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Abstract

Current instruction and human preference data
do not represent speech-based human prefer-
ences because they are almost exclusively col-
lected with a text interface. Hence, instruction-
tuned language models (ITLM) trained with
this data are suboptimal for generating re-
sponses suitable for transforming with text-
to-speech systems, yet voice assistants such
as Google Assistant or Amazon Alexa are in-
creasingly relying on these responses as di-
rect responses to user queries. We first em-
pirically demonstrate that current ITLMs are
suboptimal due to the shift in modality from
text to speech. Then, we address their sub-
optimality by finetuning with preference an-
notations that are collected by having annota-
tors listen to response pairs and thus accurately
reflect their speech-based preferences. With
only 20K speech-based preference annotations,
we develop a speech-centric instruction-tuned
language model by finetuning Falcon-Instruct
7B with reinforcement learning with human
feedback. Our finetuned model, SpeechFal-
con, generates responses that are on average
4.8% more frequently preferred than those from
the base model and its prompted counterpart
and 19.7% more frequently preferred than the
human-written responses from the original in-
struction dataset when controlled for factuality.

1 Introduction

Instruction-tuned language models (ITLM) are fine-
tuned large language models (LLMs) that follow
instructions and they have gained prominence due
to their broad applicability in accomplishing tasks
without explicit supervision (Brown et al., 2020;
Rae et al., 2021; Lieber et al., 2021; Hoffmann
et al., 2022). However, speech-based interactions
have been largely overlooked in this context, de-
spite being a core factor that predates text and hu-
manizes intelligent systems (Yang, 2004). While
prior works have examined the ability of ITLMs

’3 User’s query: How can | make cream of mushroom soup?

Preferred response for text ) | Preferred response for audio @A

Certainly! Making cream of To make cream of mushroom
mushroom soup is a delicious soup, you'll need mushrooms,
and comforting process. Here's a| onion, butter, flour, salt, and
simple recipe for you: pepper.
Ingredients: Are you ready to move on with
e 1/4 cup unsalted butter
e ... [9 more items]
Instructions:
1. In a large pot, melt the butter
over medium heat.
2. ... [9 more steps]

the steps?

Enjoy your homemade cream of
mushroom soup! Feel free to add
other spices to suit your taste.

o0 )

Figure 1: Current instruction-tuned language models
tend to be verbose and generate complex sentences and
non-verbal writing devices, such as bullet lists or paren-
theses, that are not suitable for speech-based interactions
(left). Speech is serial and transient, and therefore con-
cise and simple yet informative sentences are preferred
(right).

to recognize speech (Hori et al., 2018; Chiu et al.,
2018), synthesize speech (Wang et al., 2017), or
correct speech recognition errors (Mousavi et al.,
2024), far less attention has been paid to how suit-
able the content of the response is when spoken.
Identifying and increasing the "speech-suitability"
of ITLM-generated content — the main focus of this
work — is critical to the development of equitable
digital assistants as ITLMs become the backbone
of such systems today (Nass and Brave, 2005).

Speech as a second-class citizen stems from
training ITLMs with textual instruction-following
datasets (Peng et al., 2023; Chung et al., 2022;
Wang et al., 2022a,b; Wei et al., 2021; Sanh et al.,
2022; Zhou et al., 2023) and preference annota-
tions between text pairs (Bai et al., 2022; Etha-
yarajh et al., 2022; Ouyang et al., 2022; Touvron
et al., 2023) to optimize for human preferences.



Responses that maximize human preference in text
may—and intuitively, should—be different from
those that do the same for speech. For example,
verbosity and complex vocabulary may be less im-
portant in text because users can reread content that
is difficult to understand. Speech, however, is in-
herently serial and transient; users cannot as freely
or easily navigate spoken content. Additionally,
formats that are preferred in the text domain, such
as bulleted lists, code blocks, and math formulas,
are incomprehensible when spoken (Kern, 2008;
Abel, 2015; Dowling and Miller, 2019; Kolodzy,
2012).

The current emphasis on text for ITLM de-
velopment together with the unique constraints
of the audio domain result in ITLMs that are
poorly optimized for spoken dialogue. For in-
stance, ITLMs that are optimized for helpfulness
using RLHF consistently produce more verbose
outputs (Prasann Singhal, 2023). As illustrated in
Figure 1, in which the top response is detailed,
lengthy, and contains abundant lists and paren-
theses, this verbosity is likely to have a negative
impact on listener preference. To create “speech-
suitable” ITLMs—i.e. those optimized for listener
preference—such as the one shown in bottom re-
sponse of Figure 1, we develop alignment efforts
specifically for speech.

