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Abstract

Based on the significant improvement of model robustness by AT (Adversarial
Training), various variants have been proposed to further boost the performance.
Well-recognized methods have focused on different components of AT (e.g., de-
signing loss functions and leveraging additional unlabeled data). It is generally
accepted that stronger perturbations yield more robust models. However, how to
generate stronger perturbations efficiently is still missed. In this paper, we propose
an efficient automated attacker called A2 to boost AT by generating the optimal
perturbations on-the-fly during training. A2 is a parameterized automated attacker
to search in the attacker space for the best attacker against the defense model and
examples. Extensive experiments across different datasets demonstrate that A2

generates stronger perturbations with low extra cost and reliably improves the
robustness of various AT methods against different attacks.

1 Introduction

DNNs (Deep Neural Networks) are extremely vulnerable to imperceptible perturbations despite their
success in a wide variety of applications [He et al., 2016, Kenton and Toutanova, 2019, Guo et al.,
2017]. In particular, adding small but carefully chosen deviations to the input, called adversarial
perturbations, can cause DNNs to make incorrect predictions with high confidence. It indicates that
models trained by minimizing the empirical risk are not intrinsically robust. To explicitly improve
robustness, AT (Adversarial Training), where a defense model is trained on worst-case adversarial
perturbations generated by an attacker, was developed and proved to be effective.

Based on the significant improvement of models’ robustness, various methods have been pro-
posed, which focus on different components of AT: analyzing the robustness of neural architectures
Zagoruyko and Komodakis [2016], designing loss functions such as TRADES [Zhang et al., 2019]
and MART [Wang et al., 2019], perturbing the model to regularize the loss landscape’s flatness (i.e.,
AWP Wu et al. [2020]) and leveraging unlabeled data (i.e., RST [Carmon et al., 2019]). Gowal et al.
[2020] compares the performance of each combination of most components and achieves the SOTA
(state-of-the-art) performance.

All the above AT methods use PGD𝐾 [Madry et al., 2018], which is a 𝐾-step stack of FGSM [Good-
fellow et al., 2015], as the attacker to generate perturbations for each example against the defense
model. As the key of AT, stronger perturbations yield more robust models. However, there is a
trade-off between the strength of the perturbation and the training efficiency. Increasing the attack
step 𝐾 strengthens the perturbations, but linearly increases the training overhead [Gowal et al., 2020].
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Likewise, the huge overhead prevents the use of SOTA adversarial attackers [Croce and Hein, 2020,
Yao et al., 2021]. To achieve a balance of robustness and efficiency, manually tuning the attacker
(e.g., step size and attack method in each step) is of great concern. R+FGSM [Wong et al., 2019]
first randomly initializes a small perturbation, and then applies FGSM with the tuned step size.
Surprisingly, AT with R+FGSM is as effective as PGD𝐾 but has a significantly lower cost.

However, given the novel dataset, tuning the attacker manually is a challenging task requiring expert
knowledge. Moreover, the best attacker is fine-grained to each example and current model during
adversarial training. Manual coarse-grained tuning for the whole training (e.g., fixed attack method
and step size for all examples) is sub-optimal and prevents further improvement of robustness.

Inspired by AutoML (Automated Machine Learning [Zoph and Le, 2017, Liu et al., 2018]), we
propose an efficient automated attacker called A2 to boost AT. A2 is a parameterized attacker, which
can automatically tune itself on-the-fly during training to generate worst-case perturbations for each
example. First, we design a general attacker space by referring to existing attackers. The attacker
space is stacked by one-step attacker cells. Each cell consists of a perturbation block and a step
size block. Then, we employ a parameterized attacker to search for operations in each block and
construct the attacker for each example that maximizes the model loss. Specifically, we leverage
the attention mechanism to calculate the score of each operation. For continuous operations, we
sum up the operations using the normalized scores as weights. For discrete operations, we use the
reparameterization trick [Jang et al., 2017] to sample an operation from the corresponding block. In
this way, the constructed attacker generates worst-case adversarial perturbations to train the defense
model. Meanwhile, A2 is differentiable and can be optimized with respect to the model loss by
gradient descent.

