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Abstract

LLM ensembles are widely used for LLM judges. However, how to estimate their1

accuracy, especially in an efficient way, is unknown. In this paper, we present a2

principled maximum a posteriori (MAP) framework for an economical and precise3

estimation of the performance of LLM ensemble judgment. We first propose a4

mixture of Beta-Binomial distributions to model the judgment distribution, revising5

from the vanilla Binomial distribution. Next, we introduce a conformal prediction-6

driven approach that enables adaptive stopping during iterative sampling to balance7

accuracy with efficiency. Furthermore, we design a prior transfer mechanism that8

utilizes learned distributions on open-source datasets to improve estimation on9

a target dataset when only scarce annotations are available. Finally, we present10

BetaConform, a framework that integrates our distribution assumption, adaptive11

stopping, and the prior transfer mechanism to deliver a theoretically guaranteed12

distribution estimation of LLM ensemble judgment with minimum labeled samples.13

BetaConform is also validated empirically. For instance, with only 10 samples14

from the TruthfulQA dataset, for a Llama ensembled judge, BetaConform gauges15

its performance with an error margin as small as 3.37%.16
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Figure 1: In this paper, we aim to answer (1) how
to estimate the judgment distribution of LLM en-
semble on a dataset, and (2) how to achieve effi-
cient estimation to reduce annotation effort.

With the improving performance of large lan-18

guage models (LLMs), there is a proliferation19

of adopting LLMs as judges for various tasks20

[Liang et al., 2023, Yuan et al., 2024b, Zhang21

et al., 2025]. In applications of LLM judge en-22

sembles, the judgment distribution is critical to23

the service quality [Chen et al., 2024, Schoeneg-24

ger et al., 2024, Qiu et al., 2025]. Many datasets25

[Zheng et al., 2023, Zeng et al., 2023, Yuan26

et al., 2024a] have been employed to evaluate27

the performance of LLM judges. However, these28

datasets rely on human annotations, which are29

impractical at a large scale due to the substan-30

tial time and financial costs of annotating. This31

challenge highlights the need of how to estimate the LLM ensemble judging performance efficiently.32

In this work, we consider the following judgment distribution estimation problem:33

P(# correct judgments = n | k LLMs judge sample x).

We propose an efficient method for MAP estimation of the distribution of LLM ensemble judgment34

to answer two research questions shown in Figure 1.35
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• RQ1: How to efficiently and accurately estimate the judgment distribution?36

• RQ2: How many samples are needed for estimation under given error margin threshold?37

Given a small number of samples, one intuitive estimation is to directly adopt the distribution of38

the samples as the judgment distribution on the entire dataset. However, this is susceptible to the39

sampling bias. To avoid this, one common practice is to first calculate the single LLM accuracy40

on the samples and then model the distribution on the full dataset as Binomial. We first posit that41

the judgment distribution is not Binomial. Theoretically, a Binomial distribution implies increasing42

accuracy in majority voting as the ensemble size grows [De Condorcet et al., 2014, Austen-Smith and43

Banks, 1996]. However, this is unrealistic since the accuracy of LLM ensembles remains bounded44

even with a large number of judges. To testify to this, we start by observing the distribution of LLM45

ensemble judges on various benchmarks. We find marked deviations from the Binomial distribution46

and show a stratification between questions that can be classified as “easy” and “hard”. To this end,47

we propose to model the judgment distribution with a mixture of Beta-Binomial distributions to reflect48

the stratification. We show that under this assumption, by utilizing an expectation maximization (EM)49

estimation method, it can achieve accurate judgment distribution estimation with high data efficiency.50

Sa
m

pl
in

g 
D

ev
ia

tio
n

Number of Samples
1 2 3 4 5 6

N
um

 o
f Q

ue
st

io
ns

Correct Judges
0 1 2 3

𝑤!, 𝛼!,!, 𝛽!,!, 𝛼!,#, 𝛽!,#

…

𝑤#, 𝛼#,!, 𝛽#,!, 𝛼#,#, 𝛽#,#

𝒘𝟎
𝒕𝒓, 𝜶𝟎,𝟏𝒕𝒓 , 𝜷𝟎,𝟏𝒕𝒓 , 𝜶𝟎,𝟐𝒕𝒓 , 𝜷𝟎,𝟐𝒕𝒓

So
ur
ce

D
at
as
et

1

So
ur

ce
D

at
as

et
 2

BetaConform

Transfer
(c)

Sample
(b)

(c)Distribution Prior Transfer(b) Adaptive Stopping

Target
Dataset 0

Figure 2: Overview of BetaConform. Given a
target dataset, adaptive stopping is adopted to de-
termine the sample amount (b, Section 5). Dur-
ing iterative sampling, the sampling deviation is
monitored by using conformal prediction. The
sampling process stops when the deviation is suf-
ficiently low. Next, the estimation of the small
number of samples from the previous step is fur-
ther enhanced by transferring distribution priors
from source datasets (c, Section 6). The transfer
will assign a larger weight to the dataset that is
textually closer to the target dataset.