First, we conduct an extensive survey of spoken
ITLM responses, which verifies that the responses
of current ITLMs are ill-suited to the spoken do-
main. Our survey additionally characterizes vari-
ation in multiple dimensions of response quality
between audio and text responses, finding current
text responses are considered to be too lengthy,
contain too much information, and are generally
difficult to understand when spoken.

Next, we explore aligning ITLMs for speech
interactions through prompt engineering (Lester
et al., 2021) and RLHF (Stiennon et al., 2020;
Bai et al., 2022). To develop a reward model
for RLHF, we collect extensive preference anno-
tations by presenting annotators with spoken re-
sponse pairs, a first to the best of our knowledge.
In addition, for efficient RLHF, we use a set of
system prompts inspired by rules-of-thumb from
the radio industry (Kern, 2008; Abel, 2015), pod-
casting (Dowling and Miller, 2019), multimedia
journalism (Kolodzy, 2012), and relevant literature
on listenability (Chall and Dial, 1948; Fang, 1966;
Messerklinger, 2006; Kotani et al., 2014) to gener-

ate sample responses that span varying degrees of
speech-suitability for our preference annotations.
Lastly, we conduct human and automatic evalua-
tions on our speech-aligned model and find that it
outperforms both the base model and its prompt
engineered version.

In summary, our main contributions are the fol-
lowing:

* To the best of our knowledge, we are the
first work to examine the suitabilty of ITLM-
generated content for speech-based interac-
tions.

* We establish that current ITLM responses are
not optimized for speech and that this adapta-
tion is not trivially achieved through prompt
engineering.

* We collect 20K speech-based preference an-
notations that span varying degrees of speech-
suitability.

* We finetune a ITLM to generate speech-
suitable responses via RLHF using sampled
responses.

2 Instruction-tuned Language Model
Responses Are Not Suitable for Speech

2.1 Lessons from audio-based media

We initiate our research with the key questions
“Are ITLM responses that were suitable in text also
suitable when spoken?” and “If not, how should
spoken responses be different?”. Kern (2008) and
Abel (2015) provide a glimpse to the answers for
these questions by illustrating numerous examples
of how news reporting and storytelling in text dif-
fers from audio. Through decades of radio experi-
ence, they establish a set of rules-of-thumb to abide
by when delivering information through audio as
opposed to text.

Some of these rules-of-thumb that generalize
beyond news reporting include (i) use simple sen-
tence structures: alloting a sentence to each idea
and putting the subject at the beginning as much
as possible; (i7) do not use atypical syntax, such
as “President Bush today told members of congress”
and “I today went shopping”; (iii) avoid hyphen-
ated adjectives (e.g. mineral-rich, tech-heavy); (iv)
avoid too many names and numbers; and other mi-
nor ones such as (v) avoid tongue twisters and (vi)
avoid too much alliteration. Similar principles are



Category Prompt

Factual QA Why can camels survive for long without water?
Kept Brainstorming Give me some ideas to manage my manager

Advice How do I start running?

Creative Writing  Write a scene between two actors discussing movie Inception.
Removed Summarization Summarize in one sentence this article about a famous song. {article}

Info. Extraction

Provide a list of all numbers mentioned and what they represent: {context}

Table 1: Examples of speech-suitable prompts that are kept and removed from Dolly-15K for evaluation and
response sampling. Removed user prompts are those that are unlikely to be asked in a speech-based setting.

- Score

Criteria 0 1 2

Helpfulness Not helpful Somewhat helpful Helpful
Relevance Not relevant Somewhat relevant ~ Relevant
Accuracy Not accurate  Contains minor errors ~ Accurate
Informative. Too little/much Fair Good
Length Too short/long Short/Long  Adequate
Understand. Difficult Fair Easy

Table 2: We evaluate each response with various di-
mensions of speech-suitability using a 3 point Likert
scale mapped from O to 2. Evaluation results with these
dimensions for responses delivered in text and audio are
shown in Table 3.

echoed for podcasting (Dowling and Miller, 2019),
multimedia journalism (Kolodzy, 2012), and liter-
ature on listenability (Chall and Dial, 1948; Fang,
1966; Messerklinger, 2006).

2.2 Text vs. speech for ITLMs

Optimization of speech-based interactions with
ITLMs may not share the same principles as those
suggested for radio news or podcasts. Therefore,
we verify whether such discrepancies in text versus
speech also apply for ITLM interactions.

