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Abstract

Current instruction and human preference data001
do not represent speech-based human prefer-002
ences because they are almost exclusively col-003
lected with a text interface. Hence, instruction-004
tuned language models (ITLM) trained with005
this data are suboptimal for generating re-006
sponses suitable for transforming with text-007
to-speech systems, yet voice assistants such008
as Google Assistant or Amazon Alexa are in-009
creasingly relying on these responses as di-010
rect responses to user queries. We first em-011
pirically demonstrate that current ITLMs are012
suboptimal due to the shift in modality from013
text to speech. Then, we address their sub-014
optimality by finetuning with preference an-015
notations that are collected by having annota-016
tors listen to response pairs and thus accurately017
reflect their speech-based preferences. With018
only 20K speech-based preference annotations,019
we develop a speech-centric instruction-tuned020
language model by finetuning Falcon-Instruct021
7B with reinforcement learning with human022
feedback. Our finetuned model, SpeechFal-023
con, generates responses that are on average024
4.8% more frequently preferred than those from025
the base model and its prompted counterpart026
and 19.7% more frequently preferred than the027
human-written responses from the original in-028
struction dataset when controlled for factuality.029

1 Introduction030

Instruction-tuned language models (ITLM) are fine-031

tuned large language models (LLMs) that follow032

instructions and they have gained prominence due033

to their broad applicability in accomplishing tasks034

without explicit supervision (Brown et al., 2020;035

Rae et al., 2021; Lieber et al., 2021; Hoffmann036

et al., 2022). However, speech-based interactions037

have been largely overlooked in this context, de-038

spite being a core factor that predates text and hu-039

manizes intelligent systems (Yang, 2004). While040

prior works have examined the ability of ITLMs041

Figure 1: Current instruction-tuned language models
tend to be verbose and generate complex sentences and
non-verbal writing devices, such as bullet lists or paren-
theses, that are not suitable for speech-based interactions
(left). Speech is serial and transient, and therefore con-
cise and simple yet informative sentences are preferred
(right).

to recognize speech (Hori et al., 2018; Chiu et al., 042

2018), synthesize speech (Wang et al., 2017), or 043

correct speech recognition errors (Mousavi et al., 044

2024), far less attention has been paid to how suit- 045

able the content of the response is when spoken. 046

Identifying and increasing the "speech-suitability" 047

of ITLM-generated content – the main focus of this 048

work – is critical to the development of equitable 049

digital assistants as ITLMs become the backbone 050

of such systems today (Nass and Brave, 2005). 051

Speech as a second-class citizen stems from 052

training ITLMs with textual instruction-following 053

datasets (Peng et al., 2023; Chung et al., 2022; 054

Wang et al., 2022a,b; Wei et al., 2021; Sanh et al., 055

2022; Zhou et al., 2023) and preference annota- 056

tions between text pairs (Bai et al., 2022; Etha- 057

yarajh et al., 2022; Ouyang et al., 2022; Touvron 058

et al., 2023) to optimize for human preferences. 059
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Responses that maximize human preference in text060