To rigorously guide the sampling process and51

determine how many samples to use for the es-52

timation, we draw inspiration from the confor-53

mal prediction (CP) [Shafer and Vovk, 2008,54

Fontana et al., 2023] that can efficiently esti-55

mate the sampling deviation. Based on this, we56

propose a novel adaptive stopping strategy for it-57

erative sampling, designed to meet a pre-defined58

deviation threshold. Our experiments demon-59

strate the effectiveness of this method for limit-60

ing the sample amount while maintaining high61

estimation precision.62

Moreover, we hypothesize that the prior knowl-63

edge of judgment distribution on open-source64

datasets can benefit the estimation of a new65

dataset when only a few samples are available.66

To achieve this, we propose a text similarity-67

based distribution prior transfer mechanism.68

This method embeds text inputs from both69

source and target datasets and calculates embed-70

ding similarities to determine the transfer weight.71

Our design greatly improves the estimation ac-72

curacy when transferring from similar datasets73

and avoids performance degradation when the74

datasets are distinct. Notably, this method relies75

solely on the text inputs, making it practical for application to vast amounts of unlabeled data.76

Our contribution can be summarized as follows:77

• We present pioneering work in judgment distribution estimation. We point out that the78

Binomial assumption of judgment distribution is inaccurate. By replacing it with a mixture79

of Beta-Binomial distributions, we could achieve efficient and accurate estimation.80

• We design a rigorous conformal prediction-based adaptive stopping strategy during iterative81

sampling when the sampling deviation is sufficiently low.82

• We introduce a distribution prior transfer mechanism that leverages judgment distributions83

on open-source datasets to improve few-sample estimations.84

• Extensive experiments show BetaConform’s high estimation efficiency. For example, using85

only 10 samples could result in an average of 10.84% error margin.86

2 Related Works87

LLMs for Judgment. Reliable model evaluation is a critical problem. Traditional human eval-88

uations remain the gold standard, but their scalability is a significant bottleneck in large-scale89
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applications. Thus, recent works have proposed leveraging LLMs to evaluate the text quality, ranking90

outputs, and ensuring alignment with human preferences [Zheng et al., 2023, Liu et al., 2023, Dubois91

et al., 2024]. While initially focused on text generation evaluation, the use of LLMs as judges has92

expanded to diverse applications including model alignment and safety assessment [Lee et al., 2024],93

code quality evaluation [Zhao et al., 2024b], and knowledge verification [Min et al., 2023], etc.94

Challenges and Limitations. The reliability of such frameworks is not without concerns. Studies95

have found that even advanced models like GPT-4 often exhibit systematic biases such as position96

bias and egocentric bias [Zeng et al., 2023, Wang et al., 2023], overconfidence in their judgments97

[Koo et al., 2024], and self-preference effects [Panickssery et al., 2024]. Moreover, many studies98

employing LLM annotations do not explicitly measure the alignment between LLMs and humans,99

thus further raising questions about their dependability [Calderon et al., 2025]. While researchers100

have proposed various solutions, including dynamic evaluation pipelines [Yu et al., 2024, Zhao et al.,101

2024a, Moniri et al., 2024], self-reflection mechanisms [Wu et al., 2024, Li et al., 2023b, Wang et al.,102

2024], and specialized benchmarks for assessing judge performance [Zheng et al., 2023, Tan et al.,103

2024, Park et al., 2024, Li et al., 2024, Zhao et al., 2024b], these methods often fall short in offering104

rigorous guarantees of their outcomes. A related line of research is Item Response Theory (IRT) [Cai105

et al., 2016, Baker, 2001, Harvey and Hammer, 1999], which assesses respondents’ latent abilities106

using responses to calibrated questions. However, the requirement for calibrated questions limits107

the direct applicability of IRT in the context of judgment distribution estimation, as datasets in this108

domain are frequently unlabeled.109

Statistical Approaches. Another direction of research focuses on providing statistical guarantees110

for LLM performance. Researchers have explored conformal methods [Angelopoulos et al., 2023]111

to ensure correctness and factuality [Mohri and Hashimoto, 2024] and to determine when LLMs112

should abstain from responding [Yadkori et al., 2024]. While these methods provide some statistical113

rigor, there is still a need for a unified framework that establishes reliable, theoretically grounded114

approaches for assessing LLM performance across diverse applications.115

3 Problem Setup116

We consider the task of using an LLM ensemble to evaluate and judge samples by discerning,117

choosing, or scoring. Let:118

• n: Total number of samples in the dataset to be judged.119

• k: Number of LLMs in an ensemble.120

• S: The random variable of correct judgments.121

• r: Number of samples to estimate S.122

• D: A dataset to estimate the judgment distribution.123

Definition 1 (LLM Ensemble Judgment). Let J = {J1, J2, . . . , Jk} be an ensemble of k LLM124

judges. For a given input x, each LLM Ji generates an output oi = Ji(x), yielding the set of all125

judgments O = { o1, o2, . . . , ok}. In this paper, we focus on binary and scoring judgments. We126

consider the LLM ensemble to be composed of multiple instances of the same underlying model (e.g.,127

k = 11 Llama models). Variations in their judgments for a given input are due to Top− P token128

sampling [Zhou et al., 2024] and the difference in random seeds.129

Definition 2 (LLM Ensemble Correct Judgment). For an ensemble of k LLMs, the random variable130

S =
∑k

i=1 Match(oi, y) represents the number of correct judgments. y denotes the ground truth,131

and Match(·) is the criterion for a correct judgment. For instance, for binary classification judgments,132

Match(·) could be an exact match; for scoring judgments, it could be whether the score falls within133

a predefined range of the human average score. The ensemble’s decision is deemed correct if134

S ≥ ⌈k/2⌉. To prevent ties, which can occur if k is an even integer and S = ⌈k/2⌉, we stipulate that135

k must be an odd integer.136

4 Mixture of Beta-Binomial Distribution137

4.1 Examination of Binomial Distribution138

We start by examining the common assumption of S follows a Binomial distribution, i.e. the139

probability of having s correct judgments when a single judge accuracy p̂ is,140
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Figure 3: Comparison of judgment distributions among actual, Binomial, and ours. Llama-3.3-70B
and GPT-4 ensembles of 11 models are tested on HaluEval and JudgeBench, respectively. The
Binomial distribution is estimated by using single judge accuracy p. Our mixture distribution is
estimated with 100 samples and scaled to the full dataset. Our distribution is consistently better.
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Figure 4: Majority voting error rate of actual, Binomial, and our mixture distribution. Binomial
uses single judge accuracy p. Our distribution is estimated with 100 random samples and tested for
3 times. The line denotes the average error rate and the shadow represents the standard variance.
Binomial shows decreasing error rate, while our distribution captures the actual trend.

