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Abstract

LLM ensembles are widely used for LLM judges. However, how to estimate their
accuracy, especially in an efficient way, is unknown. In this paper, we present a
principled maximum a posteriori (MAP) framework for an economical and precise
estimation of the performance of LLM ensemble judgment. We first propose a
mixture of Beta-Binomial distributions to model the judgment distribution, revising
from the vanilla Binomial distribution. Next, we introduce a conformal prediction-
driven approach that enables adaptive stopping during iterative sampling to balance
accuracy with efficiency. Furthermore, we design a prior transfer mechanism that
utilizes learned distributions on open-source datasets to improve estimation on
a target dataset when only scarce annotations are available. Finally, we present
BetaConform, a framework that integrates our distribution assumption, adaptive
stopping, and the prior transfer mechanism to deliver a theoretically guaranteed
distribution estimation of LLM ensemble judgment with minimum labeled samples.
BetaConform is also validated empirically. For instance, with only 10 samples
from the TruthfulQA dataset, for a Llama ensembled judge, BetaConform gauges
its performance with an error margin as small as 3.37%.

1 Introduction
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Figure 1: In this paper, we aim to answer (1) how
to estimate the judgment distribution of LLM en-
semble on a dataset, and (2) how to achieve effi-
cient estimation to reduce annotation effort.

With the improving performance of large lan-
guage models (LLMs), there is a proliferation
of adopting LLMs as judges for various tasks
[Liang et al., 2023, Yuan et al., 2024b, Zhang
et al., 2025]. In applications of LLM judge en-
sembles, the judgment distribution is critical to
the service quality [Chen et al., 2024, Schoeneg-
ger et al., 2024, Qiu et al., 2025]. Many datasets
[Zheng et al., 2023, Zeng et al., 2023, Yuan
et al., 2024a] have been employed to evaluate
the performance of LLM judges. However, these
datasets rely on human annotations, which are
impractical at a large scale due to the substan-
tial time and financial costs of annotating. This
challenge highlights the need of how to estimate the LLM ensemble judging performance efficiently.

In this work, we consider the following judgment distribution estimation problem:
P(# correct judgments = n | k LLMs judge sample x).

We propose an efficient method for MAP estimation of the distribution of LLM ensemble judgment
to answer two research questions shown in Figure 1.
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• RQ1: How to efficiently and accurately estimate the judgment distribution?
• RQ2: How many samples are needed for estimation under given error margin threshold?

Given a small number of samples, one intuitive estimation is to directly adopt the distribution of
the samples as the judgment distribution on the entire dataset. However, this is susceptible to the
sampling bias. To avoid this, one common practice is to first calculate the single LLM accuracy
on the samples and then model the distribution on the full dataset as Binomial. We first posit that
the judgment distribution is not Binomial. Theoretically, a Binomial distribution implies increasing
accuracy in majority voting as the ensemble size grows [De Condorcet et al., 2014, Austen-Smith and
Banks, 1996]. However, this is unrealistic since the accuracy of LLM ensembles remains bounded
even with a large number of judges. To testify to this, we start by observing the distribution of LLM
ensemble judges on various benchmarks. We find marked deviations from the Binomial distribution
and show a stratification between questions that can be classified as “easy” and “hard”. To this end,
we propose to model the judgment distribution with a mixture of Beta-Binomial distributions to reflect
the stratification. We show that under this assumption, by utilizing an expectation maximization (EM)
estimation method, it can achieve accurate judgment distribution estimation with high data efficiency.
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Figure 2: Overview of BetaConform. Given a
target dataset, adaptive stopping is adopted to de-
termine the sample amount (b, Section 5). Dur-
ing iterative sampling, the sampling deviation is
monitored by using conformal prediction. The
sampling process stops when the deviation is suf-
ficiently low. Next, the estimation of the small
number of samples from the previous step is fur-
ther enhanced by transferring distribution priors
from source datasets (c, Section 6). The transfer
will assign a larger weight to the dataset that is
textually closer to the target dataset.

To rigorously guide the sampling process and
determine how many samples to use for the es-
timation, we draw inspiration from the confor-
mal prediction (CP) [Shafer and Vovk, 2008,
Fontana et al., 2023] that can efficiently esti-
mate the sampling deviation. Based on this, we
propose a novel adaptive stopping strategy for it-
erative sampling, designed to meet a pre-defined
deviation threshold. Our experiments demon-
strate the effectiveness of this method for limit-
ing the sample amount while maintaining high
estimation precision.

Moreover, we hypothesize that the prior knowl-
edge of judgment distribution on open-source
datasets can benefit the estimation of a new
dataset when only a few samples are available.
To achieve this, we propose a text similarity-
based distribution prior transfer mechanism.
This method embeds text inputs from both
source and target datasets and calculates embed-
ding similarities to determine the transfer weight.
Our design greatly improves the estimation ac-
curacy when transferring from similar datasets
and avoids performance degradation when the
datasets are distinct. Notably, this method relies
solely on the text inputs, making it practical for application to vast amounts of unlabeled data.

Our contribution can be summarized as follows:

• We present pioneering work in judgment distribution estimation. We point out that the
Binomial assumption of judgment distribution is inaccurate. By replacing it with a mixture
of Beta-Binomial distributions, we could achieve efficient and accurate estimation.

• We design a rigorous conformal prediction-based adaptive stopping strategy during iterative
sampling when the sampling deviation is sufficiently low.

• We introduce a distribution prior transfer mechanism that leverages judgment distributions
on open-source datasets to improve few-sample estimations.

• Extensive experiments show BetaConform’s high estimation efficiency. For example, using
only 10 samples could result in an average of 10.84% error margin.

2 Related Works

LLMs for Judgment. Reliable model evaluation is a critical problem. Traditional human eval-
uations remain the gold standard, but their scalability is a significant bottleneck in large-scale

2



applications. Thus, recent works have proposed leveraging LLMs to evaluate the text quality, ranking
outputs, and ensuring alignment with human preferences [Zheng et al., 2023, Liu et al., 2023, Dubois
et al., 2024]. While initially focused on text generation evaluation, the use of LLMs as judges has
expanded to diverse applications including model alignment and safety assessment [Lee et al., 2024],
code quality evaluation [Zhao et al., 2024b], and knowledge verification [Min et al., 2023], etc.

Challenges and Limitations. The reliability of such frameworks is not without concerns. Studies
have found that even advanced models like GPT-4 often exhibit systematic biases such as position
bias and egocentric bias [Zeng et al., 2023, Wang et al., 2023], overconfidence in their judgments
[Koo et al., 2024], and self-preference effects [Panickssery et al., 2024]. Moreover, many studies
employing LLM annotations do not explicitly measure the alignment between LLMs and humans,
thus further raising questions about their dependability [Calderon et al., 2025]. While researchers
have proposed various solutions, including dynamic evaluation pipelines [Yu et al., 2024, Zhao et al.,
2024a, Moniri et al., 2024], self-reflection mechanisms [Wu et al., 2024, Li et al., 2023b, Wang et al.,
2024], and specialized benchmarks for assessing judge performance [Zheng et al., 2023, Tan et al.,
2024, Park et al., 2024, Li et al., 2024, Zhao et al., 2024b], these methods often fall short in offering
rigorous guarantees of their outcomes. A related line of research is Item Response Theory (IRT) [Cai
et al., 2016, Baker, 2001, Harvey and Hammer, 1999], which assesses respondents’ latent abilities
using responses to calibrated questions. However, the requirement for calibrated questions limits
the direct applicability of IRT in the context of judgment distribution estimation, as datasets in this
domain are frequently unlabeled.

Statistical Approaches. Another direction of research focuses on providing statistical guarantees
for LLM performance. Researchers have explored conformal methods [Angelopoulos et al., 2023]
to ensure correctness and factuality [Mohri and Hashimoto, 2024] and to determine when LLMs
should abstain from responding [Yadkori et al., 2024]. While these methods provide some statistical
rigor, there is still a need for a unified framework that establishes reliable, theoretically grounded
approaches for assessing LLM performance across diverse applications.

3 Problem Setup

We consider the task of using an LLM ensemble to evaluate and judge samples by discerning,
choosing, or scoring. Let:

• n: Total number of samples in the dataset to be judged.
• k: Number of LLMs in an ensemble.
• S: The random variable of correct judgments.
• r: Number of samples to estimate S.
• D: A dataset to estimate the judgment distribution.