We conduct extensive experiments to verify the effectiveness and efficiency of A2. Compared
with PGD, A2 can find better perturbations for different models trained with various AT methods.
The results demonstrate that 20-step A2 generates better perturbations than PGD100. Moreover,
we combine A2 with other AT variants, and the robustness of models with different architectures
on various datasets is generally improved under strong attacks (e.g., classical C&W and SOTA
AutoAttack). We also show that A2 is insensitive to its hyperparameters.

To summarize, our main contributions can be highlighted as follows:

• We propose an efficient automated attacker called A2, which can generate worst-case
perturbations on-the-fly during training to improve robustness.

• In A2, we design an attacker space by summarizing the existing attackers and employ a
differentiable method to construct the most adversarial attacker for each example according
to the attention mechanism.

• Extensive experimental results across different datasets and neural architectures demonstrate
that A2 improves the model’s robustness by generating stronger perturbations in the inner
maximization. Moreover, A2 can be flexibly combined with different AT methods, showing
good generality.

2 Preliminary: Adversarial Training

Let 𝐷 = (X, 𝑌 ) = {(x𝑖 , 𝑦𝑖)}𝑛𝑖=1 be a dataset with x𝑖 ∈ R𝑑 as a natural example and 𝑦𝑖 ∈ {1, . . . , 𝐶}
as its associated label. We measure the performance of a DNN classifier 𝑓 parametrized with 𝜃 using
a suitable loss function 𝑙, denoted as E(x𝑖 ,𝑦𝑖) ∈𝐷 [𝑙 ( 𝑓𝜃 (x𝑖), 𝑦𝑖)]. AT [Madry et al., 2018] formulates a
saddle point problem whose goal is to find the model parameters 𝜃 that minimize the adversarial risk
in the outer minimization (the example’s index 𝑖 is omitted for brevity):

min
𝜃
E(x,𝑦) ∈𝐷

inner maximization︷                        ︸︸                        ︷[
max
𝛿∈S

𝑙 ( 𝑓𝜃 (x + 𝛿) , 𝑦)
]

︸                                          ︷︷                                          ︸
outer minimization

(1)

where S defines the set of allowed perturbations. The perturbation is usually constrained by 𝐿𝑝 norm
with a bound 𝜖 , i.e. S = {𝛿 |∥𝛿∥ 𝑝 ≤ 𝜖}.
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The inner maximization aims to find an adversarial perturbation against the example that achieves a
high loss for the defense model. However, it is NP-hard to find the optimum of the inner maximization.
Various gradient-based attackers have been proposed to approximate its solution, and we classify
them according to the number of steps in gradient ascent. One-step attackers [Goodfellow et al., 2015,
Miyato et al., 2017] generate adversarial perturbations as:

𝛿∗ ≈ ΠS 𝜂 · 𝜓 (∇x) (2)

where ∇x is short for ∇x𝑙 ( 𝑓𝜃 (x) , 𝑦), 𝜂 is the step size, 𝜓 is a transformation function (e.g., 𝑠𝑔𝑛 in
FGSM and 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 in FGM) and Π is the projection. Since such linearization attacks tend to be
trapped in the non-smooth vicinity of the data point, R+FGSM initializes a small random perturbation
to escape the vicinity and then applies FGSM. As a typical multi-step attacker, PGD𝐾 [Madry et al.,
2018] can find better perturbations by 𝐾 step gradient ascent:

x(𝑘) = Πx+S
(
x(𝑘−1) + 𝜂 · 𝜓

(
∇x(𝑘−1)

) )
(3)

3 Methodology

3.1 Motivation

The key of AT is to generate perturbations in the inner maximization. Strong perturbation helps to
improve robustness. It is generally accepted that the step 𝐾 used to solve the inner maximization
correlates with the attacker’s ability to generate stronger perturbation. However, larger 𝐾 leads to a
linear increase in training overhead. Wong et al. [2019] suggests that with appropriate step size tuning
and early stopping, one-step attackers yield models with the robustness that is comparable to much
more expensive multi-step attackers. It indicates that hyperparameters, such as random initialization,
step size, momentum, and early stopping, affect perturbation generation. From the perspective of
effectiveness and efficiency, it is valuable to further improve robustness by tuning the attacker to
strengthen perturbations.