PBin(S = s) = Bin(s | k, p̂) =
(
k

s

)
p̂s(1− p̂)k−s. (1)

141
The error rate P̃Bin of ensemble judgment is:142

P̃Bin = PBin(S < ⌈k/2⌉) =
⌈k/2⌉−1∑

s=0

(
k

s

)
p̂s(1− p̂)k−s. (2)

143
We first examine the common assumption that S follows a Binomial distribution in Equation (1).144

Specifically, we ❶ evaluate individual LLMs on datasets across domains and ❷ use the single LLM145

accuracy p in Equation (1) and (2) to estimate both the distribution of LLM ensembles on these146

datasets and the majority voting error rate for different numbers k of LLMs. Specifically, we evaluate147

GPT-4 [OpenAI et al., 2024] and Llama-3.3-70B [Dubey et al., 2024] on hallucination detection148

(HaluEval, Li et al., 2023a) and Human alignment (JudgeBench, Tan et al., 2024) datasets. Results149

are shown in Figure 3 and Figure 4.150

The results in Figure 3 and Figure 4 demonstrate the large deviation of Binomial distribution to the151

real distribution. On both datasets, the real distributions of LLM ensemble judgments consistently152

show two peaks centering at the two ends, while Binomial distribution results in a single peak with a153

large shift to either of the two peaks. Notably, in Figure 4, the assumption of a Binomial distribution154

leads to an always decreasing majority voting error rate, which is in sharp contrast with the actual155

error rate that remains at the same level when the ensemble becomes larger.156

4.2 Mixture of Beta-Binomial Distributions157

Assumption 1 (Mixture of Beta-Binomial Distribuitons).
S ∼ wBB(k, α1, β1) + (1− w)BB(k, α2, β2), (3)

where BB(·, ·, ·) is the Beta-Binomial distribution, k is the number of judges in the ensemble,158

α1, β1, α2, β2 are parameters of the two distributions, and w is the mixture weight.159

Corollary 1 (Mixture Distribution Error Rate). The error rate of the mixture of Beta-Binomial160

distributions is161

P̃BB = w

⌈k/2⌉−1∑
s=0

(
k

s

)
B(s+ α1, k − s+ β1)

B(α1, β1)
+ (1− w)

⌈k/2⌉−1∑
s=0

(
k

s

)
B(s+ α2, k − s+ β2)

B(α2, β2)
,

(4)
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where B(·, ·) is the Beta function.162

After examining the common Binomial distribution assumption in Figure 3 and Figure 4, we notice163

that the real distribution keeps showing two peaks centering near all wrong and all correct. Motivated164

by this observation, in Assumption 1 we model the distribution as a mixture of two Beta-Binomial165

distributions, where one distribution models the LLM ensemble judgments on simple questions and166

the other one for hard problems. To derive all the parameters, we utilize labeled samples from the167

dataset and design a distribution-tailored expectation maximization (EM) algorithm.168

4.3 Expectation Maximization169

Samples as Distribution Evidence. Given r samples, each containing judgments from k LLMs, Si170

is the number of correct judgments in the i-th sample and pi = Si/k as the estimated probability of171

success for the i-th sample.172

For the i-th sample, considering the first Beta-Binomial distribution, a responsibility γi
1 is assigned as173

γi
1 =

wBeta(pi | α1, β1)

wBeta(pi | α1, β1) + (1− w)Beta(pi | α2, β2)
, (5)

174

where Beta(pi | α, β) is the probability density of beta distribution at pi for the i-th sample under175

the corresponding Beta component. γi
1 represents the probability that the i-th sample belongs to the176

first Beta component, and γi
2 = 1− γi

1 is the probability for the second component.177

Parameters Update. The parameters are updated based on the weighted contributions of samples.178

The parameters of two distributions j = {1, 2} are updated as179

α′
j =

r∑
i=1

γi
1 · Si, β

′
j =

r∑
i=1

γi
1 · (k − Si), w

′ =
1

r

r∑
i=1

γi
1 (6)

180

We verify our distribution assumption by first sampling r = 100 judgments made by two models181

on two datasets and apply our distribution-tailored EM algorithm to estimate the parameters. Our182

method is evaluated in two scenarios: ❶ In Figure 3, we fix the ensemble size k = 11 and compare183

the estimated distribution against the real distribution and Binomial distribution, and ❷ in Figure 4184

we estimate the error rate of majority voting with different ensemble sizes.185

In Figure 3, the mixture of Beta-Binomial distributions is significantly closer to the real distribution186

compared to the Binomial, with clear two-peak patterns that are analogous to the observation. In187

Figure 4 it shows that our distribution is consistently close to the real majority voting error rate188

across all ensemble sizes. Contrary to the Binomial distribution that produced a decreasing error189

rate, our distribution successfully modeled the stable error rate when the ensemble becomes larger.190

Additionally, the narrow confidence interval demonstrates the high stability of our method.191

5 Guide Sampling via Conformal Prediction192

In the experiments above, we used a fixed number of samples. However, in practical settings where193

datasets are unannotated and being labeled, it is essential to determine when the number of annotated194

samples is sufficient for accurate estimation. Inspired by conformal prediction (CP), which does not195

rely on prior knowledge of the dataset distribution and can rigorously estimate the sampling deviation,196

we propose leveraging its principles to address this challenge.197

5.1 Conformal Prediction for Adaptive Stopping198

CP provides a principled approach to dynamically evaluate the sampling deviation in the distribution199

of the number of correct judgments S, which can be used as guidance.200

Nonconformity Scores. A major part of CP is the nonconformity score, which measures how a test201

sample differs from the rest of the data. In our implementation, we set the nonconformity score as202

score(Si) = |Si − E[S]|, (7)
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HaluEval Embedding HaluEval Estimation Margin TruthfulQA Embedding TruthfulQA Estimation Margin