Definition 1 (LLM Ensemble Judgment). Let J = {J1, J2, . . . , Jk} be an ensemble of k LLM
judges. For a given input x, each LLM Ji generates an output oi = Ji(x), yielding the set of all
judgments O = { o1, o2, . . . , ok}. In this paper, we focus on binary and scoring judgments. We
consider the LLM ensemble to be composed of multiple instances of the same underlying model (e.g.,
k = 11 Llama models). Variations in their judgments for a given input are due to Top− P token
sampling [Zhou et al., 2024] and the difference in random seeds.
Definition 2 (LLM Ensemble Correct Judgment). For an ensemble of k LLMs, the random variable
S =

∑k
i=1 Match(oi, y) represents the number of correct judgments. y denotes the ground truth,

and Match(·) is the criterion for a correct judgment. For instance, for binary classification judgments,
Match(·) could be an exact match; for scoring judgments, it could be whether the score falls within
a predefined range of the human average score. The ensemble’s decision is deemed correct if
S ≥ ⌈k/2⌉. To prevent ties, which can occur if k is an even integer and S = ⌈k/2⌉, we stipulate that
k must be an odd integer.

4 Mixture of Beta-Binomial Distribution

4.1 Examination of Binomial Distribution

We start by examining the common assumption of S follows a Binomial distribution, i.e. the
probability of having s correct judgments when a single judge accuracy p̂ is,

3



0 2 4 6 8 10 11
Number of Correct Judgments

0.0

0.2

0.4

0.6

0.8
GPT-4 on HaluEval

0 2 4 6 8 10 11
Number of Correct Judgments

GPT-4 on JudgeBench

0 2 4 6 8 10 11
Number of Correct Judgments

Llama on HaluEval

0 2 4 6 8 10 11
Number of Correct Judgments

Llama on JudgeBench

Fr
ac

tio
n

Binomial Distribution Our Distribution Actual Distribution

Figure 3: Comparison of judgment distributions among actual, Binomial, and ours. Llama-3.3-70B
and GPT-4 ensembles of 11 models are tested on HaluEval and JudgeBench, respectively. The
Binomial distribution is estimated by using single judge accuracy p. Our mixture distribution is
estimated with 100 samples and scaled to the full dataset. Our distribution is consistently better.
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Figure 4: Majority voting error rate of actual, Binomial, and our mixture distribution. Binomial
uses single judge accuracy p. Our distribution is estimated with 100 random samples and tested for
3 times. The line denotes the average error rate and the shadow represents the standard variance.
Binomial shows decreasing error rate, while our distribution captures the actual trend.

PBin(S = s) = Bin(s | k, p̂) =
(
k

s

)
p̂s(1− p̂)k−s. (1)

The error rate P̃Bin of ensemble judgment is:

P̃Bin = PBin(S < ⌈k/2⌉) =
⌈k/2⌉−1∑

s=0

(
k

s

)
p̂s(1− p̂)k−s. (2)

We first examine the common assumption that S follows a Binomial distribution in Equation (1).
Specifically, we ❶ evaluate individual LLMs on datasets across domains and ❷ use the single LLM
accuracy p in Equation (1) and (2) to estimate both the distribution of LLM ensembles on these
datasets and the majority voting error rate for different numbers k of LLMs. Specifically, we evaluate
GPT-4 [OpenAI et al., 2024] and Llama-3.3-70B [Dubey et al., 2024] on hallucination detection
(HaluEval, Li et al., 2023a) and Human alignment (JudgeBench, Tan et al., 2024) datasets. Results
are shown in Figure 3 and Figure 4.

The results in Figure 3 and Figure 4 demonstrate the large deviation of Binomial distribution to the
real distribution. On both datasets, the real distributions of LLM ensemble judgments consistently
show two peaks centering at the two ends, while Binomial distribution results in a single peak with a
large shift to either of the two peaks. Notably, in Figure 4, the assumption of a Binomial distribution
leads to an always decreasing majority voting error rate, which is in sharp contrast with the actual
error rate that remains at the same level when the ensemble becomes larger.

4.2 Mixture of Beta-Binomial Distributions

Assumption 1 (Mixture of Beta-Binomial Distribuitons).
S ∼ wBB(k, α1, β1) + (1− w)BB(k, α2, β2), (3)

where BB(·, ·, ·) is the Beta-Binomial distribution, k is the number of judges in the ensemble,
α1, β1, α2, β2 are parameters of the two distributions, and w is the mixture weight.
Corollary 1 (Mixture Distribution Error Rate). The error rate of the mixture of Beta-Binomial
distributions is

P̃BB = w

⌈k/2⌉−1∑
s=0

(
k

s

)
B(s+ α1, k − s+ β1)

B(α1, β1)
+ (1− w)

⌈k/2⌉−1∑
s=0

(
k

s

)
B(s+ α2, k − s+ β2)

B(α2, β2)
,

(4)

4



where B(·, ·) is the Beta function.

After examining the common Binomial distribution assumption in Figure 3 and Figure 4, we notice
that the real distribution keeps showing two peaks centering near all wrong and all correct. Motivated
by this observation, in Assumption 1 we model the distribution as a mixture of two Beta-Binomial
distributions, where one distribution models the LLM ensemble judgments on simple questions and
the other one for hard problems. To derive all the parameters, we utilize labeled samples from the
dataset and design a distribution-tailored expectation maximization (EM) algorithm.

4.3 Expectation Maximization

Samples as Distribution Evidence. Given r samples, each containing judgments from k LLMs, Si

is the number of correct judgments in the i-th sample and pi = Si/k as the estimated probability of
success for the i-th sample.

For the i-th sample, considering the first Beta-Binomial distribution, a responsibility γi
1 is assigned as

γi
1 =

wBeta(pi | α1, β1)

wBeta(pi | α1, β1) + (1− w)Beta(pi | α2, β2)
, (5)

where Beta(pi | α, β) is the probability density of beta distribution at pi for the i-th sample under
the corresponding Beta component. γi

1 represents the probability that the i-th sample belongs to the
first Beta component, and γi

2 = 1− γi
1 is the probability for the second component.

Parameters Update. The parameters are updated based on the weighted contributions of samples.
The parameters of two distributions j = {1, 2} are updated as

α′
j =

r∑
i=1

γi
1 · Si, β

′
j =

r∑
i=1

γi
1 · (k − Si), w

′ =
1

r

r∑
i=1

γi
1 (6)

We verify our distribution assumption by first sampling r = 100 judgments made by two models
on two datasets and apply our distribution-tailored EM algorithm to estimate the parameters. Our
method is evaluated in two scenarios: ❶ In Figure 3, we fix the ensemble size k = 11 and compare
the estimated distribution against the real distribution and Binomial distribution, and ❷ in Figure 4
we estimate the error rate of majority voting with different ensemble sizes.

In Figure 3, the mixture of Beta-Binomial distributions is significantly closer to the real distribution
compared to the Binomial, with clear two-peak patterns that are analogous to the observation. In
Figure 4 it shows that our distribution is consistently close to the real majority voting error rate
across all ensemble sizes. Contrary to the Binomial distribution that produced a decreasing error
rate, our distribution successfully modeled the stable error rate when the ensemble becomes larger.
Additionally, the narrow confidence interval demonstrates the high stability of our method.

5 Guide Sampling via Conformal Prediction

In the experiments above, we used a fixed number of samples. However, in practical settings where
datasets are unannotated and being labeled, it is essential to determine when the number of annotated
samples is sufficient for accurate estimation. Inspired by conformal prediction (CP), which does not
rely on prior knowledge of the dataset distribution and can rigorously estimate the sampling deviation,
we propose leveraging its principles to address this challenge.

5.1 Conformal Prediction for Adaptive Stopping

CP provides a principled approach to dynamically evaluate the sampling deviation in the distribution
of the number of correct judgments S, which can be used as guidance.

Nonconformity Scores. A major part of CP is the nonconformity score, which measures how a test
sample differs from the rest of the data. In our implementation, we set the nonconformity score as

score(Si) = |Si − E[S]|, (7)
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Figure 5: Examples of distribution prior transfer. Splits from HaluEval form distinct clusters in the
embedding space, and transfer does not degrade performance compared to only using target dataset
samples. In contrast, topics in TruthfulQA exhibit closer proximity, where transfer leads to significant
performance improvements compared to solely using the limited samples of the target dataset.

which quantifies the deviation of each observed value of S from the expected value.

Calibration Data and Quantile Computation. Suppose r samples have been used to test the
LLM ensemble with S1, S2, . . . , Sr correct judgments, the CP sampling computes the nonconformity
scores for all calibration data as si = score(Si) and these scores are sorted in ascending order as
s1 < . . . < sr. For a desired estimation confidence 1− ϵ, the (1− ϵ)-quantile with r samples qr1−ϵ is

qr1−ϵ = s⌈(1−ϵ)·(r+1)⌉. (8)

Adaptive Stopping Criteria. Adaptive stopping is achieved by monitoring the variation of the
conformal prediction quantile. After r samples, the (1− ϵ)-quantile is recomputed and compared
with the one from r − 1 samples. The sampling process stops when the quantile satisfies∣∣qr1−ϵ − qr−1

1−ϵ

∣∣ ≤ ξ (9)

where ξ is a predefined threshold.