may—and intuitively, should—be different from061

those that do the same for speech. For example,062

verbosity and complex vocabulary may be less im-063

portant in text because users can reread content that064

is difficult to understand. Speech, however, is in-065

herently serial and transient; users cannot as freely066

or easily navigate spoken content. Additionally,067

formats that are preferred in the text domain, such068

as bulleted lists, code blocks, and math formulas,069

are incomprehensible when spoken (Kern, 2008;070

Abel, 2015; Dowling and Miller, 2019; Kolodzy,071

2012).072

The current emphasis on text for ITLM de-073

velopment together with the unique constraints074

of the audio domain result in ITLMs that are075

poorly optimized for spoken dialogue. For in-076

stance, ITLMs that are optimized for helpfulness077

using RLHF consistently produce more verbose078

outputs (Prasann Singhal, 2023). As illustrated in079

Figure 1, in which the top response is detailed,080

lengthy, and contains abundant lists and paren-081

theses, this verbosity is likely to have a negative082

impact on listener preference. To create “speech-083

suitable” ITLMs—i.e. those optimized for listener084

preference—such as the one shown in bottom re-085

sponse of Figure 1, we develop alignment efforts086

specifically for speech.087

First, we conduct an extensive survey of spoken088

ITLM responses, which verifies that the responses089

of current ITLMs are ill-suited to the spoken do-090

main. Our survey additionally characterizes vari-091

ation in multiple dimensions of response quality092

between audio and text responses, finding current093

text responses are considered to be too lengthy,094

contain too much information, and are generally095

difficult to understand when spoken.096

Next, we explore aligning ITLMs for speech097

interactions through prompt engineering (Lester098

et al., 2021) and RLHF (Stiennon et al., 2020;099

Bai et al., 2022). To develop a reward model100

for RLHF, we collect extensive preference anno-101

tations by presenting annotators with spoken re-102

sponse pairs, a first to the best of our knowledge.103

In addition, for efficient RLHF, we use a set of104

system prompts inspired by rules-of-thumb from105

the radio industry (Kern, 2008; Abel, 2015), pod-106

casting (Dowling and Miller, 2019), multimedia107

journalism (Kolodzy, 2012), and relevant literature108

on listenability (Chall and Dial, 1948; Fang, 1966;109

Messerklinger, 2006; Kotani et al., 2014) to gener-110

ate sample responses that span varying degrees of 111

speech-suitability for our preference annotations. 112

Lastly, we conduct human and automatic evalua- 113

tions on our speech-aligned model and find that it 114

outperforms both the base model and its prompt 115

engineered version. 116

In summary, our main contributions are the fol- 117

lowing: 118

• To the best of our knowledge, we are the 119

first work to examine the suitabilty of ITLM- 120

generated content for speech-based interac- 121

tions. 122

• We establish that current ITLM responses are 123

not optimized for speech and that this adapta- 124

tion is not trivially achieved through prompt 125

engineering. 126

• We collect 20K speech-based preference an- 127

notations that span varying degrees of speech- 128

suitability. 129

• We finetune a ITLM to generate speech- 130

suitable responses via RLHF using sampled 131

responses. 132

2 Instruction-tuned Language Model 133

Responses Are Not Suitable for Speech 134

2.1 Lessons from audio-based media 135

We initiate our research with the key questions 136

“Are ITLM responses that were suitable in text also 137

suitable when spoken?” and “If not, how should 138

spoken responses be different?”. Kern (2008) and 139

Abel (2015) provide a glimpse to the answers for 140

these questions by illustrating numerous examples 141

of how news reporting and storytelling in text dif- 142

fers from audio. Through decades of radio experi- 143

ence, they establish a set of rules-of-thumb to abide 144

by when delivering information through audio as 145

opposed to text. 146

Some of these rules-of-thumb that generalize 147

beyond news reporting include (i) use simple sen- 148

tence structures: alloting a sentence to each idea 149

and putting the subject at the beginning as much 150

as possible; (ii) do not use atypical syntax, such 151

as “President Bush today told members of congress” 152

and “I today went shopping”; (iii) avoid hyphen- 153

ated adjectives (e.g. mineral-rich, tech-heavy); (iv) 154

avoid too many names and numbers; and other mi- 155

nor ones such as (v) avoid tongue twisters and (vi) 156

avoid too much alliteration. Similar principles are 157
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Category Prompt

Kept
Factual QA Why can camels survive for long without water?
Brainstorming Give me some ideas to manage my manager
Advice How do I start running?

Removed
Creative Writing Write a scene between two actors discussing movie Inception.
Summarization Summarize in one sentence this article about a famous song. {article}
Info. Extraction Provide a list of all numbers mentioned and what they represent: {context}

Table 1: Examples of speech-suitable prompts that are kept and removed from Dolly-15K for evaluation and
response sampling. Removed user prompts are those that are unlikely to be asked in a speech-based setting.