Figure 5: Examples of distribution prior transfer. Splits from HaluEval form distinct clusters in the
embedding space, and transfer does not degrade performance compared to only using target dataset
samples. In contrast, topics in TruthfulQA exhibit closer proximity, where transfer leads to significant
performance improvements compared to solely using the limited samples of the target dataset.

which quantifies the deviation of each observed value of S from the expected value.203

Calibration Data and Quantile Computation. Suppose r samples have been used to test the204

LLM ensemble with S1, S2, . . . , Sr correct judgments, the CP sampling computes the nonconformity205

scores for all calibration data as si = score(Si) and these scores are sorted in ascending order as206

s1 < . . . < sr. For a desired estimation confidence 1− ϵ, the (1− ϵ)-quantile with r samples qr1−ϵ is207

qr1−ϵ = s⌈(1−ϵ)·(r+1)⌉. (8)

Adaptive Stopping Criteria. Adaptive stopping is achieved by monitoring the variation of the208

conformal prediction quantile. After r samples, the (1− ϵ)-quantile is recomputed and compared209

with the one from r − 1 samples. The sampling process stops when the quantile satisfies210 ∣∣qr1−ϵ − qr−1
1−ϵ

∣∣ ≤ ξ (9)

211 where ξ is a predefined threshold.212

Proposition 1 (Sample Amount with Adaptive Stopping). For a given sampling deviation threshold213

ξ and a scale τ , the sample amount r should satisfy214

τ

(
1√
r − 1

− 1√
r

)
≤ ξ, (10)

This proposition offers an estimation of the sample amount under the threshold ξ.215

Proposition 2 (Error Rate with Adaptive Stopping). Under the sampling threshold ξ, the majority216

voting error rate of the mixture distribution becomes217

(1−min(ξ,
τ√
r
))P̃BB < P̃adapt < (1 + min(ξ,

τ√
r
))P̃BB (11)

This proposition provides a theoretical error bound for estimation under adaptive stopping, suggesting218

the mild degradation of estimation performance.219

We leave the proofs of Proposition 1 and 2 in Appendix B.1 and B.2, respectively. In our experiments,220

we set ξ = 0.03, and τ = 25, which leads to r ≥ 56.221

6 Text Similarity for Distribution Prior Transfer222

To further improve the data efficiency when only a few samples are available and enhance estimation223

accuracy, we propose to incorporate prior knowledge about the LLM ensemble on other open-224

source datasets and transfer the estimated judgment distributions to the target dataset. However, one225

challenge is that the prior transfer could bring performance degradation if the distributions of the226

source datasets and the target dataset are very different. To resolve this challenge, we design text227

similarity-based distribution prior transfer, which leverages the strong text embedding capability of228

the recent models to understand and measure the textual difference among datasets.229
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Text Embedding. To embed the text inputs of the LLM ensemble, we use NV-Embed-V2 [Lee230

et al., 2025]. Given sets of samples {D1, D2, . . . , Dm} from m source datasets, the embedding231

model E(·) is utilized to transform the sets of samples to sets of embeddings for the source datasets232

{E1, E2, . . . , Em} = {E(D1), E(D2), . . . , E(Dm)} . (12)

The average embedding Ēi =
1
ri

∑ri
j=1 E

j
i of the i-th dataset is used to represent it.233

Distribution Prior Transfer. To transfer the distribution from source datasets to the target dataset234

D0, the process starts by embedding the target dataset E0 = E(D0) and acquiring its average235

embedding Ē0. For the dataset Di, its transfer weight is236

λi = log(ri) · σ
(
ρ1 ·

(
CosSim

(
Ē0, Ēi

)
− ρ2

))
, (13)

where σ(·) is the sigmoid function, ri is the number of samples and ρ1 and ρ2 are hyperparameters.237

We adopt this design to avoid the degradation of estimation caused by transferring datasets with238

dissimilar text inputs. This is achieved by setting a threshold and applying the sigmoid function to239

suppress the weight when the similarity is low. log(ri) is included as datasets with more samples240

could produce a more accurate estimation and thus should have a higher impact on the transfer. The241

transfer from the source datasets to the target dataset is performed as242

wtr
0 =

∑m
i=0 λi · wi∑m

i=0 λi
, αtr

0,j =

∑m
i=0 λi · αi,j∑m

i=0 λi
, βtr

0,j =

∑m
i=0 λi · βi,j∑m

i=0 λi
, j ∈ {1, 2}. (14)

In Equation (14), αi,j and βi,j are the j-th parameter in the mixture distribution of i-th dataset. The243

parameters in the weighted sum with index 0 denote direct estimation on the target dataset.244

Examples. To verify our distribution design, we evaluate the distribution within splits of HaluEval245

[Li et al., 2023a] and TruthfulQA [Lin et al., 2021] datasets. For HaluEval, we use Dialogue and246

Summarization splits as source datasets and transfer to QA split; for TruthfulQA, we transfer from247

topics of Health and Law to Misconceptions. As shown in Figure 5, the embeddings form distant248

clusters in HaluEval, as the text inputs of the three splits have different hallucination detection249

requirements, and embeddings from TruthfulQA overlap due to the similarity of judgment format.250

When clusters are separated, our method will not bring performance degradation compared to solely251

using samples from the target dataset, while when clusters are overlapping, our method brings a252

significantly lower estimation error rate margin compared to only using target dataset samples. This253

supports the effectiveness of our distribution transfer design.254

We present the algorithm and Python implementation of BetaConform in Section A and Section E.255

7 Experiments256

7.1 Estimation Accuracy257

We begin by evaluating BetaConform with adaptive stopping on datasets to verify its accuracy. We258

choose Binomial distribution and a single Beta-Binomial distribution as baselines and compare the259

error margin, which is the absolute difference between the estimation error rate and the actual value.260