Proposition 1 (Sample Amount with Adaptive Stopping). For a given sampling deviation threshold
ξ and a scale τ , the sample amount r should satisfy

τ

(
1√
r − 1

− 1√
r

)
≤ ξ, (10)

This proposition offers an estimation of the sample amount under the threshold ξ.

Proposition 2 (Error Rate with Adaptive Stopping). Under the sampling threshold ξ, the majority
voting error rate of the mixture distribution becomes

(1−min(ξ,
τ√
r
))P̃BB < P̃adapt < (1 + min(ξ,

τ√
r
))P̃BB (11)

This proposition provides a theoretical error bound for estimation under adaptive stopping, suggesting
the mild degradation of estimation performance.

We leave the proofs of Proposition 1 and 2 in Appendix B.1 and B.2, respectively. In our experiments,
we set ξ = 0.03, and τ = 25, which leads to r ≥ 56.

6 Text Similarity for Distribution Prior Transfer

To further improve the data efficiency when only a few samples are available and enhance estimation
accuracy, we propose to incorporate prior knowledge about the LLM ensemble on other open-
source datasets and transfer the estimated judgment distributions to the target dataset. However, one
challenge is that the prior transfer could bring performance degradation if the distributions of the
source datasets and the target dataset are very different. To resolve this challenge, we design text
similarity-based distribution prior transfer, which leverages the strong text embedding capability of
the recent models to understand and measure the textual difference among datasets.
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Text Embedding. To embed the text inputs of the LLM ensemble, we use NV-Embed-V2 [Lee
et al., 2025]. Given sets of samples {D1, D2, . . . , Dm} from m source datasets, the embedding
model E(·) is utilized to transform the sets of samples to sets of embeddings for the source datasets

{E1, E2, . . . , Em} = {E(D1), E(D2), . . . , E(Dm)} . (12)

The average embedding Ēi =
1
ri

∑ri
j=1 E

j
i of the i-th dataset is used to represent it.

Distribution Prior Transfer. To transfer the distribution from source datasets to the target dataset
D0, the process starts by embedding the target dataset E0 = E(D0) and acquiring its average
embedding Ē0. For the dataset Di, its transfer weight is

λi = log(ri) · σ
(
ρ1 ·

(
CosSim

(
Ē0, Ēi

)
− ρ2

))
, (13)

where σ(·) is the sigmoid function, ri is the number of samples and ρ1 and ρ2 are hyperparameters.
We adopt this design to avoid the degradation of estimation caused by transferring datasets with
dissimilar text inputs. This is achieved by setting a threshold and applying the sigmoid function to
suppress the weight when the similarity is low. log(ri) is included as datasets with more samples
could produce a more accurate estimation and thus should have a higher impact on the transfer. The
transfer from the source datasets to the target dataset is performed as

wtr
0 =

∑m
i=0 λi · wi∑m

i=0 λi
, αtr

0,j =

∑m
i=0 λi · αi,j∑m

i=0 λi
, βtr

0,j =

∑m
i=0 λi · βi,j∑m

i=0 λi
, j ∈ {1, 2}. (14)

In Equation (14), αi,j and βi,j are the j-th parameter in the mixture distribution of i-th dataset. The
parameters in the weighted sum with index 0 denote direct estimation on the target dataset.

Examples. To verify our distribution design, we evaluate the distribution within splits of HaluEval
[Li et al., 2023a] and TruthfulQA [Lin et al., 2021] datasets. For HaluEval, we use Dialogue and
Summarization splits as source datasets and transfer to QA split; for TruthfulQA, we transfer from
topics of Health and Law to Misconceptions. As shown in Figure 5, the embeddings form distant
clusters in HaluEval, as the text inputs of the three splits have different hallucination detection
requirements, and embeddings from TruthfulQA overlap due to the similarity of judgment format.
When clusters are separated, our method will not bring performance degradation compared to solely
using samples from the target dataset, while when clusters are overlapping, our method brings a
significantly lower estimation error rate margin compared to only using target dataset samples. This
supports the effectiveness of our distribution transfer design.

We present the algorithm and Python implementation of BetaConform in Section A and Section E.

7 Experiments

7.1 Estimation Accuracy

We begin by evaluating BetaConform with adaptive stopping on datasets to verify its accuracy. We
choose Binomial distribution and a single Beta-Binomial distribution as baselines and compare the
error margin, which is the absolute difference between the estimation error rate and the actual value.
The results are reported in Table 1. Please see Section E for implementation details.

From the results, the following observations can be drawn: ❶ Compared to the Binomial distribution,
BetaConform achieves consistently lower error margin, with 32.4% ∼ 54.1% improvements of
average error margin of all models. This demonstrates an effective answer to RQ1 by modeling
judgment distribution as a mixture of Beta-Binomial distributions. ❷ The number of samples is close
to the theoretical estimation. The average sample amount of models on all datasets exhibit a slight
deviation of the estimated value 56 by 3.14 ∼ 12.86 samples. This validates our design of using the
distribution-free CP for adaptive stopping, which effectively solved RQ2.

7.2 Distribution Prior Transfer

We then verify our text similarity-based distribution prior transfer when only limited samples are
available. We constrain to 10 samples from the target dataset and assume the full source datasets are
accessible. Transfer is compared with estimating only on the target dataset samples (w/o Transfer).
Error margins are shown in Table 2. We also conduct ablation studies of the transfer design in Table 4

7



Table 1: The comparison of error margins between our mixture of Beta-Binomial distributions and
Binomial distribution. The Err. Margin and # Samples answer RQ1 and RQ2, respectively. The
error margin is calculated as the absolute difference between the actual error rate and the estimation.
Estimations using both distributions are done on samples obtained through iterative sampling with
adaptive stopping. For each run, the error margin is computed from k = 1 to 11, and the average
margin of ensemble sizes is used as the result for that run. We conduct 30 runs and report the average
and standard deviation. The average number of samples across runs is also reported.

Llama-3.3-70B Qwen-2.5-72B InternLM-20B GPT-3.5 GPT-4
Dataset Method Error Margin (↓) # Samples (↓) Error Margin (↓) # Samples (↓) Error Margin (↓) # Samples (↓) Error Margin (↓) # Samples (↓) Error Margin (↓) # Samples (↓)

Hallucination Detection

Binomial 17.62 ± 0.73 12.45 ± 1.04 16.67 ± 0.38 5.78 ± 0.08 9.16 ± 0.18
Single BB 14.46 ± 0.16 5.14 ± 0.21 15.92 ± 0.11 5.27 ± 0.09 9.77 ± 0.84HaluEval
Ours 6.68 ± 0.53

49.47
4.72 ± 0.38

61.02
5.48 ± 0.41

50.67
5.10 ± 0.24

34.80
6.28 ± 0.39

40.58

Binomial 14.00 ± 0.65 19.86 ± 0.40 19.55 ± 0.65 14.44 ± 0.40 15.20 ± 0.55
Single BB 8.83 ± 1.02 7.84 ± 0.26 6.79 ± 0.25 12.17 ± 0.99 11.31 ± 0.52TruthfulQA
Ours 7.53 ± 0.55

54.13
7.18 ± 0.44

53.56
6.24 ± 0.59

55.56
6.75 ± 0.58

47.64
6.73 ± 0.38

57.07

Binomial 13.10 ± 0.37 13.42 ± 0.54 14.84 ± 0.42 8.79 ± 0.21 9.25 ± 0.27
Single BB 11.33 ± 0.64 16.75 ± 0.90 7.95 ± 0.34 9.24 ± 0.59 8.43 ± 0.45HalluDial
Ours 7.94 ± 0.68

46.58
6.96 ± 0.47

55.78
6.43 ± 0.50

51.87
6.27 ± 0.36

41.51
5.22 ± 0.59

42.31

Reasoning

Binomial 10.11 ± 0.29 9.14 ± 0.17 9.12 ± 0.20 8.83 ± 0.25 14.52 ± 0.73
Single BB 16.45 ± 1.35 10.30 ± 0.60 9.81 ± 0.61 9.45 ± 0.72 12.31 ± 0.31PRM800K
Ours 9.37 ± 0.64

43.33
7.82 ± 0.69

42.89
4.52 ± 0.50

46.13
8.46 ± 0.51

51.38
6.17 ± 0.48

54.67

Binomial 13.29 ± 0.78 14.17 ± 0.40 14.68 ± 0.24 14.83 ± 0.53 12.15 ± 0.74
Single BB 13.15 ± 0.68 12.32 ± 0.60 9.51 ± 0.56 17.93 ± 0.89 11.50 ± 0.91BIG-bench
Ours 11.15 ± 0.60

51.51
6.97 ± 0.58

47.82
5.54 ± 0.51

48.40
12.59 ± 0.48

46.13
8.02 ± 0.59

46.09

Binomial 14.79 ± 0.82 13.13 ± 0.64 13.06 ± 0.77 4.99 ± 0.13 5.14 ± 0.11
Single BB 11.75 ± 0.74 5.72 ± 0.39 6.01 ± 0.44 7.42 ± 0.14 4.01 ± 0.30TRAM
Ours 8.39 ± 0.63

