELATED WORK

Recent works have revealed parallels between LLMs and human social behavior (Park et al., 2023;
Zhou et al., 2023; 2025b), social skills (Zhou et al., 2025a), and deeper cognitive habits in reasoning
(Dong et al., 2025), inspiring ideas to integrate cognitive theories (Chen et al., 2024; 2025a) like
simulation theory (Wilf et al., 2024; Sarangi et al., 2025), to guide LLM reasoning (Wang et al.,
2024a; AlKhamissi et al., 2025). Yet, most methods rely on prompting to enforce specific strategies
(Wang et al., 2024a; Park et al., 2025) While externally shaping an LLM’s reasoning, it brings
superficial mimicry of prompt’s format instead of instilling adaptive reasoning (Zhou et al., 2023).

A practical solution is to internalize reasoning into LLM’s parameters via training (Magister et al.,
2023; Paliotta et al., 2025), adapting prompt-based CoT (Wei et al., 2023; Yao et al., 2023) for
reasoning models (OpenAI, 2024; Guo et al., 2025). This paradigm has proven effective for tasks
like math (Shao et al., 2024), which rely on step-by-step logical deductions to reach verifiable out-
comes (Zheng et al., 2025). Yet, it can induce over-thinking (Chen et al., 2025b; Kumar et al., 2025;
Cuadron et al., 2025), a state of repetitive thought cycling (Gandhi et al., 2025), prompting efforts
to improve efficiency (Wang et al., 2024b; 2025). More critically, such logical reasoning is ill-suited
for social situations, which involve an interpretive process of analyzing ambiguous cues that rarely
yield a definitive answer (Gandhi et al., 2023; Xu et al., 2025; Moore et al., 2025). Applying this de-
ductive paradigm to the fluid social domain risks “cognitive rumination”, i.e., over-analysis simple
social cues (Marjanović et al., 2025). Thus, we introduce cognitive reasoning to bridge this gap.

6 CONCLUSIONS

In this paper, we introduce cognitive reasoning, a paradigm that models human social cognition by
formulating it into a structured cognitive flow of interconnected cognitive units. We then propose
CogFlow, a complete framework that instills the cognitive reasoning capability in LLMs using a
combination of preference-based SFT and multi-objective RL. Our extensive experiments show that
CogFlow significantly enhances the social cognitive capabilities of LLMs, leading to more effective
social decision-making. Furthermore, our findings from the human intervention trial reveal that the
structured cognitive flow also holds promise as a tool for augmenting human social intelligence.
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ETHICS STATEMENT

We have carefully considered the ethical implications of our work throughout the entire research
process, from data collection to human evaluation and potential societal impact.

Data Sourcing and Privacy The seed data for our research was sourced from public Reddit posts.
To uphold the principle of respecting privacy and avoiding harm, we implemented a strict data
processing pipeline. This pipeline included (1) the complete anonymization of all posts, removing
any personally identifiable information, usernames, or sensitive content, and (2) the application of
rigorous safety filters as described by (Kim et al., 2023) to eliminate potentially harmful or offensive
content. The resulting dataset consists of distilled, non-personal social situations intended solely for
academic research.

Human Participant Engagement Our study involved human participation in several evaluation
stages: 6 domain experts (different individuals with a master’s degree or higher) for data validation,
6 annotators for evaluating reasoning chains, and 20 volunteers for a cognitive intervention trial.
For all human-involved experiments, we adhered to the following: (1) All participants were fully
informed about the nature and purpose of the study, the type of tasks they would perform, and how
their data would be used. (2) All data collected from participants were anonymized to protect their
privacy. (3) All participants were fairly compensated for their time and contribution based on the
market price. (4) All participants were given full autonomy to exit the experiments at any time
without any penalty.

Potential Risks We recognize that a model designed to reason about social situations could be
misused or generate harmful advice if deployed improperly. To mitigate this risk, we state clearly
that our work is foundational research. The CogFlow model is not intended to be a substitute for
professional human judgment, nor is it designed for therapeutic, crisis intervention, or high-stakes
social decision-making applications. Our goal is to enhance the transparency and interpretability of
LLM reasoning in social situations, not to automate social interaction.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we will release our full implementation of the CogFlow
framework, which includes full data and code for data collection, SFT, and RL. The prompts used for
data generation are provided in Appendix C. Crucial hyperparameters for training our models and
the baselines are documented in Appendix D.2. The complete source code and model checkpoints
will be made publicly available upon publication. We provide a temporary anonymized git repository
at https://anonymous.4open.science/r/CogFlow2025.
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A USE OF LLMS

During paper writing, we used LLMs as an assistive tool to enhance the quality of the presenta-
tion. We employed LLMs to provide suggestions for grammatical corrections and polishing of the
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manuscript. The core ideas, scientific arguments, and the overall structure of the paper were de-
veloped exclusively by the authors. All suggestions generated by LLMs were carefully reviewed,
edited, and approved by the authors to ensure they accurately reflect our meaning.

The authors take full responsibility for all content presented in this paper, including any parts that
were refined with the assistance of an LLM.