However, manual tuning of perturbation generation for each example on-the-fly during training is
impractical. To address this problem, we propose an efficient automated attacker to boost adversarial
training by generating optimal perturbations on-the-fly during training.

3.2 Problem Formulation

Inspired by AutoML, we first design a general attacker space A by referring to existing attackers.
Then, we employ an automated attacker parameterized by 𝛼 to search in A and further construct
an attacker against the example and the defense model (x, 𝑦, 𝑓𝜃 ). We abbreviate the perturbation
generated by the constructed attacker as 𝛿𝛼. Therefore, the goal of A2 is to train a robust model using
the perturbation generated by the constructed attackers through a bilevel optimization problem:

min
𝜃
E(x,𝑦) ∈𝐷 [𝑙 ( 𝑓𝜃 (x + 𝛿𝛼∗ ), 𝑦)]

s.t. 𝛼∗ = arg max
𝛼

E(x,𝑦) ∈𝐷 [𝑙 ( 𝑓𝜃 (x + 𝛿𝛼) , 𝑦)]
(4)

On the attack side, we train 𝛼 by SGD to make the defense model misclassify. On the defense
side, we use 𝛼∗ to construct the best attacker for each example and then generate perturbations to
adversarially train the defense model.

3.3 Attacker Space

Revisiting most attackers, we find that the attacker can be viewed as a stack of one-step attackers
consisting of an attack method and a step size. Thus, as shown in Figure 1(a), we design a general
attacker space A consisting of 𝐾-step cells. The 𝑘-th cell is denoted as C (𝑘) , which is a one-step
attacker consisting of the following two blocks:

Perturbation Block O𝑝. Typical attack methods (i.e., FGM and FGSM), attack methods with
momentum (i.e., FGMM and FGSMM), random perturbations (i.e., Gaussian and Uniform), and
the special Identity which enables the attacker to automatically early stop at a certain step like FAT
[Zhang et al., 2020];
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Figure 1: (a) Attacker Space of A2; (b) PGD10: FGSM and a fixed step size 2/255 in each cell; (c)
R+FGSM: Gaussian in the first cell, FGSM in the second cell and Identity in the other cells.

Step Size Block Os. {10−4 · 𝜂, 10−3 · 𝜂, 10−2 · 𝜂, 10−1 · 𝜂, 𝜂}, where 𝜂 is a hyperparameter related to
the space of allowed perturbations S.

Each block O contains multiple operations. Let 𝑜(·) denote the operation, 𝛾 (𝑘) = [𝛾 (𝑘)O𝑝
, 𝛾
(𝑘)
O𝑠 ] denote

the choice of operation in the 𝑘-th cell. The attack methods within O (𝑘)𝑝 are mutually exclusive. Thus,
𝛾
(𝑘)
O𝑝

is a one-hot vector. In contrast, the operations within O (𝑘)𝑠 are continuous. 𝛾 (𝑘)O𝑠 is a normalized
continuous vector, where each element represents the selection probability. To unify the categorical
choice of attack methods and the probabilities over step sizes, the output of O (𝑘) is expressed as a
mixture based on 𝛾 (𝑘)O :

Ō(𝛾 (𝑘)O ,∇x(𝑘−1) ) =
∑︁

𝑜∈O (𝑘)
𝛾𝑜 · 𝑜(∇x(𝑘−1) ) (5)

where 𝛾𝑜 denotes the weight of the operation 𝑜 in 𝛾 (𝑘)O . Correspondingly, the one-step attacker of the
𝑘-th cell can be expressed as the joint of two blocks:

C̄(𝛾 (𝑘) ,∇x(𝑘−1) ) = Ō𝑠 (𝛾 (𝑘)O𝑠 ,∇x(𝑘−1) ) · Ō𝑝 (𝛾 (𝑘)O𝑝
,∇x(𝑘−1) ) (6)

Moreover, the constructed attacker is a composition of attackers from each cell. In this way, we can
cover common attackers in our space. For example, as shown in Figure 1(b), PGD𝐾 is obtained by
selecting FGSM in each perturbation block. R+FGSM in Figure 1(c) is a case of selecting Gaussian
in the first cell, FGSM in the second cell and Identity in the other cells.