55.87
6.20 ± 0.34

57.16
6.10 ± 0.58

57.78
3.94 ± 0.17

39.07
4.81 ± 0.23

38.53

Alignment

Binomial 12.06 ± 0.78 13.45 ± 0.54 10.31 ± 1.03 8.85 ± 0.33 10.98 ± 0.32
Single BB 7.60 ± 0.37 7.64 ± 0.54 5.11 ± 0.24 11.85 ± 0.78 7.62 ± 0.25JudgeBench
Ours 6.98 ± 0.56

60.58
5.39 ± 0.39

58.40
5.26 ± 0.39

57.16
7.03 ± 0.61

41.07
6.45 ± 0.53

46.58

Binomial 8.40 ± 0.19 8.93 ± 0.22 17.36 ± 1.41 11.42 ± 0.33 13.98 ± 0.29
Single BB 16.29 ± 1.39 11.40 ± 1.20 6.15 ± 0.27 8.79 ± 0.21 8.80 ± 0.40RewardBench
Ours 11.30 ± 0.62

40.22
4.68 ± 0.56

45.20
6.58 ± 0.40

52.04
6.90 ± 0.45

42.27
7.65 ± 0.51

48.22

Binomial 13.61 ± 0.58 14.63 ± 0.51 13.66 ± 1.14 13.19 ± 0.55 10.36 ± 0.33
Single BB 14.21 ± 0.67 7.97 ± 0.58 5.46 ± 0.30 13.46 ± 0.83 11.72 ± 0.48LLMBar
Ours 10.18 ± 0.71

50.18
7.52 ± 0.63

51.07
6.38 ± 0.53

51.29
13.71 ± 0.54

44.40
8.16 ± 0.50

44.40

Scoring

Binomial 8.91 ± 0.25 9.27 ± 0.23 22.24 ± 1.02 3.61 ± 0.06 3.66 ± 0.07
Single BB 16.71 ± 1.11 9.24 ± 0.59 10.97 ± 0.27 3.54 ± 0.22 4.69 ± 0.10ICE-Score
Ours 8.97 ± 0.45

41.29
6.91 ± 0.59

43.73
18.19 ± 0.37

53.42
3.39 ± 0.32

39.87
5.78 ± 0.08

38.93

Binomial 14.45 ± 0.71 15.88 ± 0.72 13.28 ± 0.73 12.87 ± 0.32 15.64 ± 0.68
Single BB 8.56 ± 0.66 6.93 ± 0.34 4.61 ± 0.27 7.82 ± 0.29 11.32 ± 0.43COMP-Analysis
Ours 6.50 ± 0.63

53.91
6.95 ± 0.50

53.33
4.86 ± 0.48

57.11
6.66 ± 0.38

46.40
7.07 ± 0.48

53.82

Average

Binomial 12.76 ± 0.56 13.12 ± 0.49 14.98 ± 0.73 9.78 ± 0.29 10.91 ± 0.39
Single BB 12.67 ± 0.80 9.20 ± 0.56 8.03 ± 0.33 9.72 ± 0.52 10.11 ± 0.45Average
Ours 8.63 ± 0.60

49.73
6.48 ± 0.51

51.81
6.87 ± 0.48

52.86
7.35 ± 0.42

43.14
6.38 ± 0.44

46.47
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Figure 6: The actual number of samples un-
der various thresholds ξ versus the theoretical
value from Equation (10). The actual sample
numbers match with the theoretical bound.
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Figure 7: The actual number of samples from
different datasets under three ξ values. Our
sampling with adaptive stopping shows
consistent results on all the datasets.

From the results, we observe that by transferring from other datasets in the same category (e.g., from
TruthfulQA and HalluDial to HaluEval), the average error margin across all datasets is reduced by
5.0% ∼ 25.0% and is consistently lower compared to no transfer, suggesting the effectiveness of
using prior knowledge of the judgment distributions on open-source datasets can benefit estimation.

7.3 More Research Questions

RQ3: Is sampling with adaptive stopping consistent to the theory? We examine our adaptive
stopping to see if Equation (10) matches the real sampling amount. We set a series of ξ while keeping
τ = 25 and sample with adaptive stopping from judgment samples produced by Llama, Qwen,
and GPT-4, and compare with the theoretical value of Equation (10). The actual sample amounts
under different thresholds in Figure 6 match closely with the theoretical estimation, which proves the
effectiveness of quantifying sampling deviation through CP and the Proposition 1.
RQ4: Is adaptive stopping really distribution-free? One benefit of adopting CP to quantify
sampling deviation is distribution irrelevance. To testify to this, we consider sampling with various
thresholds on all datasets to see if the sample amount remains consistent. The results in Figure 7
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Table 2: The comparison of error margins with and without distribution prior transfer. Estimations
are performed using the mixture of Beta-Binomial distributions, with 10 samples randomly drawn for
estimation. In experiments, each dataset is chosen as the target dataset, and the left datasets in the
same domain are used as source datasets. Bold denotes lower margin. Scores are in percent (%).

Dataset Method Llama-3.3-70B Qwen-2.5-72B InternLM-2.5-20B GPT-3.5 GPT-4

Hallucination Detection Datasets

w/o Transfer 12.43 ± 0.87 12.50 ± 0.92 10.09 ± 0.64 14.07 ± 0.75 12.85 ± 0.83HaluEval w/ Transfer 8.82 ± 0.42 9.19 ± 0.75 8.60 ± 0.64 8.88 ± 0.71 8.88 ± 0.86
w/o Transfer 15.30 ± 0.81 13.88 ± 0.85 13.17 ± 1.11 12.54 ± 0.70 13.21 ± 1.03TruthfulQA w/ Transfer 3.37 ± 0.10 8.55 ± 0.07 10.18 ± 0.10 10.18 ± 0.82 9.66 ± 0.70
w/o Transfer 17.53 ± 0.81 16.15 ± 0.60 11.35 ± 0.83 16.62 ± 0.70 14.64 ± 0.85HalluDial w/ Transfer 12.89 ± 0.77 13.42 ± 0.53 8.72 ± 0.54 23.79 ± 0.84 18.77 ± 0.92

Reasoning Datasets

w/o Transfer 15.02 ± 0.78 12.85 ± 0.88 8.22 ± 0.58 9.27 ± 0.84 9.97 ± 0.53PRM800K w/ Transfer 15.11 ± 0.62 10.96 ± 0.99 8.46 ± 0.60 10.55 ± 0.84 9.71 ± 1.00
w/o Transfer 15.22 ± 0.74 13.81 ± 0.82 9.44 ± 0.53 14.39 ± 0.74 13.31 ± 1.15BIG-bench w/ Transfer 12.69 ± 0.74 14.28 ± 0.79 10.00 ± 0.62 9.98 ± 0.67 13.22 ± 0.69
w/o Transfer 14.77 ± 0.84 12.27 ± 0.69 11.67 ± 0.76 13.52 ± 0.81 12.69 ± 1.26TRAM w/ Transfer 12.52 ± 0.92 11.03 ± 1.04 10.85 ± 0.97 11.81 ± 1.00 11.25 ± 0.57

Alignment Datasets

w/o Transfer 14.05 ± 0.88 12.41 ± 0.66 11.37 ± 0.79 8.23 ± 0.75 12.32 ± 0.69JudgeBench w/ Transfer 9.45 ± 0.59 8.19 ± 0.66 8.03 ± 0.54 14.36 ± 0.68 15.30 ± 1.19

w/o Transfer 12.73 ± 0.68 9.47 ± 1.07 10.34 ± 0.67 15.17 ± 0.92 13.30 ± 0.77RewardBench w/ Transfer 12.72 ± 0.30 12.84 ± 0.48 16.35 ± 0.36 18.12 ± 0.34 12.57 ± 0.38
w/o Transfer 16.97 ± 1.10 15.91 ± 0.70 10.03 ± 0.88 17.00 ± 0.64 12.90 ± 0.97LLMBar w/ Transfer 8.03 ± 0.39 9.95 ± 0.30 8.61 ± 0.41 21.94 ± 0.42 17.70 ± 0.40

Scoring Datasets

w/o Transfer 14.08 ± 0.53 11.90 ± 1.05 19.59 ± 0.78 12.11 ± 0.82 13.98 ± 0.88ICE-Score w/ Transfer 11.32 ± 0.66 11.99 ± 0.76 19.25 ± 1.05 10.63 ± 0.66 12.30 ± 0.67
w/o Transfer 14.85 ± 1.45 10.83 ± 0.60 10.29 ± 0.60 10.22 ± 0.53 16.18 ± 1.00COMP-Analysis w/ Transfer 15.29 ± 0.91 12.28 ± 1.38 10.23 ± 0.72 9.62 ± 0.53 14.97 ± 0.82

Average

w/o Transfer 14.81 ± 0.86 12.91 ± 0.80 11.41 ± 0.74 13.01 ± 0.75 13.21 ± 0.91Average w/ Transfer 11.11 ± 0.58 11.15 ± 0.70 10.84 ± 0.60 13.62 ± 0.68 13.12 ± 0.74

show only a slight variance of sampling amounts across datasets, demonstrating superior stability.
This verifies that our adaptive stopping is truly distribution-free, and stable on diverse datasets.