B GROUP RELATIVE POLICY OPTIMIZATION (GRPO)

We adopt the GRPO (Shao et al., 2024) algorithm to optimize πθ with respect our reward function R.
Let πθold denote the behavior policy from the previous iteration. For each input x, GRPO samples a
group of cognitive flows G = {o1, o2, · · · , oN}, where each flow oi = (τi, yi). It then computes a
relative advantage for each flow by normalization its reward:

Ai =

R(oi|x)−mean
oj∈G

(R(oj |x))

std
oj∈G

(R(oj |x))
(7)

GRPO then optimizes the following objective (denote pi,j =
πθ(oi,j |x,oi,<j)

πθold
(oi,j |x,oi,<j)

):

EG∼πθold

 1

N

N∑
i=1

1

|oi|

|oi|∑
j=1

(min (pi,jAi, clipϵ (pi,j)Ai)− βDKL[πθ||πref ])

 (8)

C PROMPTS FOR METHODOLOGY

C.1 PROMPTS FOR SEED DATA COLLECTION

We used R1 (Guo et al., 2025) to generate the seed data. Each data instance consists of three
components: a situation (describing the background and story), a question (based on the situation),
and format constraints (specifying the required output format). First, we used the Prompt 1 to
generate the situation and question. Next, we used the Prompt 2 to generate the format constraint.
Finally, we used the Prompt 3 to validate the quality of the resulting data instance. If it met our
quality standards, it was stored; otherwise, it was discarded, and the process was repeated from the
beginning.

1 ## **[Task]**
2

3 Given a scenario description and suggestions related to the scenario, you
are required to generate a scenario and a question for the COGNITION
TEST. You should just use the description and suggestions as

triggers; you can convert the scenario arbitrarily by yourself:
4

5 1. **Summarize the Scenario**:
6 - Objective: Craft a scene of dynamic social interaction focusing on

several with motion-driven engagement. Describe the scenario using
plain words.

7 - It should focus on social interactions, with enough details, for
example:

8 - Environmental Context: Describe a specific time/place.
9 - Specific Task: Clearly state efficient information. For example

, the problem they are facing or the activity they are doing.
10 - Character Relationship: Clearly state the relationship between

the roles.
11 - Character Dynamics: Establish clear profiles of the characters.
12 - IMPORTANT: The scenario should be concise with enough details (not

necessarily related to the original scenario or the question). It’s
better to include either relevant or irrelevant details to the
question stated in the next step.

13

14 2. **State the question**:

15
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15 - Concisely state the question based on the scenario in one sentence
using the third person perspective. But you should only state the
question simply, using words of mouth.

16 - You should double-check that the answer is NOT stated in the
scenario. There should also be no direct/indirect hints in the
scenario.

17 - The question should be suitable for a cognitive test. You should
ignore the original question stated in [Scenario Description].

18

19 3. **Output Format**:
20 Present your result in JSON format using the following structure and

respond in English. You should only use simpler vocabulary at a high
school level to form your answers. Make sure that quotes inside all
strings are escaped with backslashes:

21 ‘‘‘json
22 {{
23 "scenario": "Scenario Summary",
24 "question": "Question in one sentence"
25 }}
26 ‘‘‘
27

28 ## **#Possible Tests#**
29 These examples are way too brief and easy; your output should be more

detailed and harder. For example, you should not give any hints, and
it had better be open-ended.

30 ‘‘‘json
31 {examples}
32 ‘‘‘
33

34 ## **[Scenario Description]**
35 {scenario_description}
36

37 ## **[Suggestion]**
38 {suggestion}

Prompt 1: The prompt template for social situation and question generation. {examples},
{suggestion}, {scenario description} are placeholders. {examples} is the examples
randomly sampled from a manually crafted set, {suggestion} are the comments of the Reddit
post, {scenario description} is the original Reddit post.

1 ## **[Task]**
2

3 Given a [User Input] containing a Story and an open-ended Question,
please propose an appropriate constraint on the output format for the
answer to the Question containing all constraints in [Required

Constraints]. The proposed constraint should be concise.
4

5 Note:
6 - The generated instructions cannot contain any content related to or

hinting at the answer.
7 - The output format should follow [Output Format].
8

9 ## **[User Input]**
10 {user_input}
11

12 ## **[Required Constraints]**
13 {required_constraints}
14

15 ## **[Output Format]**
16 You should directly output the instruction as natural sentences without

any additional words or explanations (especially explain how you
generate the output). In one word, your whole output can be directly
used as a constraint.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Prompt 2: Prompt template for constraint generation. {user input} is the generated situation
and question. {required constraints} is randomly sampled from the options in Table 3.

Table 3: Prompts for generating output constraints.

Constraint Type Prompt Template Options

Format

The output should be formatted in JSON / YAML / Markdown/ Bullet or any
other suitable format. To state this constraint, you should choose one specific
format and give a brief demonstration of the format of the output to make it
clear. Note that your instructions should be concise. **IMPORTANT: You
should make sure that your demonstration is just formal, without any hint of
the real answer. **

Verbosity

• High: The output should be of high verbosity, which means detailed (but
still needs to be concise).

• Medium: The output should be of medium verbosity, which means bal-
ancing between brief and detailed.