The results are reported in Table 1. Please see Section E for implementation details.261

From the results, the following observations can be drawn: ❶ Compared to the Binomial distribution,262

BetaConform achieves consistently lower error margin, with 32.4% ∼ 54.1% improvements of263

average error margin of all models. This demonstrates an effective answer to RQ1 by modeling264

judgment distribution as a mixture of Beta-Binomial distributions. ❷ The number of samples is close265

to the theoretical estimation. The average sample amount of models on all datasets exhibit a slight266

deviation of the estimated value 56 by 3.14 ∼ 12.86 samples. This validates our design of using the267

distribution-free CP for adaptive stopping, which effectively solved RQ2.268

7.2 Distribution Prior Transfer269

We then verify our text similarity-based distribution prior transfer when only limited samples are270

available. We constrain to 10 samples from the target dataset and assume the full source datasets are271

accessible. Transfer is compared with estimating only on the target dataset samples (w/o Transfer).272

Error margins are shown in Table 2. We also conduct ablation studies of the transfer design in Table 4273
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Table 1: The comparison of error margins between our mixture of Beta-Binomial distributions and
Binomial distribution. The Err. Margin and # Samples answer RQ1 and RQ2, respectively. The
error margin is calculated as the absolute difference between the actual error rate and the estimation.
Estimations using both distributions are done on samples obtained through iterative sampling with
adaptive stopping. For each run, the error margin is computed from k = 1 to 11, and the average
margin of ensemble sizes is used as the result for that run. We conduct 30 runs and report the average
and standard deviation. The average number of samples across runs is also reported.

Llama-3.3-70B Qwen-2.5-72B InternLM-20B GPT-3.5 GPT-4
Dataset Method Error Margin (↓) # Samples (↓) Error Margin (↓) # Samples (↓) Error Margin (↓) # Samples (↓) Error Margin (↓) # Samples (↓) Error Margin (↓) # Samples (↓)

Hallucination Detection

Binomial 17.62 ± 0.73 12.45 ± 1.04 16.67 ± 0.38 5.78 ± 0.08 9.16 ± 0.18
Single BB 14.46 ± 0.16 5.14 ± 0.21 15.92 ± 0.11 5.27 ± 0.09 9.77 ± 0.84HaluEval
Ours 6.68 ± 0.53

49.47
4.72 ± 0.38

61.02
5.48 ± 0.41

50.67
5.10 ± 0.24

34.80
6.28 ± 0.39

40.58

Binomial 14.00 ± 0.65 19.86 ± 0.40 19.55 ± 0.65 14.44 ± 0.40 15.20 ± 0.55
Single BB 8.83 ± 1.02 7.84 ± 0.26 6.79 ± 0.25 12.17 ± 0.99 11.31 ± 0.52TruthfulQA
Ours 7.53 ± 0.55

54.13
7.18 ± 0.44

53.56
6.24 ± 0.59

55.56
6.75 ± 0.58

47.64
6.73 ± 0.38

57.07

Binomial 13.10 ± 0.37 13.42 ± 0.54 14.84 ± 0.42 8.79 ± 0.21 9.25 ± 0.27
Single BB 11.33 ± 0.64 16.75 ± 0.90 7.95 ± 0.34 9.24 ± 0.59 8.43 ± 0.45HalluDial
Ours 7.94 ± 0.68

46.58
6.96 ± 0.47

55.78
6.43 ± 0.50

51.87
6.27 ± 0.36

41.51
5.22 ± 0.59

42.31

Reasoning

Binomial 10.11 ± 0.29 9.14 ± 0.17 9.12 ± 0.20 8.83 ± 0.25 14.52 ± 0.73
Single BB 16.45 ± 1.35 10.30 ± 0.60 9.81 ± 0.61 9.45 ± 0.72 12.31 ± 0.31PRM800K
Ours 9.37 ± 0.64

43.33
7.82 ± 0.69

42.89
4.52 ± 0.50

46.13
8.46 ± 0.51

51.38
6.17 ± 0.48

54.67

Binomial 13.29 ± 0.78 14.17 ± 0.40 14.68 ± 0.24 14.83 ± 0.53 12.15 ± 0.74
Single BB 13.15 ± 0.68 12.32 ± 0.60 9.51 ± 0.56 17.93 ± 0.89 11.50 ± 0.91BIG-bench
Ours 11.15 ± 0.60

51.51
6.97 ± 0.58

47.82
5.54 ± 0.51

48.40
12.59 ± 0.48

46.13
8.02 ± 0.59

46.09

Binomial 14.79 ± 0.82 13.13 ± 0.64 13.06 ± 0.77 4.99 ± 0.13 5.14 ± 0.11
Single BB 11.75 ± 0.74 5.72 ± 0.39 6.01 ± 0.44 7.42 ± 0.14 4.01 ± 0.30TRAM
Ours 8.39 ± 0.63

55.87
6.20 ± 0.34

57.16
6.10 ± 0.58

57.78
3.94 ± 0.17

39.07
4.81 ± 0.23

38.53

Alignment

Binomial 12.06 ± 0.78 13.45 ± 0.54 10.31 ± 1.03 8.85 ± 0.33 10.98 ± 0.32
Single BB 7.60 ± 0.37 7.64 ± 0.54 5.11 ± 0.24 11.85 ± 0.78 7.62 ± 0.25JudgeBench
Ours 6.98 ± 0.56

60.58
5.39 ± 0.39

58.40
5.26 ± 0.39

57.16
7.03 ± 0.61

41.07
6.45 ± 0.53

46.58

Binomial 8.40 ± 0.19 8.93 ± 0.22 17.36 ± 1.41 11.42 ± 0.33 13.98 ± 0.29
Single BB 16.29 ± 1.39 11.40 ± 1.20 6.15 ± 0.27 8.79 ± 0.21 8.80 ± 0.40RewardBench
Ours 11.30 ± 0.62