RQ5: Is CP-based Adaptive Stopping efficient? To validate the effectiveness of our CP-based
adaptive stopping, we compare it against variance-based stopping. Specifically, we calculate the
variance of sampling as

Var (sampling) =
αrβr

(αr + βr)2(αr + βr + 1)
, (15)

where αr and βr = r−αr are the number of correct and wrong judgments in r samples, respectively.

As shown in Table 3, is consistently more effective for adaptive stopping under the same deviation
threshold ξ, which results in a reduced number of samples and achieves a reduction of up to 46.3%.

8 Conclusion

Table 3: Comparison of variance-based adaptive
stopping and ours. We compare the sample amount
of both methods under the same threshold. Bold
denotes less samples.

HaluEval JudgeBench PRM800K ICE-Score
Threshold ξ Methods # Samples (↓) # Samples (↓) # Samples (↓) # Samples (↓)

Variance 36.87 36.87 26.00 24.77
ξ=0.06 Ours 35.37 36.37 30.47 31.53

Variance 82.09 74.43 79.76 81.47
ξ=0.03 Ours 54.72 53.90 43.32 45.27

Variance 194.72 198.56 147.22 151.44
ξ=0.01 Ours 109.06 106.56 101.28 96.50

We present BetaConform, a framework for effi-
cient estimation of LLM ensemble judge distri-
bution. As part of our framework, we propose a
mixture of Beta-Binomial distributions to model
the judgment distribution after examining the
inaccuracy of the Binomial assumption. We de-
sign conformal prediction-based adaptive stop-
ping for sampling, which monitors the sampling
deviation and effectively determines the sample
amount for estimation. When only limited sam-
ples are available, we incorporate a text similarity-based distribution prior transfer mechanism to
improve the estimation accuracy. As shown by experiments, the conformal prediction-based adaptive
stopping effectively guided the sampling. Our mixture of Beta-Binomial distributions significantly
outperforms the common Binomial assumption. With the transfer mechanism, BetaConform can
achieve high estimation precision with as few as 10 samples from the target dataset.
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A BetaConform

Algorithm 1 BetaConform

1: Input: target dataset D0, source datasets D1, . . . , Dm,
judges J = {J1, . . . , Jk}, EM algorithm EM(·)

2: Output: distribution parameters Ω on the target dataset
3: if limited samples in D0 then
4: Compute distribution parameters on D0

5: Compute parameters of distributions on D1, . . . , Dm

6: Compute transfer weights by Equation (13)
7: Ω← Compute transferred parameters by Eq. (14)
8: else
9: Initial D ← {}, q01−ϵ ← −∞

10: while Equation (9) is not satisfied do
11: Add a sample from D0 to D and update q

|D|
1−ϵ

12: end while
13: Ω← Compute distribution parameters on samples D
14: end if
15: return Ω

In this section, we introduce
BetaConform, a framework de-
signed for the efficient estimation
of judgment distributions, as illus-
trated in Figure 2 and Algorithm 1.
The framework operates in two sce-
narios: when only limited samples
are available on the target dataset,
and when a larger number of sam-
ples can be collected. In the former
case, BetaConform leverages prior
distributions from source datasets to
enhance estimation. In the latter, it
employs adaptive stopping during it-
erative sampling to balance sample
efficiency and estimation accuracy.

(1) When only a small number of
samples are available from the tar-
get dataset, BetaConform follows
these steps: ❶ First, it estimates the mixture of Beta-Binomial distributions using the available
samples. ❷ Next, it incorporates prior knowledge by transferring distributions from source datasets.
Specifically, it estimates the distributions on the source datasets using all available samples and
calculates transfer weights based on Equation 13. ❸ Finally, the distributions from the source datasets
are aggregated using Equation 14 to produce an enhanced estimation for the target dataset.

(2) When the target dataset contains a large number of unlabeled samples, BetaConform employs
the following process: ❶ It uses a conformal prediction (CP)-based adaptive stopping strategy to
guide the labeling process. ❷ During iterative sampling, batches of samples are drawn and labeled,
while the variation in the nonconformity score is monitored. The sampling process stops when the
variation falls below a predefined threshold. ❸ Once sufficient labeled samples are collected, the
mixture of Beta-Binomial distributions is directly estimated using these samples.

B Proofs

B.1 Determination of Sample Amount.

To derive a theoretical estimation of the sample amount for the adaptive stopping criteria above,
we utilize the fundamental statistical properties of variance reduction with increasing sample size.
Specifically, for i.i.d samples, the variance of the quantile decreases as:

Var(qr1−ϵ) ∝
1

r · f(q1−ϵ)2
, (16)

where f(q1−ϵ) is the density function at the quantile. The standard deviation of the estimator, which
determines the variability of the quantile estimate, thus decays as:

StdDev(qr1−ϵ) ∝
1√
r
. (17)

By the asymptotic theory of quantile estimation, for a large enough number of samples r, the empirical
quantile qr1−ϵ converges to the quantile on the whole dataset q1−ϵ with a known distribution based on
Bahadur’s representation:

√
r
(
qr1−ϵ − q1−ϵ

)
∼ N

(
0,

ϵ(1− ϵ)

f(q1−ϵ)2

)
, (18)

This implies:

qr1−ϵ = q1−ϵ +Op

(
1√
r

)
, (19)
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where Op(·) denotes the order in probability. Thus, we can determine that the quantile itself decays
as:

qr1−ϵ − q1−ϵ = Op

(
1√
r

)
. (20)

This decay behavior shows that as r increases, the estimated quantile approaches the theoretical
quantile q1−ϵ, reflecting decreasing sampling deviation by using more samples. We will use this
property to derive the relationship between the stopping criteria and the sample size r. From the
stopping criteria in Equation (9), ∣∣qr1−ϵ − qr−1

1−ϵ

∣∣ ≤ ξ. (21)

According to the calculations in Equation (20), we can rewrite the bound for qr−1
1−ϵ as

qr−1
1−ϵ − q1−ϵ = Op

(
1√
r − 1

)
. (22)

Thus we have ∣∣qr1−ϵ − qr−1
1−ϵ

∣∣ = Op

(
1√
r
− 1√

r − 1

)
. (23)

This suggests to meet Equation (9), it requires

τ

(
1√
r − 1

− 1√
r

)
< ξ, (24)

which proves Equation (10).

B.2 Error Rate with Adaptive Sampling

In this section we develop a theoretical estimation of the error bound for adaptive sampling. We first
consider the base case and as shown in Equation (4), we know that the mixture distribution error rate
is:

P̃BB = w

⌈k/2⌉−1∑
s=0

(
k

s

)
B(s+ α1, k − s+ β1)

B(α1, β1)
+(1−w)

⌈k/2⌉−1∑
s=0

(
k

s

)
B(s+ α2, k − s+ β2)

B(α2, β2)
(25)

The adaptive stopping criterion is given by Equation (9):∣∣qr1−ϵ − qr−1
1−ϵ

∣∣ ≤ ξ. (26)

The sample size requirement is given by Equation (10):

τ

(
1√
r − 1

− 1√
r

)
≤ ξ. (27)

Based on the two equations and large number theory, we know that the difference between the
quantile on samples qr1−ϵ and the quantile on the whole dataset q1−ϵ decays proportionally to τ√

r
. In

addition, the non-conformity score si is defined in Equation (7):

si = score(Si) = |Si − E[S]|, (28)

where Si is the number of correct judgments in the i-th sample. As the (1− ϵ)-quantile of the sorted
scores s1 < . . . < sr at stopping time with r samples is:

qr1−ϵ = s⌈(1−ϵ)·(r+1)⌉. (29)

When the stopping criterion is met, this implies the confidence region for E[S] has stabilized and the
following holds:

P(|Si − E[S]| ≤ qr1−ϵ) = 1− ϵ. (30)

For the Beta-Binomial mixture model, E[S] relates to the error rate via:

P̃BB = P(S < ⌈k/2⌉). (31)

We will use the quantile stability argument as follows. For a sequence of independent samples
{S1, ..., Sr}, let si be the non-conformity score defined as:

si = score(Si) = |Si − E[S]|, (32)
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where Si is the number of correct judgments in the i-th sample. By the theory of quantile estimation,
for a large enough number of samples r, the empirical quantile qr1−ϵ converges to the population
quantile q1−ϵ with a known distribution:

√
r(qr1−ϵ − q1−ϵ) ∼ N

(
0,

ϵ(1− ϵ)

f(q1−ϵ)2

)
, (33)

where f(·) is the density function. This implies:

qr1−ϵ = q1−ϵ +Op

(
1√
r

)
, (34)

where Op(·) denotes the order in probability. As the (1−ϵ)-quantile of the sorted scores s1 < . . . < sr
at stopping time with r samples is:

qr1−ϵ = s⌈(1−ϵ)·(r+1)⌉. (35)

When the stopping criterion is met, this implies the confidence region for E[S] has stabilized and the
following holds:

P(|Si − E[S]| ≤ qr1−ϵ) = 1− ϵ. (36)
For the Beta-Binomial mixture model, E[S] relates to the error rate via:

P̃BB = P(S < ⌈k/2⌉). (37)

By the quantile stability argument above, we have the bound:

(1−min(ξ,
τ√
r
))E[S]BB < E[S]adapt < (1 + min(ξ,

τ√
r
))E[S]BB (38)

The error probability of P̃BB is defined using the Beta-Binomial cumulative distribution function:

P̃BB = P(S < ⌈k/2⌉) = FBB(⌈k/2⌉ − 1), (39)

where FBB is the Beta-Binomial cumulative distribution function. Since FBB is monotonically
increasing, the error probability P̃adapt follows the same proportional bound.