• Low: The output should be of low verbosity, which means brief and con-
cise.

1 ## **[Task]**
2

3 Please check the scenario, question, and constraint given in the [User
Input], determine in order whether the following conditions are met,
and provide your response following the output requirements in [Check
Output Format].

4

5 1. Please check if the question is relevant to the scenario. For example,
the content involved must be mentioned in the scenario.

6 2. Please check if the constraint does not imply the answer to the
question, but only provides formatting content or restates the
content of the question.

7 3. Please check if the constraint does not contain confusing content. The
constraint must be a reasonable format restriction for someone

answering the question. For example, the act of "requiring in the
constraint not to imply the answer" does not meet the requirement.

8

9 ## **[User Input]**
10

11 {user_input}
12

13 ## **[Check Output Format]**
14

15 Please use JSON format for the output, with only one key named ’result’,
and the value being a boolean type. true indicates that all
requirements are met, and false indicates that at least one
requirement is not met. Please follow the structure below:

16

17 ‘‘‘json
18 {{
19 "result": true / false
20 }}
21 ‘‘‘

Prompt 3: The prompt template for seed data quality validation. {user input} is a placeholder
for the social situation, question, and format constraints.

C.2 PROMPTS FOR COGNITIVE FLOW SIMULATION

We used R1 to perform the following tasks:

17
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• Planning: LLMs are used in the following two operations: Generation: To generate a
cognitive unit’s thought content, we use the Prompt 4. Prediction: The Prompt 5 to identify
the most relevant subsequent units. The choice Terminate stands for the reasoning has
reached a terminal state.

• Completion: We prompted the LLMs using the Prompt 6 to get the final response.

1 ## **[Task]**
2 - Background: You are an assistant helping to answer problems. You need

to carry out the next step [{node_name}] of a reasoning chain to help
respond to [User Input].

3 - Requirements:
4 * follow the instructions in **Reasoning Step: [{node_name}]** which

defines the reasoning step.
5 * It should be the next step of the half-finished reasoning chain in [

Existing Analysis]. The result can only be not aligned with the
analysis in [Existing Analysis] if you need to fix mistakes or
explore aspects not considered. You can refer to [Analysis
Expectation] for guidance, but you do not need to strictly follow it.

6 * **Important**: Your output should be specific, without fake
information.

7 * **Important**: Your output should be comprehensive, including any
possible aspects.

8 * **Important**: Your output should only contain one step. If other
things are in need, state the need and reserve the reasoning for the
next steps.

9 * You should only use simpler vocabulary at a high school level to
form your answers.

10

11 ## **[User Input]**
12 {user_input}
13

14 ## **[Existing Analysis]**
15 {previous_nodes}
16

17 ## **[Analysis Expectation]**
18 {analyze_expect}
19

20 ## **Reasoning Step: [{node_name}]**
21 {node_description}
22

23 ## **[Output Format]**
24 Please output in English. The content should be a smooth and coherent

paragraph, following the format below:
25 ‘‘‘json
26 {{
27 "content": "the content of the required step"
28 }}
29 ‘‘‘

Prompt 4: The prompt template for generating cognitive units in the cognitive flow simulation.
{user input}, {previous nodes}, {analyze expect}, {node description},
{node name} are placeholders. The {node name} and {node description} are prompts
from Table 4. The {analyze expect} is the justification for choosing this unit, which was
generated during the unit selection.

1 ## **[Task]**
2 - Background: You are an assistant helping with problems. You need to

choose the next step of a reasoning chain to help respond to the user
’s input in [User Input]. The chain should be comprehensive.

3 - Requirements:
4 * You should select **ALL** possible candidates from [Candidate Next

Steps] that can be a reasonable next ONE step of the half-finished
reasoning chain provided in [Existing Analysis]. You could visit the
same step several times to get more information or analyze further.
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Table 4: Prompt templates for cognitive units.

Prompt Type Prompt Template

Observation

- **Task**: Observe and interpret the specific behaviors, attitudes, or other in-
formation from the current context. The extracted facts must be precise and de-
tailed without vague information. **NOTE: ALL THE INFORMATION MUST
BE ALIGNED WITH THE CONTEXT. DO NOT MAKE UP FAKE INFOR-
MATION.**
- **Output**: State observation comprehensively.

Attribution

- **Task**: Attribute and evaluate the events or behaviors. It might include:
Causal reasoning for others’ actions / Impact assessment on current context /
Further analysis and explanation.
- **Output**: State the specific reason comprehensively.

Motivation
- **Task**: Generate motivation and goals, addressing the main problem dis-
covered in other steps.
- **Output**: State the goal and motivation.

Regulation

- **Task**: Check and adjust the previous thought to form a revised motivation
or perception, or action plan. You should check (1) whether it lacks considera-
tion, (2) whether other requirements need to be noticed. Think of the effect of
the current plan or behavior, and check if there exists any risk. You should also
check if there are any misunderstandings and be suspicious of the information
in the analysis.
- **Output**: Accurately and comprehensively state the problem and how to
solve it.

Efficacy
- **Task**: Assess the internal perceptions, emotions, and beliefs of the actor
of some behavior, and adjust the perception or action plan.
- **Output**: State the efficacy and adjustment of action.