First, we filtered the Dolly-15K dataset (Conover
et al., 2023) for user prompts that are relevant to
a speech-based interaction. We remove prompts
that require an accompanying reference text as
well as those that explicitly ask for code or sim-
ilarly unlikely-to-be-spoken requests. Categories
of user prompts that are kept and removed and
their respective examples are shown in Table 1.
This results in 11K user-prompt and response pairs,
from which we randomly sampled 80 prompts. Re-
sponses to these prompts were generated using
GPT-4 (gpt-4-0613) and converted to spoken
language using Amazon Polly', a text-to-speech
(TTS) API. Each responses was evaluated by three
different annotators, resulting in a total of 240 anno-
tations completed by 22 unique annotators. Since

"https://aws.amazon.com/polly/

Rel. Help. Correct. Inform. Len. Under.
Text 198 1.95 1.97 172 1.70 1.84
Audio 2.00 1.95 1.99 1.59T  1.44% 1.77

Table 3: Comparison between text and audio responses
indicate the need to reduce excess information, decrease
length, and enhance how easy the response is to com-
prehend when spoken. T and ¥ indicates a statistically
significant drop compared to text results with a pairwise
t-test at p < 0.05 and p < 0.01, respectively.

we are measuring speech-based preferences, the an-
notators can only listen to the response. We share
more details and illustrations of the annotation in-
terface in Appendix A.

Following current practice in evaluating a
ITLM’s response, we ask annotators to indicate
the helpfulness, accuracy, and relevance fo the re-
sponse (Ouyang et al., 2022; Zhao et al., 2022).
In addition, we ask how suitable the responses are
in terms of its verbosity (length), amount of infor-
mation (informativeness), and ease of comprehen-
sion (understandability). Each of these criteria is
measured using a three-point Likert scale that is
mapped to scores ranging from 0 to 2, which is
shown in Table 2. Note that informativeness and
length have multiple options such as ‘too little’ or
‘too much’ correspond to the same score as we treat
them as equally undesirable.

From the annotation results in Table 3, we ob-
serve that preferences for relevance, helpfulness,
and correctness do not significantly differ depend-
ing on the modality. However, the amount of infor-
mation and length are considered less suitable for
speech. We additionally observe a mild decrease in
the understandability of spoken responses. We hy-
pothesize that making LM responses terser, contain
less information in general, and easier to compre-
hend in general will increase the suitability of LMs
for speech.



System Prompt

You are a helpful, respectful and honest speech assistant.

Keep your

response compact without missing key information and make it suitable for
speech such that it can be easily verbalized by a text-to-speech system.

Your response should use simple vocabulary and sentence structures.

jargon, hyphenated adjectives, excessive alliteration, and tongue twisters.

Avoid

It should not contain parentheses, numbered or bullet lists, and anything

else that cannot be verbalized.

If the answer requires multiple steps or a

list, provide only the first 3-5 and ask if the user is ready to move on to

the next steps or know more.

User Prompt

Why can camels survive for long without water?

GPT-4 Response
adaptations.

Camels can survive for a long time without water because of several unique
1.They can lose a large amount of their body weight in

water without harm, while most animals can only lose a small percentage.
2.Camels can rehydrate very quickly, drinking up to 30 gallons of water in

just 13 minutes.

about any of these points?

3.Their bodies have a special way to store fat in their
humps, which helps to minimize water loss.

Would you like to know more

Table 4: Relying on GPT-4 with a detailed system prompt iteratively determined to get most consistent speech-
suitable results according to findings from Section 2 can still lead to verbose outputs and non-verbal artifacts such as
lists (in red). Even if this prompt gets consistent results, occupying many tokens as part of the input is impractical.

3 Adapting ITLMs for Speech

Current ITLMs are trained with supervised fine-
tuning using instruction datasets collected as text
input-output pairs and further fine-tuned through
RLHF with preference data collected using pairs
of text responses. ITLMs that result from this pro-
cedure already follow instructions well, but as il-
lustrated in Section 2.2, they generate suboptimal
responses for spoken interactions. Therefore, we
conjecture that adapting to the spoken domain re-
quires a primarily stylistic change, rather than a
fundamental improvement in the capabilities of the
underlying model.

3.1 Is prompt engineering sufficient?

Improving speech-suitability by prompting is non-
trivial because speech-suitability covers multiple
dimensions and lacks a one-size-fits-all definition.
Even if such a definition could be composed in
a simple prompt, even SOTA ITLMs like GPT-4
do not consistently follow these guidelines. For
example, even with a detailed prompt shown in
Table 4 that embeds principles from Section 2,
GPT-4 reverts to generating verbose responses and
non-verbal artifacts (e.g. lists and parentheses),
especially in subsequent conversational turns. In
addition, it is inefficient to prepend such a long
sequence of text each time a response is generated.