(1−min(ξ,
τ√
r
))P̃BB < P̃adapt < (1 + min(ξ,

τ√
r
))P̃BB. (40)

Therefore, we have:
P̃adapt = (1±min(ξ,

τ√
r
))P̃BB. (41)

C Implementation Details

In this section, we elaborate on the implementation details of BetaConform.

We evaluate LLM ensembles with k ∈ 1, 3, 5, 7, 9, 11 models, including GPT-3.5 [Brown et al.,
2020], GPT-4 [OpenAI et al., 2024], Llama-3.3-70B [Dubey et al., 2024], Qwen-2.5-72B [Yang et al.,
2024], and InternLM-2.5-20B [Cai et al., 2024]. The experiments cover four domains: hallucination
detection (HaluEval Li et al., 2023a, TruthfulQA Lin et al., 2021, HalluDial Luo et al., 2024),
reasoning (PRM800K Lightman et al., 2023, BIG-bench Srivastava et al., 2022, TRAM Wang and
Zhao, 2023), scoring (ICE-Score Zhuo, 2023, Comp-Analysis Zhang et al., 2024), and alignment
(JudgeBench Tan et al., 2024, RewardBench Lambert et al., 2024, LLMBar Zeng et al., 2023).

For all experiments, the sampling temperature of LLMs is set to 1, and the random seeds are not
fixed. The randomness comes from the Top− P sampling of token generation. Each experiment is
repeated 30 times to compute the mean and standard deviation of the error margin. The adaptive
stopping threshold is set to ξ = 0.03 and τ = 25, requiring at least r ≥ 56 samples to meet the
stopping criteria.

D Additional Experiments

In Table 4, we conduct ablation studies on our distribution transfer. Compared to ablated variants,
our full design achieves the smallest error margin, indicating the effectiveness of our transfer design.
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Table 4: The ablation study of BetaConform distribution prior transfer. ❶ log(ri) → ri means
the first term log(ri) in Eq. 14 is replaced with ri to still asign a larger dataset higher weight
while not considering source datasets could be magnitudes larger. ❷ CosSim(Ē0, Ēi)→ 1

|Ē0−Ēi|2
refers to replacing the cosine similarity to measure the source datasets and the target dataset with
the reciprocal of the Euclidean distance between the embeddings of the two datasets. This still
assigns more similar datasets higher weights. ❸ No σ(·) means the transfer weight is computed as
λi = log(ri) · CosSim(Ē0, Ēi), without using the sigmoid function σ(·) to reduce the weight of low
similarity datasets

Llama-3.3-70B Qwen-2.5-72B InternLM-20B
Dataset Ablation Error Margin Error Margin Error Margin

log(ri)→ ri 10.94 ± 0.57 9.53 ± 0.70 11.16 ± 0.75

CosSim(Ē0, Ēi)→ 1
|Ē0−Ēi|2

11.90 ± 0.85 13.17 ± 0.68 10.29 ± 0.80

No σ(·) 10.04 ± 0.23 23.03 ± 0.12 8.45 ± 0.10HaluEval

Ours 8.82 ± 0.42 9.19 ± 0.75 8.60 ± 0.64

log(ri)→ ri 13.47 ± 0.66 11.17 ± 1.15 10.65 ± 0.89

CosSim(Ē0, Ēi)→ 1
|Ē0−Ēi|2

15.13 ± 0.71 13.14 ± 0.96 11.03 ± 0.80

No σ(·) 6.87 ± 0.01 16.52 ± 0.03 12.47 ± 0.06TruthfulQA

Ours 3.37 ± 0.10 8.55 ± 0.07 10.18 ± 0.10
log(ri)→ ri 13.55 ± 0.58 15.43 ± 0.86 10.42 ± 1.00

CosSim(Ē0, Ēi)→ 1
|Ē0−Ēi|2

15.54 ± 0.59 15.89 ± 0.65 10.47 ± 0.67j

No σ(·) 12.39 ± 0.00 16.61 ± 0.09 13.00 ± 0.07HalluDial

Ours 12.89 ± 0.77 13.42 ± 0.53 8.72 ± 0.54
log(ri)→ ri 25.97 ± 0.03 21.23 ± 0.04 15.46 ± 0.06

CosSim(Ē0, Ēi)→ 1
|Ē0−Ēi|2

14.43 ± 1.12 11.26 ± 0.99 11.47 ± 0.74

No σ(·) 24.57 ± 0.44 19.26 ± 0.13 10.42 ± 0.08JudgeBench

Ours 9.45 ± 0.59 8.19 ± 0.66 8.03 ± 0.54
log(ri)→ ri 15.00 ± 0.01 17.33 ± 0.02 20.32 ± 0.01

CosSim(Ē0, Ēi)→ 1
|Ē0−Ēi|2

13.29 ± 0.87 14.48 ± 0.45 16.75 ± 0.34

No σ(·) 12.88 ± 0.59 13.74 ± 0.48 16.45 ± 0.26RewardBench

Ours 12.72 ± 0.30 12.84 ± 0.48 16.35 ± 0.36
log(ri)→ ri 13.88 ± 0.01 15.88 ± 0.01 15.45 ± 0.01

CosSim(Ē0, Ēi)→ 1
|Ē0−Ēi|2

16.27 ± 0.81 15.55 ± 0.83 11.90 ± 1.07

No σ(·) 9.53 ± 0.11 13.65 ± 0.01 12.58 ± 0.01LLMBar

Ours 8.03 ± 0.39 9.95 ± 0.30 8.61 ± 0.41

E Python Implementation

Below we provide the Python-style code for the implementation of our methods

Listing 1: Adaptive Conformal Sampling
import math
import random
import numpy as np

# --- Helper Function for Conformal Sampling ---
def _nonconformity_score_abs_diff_mean(value , mean_value):

""" Calculates L1 distance between a value and the mean as a
nonconformity measure."""

return abs(value - mean_value)

# --- Core Function 2: Adaptive Conformal Sampling ---
def run_adaptive_conformal_sampling_for_k_value(

full_dataset_items ,
k_value_num_models ,
num_samples_per_batch ,
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max_batches ,
epsilon_conformal =0.05,
convergence_threshold_q_diff =0.01,
min_batches_before_stopping_check =5

):
"""
Performs adaptive sampling for a fixed k-value (number of models)

using conformal prediction.
Samples are drawn in batches until the width of the conformal

interval (related to q-value) stabilizes.

Args:
full_dataset_items (list of lists): Each inner list contains

binary outcomes for a data point across all available
models.

k_value_num_models (int): Number of models/outcomes to
consider from the start of each item.

num_samples_per_batch (int): Number of items to sample per
batch.

max_batches (int): Maximum number of batches to draw.
epsilon_conformal (float): Significance level for conformal

prediction (e.g., 0.05 for 95% interval).
convergence_threshold_q_diff (float): Threshold for q-value

change to determine stopping.
min_batches_before_stopping_check (int): Minimum batches

before checking q-value convergence.