Criteria Score
0 1 2

Helpfulness Not helpful Somewhat helpful Helpful
Relevance Not relevant Somewhat relevant Relevant
Accuracy Not accurate Contains minor errors Accurate
Informative. Too little/much Fair Good
Length Too short/long Short/Long Adequate
Understand. Difficult Fair Easy

Table 2: We evaluate each response with various di-
mensions of speech-suitability using a 3 point Likert
scale mapped from 0 to 2. Evaluation results with these
dimensions for responses delivered in text and audio are
shown in Table 3.

echoed for podcasting (Dowling and Miller, 2019),158

multimedia journalism (Kolodzy, 2012), and liter-159

ature on listenability (Chall and Dial, 1948; Fang,160

1966; Messerklinger, 2006).161

2.2 Text vs. speech for ITLMs162

Optimization of speech-based interactions with163

ITLMs may not share the same principles as those164

suggested for radio news or podcasts. Therefore,165

we verify whether such discrepancies in text versus166

speech also apply for ITLM interactions.167

First, we filtered the Dolly-15K dataset (Conover168

et al., 2023) for user prompts that are relevant to169

a speech-based interaction. We remove prompts170

that require an accompanying reference text as171

well as those that explicitly ask for code or sim-172

ilarly unlikely-to-be-spoken requests. Categories173

of user prompts that are kept and removed and174

their respective examples are shown in Table 1.175

This results in 11K user-prompt and response pairs,176

from which we randomly sampled 80 prompts. Re-177

sponses to these prompts were generated using178

GPT-4 (gpt-4-0613) and converted to spoken179

language using Amazon Polly1, a text-to-speech180

(TTS) API. Each responses was evaluated by three181

different annotators, resulting in a total of 240 anno-182

tations completed by 22 unique annotators. Since183

1https://aws.amazon.com/polly/

Rel. Help. Correct. Inform. Len. Under.

Text 1.98 1.95 1.97 1.72 1.70 1.84
Audio 2.00 1.95 1.99 1.59† 1.44‡ 1.77

Table 3: Comparison between text and audio responses
indicate the need to reduce excess information, decrease
length, and enhance how easy the response is to com-
prehend when spoken. † and ‡ indicates a statistically
significant drop compared to text results with a pairwise
t-test at p < 0.05 and p < 0.01, respectively.

we are measuring speech-based preferences, the an- 184

notators can only listen to the response. We share 185

more details and illustrations of the annotation in- 186

terface in Appendix A. 187

Following current practice in evaluating a 188

ITLM’s response, we ask annotators to indicate 189

the helpfulness, accuracy, and relevance fo the re- 190

sponse (Ouyang et al., 2022; Zhao et al., 2022). 191

In addition, we ask how suitable the responses are 192

in terms of its verbosity (length), amount of infor- 193

mation (informativeness), and ease of comprehen- 194

sion (understandability). Each of these criteria is 195

measured using a three-point Likert scale that is 196

mapped to scores ranging from 0 to 2, which is 197

shown in Table 2. Note that informativeness and 198

length have multiple options such as ‘too little’ or 199

‘too much’ correspond to the same score as we treat 200

them as equally undesirable. 201

From the annotation results in Table 3, we ob- 202

serve that preferences for relevance, helpfulness, 203

and correctness do not significantly differ depend- 204

ing on the modality. However, the amount of infor- 205

mation and length are considered less suitable for 206

speech. We additionally observe a mild decrease in 207

the understandability of spoken responses. We hy- 208

pothesize that making LM responses terser, contain 209

less information in general, and easier to compre- 210

hend in general will increase the suitability of LMs 211

for speech. 212
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System Prompt You are a helpful, respectful and honest speech assistant. Keep your
response compact without missing key information and make it suitable for
speech such that it can be easily verbalized by a text-to-speech system.
Your response should use simple vocabulary and sentence structures. Avoid
jargon, hyphenated adjectives, excessive alliteration, and tongue twisters.
It should not contain parentheses, numbered or bullet lists, and anything
else that cannot be verbalized. If the answer requires multiple steps or a
list, provide only the first 3-5 and ask if the user is ready to move on to
the next steps or know more.

User Prompt Why can camels survive for long without water?

GPT-4 Response Camels can survive for a long time without water because of several unique
adaptations. 1.They can lose a large amount of their body weight in
water without harm, while most animals can only lose a small percentage.
2.Camels can rehydrate very quickly, drinking up to 30 gallons of water in
just 13 minutes. 3.Their bodies have a special way to store fat in their
humps, which helps to minimize water loss. Would you like to know more
about any of these points?

Table 4: Relying on GPT-4 with a detailed system prompt iteratively determined to get most consistent speech-
suitable results according to findings from Section 2 can still lead to verbose outputs and non-verbal artifacts such as
lists (in red). Even if this prompt gets consistent results, occupying many tokens as part of the input is impractical.