Analysis ofA Considering there exist 7 attack methods in O𝑝 of each step, there are 7𝐾 combinations
of attack methods in the 𝐾-step attacker space. The exponential increasing combinations prevent the
brute-force search. Moreover, the continuous step size O𝑠 is also part of the attacker space. Thus, we
propose A2 to search for the best attacker in A and generate adversarial perturbations efficiently.

3.4 Automated Attacker A2

A2 is used to construct the best attacker against (x, 𝑦, 𝑓𝜃 ) and its trainable parameters 𝛼 include𝑊 (𝑘)O𝑝
,

𝑊
(𝑘)
O𝑠 , and 𝑊 (𝑘)𝑞 where 𝑘 ∈ {1, . . . , 𝐾}. As shown in Figure 1(a), we treat the current model and

example as a query and the candidate operations as keys. Thus, the attention mechanism can be used
to calculate the scores of operations within each block and the operations are selected based on their
scores. Specifically, in the 𝑘-th cell, we take the gradient of the last step ∇x(𝑘−1) 𝑙

(
𝑓𝜃

(
x(𝑘−1) ) , 𝑦) as

input and project it to a vector space as the query using𝑊 (𝑘)𝑞 . Then, we use the trainable embedding
table 𝑊 (𝑘)O to convert the individual operations within O (𝑘) to continuous keys. With the Scaled
Dot-Product Attention [Vaswani et al., 2017], we compute the dot products of the query with each
key as the score of the operation 𝑜 ∈ O in the 𝑘-th cell:

𝑒
(𝑘)
𝑜 = (∇x(𝑘−1)𝑊

(𝑘)
𝑞 )𝑇𝑊 (𝑘)𝑜 (7)
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Perturbation Block. The operations within O (𝑘)p are mutually exclusive. We sample an operation
with the normalized scores as probabilities, i.e., 𝛾 (𝑘)O𝑝

∼ softmax(𝑒 (𝑘)O𝑝
).

Step Size Block. As the operations within O (𝑘)s are continuous values, we sum up the individual step
sizes with the normalized scores as weights. For 𝑜𝑠 ∈ O (𝑘)𝑠 , the weight can be expressed as:

𝛾
(𝑘)
𝑜𝑠 =

exp (𝑒 (𝑘)𝑜𝑠 )∑
𝑜
′ ∈O (𝑘)s

exp (𝑒 (𝑘)
𝑜
′ )

(8)

3.5 Training of Automated Attacker

As mentioned above, we train A2 to minimize the following objective by gradient descent:

𝛼∗ = arg min
𝛼

−E(x,𝑦) ∈𝐷 [𝑙 ( 𝑓𝜃 (x + 𝛿𝛼) , 𝑦)] (9)

However, as a result of constructing the attacker by sampling in each perturbation block, the gradient
of the loss w.r.t 𝛾O𝑝

is zero. To train 𝛼, we use the reparameterization trick [Kingma and Welling,
2013] to transfer the randomness of sampling to the auxiliary noise and reformulate the objective
function. For brevity, we omit the step index 𝑘 .

Let 𝛾O𝑝
= 𝜙(𝜅, 𝑒O𝑝

) be a differentiable transformation where 𝜅 is an auxiliary noise variable with
independent marginal 𝑝(𝜅). In A2, we sample noise from Gumbel Distribution, i.e., 𝜅 ∼ Gumbel(0)
[Gumbel, 1954], and use Gumbel Softmax [Jang et al., 2017] as 𝜙 to smoothly approximate the
expectation of loss [Maddison et al., 2014]. Specifically, 𝜙(𝜅, 𝑒O𝑝

) = softmax
(
(𝑒O𝑝

+ 𝜅)/𝜏
)

where
𝜏 is the temperature parameter. When 𝜏 → 0, the generated samples have the same distribution as
one_hot(arg max𝑜𝑝 ∈O𝑝

(𝑒𝑜𝑝 + 𝜅𝑜𝑝 )).