40.22
4.68 ± 0.56

45.20
6.58 ± 0.40

52.04
6.90 ± 0.45

42.27
7.65 ± 0.51

48.22

Binomial 13.61 ± 0.58 14.63 ± 0.51 13.66 ± 1.14 13.19 ± 0.55 10.36 ± 0.33
Single BB 14.21 ± 0.67 7.97 ± 0.58 5.46 ± 0.30 13.46 ± 0.83 11.72 ± 0.48LLMBar
Ours 10.18 ± 0.71

50.18
7.52 ± 0.63

51.07
6.38 ± 0.53

51.29
13.71 ± 0.54

44.40
8.16 ± 0.50

44.40

Scoring

Binomial 8.91 ± 0.25 9.27 ± 0.23 22.24 ± 1.02 3.61 ± 0.06 3.66 ± 0.07
Single BB 16.71 ± 1.11 9.24 ± 0.59 10.97 ± 0.27 3.54 ± 0.22 4.69 ± 0.10ICE-Score
Ours 8.97 ± 0.45

41.29
6.91 ± 0.59

43.73
18.19 ± 0.37

53.42
3.39 ± 0.32

39.87
5.78 ± 0.08

38.93

Binomial 14.45 ± 0.71 15.88 ± 0.72 13.28 ± 0.73 12.87 ± 0.32 15.64 ± 0.68
Single BB 8.56 ± 0.66 6.93 ± 0.34 4.61 ± 0.27 7.82 ± 0.29 11.32 ± 0.43COMP-Analysis
Ours 6.50 ± 0.63

53.91
6.95 ± 0.50

53.33
4.86 ± 0.48

57.11
6.66 ± 0.38

46.40
7.07 ± 0.48

53.82

Average

Binomial 12.76 ± 0.56 13.12 ± 0.49 14.98 ± 0.73 9.78 ± 0.29 10.91 ± 0.39
Single BB 12.67 ± 0.80 9.20 ± 0.56 8.03 ± 0.33 9.72 ± 0.52 10.11 ± 0.45Average
Ours 8.63 ± 0.60

49.73
6.48 ± 0.51

51.81
6.87 ± 0.48

52.86
7.35 ± 0.42

43.14
6.38 ± 0.44

46.47
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Figure 6: The actual number of samples un-
der various thresholds ξ versus the theoretical
value from Equation (10). The actual sample
numbers match with the theoretical bound.
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Figure 7: The actual number of samples from
different datasets under three ξ values. Our
sampling with adaptive stopping shows
consistent results on all the datasets.

From the results, we observe that by transferring from other datasets in the same category (e.g., from274

TruthfulQA and HalluDial to HaluEval), the average error margin across all datasets is reduced by275

5.0% ∼ 25.0% and is consistently lower compared to no transfer, suggesting the effectiveness of276

using prior knowledge of the judgment distributions on open-source datasets can benefit estimation.277

7.3 More Research Questions278

RQ3: Is sampling with adaptive stopping consistent to the theory? We examine our adaptive279

stopping to see if Equation (10) matches the real sampling amount. We set a series of ξ while keeping280

τ = 25 and sample with adaptive stopping from judgment samples produced by Llama, Qwen,281

and GPT-4, and compare with the theoretical value of Equation (10). The actual sample amounts282

under different thresholds in Figure 6 match closely with the theoretical estimation, which proves the283

effectiveness of quantifying sampling deviation through CP and the Proposition 1.284

RQ4: Is adaptive stopping really distribution-free? One benefit of adopting CP to quantify285

sampling deviation is distribution irrelevance. To testify to this, we consider sampling with various286

thresholds on all datasets to see if the sample amount remains consistent. The results in Figure 7287
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Table 2: The comparison of error margins with and without distribution prior transfer. Estimations
are performed using the mixture of Beta-Binomial distributions, with 10 samples randomly drawn for
estimation. In experiments, each dataset is chosen as the target dataset, and the left datasets in the
same domain are used as source datasets. Bold denotes lower margin. Scores are in percent (%).

Dataset Method Llama-3.3-70B Qwen-2.5-72B InternLM-2.5-20B GPT-3.5 GPT-4

Hallucination Detection Datasets

w/o Transfer 12.43 ± 0.87 12.50 ± 0.92 10.09 ± 0.64 14.07 ± 0.75 12.85 ± 0.83HaluEval w/ Transfer 8.82 ± 0.42 9.19 ± 0.75 8.60 ± 0.64 8.88 ± 0.71 8.88 ± 0.86
w/o Transfer 15.30 ± 0.81 13.88 ± 0.85 13.17 ± 1.11 12.54 ± 0.70 13.21 ± 1.03TruthfulQA w/ Transfer 3.37 ± 0.10 8.55 ± 0.07 10.18 ± 0.10 10.18 ± 0.82 9.66 ± 0.70
w/o Transfer 17.53 ± 0.81 16.15 ± 0.60 11.35 ± 0.83 16.62 ± 0.70 14.64 ± 0.85HalluDial w/ Transfer 12.89 ± 0.77 13.42 ± 0.53 8.72 ± 0.54 23.79 ± 0.84 18.77 ± 0.92

Reasoning Datasets

w/o Transfer 15.02 ± 0.78 12.85 ± 0.88 8.22 ± 0.58 9.27 ± 0.84 9.97 ± 0.53PRM800K w/ Transfer 15.11 ± 0.62 10.96 ± 0.99 8.46 ± 0.60 10.55 ± 0.84 9.71 ± 1.00
w/o Transfer 15.22 ± 0.74 13.81 ± 0.82 9.44 ± 0.53 14.39 ± 0.74 13.31 ± 1.15BIG-bench w/ Transfer 12.69 ± 0.74 14.28 ± 0.79 10.00 ± 0.62 9.98 ± 0.67 13.22 ± 0.69
w/o Transfer 14.77 ± 0.84 12.27 ± 0.69 11.67 ± 0.76 13.52 ± 0.81 12.69 ± 1.26TRAM w/ Transfer 12.52 ± 0.92 11.03 ± 1.04 10.85 ± 0.97 11.81 ± 1.00 11.25 ± 0.57