Given the ambiguities of speech-suitability, we
elected to use RLHF with a reward model trained
on preference data collected using spoken response
pairs. An overview of our adaptation methodology
is shown in Figure 2. Our approach is similar to

standard RLHF with the exception that we 1) skip
supervised finetuning to minimize annotation costs
and compute demand and 2) use fewer preference
annotations than comparable works to minimize
the cost of developing our reward model.

3.2 Sampling responses

As we would like to solely rely on preference data,
it is important to carefully compile the samples
we will collect preferences with. Trying to sample
responses to collect preference data to train a re-
ward model that captures speech-suitability from
the base ITLM would be inefficient as both sam-
pled responses paired for comparison will likely be
similarly poor. Therefore, the resulting preference
annotation will provide little signal for the reward
model to learn from. Instead, we need a reward
model that observes a wider variety of responses
of style to pick up various indications of which is
suitable for speech, given the user prompt.

As a result, we empirically compile a set of sys-
tem prompts that will lead to a diverse set of re-
sponses, rather than just directly letting the model
generate response without a system prompt or a
constant system prompt. The system prompts ask
the ITLM to generate responses that follow the
insights from Section 2.2 with varying levels of
detail on desiderata of an speech-suitable response.

We share the full set of system prompts that we
use and the process for devising them in Appendix
B. Lastly, to further diversify the set of responses
and thus enhance the generalizability of the reward
model, we pair these system prompts with various



Varying amount of guidance on speech
suitability, darker is more specific

Response sampling &
Preference annotations
System Prompts

System prompt 1

System prompt 2

User prompts for RLHF

“You are a helpful, respectful and honest

speech assistant.” User prompt

ITLMs
User prompts for Reward modeling Annotate
S &
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ITLM 1 & Response 1
User prompt TTS
ITLM 2 & Response 2 X
Score
Train
Target ITLM -/ Response Reward model

Figure 2: Method overview. Since we only have an approximate idea of what makes a good spoken response, we
first compile a set of system prompts intended to vary the speech suitability of generated responses. We sample a
pair to generate responses from various ITLMs to further diversify responses, transform them to speech with a TTS
service, and human annotators rank their preferences after listening to them. The preference data is used to train a
reward model, which is used for the reinforcement learning step, where we use PPO.

base ITLMs, which are Falcon Instruct 7B (Al-
mazrouei et al., 2023), GPT-4, and GPT-3.5. In
addition, we also adjust the decoding temperature
from 0.7, 1.0, and 1.3. We include the reference
response from the original dataset as well, and this
yields a total of 37 configurations (4 x 3 x 3 + 1).
By choosing two out of these 37 configurations, we
have 666 possible combinations.

Using these configurations, we generate sample
responses for the filtered user prompts from Dolly-
15K described in Section 2.2. To collect a diverse
set of both user prompts that the reward model will
see, we use 9K user prompts and cycle through
them with the 666 combinations to generate 40K
responses, which result in 20K preference pairs.
The remaining 2K user prompts are later used for
evaluation.

3.3 Annotating speech-based preferences

Annotators are only able to listen to the user prompt
and the responses. They are only able to see the sur-
vey to indicate their preferences only after listening
to everything. The order in which the responses
are shown are randomized so that we minimize any
bias that may be introduced due to the order in
which the responses are listened to. The preference
annotation interface is shown in Figure 7 and the
guidelines for annotations are shown in Figure 6.
Similar to Touvron et al. (2023), annotators are
forced to choose one response over another with
the following choices: significantly better, slightly
better, and negligibly better. In addition, we ask
for a brief explanation for their choice, mainly for

quality control purposes. An interesting future av-
enue would be leverage these explanations to train
either a more accurate reward model or one more
efficiently with fewer samples.

Before inviting annotators to a larger batch of
annotations, each annotator was asked to complete
10 annotations, which were manually evaluated for
consistency and accuracy according to the given
guidelines. If their annotations were reliable, they
were invited to a larger batch for which quality
was monitored on a small sample for every 100
annotations that were completed. If not, we pro-
vided feedback to the annotators and asked them
to do another 10, repeating this process until the
annotations met our standards.

We pay our annotators an hourly wage that ex-
ceeds the minimum wage from where this study
was conducted.” We had a total of 71 unique anno-
tators participate in these annotations.