Using the reparameterization trick, we can now form MC (Monte Carlo) estimates of the expectation
of A2’s loss 𝑙 for each example, which is differentiable, as follows:

𝑙 ( 𝑓𝜃 (x + 𝛿𝛼), 𝑦)

=E𝛾O𝑝∼softmax(𝑒O𝑝 )
[
𝑙

(
𝑓𝜃 (x + C̄([𝛾O𝑝

, 𝛾O𝑠 ],∇x), 𝑦
)]

=E𝑝 (𝜅)
[
𝑙

(
𝑓𝜃 (x + C̄([𝜙(𝜅, 𝑒O𝑝

), 𝛾O𝑠 ],∇x), 𝑦
)]

≈ 1
𝑀

𝑀∑︁
𝑚=1

𝑙

(
𝑓𝜃

(
x + C̄([𝜙(𝜅 (𝑚) , 𝑒O𝑝

), 𝛾O𝑠 ],∇x)
)
, 𝑦

) (10)

where 𝑀 is the number of samples. In practice, 𝑀 = 1 can achieve good performance. In this way,
we reformulate the MC approximation in Equation (10) of 𝑙 as the objective function 𝑙.

Moreover, training 𝛼 to convergence in each epoch can be prohibitive due to the expensive inner
maximization in Equation (4). We use a simple approximation scheme following the common
methods [Finn et al., 2017, Liu et al., 2018]:

𝛼∗ ≈ 𝛼 + 𝜉∇𝛼E(x,𝑦) ∈𝐷
[
𝑙 ( 𝑓𝜃 (x + 𝛿𝛼) , 𝑦)

]
(11)

where 𝛼 denotes the current weights of the attacker and 𝜉 is the learning rate.

3.6 Framework of Adversarial Training with A2

The overall procedure is shown in Algorithm 1. As in normal adversarial training, we generate
perturbations in 𝐾 steps every batch and update the model parameters. The key difference is in Line
7. Benefiting from a parameterized automated attacker, we tune the discrete attack methods and
continuous step sizes to generate adversarial perturbations. After optimizing the model parameters, we
use Equation (11) to update 𝛼 as an approximation to 𝛼∗. Since A2 focus on the inner maximization,
it can be compatible with most adversarial training methods. For example, it is flexible to use the loss
function of TRADES or MART for outer minimization in Line 10 (i.e., TRADES-A2 and MART-A2),
or include early stopping in Line 5∼9 as FAT.
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Algorithm 1 Adversarial Training with Automated Attacker (AT-A2)
Input: Training examples 𝐷, perturbation bound 𝜖 , the number of attack steps 𝐾

1: Initialize 𝜃, 𝛼;
2: for epoch = 1, . . . , 𝑁𝑒𝑝 do
3: for minibatch (X, 𝑌 ) ⊂ 𝐷 do
4: X(0) ← X;
5: for k = 1, . . . , 𝐾 do
6: Calculate the gradient ∇X(𝑘−1) ;
7: Construct 𝛿 (𝑘)𝛼 ∈ S according to ∇X(𝑘−1) by 𝑔𝛼;
8: X(𝑘) = X(𝑘−1) + 𝛿 (𝑘)𝛼 ;
9: end for

10: Update 𝜃 with ∇𝜃
∑
(x,𝑦) 𝑙

(
𝑓𝜃 (x(𝐾) ), 𝑦

)
;

11: Update 𝛼 by Equation (11);
12: end for
13: end for

4 Experiments

We conduct extensive experiments on public datasets to answer the following questions: 1) Can A2

generate stronger adversarial perturbations? 2) How effective is the adversarial training with A2?
3) Is A2 robust to hyperparameters? All experiments are run using GeForce RTX 3090 (GPU) and
Intel(R) Xeon(R) Silver 4210 (CPU) instances.