Behavior
- **Task**: Determine a more complete behavior based on the current environ-
ment and the analysis.

5 * If analysis is sufficient for responding to the [User Input], and
there are no concerns, DIRECTLY select the [Terminate] step. (NOTE:
If you are not certain or you think there might be other potentials,
you must choose other nodes along with Terminate. )

6 * If you find some bad steps in [Existing Analysis] (for example:
misinformation, unclear statement, etc. ), redoing it again might
refine it.

7 * If more than one valid options exist, list the most applicable 2 or
3 steps, and put the most applicable one in the first place.

8 * The names of the next steps should be exactly the same as the name,
e.g., Attribution and Evaluation.

9 * You should first review the prior steps in [Existing Analysis], and
then determine the candidates for the next step.

10

11

12 ## **[User Input]**
13 {user_input}
14

15 ## **[Existing Analysis]**
16 {previous_nodes}
17

18 ## **[Candidate Next Steps]**
19

20 - **[Observation]**
21 * Observe the specific behaviors or attitudes from the current context

.
22

23 - **[Regulation]**

19
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24 * Validate and refine previous thoughts: (1) consider twice to polish
the thought, behavior, or motivation, (2) check if there exists more
information in the scenario that needs to be considered.

25

26 - **[Behavior]**
27 * derive context-specific behaviors.
28

29 - **[Efficacy]**
30 * analyze and adjust internal perceptions of the scene and action plan

.
31

32 - **[Attribution]**
33 * further interprets the result of previous steps, may include Causal

reasoning for others’ actions, or Impact assessment on the current
context.

34

35 - **[Terminate]**
36 * Terminate analysis, synthesize final conclusion, and respond to the

user.
37

38 - **[Motivation]**
39 * formulate one’s primary drivers of oneself, based on their needs/

desires identified in other steps.
40

41 ## **[Output Format]**
42 ‘‘‘json
43 {{
44 "rationale": "Concise justification for selecting the next one step

candidates, and choose the most likely one",
45 "next_step_candidates": ["step name", ...]
46 }}
47 ‘‘‘

Prompt 5: The prompt template for choosing the next cognitive units in the cognitive flow
simulation. {user input}, {previous nodes} are placeholders. {user input} is the
social situation, {previous units} is a linear chain of existing cognitive units. LLMs are
required to predict the units that directly follow the end of the sequence.

1 {user_input}
2 Please answer under the guidance of the following thought:
3 <|begin think|>
4 {previous_units}
5 <|end think|>

Prompt 6: The prompt template for generating a response under the guidance of cognitive flow.
{user input}, {previous units} are placeholders. {user input} is the social situation,
{previous units} is the simulated cognitive flow.

C.3 PROMPTS FOR DUAL-VALIDATION BASED FILTERING

We used R1 to perform the following tasks:
• Comparison Pool Construction: We randomly gathered snippets from the generated cognitive

flows, and reused the Prompt 6 to get the final response under the guidance of the reconstructed
fake cognitive flow.

• Two-stage Comparative Preference Ranking: For both two stages in preference ranking, we
use a unified Prompt 7, which can score the first response listed to be 5 as an anchor.

1 **[Task]**
2

3 Given the [User Input] and the corresponding multiple answers in [Answers
] (which are in random order), please score these answers on a scale
of 1-10 (the higher the score, the better) according to the following
principles:
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4

5 (1) Based on the [User Input] and all the answers in [Answers], propose
evaluation criteria that can assess the quality of the given answers.
Ensure that under these criteria, the first answer listed receives a
score of 5.

6 (2) Explain the scoring principle for each score value sequentially.
7 (3) Score all the answers in [Answers] based on the established

evaluation criteria. You must use the first listed answer as a 5-
point reference sample and provide a reason for each score.

8 (4) Refer to the [Output Format] for the output structure.
9

10 Note: You must ensure that the scores for the [Answers] are well-
differentiated.

11

12 Special Attention: You must ensure that the first answer listed receives
a score of 5 under your scoring standard. Use this first answer as a
baseline (referred to as "Baseline"). For subsequent answers, a score
greater than 5 must mean it is better than the first answer, and a

score less than 5 must mean it is worse than the first answer.
13

14 **[User Input]**
15 {user_input}
16

17 **[Answers]**
18 {answers}
19

20 **[Output Format]**
21 Output in JSON format, with every answer giving one score in 1-10. The

answer is identified by ’id’.
22 ‘‘‘json
23 {{
24 "think": "analyze the user’s input, come up with some criterion",
25 "standard": [
26 {{
27 "score": 10,
28 "standard": "standard of score 10"
29 }},
30 ...
31 {{
32 "score": 5,
33 "standard": "standard of score 5"
34 }},
35 ...
36 {{
37 "score": 1,
38 "standard": "standard of score 1"
39 }},
40 ],
41 "result": [
42 {{
43 "id": ...,
44 "reason": "compare with the first answer (Baseline), and then

judge the quality of this answer",
45 "score": evaluated socre
46 }},
47 ...
48 {{
49 "id": ...,
50 "reason": "compare with the first answer (Baseline), and then

judge the quality of this answer",
51 "score": evaluated score
52 }}
53 ]
54 }}
55 ‘‘‘
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Prompt 7: The prompt template for Two-Stage Comparative Preference Ranking. {user input},
{answers} are placeholders. {answers} is a list of answers to be evaluated, each with a unique
integer id. {user input} is the social situation with question and format constraint.