3.4 Reward modeling and reinforcement
learning with human feedback

In order to perform RLHF, we train a reward
model that generates a scalar score for speech-
suitability given a single user prompt and response
pair. We add a single projection layer to a GPT-
J 6B model (Wang and Komatsuzaki, 2021) and
train with the pairwise binary ranking loss (Ouyang
et al., 2022):

Lranking = —log(a(rg(x, yc)> - 7‘9(56’ yr))

"Details hidden for anonymity.



where 7y (z,y) is the reward model’s score for
the user prompt x and the generated response vy,
given model weight 6. . is the response chosen
by the annotator and y, is the rejected one. We
take a 9:1 split with our preference data for training
and evaluation and use early stopping on the eval-
uation set to determine the best model to use for
reinforcement learning. Our best performing model
achieved an accuracy of 64.5% on the evaluation
set, which is similar to the reward model accuracies
reported by Touvron et al. (2023) and highlights
that determining speech-based preference is not an
easy task.

For the RLHF step, we use proximal policy opti-
mization (PPO) (Schulman et al., 2017). The only
difference with regular PPO is that we give it a con-
stant system prompt “You are a helpful, respectful
and honest speech assistant.”

4 Experimental Setup
4.1 Model

We use the Falcon Instruct 7B model (Almazrouei
et al., 2023) as our base model to perform our adap-
tation process described in Section 3. We choose
this model because at the time of this study, it was
the ITLM with the most permissive license and
had one of the strongest performance on various
LLM evaluation benchmarks. We denote the result-
ing model that is finetuned from Falcon Instruct
7B with RLHF using our custom audio-preference
reward model as SpeechFalcon.

4.2 Data

The user prompts that we use for sampling re-
sponses for preference annotations and the RLHF
step are from the filtered version of Dolly-
15K (Conover et al., 2023), described in Section
2.2. This instruction dataset does not have a prede-
fined train-test split. Instead, it partitions the user
prompts into eight categories, which make it conve-
nient to filter out user prompts that are unrealistic
in a speech-based interactions. It is one of the first
open source, human-generated instruction dataset
with a permissive creative commons license.

4.3 Baselines

We compare our speech-adapted model from Sec-
tion 4.1 with the following baselines:

* Base ITLM: directly generating response from
LM without any specific system prompts.

* Prompted ITLM: responses generated using
system prompts that provide detailed guidance
on what a suitable speech prompt is. We use
our most detailed system prompt shown in
Table 4.

* Original response: the original human-written
response from the Dolly-15K dataset.

For Base ITLM  and Prompted ITLM,
we use the same Falcon Instruct 7B model
from Section 4.1. We also compare against
GPT-3.5 (gpt—-3.5-turbo-0613) and GPT-4
(gpt—-4-0613) and their Pompted versions to
compare with state-of-the-art ITLMs. Our goal
is for SpeechFalcon trained with the methodology
described in Section 3 to generate responses that
are more frequently preferred than those by its base
(Falcon Instruct) and prompted counterparts (Fal-
con Instruct + Prompt) in a speech setting.

4.4 Evaluation

We evaluate SpeechFalcon against baselines with
both human evaluation and automatic evaluation.
Similar to the human evaluation in Zhou et al.
(2023), we perform a head-to-head comparison of
responses from SpeechFalcon to those of each base-
line with the same setup as the preference annota-
tions, described in Section 3.3. Evaluators listen
to two responses in random order without know-
ing their corresponding models and then indicate
which they prefer and briefly explain why. ‘Sig-
nificantly better’ and ‘Slightly better’ choices are
used to determine win or loss, while ‘Negligibly
better’ is considered a tie. They are also asked to
indicate if each response contains false information,
which is later used to control for differences in base
model’s performance when comparing speech suit-
ability (Section 5.1). SpeechFalcon is compared
to each baseline with 140 response pairs generated
with prompts not seen during RLHF training and
validation, which are from the test set described in
Section 3.2.

For automatic evaluation, we examine factors
related to listenability, sentence complexity, and
length. For listenability, we measure the Flesch
Reading Ease score, which examines the readabil-
ity of some text. It is a function of the number
of syllables within each sentence and it is known
to be highly correlated with listenability (Chall
and Dial, 1948; Fang, 1966; Messerklinger, 2006;
Kotani et al., 2014). To quantify sentence complex-
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Figure 3: SpeechFalcon’s head-to-head human evalua-
tion results with its directly comparable baselines listed
in Section 4.3. A higher win rate vs. loss rate means
that SpeechFalcon more frequently generates responses
preferred in the speech setting.

ity, we use SpaCy’s dependency parser® and mea-
sure the depth of the resulting dependency graph.
For length, we simply use white space to split sen-
tences into words and count the total number of
words.