4.1 Effectiveness of Automated Attacker (RQ1)

In this part, we fix the model 𝑓𝜃 , train the automated attacker alone and investigate whether A2 can
generate more powerful perturbations compared to the commonly used PGD.
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Figure 2: Effect of adversarial perturbations generated by A2 with the training epoch.

Experimental Settings. To demonstrate the generality, we choose different neural architectures
(i.e., ResNet-18, WRN-34-10, and WRN-28-10) trained on CIFAR-10 by various AT methods:
TRADES, MART, RST, and AWP. All trained models are open-source checkpoints. We choose
PGD𝐾 with a random start 𝛿 (0) ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(−𝜖, 𝜖) as baseline. All attacks are 𝐿∞-bounded with a
total perturbation scale of 𝜖 = 8/255. Since more attack steps generally improve the attack effect,
we compare the automated attacker with PGD at different steps. Moreover, we try different step
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Table 1: Comparison of attack effects (%, the lower the better) of multi-step PGD and A2 in robust
models. We run each method 5 times and show the average. The standard deviations are omitted as
they are very small. The architecture of all defense models is WideResNet, except for MART whose
architecture is ResNet-18.

10-step 20-step

Defense Natural PGD A2 A2† PGD A2 A2† PGD100

MART0 83.07 54.78 54.09 53.65 53.76 53.52 53.24 53.28
TRADES-AWP1 85.36 60.22 59.67 59.60 59.64 59.38 59.34 59.49
MART-AWP1 85.60 60.38 59.76 59.51 59.52 59.42 59.25 59.29
RST-AWP1 88.25 64.68 64.27 64.17 64.14 64.02 63.97 64.03

size blocks, i.e., 𝜂, in A2: 1) 𝜂 = 2/255, which is the same as the setting of step size in PGD; 2)
𝜂 = 8/255, which is indicated by A2† and allows A2 to search the whole 𝜖 bound each step. A2 is
trained using Adam [Kingma and Ba, 2015] with learning rate 10−3, weight decay 10−2 and other
default hyperparameters.

Attack Effect. The training process of A2 is shown in Figure 2. We take the first 20 epochs of the
attack effects, compare them with PGD, and observe whether A2 converges. In the early training
stage, the random combinations of attack operations are much less effective. After 10∼20 epochs,
the effect of generated attacks is much more stable and effective. In practical automated adversarial
training, the model and the automated attacker are trained iteratively. The fast convergence of A2

ensures that the generated perturbations are strong enough. In addition, a larger 𝜂 achieves better
attacks. As the steps increase, the effect diminishes and the training may fluctuate.

Table 1 reports the attack effects of PGD and A2 with different steps. In the comparison of A2 and
PGD with different steps 𝐾 ∈ {10, 20}, A2 stably outperforms PGD. A2† constructs stronger attacks
in the expanded search space. With the increase of steps, A2 is more effective due to the combination
of attack methods and the automated step size tuning. Due to the diminishing marginal effect, PGD100

v.s. PGD20 achieves less improvement than PGD20 v.s. PGD10. At 1/5 of the cost, the 20-step A2†
finds better attacks using the optimized 𝛼 than PGD100. In summary, Table 1 verifies that A2 stably
outperforms PGD for the same step, and obtains better attacks compared to PGD, whose step size
and attack method are fixed, with significantly lower cost.

Overhead Analysis. The overhead of A2 is not significant compared to PGD. Both methods are
close in terms of clock time. For WRN-34, PGD takes 19.75/147.09/287.76 seconds to generate
1/10/20 step attacks respectively. It demonstrates that more inner steps lead to a linear increase in
time. Meanwhile, A2 takes 157.61/302.51 seconds to generate the 10/20 step attack respectively. The
main overhead remains in the forward computation and backward propagation of the defense model.
Moreover, Section A.3 in Appendix shows that the total parameter size of A2 is also acceptable.

4.2 Effectiveness of Adversarial Training with A2 (RQ2)

In this part, we evaluate the robustness of our proposed AT-A2 on different datasets against white-box
and ensemble attacks. To verify that the stronger attacks generated by A2 on-the-fly during training
can improve robustness, we consider various adversarial training methods (i.e., AT, TRADES, MART,
and AWP) without additional data across different datasets.