3 Adapting ITLMs for Speech213

Current ITLMs are trained with supervised fine-214

tuning using instruction datasets collected as text215

input-output pairs and further fine-tuned through216

RLHF with preference data collected using pairs217

of text responses. ITLMs that result from this pro-218

cedure already follow instructions well, but as il-219

lustrated in Section 2.2, they generate suboptimal220

responses for spoken interactions. Therefore, we221

conjecture that adapting to the spoken domain re-222

quires a primarily stylistic change, rather than a223

fundamental improvement in the capabilities of the224

underlying model.225

3.1 Is prompt engineering sufficient?226

Improving speech-suitability by prompting is non-227

trivial because speech-suitability covers multiple228

dimensions and lacks a one-size-fits-all definition.229

Even if such a definition could be composed in230

a simple prompt, even SOTA ITLMs like GPT-4231

do not consistently follow these guidelines. For232

example, even with a detailed prompt shown in233

Table 4 that embeds principles from Section 2,234

GPT-4 reverts to generating verbose responses and235

non-verbal artifacts (e.g. lists and parentheses),236

especially in subsequent conversational turns. In237

addition, it is inefficient to prepend such a long238

sequence of text each time a response is generated.239

Given the ambiguities of speech-suitability, we240

elected to use RLHF with a reward model trained241

on preference data collected using spoken response242

pairs. An overview of our adaptation methodology243

is shown in Figure 2. Our approach is similar to244

standard RLHF with the exception that we 1) skip 245

supervised finetuning to minimize annotation costs 246

and compute demand and 2) use fewer preference 247

annotations than comparable works to minimize 248

the cost of developing our reward model. 249

3.2 Sampling responses 250

As we would like to solely rely on preference data, 251

it is important to carefully compile the samples 252

we will collect preferences with. Trying to sample 253

responses to collect preference data to train a re- 254

ward model that captures speech-suitability from 255

the base ITLM would be inefficient as both sam- 256

pled responses paired for comparison will likely be 257

similarly poor. Therefore, the resulting preference 258

annotation will provide little signal for the reward 259

model to learn from. Instead, we need a reward 260

model that observes a wider variety of responses 261

of style to pick up various indications of which is 262

suitable for speech, given the user prompt. 263

As a result, we empirically compile a set of sys- 264

tem prompts that will lead to a diverse set of re- 265

sponses, rather than just directly letting the model 266

generate response without a system prompt or a 267

constant system prompt. The system prompts ask 268

the ITLM to generate responses that follow the 269

insights from Section 2.2 with varying levels of 270

detail on desiderata of an speech-suitable response. 271

We share the full set of system prompts that we 272

use and the process for devising them in Appendix 273

B. Lastly, to further diversify the set of responses 274

and thus enhance the generalizability of the reward 275

model, we pair these system prompts with various 276
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Figure 2: Method overview. Since we only have an approximate idea of what makes a good spoken response, we
first compile a set of system prompts intended to vary the speech suitability of generated responses. We sample a
pair to generate responses from various ITLMs to further diversify responses, transform them to speech with a TTS
service, and human annotators rank their preferences after listening to them. The preference data is used to train a
reward model, which is used for the reinforcement learning step, where we use PPO.