4.5 Implementation details

For training our reward model and finetuning Fal-
con Instruct 7B with RLHF, we use 8 A100 GPUs.
We use the RLHF implementation from trlx
repo* and use the default hyperparameters for both
reward modeling and PPO.

5 [Experimental Results and Analysis

5.1 Human evaluation

SpeechFalcon improves over in generating
speech-suitable responses. Human evaluation
results are shown in Figure 3, which show the
win, loss, and tie rate when comparing Speech-
Falcon to Falcon Instruct and a prompted Falcon
). The most important comparisons in Figure 3
are those with Falcon Instruct, the base model, and
Prompted Falcon Instruct, which is the counterpart
prompted with the detailed system prompt from Ta-
ble 4. Compared to both of these baselines, we see
that the win rate is higher than the loss rate, mean-
ing that SpeechFalcon is able to attain meaningful
improvements for speech-based responses.
Another important comparison is compared to
the reference response, the original response con-
tained in the instruction dataset that was collected
with in text. SpeechFalcon falls short compared to
the reference response, but not as much compared
to the GPT baselines. Upon examining the com-
parison results with the GPT baselines, we found
that in many cases the Falcon-based models fre-
quently generated false information (hallucination)

*https://spacy.io/api/dependencyparser
*nttps://github.com/CarperAl/trlx
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Figure 4: SpeechFalcon’s head-to-head human evalua-
tion results against the original human-written response
and GPT-based models, controlled for response factu-
ality. Only cases where responses were both true or
both false were considered to make a fairer compari-
son between different base ITLM models to isolate the
analysis to speech-suitability. This table takes the same
format as Figure 3.

Model Length Comprehensibility
FREt DD/
Reference 58.66.1 61.72.5 5.80.2
Falcon Instruct 38.32.6 65218 5401
Prompted Falcon Instruct  40.83 3 64.21.7 5.60.1
SpeechFalcon 319, 4 7091 8 5901
GPT-3.5 12548 58.81.4 6.10.1
Prompted GPT-3.5 38.02.3 71313 5.80.1
GPT-4 118.8s.0 60.71.2 5.90.1
Prompted GPT-4 49.81 .8 68.71.1 6.00.1

Table 5: Automatic evaluation results. FRE: Flesch
Reading Ease, DD: Dependency Depth. SpeechFal-
con generate shorter responses with higher readability
and sentence structure complexity than other Falcon
baselines.

and this was indicated as the reasons for losing in
a head-to-head comparison with other baselines.

SpeechFalcon is preferred to the original re-
sponse but falls short of responses from larger
black-box models. Since factuality significantly
influences the annotator’s preference, we control
for this factor that varies between models and
strongly favors models (Ouyang et al., 2022) by fil-
tering out comparisons results where either one of
the compared responses contain false information.
This filter results in about 80 comparisons per pair.
The factuality-controlled results are shown in Fig-
ure 4 and we see significant boosts in the win rate
for SpeechFalcon against the GPT baselines and
also the original response. SpeechFalcon is able
to achieve a higher win rate than loss rate against
the original response, and the win rate against GPT
baselines increase on average by 13.5%, but it is
still lower than the loss rate.


https://spacy.io/api/dependencyparser
https://github.com/CarperAI/trlx

5.2 Automatic evaluation

RLHF with speech-based preference data lead
to shorter responses and higher listenability.
The automatic evaluation results are shown in
Table 5. One of the most notable changes for
SpeechFalcon compared to other Falcon baselines
is the shorter response length and higher readabil-
ity, which corresponds to higher listenability. It
achieves a high listenability score that is only sec-
ond to Prompted GPT-3.5 by a statistically insignif-
icant margin. Sentence complexity, measured by
dependency depth, varies only little for all baselines
except for the base Falcon Instruct, which achieves
the lowest average depth. Beyond comparisons
between Falcon-based models, we observe that
length and readability are important factors as GPT-
baselines with higher win rates generate shorter
responses and have higher readability scores. None
of the rankings provided by each of these automatic
metrics match with the win rate ranking against
SpeechFalcon from Figure 3 or Figure 4. There-
fore, these metrics mostly serve as an analytical
tool that show that determining responses preferred
in speech is a complex task that must consider vari-
ous factors.