Returns:
tuple: (collected_success_counts_S , final_q_value ,

num_batches_processed , sampled_indices_overall)
- collected_success_counts_S: List of success counts

for all sampled items.
- final_q_value: q-value from conformal prediction at

stopping or max batches.
- num_batches_processed: Actual number of batches

processed.
- sampled_indices_overall: List of original indices of

the sampled items.
"""
if not full_dataset_items:

return [], None , 0, []
if not (0 < k_value_num_models <= len(full_dataset_items [0])):

raise ValueError(f"Invalid k_value_num_models: {
k_value_num_models}")

all_collected_S_values = [] # Stores S_i = sum(item[:
k_value_num_models ]) for calibration set

q_previous = None
final_q_value = None

indexed_full_dataset = list(enumerate(full_dataset_items))
available_indices_for_sampling = list(range(len(

indexed_full_dataset)))
sampled_indices_overall = []

for batch_idx in range(max_batches):
if len(available_indices_for_sampling) < num_samples_per_batch

:
if not available_indices_for_sampling: break # No more

samples available
# If remaining samples are less than a batch , sample all

remaining
actual_samples_this_batch = len(

available_indices_for_sampling)
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else:
actual_samples_this_batch = num_samples_per_batch

# Sample indices for the current batch without replacement
from available indices

chosen_pool_indices = random.sample(
available_indices_for_sampling , actual_samples_this_batch)

current_batch_items = []
current_batch_original_indices = []

temp_available_indices = [] # To update available indices for
the next round

# Build a set for quick removal of chosen indices
chosen_pool_indices_set = set(chosen_pool_indices)
for pool_idx in available_indices_for_sampling:

if pool_idx in chosen_pool_indices_set:
original_data_idx , item = indexed_full_dataset[

pool_idx]
current_batch_items.append(item)
current_batch_original_indices.append(

original_data_idx)
else:

temp_available_indices.append(pool_idx)
available_indices_for_sampling = temp_available_indices
sampled_indices_overall.extend(current_batch_original_indices)

for item in current_batch_items:
s_value = sum(item[: k_value_num_models ])
all_collected_S_values.append(s_value)

if not all_collected_S_values: continue

s_mean = np.mean(all_collected_S_values)
nonconformity_scores = [_nonconformity_score_abs_diff_mean(s,

s_mean) for s in all_collected_S_values]
nonconformity_scores_sorted = sorted(nonconformity_scores)

r_calib_size = len(nonconformity_scores_sorted)
quantile_idx = int(math.ceil(( r_calib_size + 1) * (1 -

epsilon_conformal))) - 1
quantile_idx = min(max(quantile_idx , 0), r_calib_size - 1) #

Ensure index is valid

current_q_value = nonconformity_scores_sorted[quantile_idx]
final_q_value = current_q_value

if batch_idx >= min_batches_before_stopping_check -1 : #
batch_idx is 0-indexed
if q_previous is not None:

if abs(current_q_value - q_previous) <
convergence_threshold_q_diff:
return all_collected_S_values , final_q_value ,

batch_idx + 1, sampled_indices_overall
q_previous = current_q_value

elif batch_idx == 0: # Set q_previous for the first iteration
q_previous = current_q_value

return all_collected_S_values , final_q_value , max_batches ,
sampled_indices_overall

Listing 2: Mixture of Beta Distributions Fitting via EM
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import numpy as np

# --- Helper Function for Distribution Transfer ---
def _normalize_vector(v):

"""L2 normalizes a vector."""
norm = np.linalg.norm(v)
return v / norm if norm > 0 else v

# --- Core Function 3: Distribution Transfer for Beta Mixture
Parameters ---

def transfer_beta_mixture_parameters(
target_direct_params ,
source_params_list ,
target_mean_embedding ,
source_mean_embeddings_list ,
target_data_size ,
source_data_sizes_list ,
embedding_similarity_threshold =0.9,
similarity_scaling_factor =10.0 ,
min_source_weight_factor =0.0

):
"""
Transfers/adjusts Beta mixture parameters from source domains to a

target domain
based on embedding similarity and data size.

Args:
target_direct_params (tuple): (a1_t , b1_t , a2_t , b2_t , w1_t) -

Directly estimated parameters for the target domain.
source_params_list (list of tuples): Each tuple contains

parameters for a source domain.
target_mean_embedding (np.array): Mean embedding vector for

the target domain.
source_mean_embeddings_list (list of np.array): List of mean

embedding vectors for source domains.
target_data_size (int): Number of samples in the target domain

.
source_data_sizes_list (list of int): List of data sizes for

source domains.
embedding_similarity_threshold (float): Threshold for cosine

similarity.
similarity_scaling_factor (float): Scaling factor for the

similarity score.
min_source_weight_factor (float): Minimum source weight factor

, ensuring non -negativity.

Returns:
tuple: Transferred parameters (a1_f , b1_f , a2_f , b2_f , w1_f).

"""
if not source_params_list: # No source , return target ’s own

parameters
return target_direct_params

if not (len(source_params_list) == len(source_mean_embeddings_list
) == len(source_data_sizes_list)):
raise ValueError("Lengths of source parameters , embeddings ,

and size lists must match.")

norm_target_emb = _normalize_vector(np.asarray(
target_mean_embedding , dtype=float))

weight_target = float(target_data_size)
source_final_weights = []

for i in range(len(source_params_list)):
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norm_source_emb_i = _normalize_vector(np.asarray(
source_mean_embeddings_list[i], dtype=float))

similarity = np.dot(norm_target_emb , norm_source_emb_i)

# Calculate similarity -based weight factor , ensuring non -
negativity

similarity_based_factor = similarity_scaling_factor * (
similarity - embedding_similarity_threshold)

similarity_based_factor = max(min_source_weight_factor ,
similarity_based_factor)

current_source_weight = source_data_sizes_list[i] *
similarity_based_factor

source_final_weights.append(current_source_weight)

total_combined_weight = weight_target + sum(source_final_weights)

if total_combined_weight <= 1e-9: # If total weight is too small ,
return target ’s own parameters
return target_direct_params

num_params_to_transfer = len(target_direct_params)
final_transferred_params_list = [0.0] * num_params_to_transfer

# Contribution from target parameters
for i in range(num_params_to_transfer):

final_transferred_params_list[i] += weight_target *
target_direct_params[i]

# Contribution from source parameters
for i, src_params_tuple in enumerate(source_params_list):

if len(src_params_tuple) != num_params_to_transfer:
raise ValueError(f"Source parameter tuple {i} length

mismatch with target parameters.")
for j in range(num_params_to_transfer):

final_transferred_params_list[j] += source_final_weights[i
] * src_params_tuple[j]

final_params_values = [p / total_combined_weight for p in
final_transferred_params_list]

# Post -process parameters: ensure alpha , beta are positive , and w1
is in [0,1]

# Assuming the order is (a1, b1 , a2 , b2, w1)
a1_f , b1_f , a2_f , b2_f , w1_f = final_params_values

a1_f = max(a1_f , 1e-6)
b1_f = max(b1_f , 1e-6)
a2_f = max(a2_f , 1e-6)
b2_f = max(b2_f , 1e-6)
w1_f = np.clip(w1_f , 1e-6, 1.0 - 1e-6)

return (a1_f , b1_f , a2_f , b2_f , w1_f)

Listing 3: Distribution Transfer for Beta Mixture Parameters
import math
import random
import numpy as np
from scipy.stats import beta
from scipy.special import betaln , gammaln as lgamma # gammaln is scipy

’s log gamma
from math import comb # math.comb for combinations

# --- Helper Functions for Beta Mixture and Beta -Binomial ---
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def _replace_elements_for_beta_pdf(probabilities):
"""
Replaces 0s and 1s in a list of probabilities with close values
to avoid issues with beta.pdf calculations.
"""
return [0.999999 if x >= 1.0 else 0.000001 if x <= 0.0 else x for

x in probabilities]

def _beta_binomial_pmf_log(k_trials , num_successes , alpha , beta_param)
:
"""
Calculates the log of the Beta -Binomial PMF: log(P(X=num_successes

))
where X ~ BB(k_trials , alpha , beta_param).
P(X=x) = C(k,x) * Beta(alpha+x, beta+k-x) / Beta(alpha ,beta)
"""
if not (0 <= num_successes <= k_trials):

return -np.inf # Log probability of zero

# Ensure alpha and beta_param are positive
alpha_stable = max(alpha , 1e-9)
beta_stable = max(beta_param , 1e-9)

log_C_k_x = lgamma(k_trials + 1) - (lgamma(num_successes + 1) +
lgamma(k_trials - num_successes + 1))

log_beta_num = betaln(alpha_stable + num_successes , beta_stable +
k_trials - num_successes)

log_beta_den = betaln(alpha_stable , beta_stable)

return log_C_k_x + log_beta_num - log_beta_den

def _mixture_beta_binomial_pmf(num_successes , alpha1 , beta1 , alpha2 ,
beta2 , w1 , k_trials):
"""
PMF of the mixture Beta -Binomial model:
P_mix(X=x) = w1 * BB(k, alpha1 , beta1) + (1-w1) * BB(k, alpha2 ,

beta2)
"""
log_p1 = _beta_binomial_pmf_log(k_trials , num_successes , alpha1 ,

beta1)
log_p2 = _beta_binomial_pmf_log(k_trials , num_successes , alpha2 ,

beta2)

p1 = np.exp(log_p1)
p2 = np.exp(log_p2)

return w1 * p1 + (1 - w1) * p2

# --- Core Function 1: Mixture of Beta Distributions Fitting via EM
---

def fit_mixture_of_betas_em(
raw_samples_outcomes ,
num_trials_per_sample ,
max_iters =100,
tol=1e-6,
alpha1_init=None , beta1_init=None ,
alpha2_init=None , beta2_init=None ,
w1_init=None

):
"""
Fits a mixture of two Beta distributions using the EM algorithm.
This model is used for modeling observed success rates p_i = (

successes for sample i) / num_trials_per_sample.
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Args:
raw_samples_outcomes (list of lists): Each inner list contains

binary outcomes (0 or 1) for a data point.
num_trials_per_sample (int): Number of trials/outcomes to

consider from the start of each inner list (K or m).
max_iters (int): Maximum number of iterations for the EM

algorithm.
tol (float): Tolerance for convergence.
alpha1_init , beta1_init , alpha2_init , beta2_init , w1_init:

Optional initial parameters.