Benchmark. We conduct experiments on the baseline AT and the SOTA AWP with A2 across three
benchmark datasets to verify the generalization of A2. We follow the settings in AWP: PreActResNet-
18 trained for 200 epochs, 𝜖 = 8/255 and 𝛾 = 10−2 for AWP. The step size is 1/255 for SVHN and
2/255 for CIFAR-10 and CIFAR-100. For AT and AWP, the attacker used in training is PGD10.
The 10-step A2 is trained with the same setting as in RQ1. PGD20 is used for testing, and the test
robustness is reported in Table 2. It shows that A2, as a component focusing on the inner maximization,

0https://github.com/YisenWang/MART
1https://github.com/csdongxian/AWP
2https://github.com/zjfheart/Friendly-Adversarial-Training
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Table 2: Test robustness (%, the higher the better) using PreActResNet-18 under 𝐿∞ threat model
("Best" means the highest robustness while "Last" means the robustness at the last epoch). Std. of 5
runs is omitted due to being small.

Defense SVHN CIFAR-10 CIFAR-100

Best Last Best Last Best Last

AT 53.36 44.49 52.79 44.44 27.22 20.82
AT-A2 56.76 44.75 52.96 44.59 28.14 20.28

AWP 59.12 55.87 55.39 54.73 30.71 30.28
AWP-A2 61.42 58.45 55.71 55.31 31.36 30.73

Table 3: Test robustness (%, the higher the better) on CIFAR-10 using WRN-34-10 under 𝐿∞ threat
model ("Natural" denotes the accuracy on nature examples, and other columns indicate the accuracy
on adversarial examples generated by different attacks). Std. of 5 runs is omitted due to being small.

Defense Natural FGSM PGD20 CW∞ AutoAttack

AT 87.30 56.10 52.68 50.73 47.04
AT-A2 84.54 63.72 54.68 51.17 48.36
TRADES 84.65 61.32 56.33 54.20 53.08
TRADES-A2 85.54 65.93 59.84 56.61 55.03
MART 84.17 61.61 57.88 54.58 51.10
MART-A2 84.53 63.73 59.57 54.66 52.38
AWP 85.57 62.90 58.14 55.96 54.04
AWP-A2 87.54 64.70 59.50 57.42 54.86

achieves better results on most datasets. Moreover, A2 is generic and can boost the robustness of both
baseline and SOTA AT methods.

Robustness on WideResNet. Furthermore, we train WRN-34-10 on CIFAR-10 with various AT
methods (i.e., AT, TRADES, MART, and AWP) following their original papers and open-source
codes2. All defense models are trained using SGD with momentum 0.9, weight decay 5 × 10−4, and
an initial learning rate of 0.1 that is divided by 10 at the 50%-th and 75%-th epoch. Except for 200
epochs in AWP, other AT methods train the model for 120 epochs. Simple data augmentations (i.e.,
32x32 random crop with 4-pixel padding and random horizontal flip) are applied.

For white-box attack, we test FGSM, PGD20 and CW∞ [Carlini and Wagner, 2017]. In addition,
we test the robustness against the standard AutoAttack [Croce and Hein, 2020], which is a strong
and reliable attacker to verify the robustness via an ensemble of diverse parameter-free attacks
including three white-box attackers and a black-box attacker. Table 3 shows that A2 reliably boosts
AT variants against white-box and ensemble attacks. This verifies that A2 is general for AT and
improves adversarial robustness reliably rather than gradient obfuscation or masking.

Additionally, given the nature examples, AT performs better than AT-A2. The main reason is that
A2 generates stronger perturbation for better robustness, which decreases the accuracy (i.e., 84.54).
Many works (e.g., TRADES, MART, and AWP) use regularization to achieve the trade-off between
robustness and accuracy. The regularization is also used to optimize the automated attacker. Thus, for
other AT methods in Table 3, combining A2 can achieve higher accuracy. Moreover, for WRN-34,
the training time of AWP-A2 is 970 s/epoch while the training time of AWP is 920 s/epoch. Thus, the
additional overhead of A2 is not significant.