6 Related work

6.1 Language models and speech

Language models have been widely adopted for
modular components of a voice assistant, mainly
for automatic speech recognition (Yu and Deng,
2016; Wang et al., 2020; Chiu et al., 2018), re-
sponse generation (Cho and May, 2020; Zhou et al.,
2022; Liu et al., 2023), response selection (Humeau
et al., 2019; Gao et al., 2020; Cho et al., 2021), and
speech synthesis (Tan et al., 2022; Wang et al.,
2017; Le et al., 2023). While speech synthesis fo-
cuses on how to translate text to speech such that
it sounds natural, our work explores how to best
compose the response itself for speech-based in-
teractions. More similar in context to our work,
Mousavi et al. (2024) explores whether LMs are
robust to speech-based interactions by analyzing
their robustness to input that include ASR errors.
Another line of research is concerned with de-
veloping multi-modal ITLMs that can process both
speech and text input (Huang et al., 2023). Zhang
et al. (2023) trains a GPT-based model called
SpeechGPT with both speech data and text data
such that it does not requiring additional ASR or
TTS systems. However, this line of work also over-

looks on how we should compose responses that
are delivered as speech.

6.2 Fine-tuning LMs

While the paradigm of pre-training and then fine-
tuning has become the defacto status quo, there
is still active research in how to go about fine-
tuning to get the best results and do it efficiently.
Among these efforts, fine-tuning pretrained LMs to
become ITLM s has been one of the most active
research areas recently. One of the central methods
for training ITLM s is RLHF, which is a process
of finetuning models with reinforcement learning
via scores from reward models trained on human
preference data (Bai et al., 2022; Ethayarajh et al.,
2022; Ouyang et al., 2022; Touvron et al., 2023).
RLHF is a relatively recent algorithm for which
there are still many open questions, such as which
reinforcement learning algorithm is the most effec-
tive, how much SFT data and preference data is
necessary for RLHF to work, and whether other
forms of data can help train more generalizable
reward models. Our work sheds some light into
the minimum scale of data required for RLHF and
how to train a generalizable reward model by more
aggressively sampling for a diverse set of responses
that go beyond decoding temperature variations.

7 Conclusion

We explore an important yet overlooked challenge
of adapting instruction-following language models
to compose responses that are specifically designed
to be verbalized, i.e. speech-suitable. With rules-
of-thumb of the radio industry and through our sur-
veys that ask compare the suitability of a response
for both text and audio, we establish that adap-
tations for speech-suitable responses is necessary.
Therefore, we fine-tune models to generate speech-
suitable responses by aligning them with human
preferences collected with responses directly pre-
sented through speech. We show through both
human and automatic evaluations that our model
fine-tuned with RLHF using our speech-based pref-
erence data outperforms the reference responses
and its carefully prompted counterparts. Our work
has focused on single-turn interactions and the con-
tent of the responses, and we hope to expand this
investigation for multi-turn interactions and the
acoustic aspect of speech-suitability.



Limitations

In this work, we focused on what ITLMs should
generate for responses that will be delivered via
speech. However, we recognize that another inter-
esting line of research is how the response should
be delivered, where factors related to speech, such
as timber, pitch, and speed, are important. In ad-
dition, our examination is focused on single-turn
interactions, but another intriguing realistic dimen-
sion to suitability of a response in speech is multi-
turn interactions. It would be interesting to com-
pare the effect of delivering information at various
granularities and how different types of follow-up
questions on the user experience with a ITLMs in
speech-based interactions. We leave these lines of
research to future work.

Broader Impact

Since those who cannot read due to illiteracy or
blindness rely on voice assistants to interface with
modern technology, expanding their capabilities
can directly lead to improvements in their standard
of living. However, current voice assistants are
not as generally useful as current state-of-the-art
ITLMs. The likes of Siri and Alexa tend to fulfill
simple routine tasks and are brittle when facing
complex requests. Therefore, adopting ITLMs as
the main backbones of voice assistants and adapt-
ing them to become suitable to interface through
voice and can significantly increase the accessibil-
ity for these people to the powerful capabilities of
ITLMs.
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Appendix
A Annotation interface and guidelines

The annotation interface for text vs. voice anno-
tations is shown in Figure 5. The instructions for
annotating is shown in Figure 6. The interface for
audio preference annotations are shown in Figure 7.

B System prompts

Our set of system prompts are presented in Table 6.
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Instructions (Click to colapse) Instructions (Click o colapse)

1 1
2. You are given a set of two tasks, shown one at a time. 2. You are given a set of two tasks, shown one at a time.
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Figure 5: Left: suitability annotation interface for text. Right: suitablity annotation interface for audio. The same set
of survey questions are asked in both cases and only the modality of the user prompt and responses are different.
Note that each annotator complete a pair of both text and audio tasks so that we collect results that are better
calibrated.