base ITLMs, which are Falcon Instruct 7B (Al-277

mazrouei et al., 2023), GPT-4, and GPT-3.5. In278

addition, we also adjust the decoding temperature279

from 0.7, 1.0, and 1.3. We include the reference280

response from the original dataset as well, and this281

yields a total of 37 configurations (4× 3× 3 + 1).282

By choosing two out of these 37 configurations, we283

have 666 possible combinations.284

Using these configurations, we generate sample285

responses for the filtered user prompts from Dolly-286

15K described in Section 2.2. To collect a diverse287

set of both user prompts that the reward model will288

see, we use 9K user prompts and cycle through289

them with the 666 combinations to generate 40K290

responses, which result in 20K preference pairs.291

The remaining 2K user prompts are later used for292

evaluation.293

3.3 Annotating speech-based preferences294

Annotators are only able to listen to the user prompt295

and the responses. They are only able to see the sur-296

vey to indicate their preferences only after listening297

to everything. The order in which the responses298

are shown are randomized so that we minimize any299

bias that may be introduced due to the order in300

which the responses are listened to. The preference301

annotation interface is shown in Figure 7 and the302

guidelines for annotations are shown in Figure 6.303

Similar to Touvron et al. (2023), annotators are304

forced to choose one response over another with305

the following choices: significantly better, slightly306

better, and negligibly better. In addition, we ask307

for a brief explanation for their choice, mainly for308

quality control purposes. An interesting future av- 309

enue would be leverage these explanations to train 310

either a more accurate reward model or one more 311

efficiently with fewer samples. 312

Before inviting annotators to a larger batch of 313

annotations, each annotator was asked to complete 314

10 annotations, which were manually evaluated for 315

consistency and accuracy according to the given 316

guidelines. If their annotations were reliable, they 317

were invited to a larger batch for which quality 318

was monitored on a small sample for every 100 319

annotations that were completed. If not, we pro- 320

vided feedback to the annotators and asked them 321

to do another 10, repeating this process until the 322

annotations met our standards. 323

We pay our annotators an hourly wage that ex- 324

ceeds the minimum wage from where this study 325

was conducted.2 We had a total of 71 unique anno- 326

tators participate in these annotations. 327

3.4 Reward modeling and reinforcement 328

learning with human feedback 329

In order to perform RLHF, we train a reward 330

model that generates a scalar score for speech- 331

suitability given a single user prompt and response 332

pair. We add a single projection layer to a GPT- 333

J 6B model (Wang and Komatsuzaki, 2021) and 334

train with the pairwise binary ranking loss (Ouyang 335

et al., 2022): 336

Lranking = −log(σ(rθ(x, yc))− rθ(x, yr))

2Details hidden for anonymity.
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where rθ(x, y) is the reward model’s score for337