Alignment Datasets

w/o Transfer 14.05 ± 0.88 12.41 ± 0.66 11.37 ± 0.79 8.23 ± 0.75 12.32 ± 0.69JudgeBench w/ Transfer 9.45 ± 0.59 8.19 ± 0.66 8.03 ± 0.54 14.36 ± 0.68 15.30 ± 1.19

w/o Transfer 12.73 ± 0.68 9.47 ± 1.07 10.34 ± 0.67 15.17 ± 0.92 13.30 ± 0.77RewardBench w/ Transfer 12.72 ± 0.30 12.84 ± 0.48 16.35 ± 0.36 18.12 ± 0.34 12.57 ± 0.38
w/o Transfer 16.97 ± 1.10 15.91 ± 0.70 10.03 ± 0.88 17.00 ± 0.64 12.90 ± 0.97LLMBar w/ Transfer 8.03 ± 0.39 9.95 ± 0.30 8.61 ± 0.41 21.94 ± 0.42 17.70 ± 0.40

Scoring Datasets

w/o Transfer 14.08 ± 0.53 11.90 ± 1.05 19.59 ± 0.78 12.11 ± 0.82 13.98 ± 0.88ICE-Score w/ Transfer 11.32 ± 0.66 11.99 ± 0.76 19.25 ± 1.05 10.63 ± 0.66 12.30 ± 0.67
w/o Transfer 14.85 ± 1.45 10.83 ± 0.60 10.29 ± 0.60 10.22 ± 0.53 16.18 ± 1.00COMP-Analysis w/ Transfer 15.29 ± 0.91 12.28 ± 1.38 10.23 ± 0.72 9.62 ± 0.53 14.97 ± 0.82

Average

w/o Transfer 14.81 ± 0.86 12.91 ± 0.80 11.41 ± 0.74 13.01 ± 0.75 13.21 ± 0.91Average w/ Transfer 11.11 ± 0.58 11.15 ± 0.70 10.84 ± 0.60 13.62 ± 0.68 13.12 ± 0.74

show only a slight variance of sampling amounts across datasets, demonstrating superior stability.288

This verifies that our adaptive stopping is truly distribution-free, and stable on diverse datasets.289

RQ5: Is CP-based Adaptive Stopping efficient? To validate the effectiveness of our CP-based290

adaptive stopping, we compare it against variance-based stopping. Specifically, we calculate the291

variance of sampling as292

Var (sampling) =
αrβr

(αr + βr)2(αr + βr + 1)
, (15)

293
where αr and βr = r−αr are the number of correct and wrong judgments in r samples, respectively.294

As shown in Table 3, is consistently more effective for adaptive stopping under the same deviation295

threshold ξ, which results in a reduced number of samples and achieves a reduction of up to 46.3%.296

8 Conclusion297

Table 3: Comparison of variance-based adaptive
stopping and ours. We compare the sample amount
of both methods under the same threshold. Bold
denotes less samples.

HaluEval JudgeBench PRM800K ICE-Score
Threshold ξ Methods # Samples (↓) # Samples (↓) # Samples (↓) # Samples (↓)

Variance 36.87 36.87 26.00 24.77
ξ=0.06 Ours 35.37 36.37 30.47 31.53

Variance 82.09 74.43 79.76 81.47
ξ=0.03 Ours 54.72 53.90 43.32 45.27

Variance 194.72 198.56 147.22 151.44
ξ=0.01 Ours 109.06 106.56 101.28 96.50

We present BetaConform, a framework for effi-298

cient estimation of LLM ensemble judge distri-299

bution. As part of our framework, we propose a300

mixture of Beta-Binomial distributions to model301

the judgment distribution after examining the302

inaccuracy of the Binomial assumption. We de-303

sign conformal prediction-based adaptive stop-304

ping for sampling, which monitors the sampling305

deviation and effectively determines the sample306

amount for estimation. When only limited sam-307

ples are available, we incorporate a text similarity-based distribution prior transfer mechanism to308

improve the estimation accuracy. As shown by experiments, the conformal prediction-based adaptive309

stopping effectively guided the sampling. Our mixture of Beta-Binomial distributions significantly310

outperforms the common Binomial assumption. With the transfer mechanism, BetaConform can311

achieve high estimation precision with as few as 10 samples from the target dataset.312
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A BetaConform511

Algorithm 1 BetaConform

1: Input: target dataset D0, source datasets D1, . . . , Dm,
judges J = {J1, . . . , Jk}, EM algorithm EM(·)

2: Output: distribution parameters Ω on the target dataset
3: if limited samples in D0 then
4: Compute distribution parameters on D0

5: Compute parameters of distributions on D1, . . . , Dm

6: Compute transfer weights by Equation (13)
7: Ω← Compute transferred parameters by Eq. (14)
8: else
9: Initial D ← {}, q01−ϵ ← −∞

10: while Equation (9) is not satisfied do
11: Add a sample from D0 to D and update q

|D|
1−ϵ

12: end while
13: Ω← Compute distribution parameters on samples D
14: end if
15: return Ω

In this section, we introduce512

BetaConform, a framework de-513

signed for the efficient estimation514

of judgment distributions, as illus-515

trated in Figure 2 and Algorithm 1.516

The framework operates in two sce-517

narios: when only limited samples518

are available on the target dataset,519

and when a larger number of sam-520

ples can be collected. In the former521

case, BetaConform leverages prior522

distributions from source datasets to523

enhance estimation. In the latter, it524

employs adaptive stopping during it-525

erative sampling to balance sample526

efficiency and estimation accuracy.527

(1) When only a small number of528

samples are available from the tar-529

get dataset, BetaConform follows530

these steps: ❶ First, it estimates the mixture of Beta-Binomial distributions using the available531

samples. ❷ Next, it incorporates prior knowledge by transferring distributions from source datasets.532