C.4 PROMPTS FOR COGNITIVE FLOW PRUNING

LLMs were used to evaluate the quality of cognitive flows with Prompt 8. We screened out those
who scored below 4 in at least one category.

1 **[Task]**
2

3 Please evaluate the cognitive flow provided in the [Reasoning Flow] based
on the three core criteria listed below. You need to score each

criterion independently on a scale of 1-10 (the higher the score, the
better) and provide a reason for each score.

4

5 Evaluation Criteria:
6 - **Coherence**: Is it logically sound and free of internal

contradictions?
7 - **Interpretability**: Does it clearly explain the social dynamics or

core mechanisms involved?
8 - **Predictability**: Does it offer reasonable insight into the future

evolution of the social dynamics?
9

10 Please strictly follow the JSON format required in the [Output Format].
11

12 **[Reasoning Flow]**
13 {reasoning_flow}
14

15 **[Output Format]**
16 Please output in JSON format. The JSON structure should include your

thought process, the independent scores, and reasons for each
criterion.

17 ‘‘‘json
18 {{
19 "think": "evaluation process",
20 "evaluation_result": {{
21 "coherence": {{
22 "reason": "Explain your reasoning",
23 "score": evaluated_score
24 }},
25 "interpretability": {{
26 "reason": "Explain your reasoning",
27 "score": evaluated_score
28 }},
29 "predictability": {{
30 "reason": "Explain your reasoning",
31 "score": evaluated_score
32 }}
33 }}
34 }}
35 ‘‘‘

Prompt 8: The prompt template for cognitive flow evaluation. {reasoning flow} is a
placeholder for the cognitive flow to be evaluated.
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Table 5: Distribution of social situations. Percentages represent the proportion of the total dataset.

Category / Subcategory Count Percentage
Romance 819 16.06%

Dating & Courtship 108 2.12%
Romantic Challenges 620 12.16%
Long-term Partnership 91 1.78%

Family 1,414 27.73%
Parent-Child Interaction 351 6.88%
Major Family Events & Issues 663 13.00%
Extended Family Relations 295 5.78%
Household & Logistics 105 2.06%

Public 690 13.53%
Stranger Encounters 184 3.61%
Community Life 422 8.27%
Service Interactions 84 1.65%

Friendship 1,265 24.80%
Intimate Friendship 723 14.18%
Group Activities & Events 383 7.51%
Casual Hangouts 159 3.12%

Professional 912 17.88%
Professional/Academic Challenges 396 7.76%
Professional Relationships 274 5.37%
Task-Oriented Collaboration 242 4.75%

Total 5,100 100.00%

D EXPERIMENTS

D.1 MORE DETAILS OF OUR DATASET

Detailed Information of Reddit Data We use anonymized Reddit1 posts as our seed situations.
The subreddits we used are as follows: FriendshipAdvice, LifeAdvice, Advice, AskWomenOver30,
emotionalsupport, family, relationship advice, confessions, socialskills, AmItheAsshole, AskMen-
Over30, AskMen, DecidingToBeBetter, mentalhealth, Anxiety, AskWomen, SocialEngineering, and
familyadvice.

Distribution of Social Situations The distribution of social situation categories in our dataset is
listed in Table 5.

Distribution of Test Set Difficulty Following experts’ annotations, the test set instances were
classified into three levels of difficulty: Easy (137), Medium (232), and Hard (131).

D.2 IMPLEMENTATION DETAILS OF OUR MODELS AND BASELINES

Experimental Setup All experiments were conducted on 8x NVIDIA H20 GPUs, using Llama-
3.1-8B-Instruct (Meta, 2024) and Qwen-2.5-7B-Instruct (Yang et al., 2024) as base models. For the
training pipeline, we employed the LLaMA-Factory framework2 (Zheng et al., 2024) for the SFT
and the veRL3(Sheng et al., 2024) engine for RL.

Training Hyperparameters For the SFT stage, the model was trained for 2 epochs with a batch
size of 8, a learning rate of 5 × 10−5, and a context length of 8,192. The preference reward

1https://www.reddit.com
2https://github.com/hiyouga/LLaMA-Factory
3https://github.com/volcengine/verl
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model, based on Qwen-2.5-7B-Instruct, was augmented with a linear classifier head to predict re-
ward scores. It was trained for 1 epoch with a batch size of 8 and other hyperparameter settings the
same as SFT. During the RL stage, we generated trajectories by performing 6 rollouts for each of the
24 social situations in a training batch. The policy was subsequently updated using a mini-batch size
of 4 situations, resulting in 6 gradient updates per collection batch. We use a learning rate of 10−6,
and a KL divergence coefficient to 10−3. By default, we set ω1 = 1, ω2 = 0.05, and ω3 = 0.1.