the user prompt x and the generated response y,338

given model weight θ. yc is the response chosen339

by the annotator and yr is the rejected one. We340

take a 9:1 split with our preference data for training341

and evaluation and use early stopping on the eval-342

uation set to determine the best model to use for343

reinforcement learning. Our best performing model344

achieved an accuracy of 64.5% on the evaluation345

set, which is similar to the reward model accuracies346

reported by Touvron et al. (2023) and highlights347

that determining speech-based preference is not an348

easy task.349

For the RLHF step, we use proximal policy opti-350

mization (PPO) (Schulman et al., 2017). The only351

difference with regular PPO is that we give it a con-352

stant system prompt “You are a helpful, respectful353

and honest speech assistant.”354

4 Experimental Setup355

4.1 Model356

We use the Falcon Instruct 7B model (Almazrouei357

et al., 2023) as our base model to perform our adap-358

tation process described in Section 3. We choose359

this model because at the time of this study, it was360

the ITLM with the most permissive license and361

had one of the strongest performance on various362

LLM evaluation benchmarks. We denote the result-363

ing model that is finetuned from Falcon Instruct364

7B with RLHF using our custom audio-preference365

reward model as SpeechFalcon.366

4.2 Data367

The user prompts that we use for sampling re-368

sponses for preference annotations and the RLHF369

step are from the filtered version of Dolly-370

15K (Conover et al., 2023), described in Section371

2.2. This instruction dataset does not have a prede-372

fined train-test split. Instead, it partitions the user373

prompts into eight categories, which make it conve-374

nient to filter out user prompts that are unrealistic375

in a speech-based interactions. It is one of the first376

open source, human-generated instruction dataset377

with a permissive creative commons license.378

4.3 Baselines379

We compare our speech-adapted model from Sec-380

tion 4.1 with the following baselines:381

• Base ITLM: directly generating response from382

LM without any specific system prompts.383

• Prompted ITLM: responses generated using 384

system prompts that provide detailed guidance 385

on what a suitable speech prompt is. We use 386

our most detailed system prompt shown in 387

Table 4. 388

• Original response: the original human-written 389

response from the Dolly-15K dataset. 390

For Base ITLM and Prompted ITLM, 391

we use the same Falcon Instruct 7B model 392

from Section 4.1. We also compare against 393

GPT-3.5 (gpt-3.5-turbo-0613) and GPT-4 394

(gpt-4-0613) and their Pompted versions to 395

compare with state-of-the-art ITLMs. Our goal 396

is for SpeechFalcon trained with the methodology 397

described in Section 3 to generate responses that 398

are more frequently preferred than those by its base 399

(Falcon Instruct) and prompted counterparts (Fal- 400

con Instruct + Prompt) in a speech setting. 401

4.4 Evaluation 402

We evaluate SpeechFalcon against baselines with 403

both human evaluation and automatic evaluation. 404

Similar to the human evaluation in Zhou et al. 405

(2023), we perform a head-to-head comparison of 406

responses from SpeechFalcon to those of each base- 407

line with the same setup as the preference annota- 408

tions, described in Section 3.3. Evaluators listen 409

to two responses in random order without know- 410

ing their corresponding models and then indicate 411

which they prefer and briefly explain why. ‘Sig- 412

nificantly better’ and ‘Slightly better’ choices are 413

used to determine win or loss, while ‘Negligibly 414

better’ is considered a tie. They are also asked to 415

indicate if each response contains false information, 416

which is later used to control for differences in base 417

model’s performance when comparing speech suit- 418

ability (Section 5.1). SpeechFalcon is compared 419

to each baseline with 140 response pairs generated 420

with prompts not seen during RLHF training and 421

validation, which are from the test set described in 422

Section 3.2. 423

For automatic evaluation, we examine factors 424

related to listenability, sentence complexity, and 425

length. For listenability, we measure the Flesch 426

Reading Ease score, which examines the readabil- 427

ity of some text. It is a function of the number 428

of syllables within each sentence and it is known 429

to be highly correlated with listenability (Chall 430

and Dial, 1948; Fang, 1966; Messerklinger, 2006; 431

Kotani et al., 2014). To quantify sentence complex- 432
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Figure 3: SpeechFalcon’s head-to-head human evalua-
tion results with its directly comparable baselines listed
in Section 4.3. A higher win rate vs. loss rate means
that SpeechFalcon more frequently generates responses
preferred in the speech setting.

ity, we use SpaCy’s dependency parser3 and mea-433

sure the depth of the resulting dependency graph.434

For length, we simply use white space to split sen-435

tences into words and count the total number of436

words.437

4.5 Implementation details438

For training our reward model and finetuning Fal-439

con Instruct 7B with RLHF, we use 8 A100 GPUs.440

We use the RLHF implementation from trlx441

repo4 and use the default hyperparameters for both442

reward modeling and PPO.443

5 Experimental Results and Analysis444

5.1 Human evaluation445

SpeechFalcon improves over in generating446

speech-suitable responses. Human evaluation447

results are shown in Figure 3, which show the448

win, loss, and tie rate when comparing Speech-449

Falcon to Falcon Instruct and a prompted Falcon450

). The most important comparisons in Figure 3451

are those with Falcon Instruct, the base model, and452

Prompted Falcon Instruct, which is the counterpart453

prompted with the detailed system prompt from Ta-454

ble 4. Compared to both of these baselines, we see455

that the win rate is higher than the loss rate, mean-456

ing that SpeechFalcon is able to attain meaningful457

improvements for speech-based responses.458

Another important comparison is compared to459

the reference response, the original response con-460

tained in the instruction dataset that was collected461

with in text. SpeechFalcon falls short compared to462

the reference response, but not as much compared463

to the GPT baselines. Upon examining the com-464

parison results with the GPT baselines, we found465

that in many cases the Falcon-based models fre-466

quently generated false information (hallucination)467

3https://spacy.io/api/dependencyparser
4https://github.com/CarperAI/trlx

Figure 4: SpeechFalcon’s head-to-head human evalua-
tion results against the original human-written response
and GPT-based models, controlled for response factu-
ality. Only cases where responses were both true or
both false were considered to make a fairer compari-
son between different base ITLM models to isolate the
analysis to speech-suitability. This table takes the same
format as Figure 3.