Instructions (Click to collapse)

Your will be y ed for quality purposes and you may get blocked for all future tasks from us if we detect poor quality annotations.

1. Listen to the interaction. A user request is answered by two different responses, for which the order presented is not relevant. Your task is to listen to the user
request and the two response choices and select the response that you think is z better response for a voice-based interaction. This annotation task simulates a
user's interaction with a digital assistant that one can only talk and listen to (e.g. Siri, Alexa, Google Assistant).

o Limit yourself to listen to each response only once to answer the survey so that it is a more istic sil ion of a voice-based interaction. The
differences in the responses can be subtle, so pay careful attention.
o We have intentionally disabled audio control other than pause, play, and replay. These are only intended to be used in case there are technical issues that
prevented you from listening to the response.
o The header for each message will turn green after the audio has completed playing.
o The survey will only appear after listening to the user request and the responses to reduce distractions when listening.
2. Answer the survey.
= All questions are mandatory except for those marked as (Optional).
o You will only be able to submit the HIT after answering all mandatory questions.
o Criteria to leverage for indicating your preference
= This is a non-exhaustive list of criteria that you can use to determine which response you prefer. A response will often not be better than another in all of
these criteria, sc you should use your best judgment to determine which response you prefer overall for a voice-based interaction. Again, imagine you are
asking Siri, Alexa , or Google Assistant.

Relevance/helpfulness: The response should address the user's request, or ask a follow-up question that helps the user achieve their goal.

Accuracy: The information provided should be factually accurate. Perform a quick Google search if you are unsure. An answer is not helpful if it is mostly

false.

Understandability: The response should be easy to understand. If you have to listen to the response multiple times to understand it, it is not a good

response.

= Completeness: Responses should not omit essential information.

Conciseness: Brevity is important. While details can be useful, it should not make the response more difficult to understand nor come at a great expense

of the user's tima.

= Safety: Responses should avoid promoting harmful actions or giving unsafe advice.
o Sample annotations can be found here: Note that responses are shown in text format for ease of reading, but you will be listening to the audio version.
As shown in these examples. Your explanations can be brief.

Figure 6: Instructions for preference annotations with responses provided as audio.
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Interaction

[Play |

What are five totally distinct, creative ways to
describe the usefulness of the government?

Response 1 @

1. The government is like a compass,
guiding the country towards progress and
development.

2. It can be seen as an artist, painting laws
and regulations that shape the society.

3. The government is a gardener, planting
seeds of education, healthcare and welfare
for its citizens.

4. It's like a referee, ensuring fair play and
justice in society.

5. The government can be likened to a ship's
captain, steering the nation through
economic storms and social waves.

Would you like to hear more analogies or
perhaps you're interested in specifics about

how government impacts daily life?

Model config: gpt-4_detailed_response_0.7

Response 2 @

1. The Government as the Architect of
Stability: Like the foundation of a sturdy

Survey

Which response do you prefer?

Response 1 Response 2
How much better was the chosen response?
Significantly Slightly Negligibly
Bettel
better " better better

Briefly explain why you thought the response you chose is better.

e.g. length and amount of information is more adequate, more natural, more
relevant, asks better follow-up guestion, easier to understand, length is more
adequate for 1 but 2 asks more relevant follow-up question, etc.

(Optional) Let us know if you have any feedback on the task.

Figure 7: Audio preference annotation interface. The left pane contains the user prompt and two responses. The
right side contains the survey that appears after the annotator listens to both responses. The annotators actually do
not see the text and is only available for the task distributors when monitoring completed tasks. The actual view of
the annotators are the same as the right side of Figure 5.
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Prompt name

Prompt

Shnple You are a helpful, respectful and honest voice assistant.

Medium You are a helpful, respectful and honest voice assistant. Make your
responses colloquial and compact. Avoid any artifacts that cannot be
vocalized.

Easy You are a helpful, respectful, and honest voice assistant. Your response
should use simple vocabulary and sentence structures so that it is easy to
understand and such that it is below a 5th grade reading level.

Detailed You are a helpful, respectful and honest speech assistant. Keep your

response compact without missing key information and make it suitable for
speech such that it can be easily verbalized by a text-to-speech system.
Your response should use simple vocabulary and sentence structures. Avoid
jargon, hyphenated adjectives, excessive alliteration, and tongue twisters.
It should not contain parentheses, numbered or bullet lists, and anything
else that cannot be verbalized. If the answer requires multiple steps or a
list, provide only the first 3-5 and ask if the user is ready to move on to
the next steps or know more.

Table 6: The set of system prompts that we use in Section 3.2
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