CogFlow Models Our primary models are fine-tuned from the base model using cognitive flow.
• CogFlow-SFT: The base model fine-tuned on our SFT dataset.
• CogFlow: The final model, fine-tuned from CogFlow-SFT using our complete RL reward func-

tion.
• CogFlow-GRPO: An ablation of our method, fine-tuned from CogFlow-SFT using only the re-

sponse quality reward (ω1 = 1, ω2 = 0, ω3 = 0). This is equivalent to the GRPO algorithm.
• CogFlow (w/o RDiv): An ablation fine-tuned from CogFlow-SFT, excluding the diversity reward

component (ω1 = 1, ω2 = 0, ω3 = 0.1).
• CogFlow (w/o RLen): An ablation fine-tuned from CogFlow-SFT, excluding the length penalty

component (ω1 = 1, ω2 = 0.05, ω3 = 0).

Tuning-free Models For models that do not have a native long chain-of-thought ability, such as
GPT-4o and DeepSeek-V3, we employed a zero-shot Chain-of-Thought (CoT) prompting strategy
to elicit step-by-step reasoning. Specifically, we appended the following instruction to the end of
each input prompt: Let’s think step by step, and use <FINAL RESPONSE>
before you give the final answer.

‘Direct-’ Models These models are trained to generate the final response directly, without any
explicit reasoning process.
• Direct-SFT: It is fine-tuned from the base model using the CogFlow SFT dataset, but with the

reasoning process removed.
• Direct-GRPO: Fine-tuned from Direct-SFT using GRPO. It only used response quality reward
RRes.

‘Distilled-R1-’ Models These models are designed to emulate the R1-style reasoning format, ef-
fectively serving as distilled versions of R1.
• Distilled-R1-SFT: Fine-tuned from the base model using all the social situations of CogFlow’s

SFT data, but DeepSeek-R1 directly generates the reasonings and responses.
• Distilled-R1-GRPO: Fine-tuned from Distilled-R1-SFT using GRPO. The reward function com-

bines response quality with a format-checking reward, R′
Format, which verifies the presence of

<think> and </think> tags. The total reward is:

R = R′
Format · RRes (9)

• Distilled-R1-GRPORLen
: This configuration is identical to Distilled-R1-GRPO but incorporates

our reasoning length reward, RLen, to encourage more concise reasoning paths. The total reward
is:

R = R′
Format · (ω1 · RRes + ω3 · RLen) (10)

D.3 IMPLEMENTATION DETAILS OF LLM EVALUATORS

We detail the LLM-based and reward model-based evaluators referenced in Table 1, Table 2, and
Table 6 below:

Prompt-Based Direct Scoring Evaluators These evaluators generate a direct score for each re-
sponse individually. They use R1 (Guo et al., 2025) (Score-R1) and Qwen3-32B (Yang et al., 2025)
(Score-Q32B) as the evaluators, both prompted with the template from Prompt 9.

1

2 **[Task]**
3
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4 Given a [User Input] and its corresponding [Answer], please provide a
comprehensive score between 1 and 10 based on the quality of the
answer, where a higher score indicates a better answer. A score of 5
indicates that the answer is basically correct but may be incomplete,
unclear, or partially inaccurate.

5

6 Scoring Criteria Explanation (for reference; please make a comprehensive
judgment):

7

8 - 10: Perfect answer. Entirely accurate, informative, well-structured,
and appropriately worded. Effectively addresses the user’s query,
potentially even exceeding expectations.

9 - 8-9: Excellent answer. Accurate and complete in information, logically
clear, fluently expressed, fully satisfying the user’s needs.

10 - 6-7: Good answer. Basically correct and relevant, but may lack depth in
certain details or contain minor inaccuracies.

11 - 5: Passable answer. Generally correct but potentially incomplete,
somewhat unclear, or containing individual errors that do not
severely impact understanding.

12 - 3-4: Insufficient answer. Partially relevant but missing key
information, containing significant errors, or failing to address the
core issue.

13 - 1-2: Poor answer. Severely off-topic, containing incorrect information,
or entirely unhelpful.

14

15 When evaluating, you may comprehensively consider the following
dimensions (not all are required):

16 - Accuracy: Whether the answer is factually correct and non-misleading.
17 - Completeness: Whether it covers the key points of the user’s question.
18 - Relevance: Whether the answer stays closely aligned with the user’s

question without deviating from the topic.
19 - Clarity: Whether the expression is clear, easy to understand, and well-

organized.
20 - Practicality: Whether it offers practical help to the user and is

actionable (if applicable).
21

22 **[User Input]**
23 {user_input}
24

25 **[Answer]**
26 {answer}
27

28 **[Output Format]**
29 Output in JSON format, with the answer given one integer score in 1-10.
30 ‘‘‘json
31 {{
32 "score": evaluated score
33 }}
34 ‘‘‘

Prompt 9: The prompt template for direct scoring response. {user input}, {answer} are
placeholders. {answer} is the answer to be evaluated. {user input} is the social situation
with question and format constraint.