Model Length Comprehensibility

FRE ↑ DD ↓

Reference 58.66.1 61.72.5 5.80.2

Falcon Instruct 38.32.6 65.21.8 5.40.1

Prompted Falcon Instruct 40.82.3 64.21.7 5.60.1

SpeechFalcon 31.91.4 70.91.8 5.90.1

GPT-3.5 125.48.8 58.81.4 6.10.1

Prompted GPT-3.5 38.02.3 71.31.3 5.80.1

GPT-4 118.88.0 60.71.2 5.90.1

Prompted GPT-4 49.81.8 68.71.1 6.00.1

Table 5: Automatic evaluation results. FRE: Flesch
Reading Ease, DD: Dependency Depth. SpeechFal-
con generate shorter responses with higher readability
and sentence structure complexity than other Falcon
baselines.

and this was indicated as the reasons for losing in 468

a head-to-head comparison with other baselines. 469

SpeechFalcon is preferred to the original re- 470

sponse but falls short of responses from larger 471

black-box models. Since factuality significantly 472

influences the annotator’s preference, we control 473

for this factor that varies between models and 474

strongly favors models (Ouyang et al., 2022) by fil- 475

tering out comparisons results where either one of 476

the compared responses contain false information. 477

This filter results in about 80 comparisons per pair. 478

The factuality-controlled results are shown in Fig- 479

ure 4 and we see significant boosts in the win rate 480

for SpeechFalcon against the GPT baselines and 481

also the original response. SpeechFalcon is able 482

to achieve a higher win rate than loss rate against 483

the original response, and the win rate against GPT 484

baselines increase on average by 13.5%, but it is 485

still lower than the loss rate. 486
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5.2 Automatic evaluation487