Returns:
tuple: (alpha1 , beta1 , alpha2 , beta2 , w1) - The estimated

parameters.
"""
num_data_points = len(raw_samples_outcomes)
if num_data_points == 0:

raise ValueError("Input raw_samples_outcomes cannot be empty."
)

if num_trials_per_sample <= 0:
raise ValueError("num_trials_per_sample must be positive.")

# Initialize parameters (heuristic based on original code)
alpha1 = alpha1_init if alpha1_init is not None else 10 *

num_trials_per_sample
beta1 = beta1_init if beta1_init is not None else 1 *

num_trials_per_sample
alpha2 = alpha2_init if alpha2_init is not None else 1 *

num_trials_per_sample
beta2 = beta2_init if beta2_init is not None else 10 *

num_trials_per_sample
w1 = w1_init if w1_init is not None else 0.5

alpha1 , beta1 = max(alpha1 , 1e-6), max(beta1 , 1e-6)
alpha2 , beta2 = max(alpha2 , 1e-6), max(beta2 , 1e-6)
w1 = np.clip(w1 , 1e-6, 1.0 - 1e-6)

observed_successes = np.array ([sum(sample [: num_trials_per_sample ])
for sample in raw_samples_outcomes ])

proportions = observed_successes / num_trials_per_sample
proportions_for_pdf = np.array(_replace_elements_for_beta_pdf(

proportions.tolist ()))

for iteration in range(max_iters):
# E-Step: Calculate responsibilities
pdf_vals1 = beta.pdf(proportions_for_pdf , alpha1 + 1e-9, beta1

+ 1e-9) # Add small epsilon for stability
pdf_vals2 = beta.pdf(proportions_for_pdf , alpha2 + 1e-9, beta2

+ 1e-9)

numerator1 = w1 * pdf_vals1
numerator2 = (1 - w1) * pdf_vals2
denominator = numerator1 + numerator2
denominator[denominator < 1e-9] = 1e-9 # Avoid division by

zero

resp1 = numerator1 / denominator
resp2 = numerator2 / denominator

# M-Step: Update parameters (using weighted method of moments
for Beta parameters)

w1_new = np.mean(resp1)
w1_new = np.clip(w1_new , 1e-6, 1.0 - 1e-6)

# Update alpha , beta for component 1
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sum_resp1 = np.sum(resp1)
if sum_resp1 < 1e-6:

alpha1_new , beta1_new = alpha1 , beta1 # Keep old if weight
is too small

else:
mean_p1_w = np.sum(resp1 * proportions) / sum_resp1
var_p1_w = np.sum(resp1 * (( proportions - mean_p1_w)**2))

/ sum_resp1
mean_p1_w = np.clip(mean_p1_w , 1e-6, 1.0 - 1e-6)
if var_p1_w <= 1e-9 or var_p1_w >= mean_p1_w * (1.0 -

mean_p1_w) * (1-1e-6): # Check if variance is valid
# Invalid or too small variance , use heuristic (e.g.,

high confidence)
alpha1_new = mean_p1_w * (num_trials_per_sample * 10)

# Larger concentration
beta1_new = (1.0 - mean_p1_w) * (num_trials_per_sample

* 10)
else:

common_factor = (mean_p1_w * (1.0 - mean_p1_w) /
var_p1_w) - 1.0

alpha1_new = mean_p1_w * common_factor
beta1_new = (1.0 - mean_p1_w) * common_factor

# Update alpha , beta for component 2
sum_resp2 = np.sum(resp2)
if sum_resp2 < 1e-6:

alpha2_new , beta2_new = alpha2 , beta2
else:

mean_p2_w = np.sum(resp2 * proportions) / sum_resp2
var_p2_w = np.sum(resp2 * (( proportions - mean_p2_w)**2))

/ sum_resp2
mean_p2_w = np.clip(mean_p2_w , 1e-6, 1.0 - 1e-6)
if var_p2_w <= 1e-9 or var_p2_w >= mean_p2_w * (1.0 -

mean_p2_w) * (1-1e-6):
alpha2_new = mean_p2_w * (num_trials_per_sample * 10)
beta2_new = (1.0 - mean_p2_w) * (num_trials_per_sample

* 10)
else:

common_factor2 = (mean_p2_w * (1.0 - mean_p2_w) /
var_p2_w) - 1.0

alpha2_new = mean_p2_w * common_factor2
beta2_new = (1.0 - mean_p2_w) * common_factor2

alpha1_new , beta1_new = max(alpha1_new , 1e-6), max(beta1_new ,
1e-6)

alpha2_new , beta2_new = max(alpha2_new , 1e-6), max(beta2_new ,
1e-6)

# Check for convergence
param_diff = (abs(alpha1 - alpha1_new) + abs(beta1 - beta1_new

) +
abs(alpha2 - alpha2_new) + abs(beta2 - beta2_new

) +
abs(w1 - w1_new))

if param_diff < tol:
alpha1 , beta1 , alpha2 , beta2 , w1 = alpha1_new , beta1_new ,

alpha2_new , beta2_new , w1_new
break

alpha1 , beta1 , alpha2 , beta2 , w1 = alpha1_new , beta1_new ,
alpha2_new , beta2_new , w1_new

return alpha1 , beta1 , alpha2 , beta2 , w1

# --- Utility Function: Calculate Majority Vote Success Probability
from Mixture ---
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def calculate_majority_vote_success_prob_from_mixture(
k_trials_for_vote ,
alpha1 , beta1 ,
alpha2 , beta2 ,
w1_mixture_weight

):
"""
Calculates the probability of achieving majority success given

Beta -Binomial mixture parameters.
Majority success is defined as number of successes >= ceil(

k_trials_for_vote / 2).

Args:
k_trials_for_vote (int): Total number of trials (e.g., number

of LLMs).
alpha1 , beta1: Parameters for the first Beta -Binomial

component.
alpha2 , beta2: Parameters for the second Beta -Binomial

component.
w1_mixture_weight (float): Mixture weight for the first

component.

Returns:
float: Probability of majority vote success.

"""
if k_trials_for_vote <= 0: return 0.0
majority_threshold = math.ceil(k_trials_for_vote / 2.0)

prob_sum_for_majority = 0.0
for num_successes in range(int(majority_threshold),

k_trials_for_vote + 1):
prob_sum_for_majority += _mixture_beta_binomial_pmf(

num_successes , alpha1 , beta1 , alpha2 , beta2 ,
w1_mixture_weight , k_trials_for_vote

)
return prob_sum_for_majority

F Limitations and Future Work

The two-component Beta-Binomial mixture improves over simpler models but may still underfit
complex judgment distributions. Prior transfer depends on text embedding quality and assumes
textual similarity implies similar judgments—an assumption that may not always hold. The current
design also focuses on binary/scoring tasks and requires an odd number of annotators.

Future work could explore more flexible mixture models, robust prior transfer methods beyond textual
similarity, task-specific features, and extensions to diverse judgment formats and ensemble sizes.

G Broader Impacts

BetaConform can reduce the cost of LLM ensemble evaluations, supporting broader use in QA,
benchmarking, annotation, and MLOps. It enables scalable, reliable assessment but requires careful
attention to estimation error and modeling assumptions, especially in high-stakes applications.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our method sections and the experiment section matches the decription of our
method in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

26



Justification: In the Section F, we discuss about the limitations and future work of
BetaConform.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: For Proposition 1 and Proposition 2, we provide the assumption and proof in
Section B.1 and Section B.2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section E, we provide the implementation detail of our method and experi-
ments. In Section A, we provide the detailed description of our method.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We do not release the code. All the datasets used in this paper are open-source
datasets and can be found online with their names.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Our work do not involve training. and we directly use the designed valida-
tion/test splits of each dataset. The hyperparameters of experiments are described in Section
E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide the mean and standar deviation of our experimental results. The
setting is described in Section E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The judging process only require inference of LLMs. The distribution estima-
tion solely uses CPU.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The anonymity is preserved and we follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In Section G we discuss the broader impact of our method.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: Our paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We make proper citation of each dataset used in our paper, and we follow the
license of each dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should citep the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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