Comparative Preference Ranking Evaluators These evaluators generate scores for a batch of
responses simultaneously using comparative ranking methods. We apply two distinct methodologies
to both R1(Guo et al., 2025) and Qwen3-32B(Yang et al., 2025) models:
• CPRank: This is a direct comparison method. The evaluator is prompted (using Prompt 7) to

rank all responses within a given batch from best to worst in a single pass, thereby establishing a
complete preference order at once. It results in CPRank-R1 and CPRank-Q32B.

• CPRank2: This method, as described in the main text, involves two steps to refine the evaluation.
First, for initial ranking, the model generates situation-specific criteria and uses them to assign
an initial score and critique for each response. Second, for comparative reranking, it selects the
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Table 6: Results of automatic evaluation for more tuning-free models with CoT strategy.

Models CPRank2-R1 (↑) CPRank2-Q32B (↑) Reasoning
Length (tokens, ↓)Overall Easy Medium Hard Overall Easy Medium Hard

Tuning-free Models
Llama-3.1-70B (CoT) 0.0619 0.1016 0.0577 0.0264 0.1256 0.2016 0.1173 0.0607 231.33
Qwen-2.5-7B (CoT) 0.0820 0.1208 0.0849 0.0403 0.1340 0.2178 0.1255 0.0612 184.90
Llama-3.1-8B (CoT) 0.0885 0.1000 0.0882 0.0772 0.1679 0.2467 0.1575 0.1039 253.12
Qwen-2.5-72B (CoT) 0.1401 0.2010 0.1703 0.0465 0.1487 0.2588 0.1338 0.0598 242.75
DeepSeek-V3 (CoT) 0.2443 0.3077 0.2390 0.1862 0.3591 0.3854 0.3662 0.3192 927.40
GPT-4o (CoT) 0.2542 0.3366 0.2407 0.1876 0.3489 0.3861 0.3521 0.3035 918.55

Table 7: Results of pairwise comparison. The three numbers are the percentage of win/tie/loss for
the paired models.

Models Compared Models Easy (%) Medium (%) Hard (%) Overall (%)

CogFlow
vs.

Simulated-CogFlow 56.9 / 0.8 / 42.3 43.1 / 0.9 / 55.9 50.6 / 1.9 / 47.4 49.1 / 1.2 / 49.7
DeepSeek-R1 55.5 / 0.0 / 44.5 49.7 / 1.0 / 49.2 52.2 / 1.6 / 46.2 51.9 / 1.0 / 47.0
Distilled-R1-GRPORLen

64.6 / 4.4 / 31.0 54.7 / 3.0 / 42.3 62.6 / 3.7 / 33.7 59.9 / 3.6 / 36.5

Simulated-CogFlow
vs.

DeepSeek-R1 47.1 / 4.3 / 48.6 55.2 / 1.7 / 43.1 54.9 / 4.7 / 40.4 52.9 / 3.6 / 43.6
Distilled-R1-GRPORLen

61.1 / 1.6 / 37.3 56.1 / 1.7 / 42.2 54.8 / 1.3 / 43.9 56.9 / 1.6 / 41.5

DeepSeek-R1 vs. Distilled-R1-GRPORLen 54.0 / 0.7 / 45.3 52.2 / 0.0 / 47.8 49.2 / 1.6 / 49.2 51.6 / 0.8 / 47.6

median-ranked response as an anchor to mitigate scoring biases (e.g., positional bias). The model
then performs a final comparative reranking of the entire pool against this anchor, yielding a more
robust preference order. It results in CPRank2-R1 and CPRank2-Q32B.

• RMϕ: This evaluator is the reward model specifically trained to score responses described in 3.3.
The implementation details are described in D.2.

D.4 DETAILED INFORMATION OF MODELS USED IN HUMAN EVALUATION

We detail the models mentioned in the pairwise comparison here:
• CogFlow: Llama-3.1-8B-Instruct fine-tuned using the whole CogFlow pipeline.
• Distilled-R1-GRPORLen : Llama-3.1-8B-Instruct fine-tuned using the Distilled-R1-GRPORLen

method.
• Simulated-CogFlow: The pruned results of cognitive flow simulation (crafted by prompting R1).
• DeepSeek-R1: The native DeepSeek-R1 model.

D.5 MORE BASELINE PERFORMANCE

More baseline results (GPT-4o, DeepSeek-V3, Qwen-2.5-7B/72B-Instruct and LLama-3.1-8B/70B-
Instruct using CoT strategy stated in D.2) are shown in Table 6.

D.6 PERFORMANCE OF PAIRWISE COMPARISON

We show the precise pairwise results from the experts’ pairwise evaluation in Table 7.

To quantitatively assess the relative strength of our models from pairwise comparison data, we em-
ploy the Bradley-Terry (BT) model(Bradley & Terry, 1952), a statistical method for converting
pairwise preferences into a continuous capability scale. The results are provided in Figure 3.