RLHF with speech-based preference data lead488

to shorter responses and higher listenability.489

The automatic evaluation results are shown in490

Table 5. One of the most notable changes for491

SpeechFalcon compared to other Falcon baselines492

is the shorter response length and higher readabil-493

ity, which corresponds to higher listenability. It494

achieves a high listenability score that is only sec-495

ond to Prompted GPT-3.5 by a statistically insignif-496

icant margin. Sentence complexity, measured by497

dependency depth, varies only little for all baselines498

except for the base Falcon Instruct, which achieves499

the lowest average depth. Beyond comparisons500

between Falcon-based models, we observe that501

length and readability are important factors as GPT-502

baselines with higher win rates generate shorter503

responses and have higher readability scores. None504

of the rankings provided by each of these automatic505

metrics match with the win rate ranking against506

SpeechFalcon from Figure 3 or Figure 4. There-507

fore, these metrics mostly serve as an analytical508

tool that show that determining responses preferred509

in speech is a complex task that must consider vari-510

ous factors.511

6 Related work512

6.1 Language models and speech513

Language models have been widely adopted for514

modular components of a voice assistant, mainly515

for automatic speech recognition (Yu and Deng,516

2016; Wang et al., 2020; Chiu et al., 2018), re-517

sponse generation (Cho and May, 2020; Zhou et al.,518

2022; Liu et al., 2023), response selection (Humeau519

et al., 2019; Gao et al., 2020; Cho et al., 2021), and520

speech synthesis (Tan et al., 2022; Wang et al.,521

2017; Le et al., 2023). While speech synthesis fo-522

cuses on how to translate text to speech such that523

it sounds natural, our work explores how to best524

compose the response itself for speech-based in-525

teractions. More similar in context to our work,526

Mousavi et al. (2024) explores whether LMs are527

robust to speech-based interactions by analyzing528

their robustness to input that include ASR errors.529

Another line of research is concerned with de-530

veloping multi-modal ITLMs that can process both531

speech and text input (Huang et al., 2023). Zhang532

et al. (2023) trains a GPT-based model called533

SpeechGPT with both speech data and text data534

such that it does not requiring additional ASR or535

TTS systems. However, this line of work also over-536

looks on how we should compose responses that 537

are delivered as speech. 538

6.2 Fine-tuning LMs 539

While the paradigm of pre-training and then fine- 540

tuning has become the defacto status quo, there 541

is still active research in how to go about fine- 542

tuning to get the best results and do it efficiently. 543

Among these efforts, fine-tuning pretrained LMs to 544

become ITLM s has been one of the most active 545

research areas recently. One of the central methods 546

for training ITLM s is RLHF, which is a process 547

of finetuning models with reinforcement learning 548

via scores from reward models trained on human 549

preference data (Bai et al., 2022; Ethayarajh et al., 550

2022; Ouyang et al., 2022; Touvron et al., 2023). 551

RLHF is a relatively recent algorithm for which 552

there are still many open questions, such as which 553

reinforcement learning algorithm is the most effec- 554

tive, how much SFT data and preference data is 555

necessary for RLHF to work, and whether other 556

forms of data can help train more generalizable 557

reward models. Our work sheds some light into 558

the minimum scale of data required for RLHF and 559

how to train a generalizable reward model by more 560

aggressively sampling for a diverse set of responses 561

that go beyond decoding temperature variations. 562

7 Conclusion 563

We explore an important yet overlooked challenge 564

of adapting instruction-following language models 565

to compose responses that are specifically designed 566

to be verbalized, i.e. speech-suitable. With rules- 567

of-thumb of the radio industry and through our sur- 568

veys that ask compare the suitability of a response 569

for both text and audio, we establish that adap- 570

tations for speech-suitable responses is necessary. 571

Therefore, we fine-tune models to generate speech- 572

suitable responses by aligning them with human 573

preferences collected with responses directly pre- 574

sented through speech. We show through both 575

human and automatic evaluations that our model 576

fine-tuned with RLHF using our speech-based pref- 577

erence data outperforms the reference responses 578

and its carefully prompted counterparts. Our work 579

has focused on single-turn interactions and the con- 580

tent of the responses, and we hope to expand this 581

investigation for multi-turn interactions and the 582

acoustic aspect of speech-suitability. 583
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Limitations584

In this work, we focused on what ITLMs should585

generate for responses that will be delivered via586

speech. However, we recognize that another inter-587

esting line of research is how the response should588

be delivered, where factors related to speech, such589

as timber, pitch, and speed, are important. In ad-590

dition, our examination is focused on single-turn591

interactions, but another intriguing realistic dimen-592

sion to suitability of a response in speech is multi-593

turn interactions. It would be interesting to com-594

pare the effect of delivering information at various595

granularities and how different types of follow-up596

questions on the user experience with a ITLMs in597

speech-based interactions. We leave these lines of598

research to future work.599

Broader Impact600

Since those who cannot read due to illiteracy or601

blindness rely on voice assistants to interface with602

modern technology, expanding their capabilities603

can directly lead to improvements in their standard604

of living. However, current voice assistants are605

not as generally useful as current state-of-the-art606

ITLMs. The likes of Siri and Alexa tend to fulfill607

simple routine tasks and are brittle when facing608

complex requests. Therefore, adopting ITLMs as609

the main backbones of voice assistants and adapt-610

ing them to become suitable to interface through611

voice and can significantly increase the accessibil-612

ity for these people to the powerful capabilities of613

ITLMs.614
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Appendix 880

A Annotation interface and guidelines 881

The annotation interface for text vs. voice anno- 882

tations is shown in Figure 5. The instructions for 883

annotating is shown in Figure 6. The interface for 884

audio preference annotations are shown in Figure 7. 885

B System prompts 886

Our set of system prompts are presented in Table 6. 887
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Figure 5: Left: suitability annotation interface for text. Right: suitablity annotation interface for audio. The same set
of survey questions are asked in both cases and only the modality of the user prompt and responses are different.
Note that each annotator complete a pair of both text and audio tasks so that we collect results that are better
calibrated.

Figure 6: Instructions for preference annotations with responses provided as audio.
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Figure 7: Audio preference annotation interface. The left pane contains the user prompt and two responses. The
right side contains the survey that appears after the annotator listens to both responses. The annotators actually do
not see the text and is only available for the task distributors when monitoring completed tasks. The actual view of
the annotators are the same as the right side of Figure 5.
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Prompt name Prompt

Simple You are a helpful, respectful and honest voice assistant.

Medium You are a helpful, respectful and honest voice assistant. Make your
responses colloquial and compact. Avoid any artifacts that cannot be
vocalized.

Easy You are a helpful, respectful, and honest voice assistant. Your response
should use simple vocabulary and sentence structures so that it is easy to
understand and such that it is below a 5th grade reading level.

Detailed You are a helpful, respectful and honest speech assistant. Keep your
response compact without missing key information and make it suitable for
speech such that it can be easily verbalized by a text-to-speech system.
Your response should use simple vocabulary and sentence structures. Avoid
jargon, hyphenated adjectives, excessive alliteration, and tongue twisters.
It should not contain parentheses, numbered or bullet lists, and anything
else that cannot be verbalized. If the answer requires multiple steps or a
list, provide only the first 3-5 and ask if the user is ready to move on to
the next steps or know more.

Table 6: The set of system prompts that we use in Section 3.2
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