4.3 Hyperparameters of A2 (RQ3)

The hyperparameters of A2 include the training hyperparameters and the design of the attacker space.
The comparison of the attack effect with different hyperparameters is shown in Table 4. Overall, A2

is robust to hyperparameters and performs better than PGD10 and closely to PGD20.
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Table 4: Comparison of attack effects (%, the lower the better) of 10-step A2 with different hyperpa-
rameters (The 10-step is omitted, A2

𝑝,𝑞 is short for training the attacker using learning rate 𝜉 = 10−𝑝
with the step size block 𝜂 = 𝑞/255, ). Std. of 5 runs is omitted due to being small.

Attack TRADES-AWP1 MART-AWP1 RST-AWP1

PGD10 60.22 60.38 64.68
PGD20 59.64 59.52 64.14
A2

3,2 59.67 59.76 64.27

A2
2,2 59.93 59.87 64.34

A2
4,2 59.76 59.78 64.29

A2
3,5 59.49 59.62 64.11

A2
3,8 59.53 59.53 64.17

Training of A2. The effect of attacks with different learning rates 𝜉 is shown in the middle two rows
of Table 4. Although Adam uses a dynamic learning rate, an excessive initial learning rate (i.e., 10−2)
leads to sub-optimal.

Attacker Space. The influence of the attack step 𝐾 has been investigated in RQ1. As shown in the
last two rows of Table 4, a larger step size 𝜂 increases the effectiveness of A2. However, as shown in
the training curve in Figure 2, larger 𝜂 introduces instability in the training of the attacker.

5 Related Work

5.1 Adversarial Learning

Many recent works [Goodfellow et al., 2015, Carlini and Wagner, 2017, Croce and Hein, 2020] have
shown that DNNs are vulnerable to adversarial examples. Various defense strategies and models have
been proposed to deal with the threat of adversarial examples. However, as proved in C&W [Carlini
and Wagner, 2017], many works mistake gradient obfuscation or masking for adversarial robustness.
AT [Madry et al., 2018] formulates a class of adversarial training methods for solving a saddle point
problem (i.e., Equation (1)) and improves robustness reliably.

Based on AT, many works [Zhang et al., 2019, Wang et al., 2019, Wu et al., 2020] focusing on
the components of outer minimization are introduced to further enhance performance. The inner
maximization is also the goal of the adversarial attack, where 𝑙 is the 0-1 loss. Many works, e.g.,
FGSM [Goodfellow et al., 2015], C&W [Carlini and Wagner, 2017] and AutoAttack [Croce and Hein,
2020], have been proposed to attack DNNs and facilitate the development of adversarial training.

5.2 Automated Machine Learning

AutoML [Bergstra et al., 2011, Zoph and Le, 2017, Liu et al., 2018, Cubuk et al., 2019] aims to
automate the parts of the machine learning pipeline that require expert solutions. For a particular
domain, it is common practice to summarize a large search space of parameters and configurations
based on expert experience and search for the optimal solutions using methods such as black-box
optimization. During the search process, a certain metric is required to evaluate each solution. The
same idea can be applied to adversarial learning. 𝐴3 [Yao et al., 2021], which is also closely related
to AutoML, automatically discovers an effective attacker on a given model.

6 Conclusion

In this work, we proposed A2, to the best of our knowledge, the first adversarial training method which
focuses on automated perturbation generation. In A2, the attacker space is designed by summarizing
the existing perturbations. Moreover, the parameterized automated attacker leverages the attention
mechanism to choose the discrete attack method and the continuous step size and further generates
adversarial perturbations. During training, the one-step approximation of the optimal automated
attacker is used to generate the optimal perturbations on-the-fly for the model. The experimental
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results show that A2 generates stronger attacks with low extra cost and boosts the robustness of
various AT methods reliably.

For future work, we plan to add the target loss of the inner maximization to the attacker space. We
also plan to apply A2 to enhance adversarial training for Natural Language Processing.
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