Objective Function The core assumption of the BT model is that each model i possesses an
unobserved strength parameter pi ∈ R>0. The probability of model i winning against model j is
given by:

P (i defeats j) =
pi

pi + pj
. (11)

Given the observed number of model i defeats model jWij , our objective is to find the set of strength
parameters p = {p1, p2, ..., pn} that maximizes the log-likelihood of the observed outcomes. The
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total log-likelihood function is:

L(p) =
n∑

i=1

n∑
j ̸=i

Wij log

(
pi

pi + pj

)
(12)

=

n∑
i=1

∑
j ̸=i

Wij

 log(pi)−
∑
j ̸=i

Wij log(pi + pj)

 . (13)

Optimization Method Since a closed-form solution for maximizing this likelihood is not avail-
able, we use an iterative algorithm to find the Maximum Likelihood Estimates (MLE) for the pa-
rameters p. The update rule for each parameter pi at each iteration is derived from the likelihood
equations, resulting in the following fixed-point iteration scheme:

p
(new)
i =

∑
j ̸=i Wij∑

j ̸=i
Wij+Wji

p
(old)
i +p

(old)
j

. (14)

The proof of its convergence and optimality is detailed in (Hunter, 2004). Here, we initialize all pi
to 1 and then perform iterative updates. Each update step first applies Eq. 14 for i = 1, ..., n, and
then normalizes the resulting parameter vector

(
p
(new)
1 , ..., p

(new)
n

)
. This process is repeated until

the parameters converge, defined as when the L2 norm of the parameter vector change is below a
tolerance of 10−6. Finally, to ensure a unique solution, the parameters are normalized such that the
weakest model has a score of 1.

D.7 PROMPTS AND EXAMPLES FOR COGNITIVE INTERVENTION FOR HUMANS

We use R1 to translate reasoning chains into natural language interventions, following the Prompt
10. To illustrate this, Table 8 presents two intervention examples derived from two reasoning styles.

1 ## **[Task]**
2 You are a thoughtful and persuasive mentor. Your friend encountered a

task: [Question]
3 He has been provided with several responses, the best one is [

best_response], and the rest are [other_responses].
4 But he did not choose the best one.
5 Now, you plan to persuade his friend to reconsider. But you should be

gentle, so you should take a reasoning procedure [Best Reasoning]
leading to the best response, and try to (1) figure out based on the
chosen response, what may not he considered in each step of the
reasoning procedure, and (2) try to teach him to think in better ways
. You can guide him to build up the reasoning procedure(You should
assume that he is a beginner, and he may not know the reasoning
procedure. ), and make every node of the reasoning procedure better.

6

7 ## **[Question]**
8 {question}
9

10 ## **[other_responses]**
11 {other_responses}
12

13 ## **[best_response]**
14 {best_response}
15

16 ## **[Best Reasoning]**
17 {best_reasoning}
18

19 ## **[Requirement]**
20 - YOU SHOULD NEVER MENTION OR HINT AT THE EXISTENCE OF THE [best_response

].
21

22 ## **[Output format]**

27
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23

24 You should persuade him to reconsider. The persuasion should be concise.
Please provide the persuasion in JSON format like this:

25 ‘‘‘json
26 {{
27 "words": "Your persuasion"
28 }}
29 ‘‘‘

Prompt 10: Prompt converting reasoning to intervention. {question}, {other responses},
{best responses}, {best reasoning} are placeholders. {other responses} is a list
of all four candidate responses from CogFlow, Simulated-CogFlow, DeepSeek-R1, and Distilled-
R1-GRPORLen

. {question} is a social situation and question. {best responses} and
{best reasoning} are the response content and reasoning of the ground truth model in the
situation, respectively.

Table 8: Example of guidance for intervention for two styles of reasoning, i.e., cognitive reasoning
vs. R1 reasoning.

Type Guidance

Cognitive Flow Style

Hi there! I noticed you analyzing that school scenario - great focus
on the visible emotions. Let’s build your analysis step by step to-
gether. First, we should collect every observable fact neutrally, like
Leo would: Maya’s bracelet-twisting, the folded note exchange,
Chris’s smirk-to-whisper sequence, her abrupt step back and near-
trip, the library retreat, Chris’s chuckle, and the bell ringing. Now,
when interpreting, we might consider adding layers: Could the
note’s secrecy create uncertainty about its purpose? Might Chris’s
immediate chuckle after her exit amplify concerns about intent?
And importantly, does Maya’s established anxiety before the inter-
action suggest potential patterns? The time pressure from the bell
could also heighten Leo’s urgency. This method helps ensure we
connect all details to concerns without speculation. Want to walk
through how this changes your interpretation?

R1 Reaoning Chain Style

Hey, let’s walk through this step-by-step together. First, consider
Maya’s nervousness before the interaction - her bracelet-twisting,
darting eyes, and untied shoelace show she’s already anxious.
Many beginners might overlook how these details establish vulner-
ability. Next, Chris’s smirk while reading the note and his whis-
pered comment are crucial - they suggest negative intent rather
than kindness. Maya’s physical reaction of stepping back abruptly
and nearly tripping reveals shock or fear, directly linking to what
Chris said. Then note her hasty retreat to the library (a safe space)
instead of staying social, showing deep distress. Chris’s solitary
chuckle afterward confirms he wasn’t being supportive. Finally,
Leo’s stopped eating and wrinkled forehead prove he’s connecting
these dots in real-time. By building the analysis this way - starting
with initial cues, then reactions, then consequences - we see how
every detail points to Leo worrying about emotional harm to Maya.
What stands out most to you in this sequence?
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