Specifically, it estimates the distributions on the source datasets using all available samples and533

calculates transfer weights based on Equation 13. ❸ Finally, the distributions from the source datasets534

are aggregated using Equation 14 to produce an enhanced estimation for the target dataset.535

(2) When the target dataset contains a large number of unlabeled samples, BetaConform employs536

the following process: ❶ It uses a conformal prediction (CP)-based adaptive stopping strategy to537

guide the labeling process. ❷ During iterative sampling, batches of samples are drawn and labeled,538

while the variation in the nonconformity score is monitored. The sampling process stops when the539

variation falls below a predefined threshold. ❸ Once sufficient labeled samples are collected, the540

mixture of Beta-Binomial distributions is directly estimated using these samples.541

B Proofs542

B.1 Determination of Sample Amount.543

To derive a theoretical estimation of the sample amount for the adaptive stopping criteria above,544

we utilize the fundamental statistical properties of variance reduction with increasing sample size.545

Specifically, for i.i.d samples, the variance of the quantile decreases as:546

Var(qr1−ϵ) ∝
1

r · f(q1−ϵ)2
, (16)

where f(q1−ϵ) is the density function at the quantile. The standard deviation of the estimator, which547

determines the variability of the quantile estimate, thus decays as:548

StdDev(qr1−ϵ) ∝
1√
r
. (17)

By the asymptotic theory of quantile estimation, for a large enough number of samples r, the empirical549

quantile qr1−ϵ converges to the quantile on the whole dataset q1−ϵ with a known distribution based on550

Bahadur’s representation:551

√
r
(
qr1−ϵ − q1−ϵ

)
∼ N

(
0,

ϵ(1− ϵ)

f(q1−ϵ)2

)
, (18)

This implies:552

qr1−ϵ = q1−ϵ +Op

(
1√
r

)
, (19)
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where Op(·) denotes the order in probability. Thus, we can determine that the quantile itself decays553

as:554

qr1−ϵ − q1−ϵ = Op

(
1√
r

)
. (20)

This decay behavior shows that as r increases, the estimated quantile approaches the theoretical555

quantile q1−ϵ, reflecting decreasing sampling deviation by using more samples. We will use this556

property to derive the relationship between the stopping criteria and the sample size r. From the557

stopping criteria in Equation (9),558 ∣∣qr1−ϵ − qr−1
1−ϵ

∣∣ ≤ ξ. (21)

According to the calculations in Equation (20), we can rewrite the bound for qr−1
1−ϵ as559

qr−1
1−ϵ − q1−ϵ = Op

(
1√
r − 1

)
. (22)

Thus we have560 ∣∣qr1−ϵ − qr−1
1−ϵ

∣∣ = Op

(
1√
r
− 1√

r − 1

)
. (23)

This suggests to meet Equation (9), it requires561

τ

(
1√
r − 1

− 1√
r

)
< ξ, (24)

which proves Equation (10).562

B.2 Error Rate with Adaptive Sampling563

In this section we develop a theoretical estimation of the error bound for adaptive sampling. We first564

consider the base case and as shown in Equation (4), we know that the mixture distribution error rate565

is:566

P̃BB = w

⌈k/2⌉−1∑
s=0

(
k

s

)
B(s+ α1, k − s+ β1)

B(α1, β1)
+(1−w)

⌈k/2⌉−1∑
s=0

(
k

s

)
B(s+ α2, k − s+ β2)

B(α2, β2)
(25)

The adaptive stopping criterion is given by Equation (9):567 ∣∣qr1−ϵ − qr−1
1−ϵ

∣∣ ≤ ξ. (26)

The sample size requirement is given by Equation (10):568

τ

(
1√
r − 1

− 1√
r

)
≤ ξ. (27)

Based on the two equations and large number theory, we know that the difference between the569

quantile on samples qr1−ϵ and the quantile on the whole dataset q1−ϵ decays proportionally to τ√
r

. In570

addition, the non-conformity score si is defined in Equation (7):571

si = score(Si) = |Si − E[S]|, (28)

where Si is the number of correct judgments in the i-th sample. As the (1− ϵ)-quantile of the sorted572

scores s1 < . . . < sr at stopping time with r samples is:573

qr1−ϵ = s⌈(1−ϵ)·(r+1)⌉. (29)

When the stopping criterion is met, this implies the confidence region for E[S] has stabilized and the574

following holds:575

P(|Si − E[S]| ≤ qr1−ϵ) = 1− ϵ. (30)

For the Beta-Binomial mixture model, E[S] relates to the error rate via:576

P̃BB = P(S < ⌈k/2⌉). (31)

We will use the quantile stability argument as follows. For a sequence of independent samples577

{S1, ..., Sr}, let si be the non-conformity score defined as:578

si = score(Si) = |Si − E[S]|, (32)
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where Si is the number of correct judgments in the i-th sample. By the theory of quantile estimation,579

for a large enough number of samples r, the empirical quantile qr1−ϵ converges to the population580

quantile q1−ϵ with a known distribution:581

√
r(qr1−ϵ − q1−ϵ) ∼ N

(
0,

ϵ(1− ϵ)

f(q1−ϵ)2

)
, (33)

where f(·) is the density function. This implies:582

qr1−ϵ = q1−ϵ +Op

(
1√
r

)
, (34)

where Op(·) denotes the order in probability. As the (1−ϵ)-quantile of the sorted scores s1 < . . . < sr583

at stopping time with r samples is:584

qr1−ϵ = s⌈(1−ϵ)·(r+1)⌉. (35)

When the stopping criterion is met, this implies the confidence region for E[S] has stabilized and the585

following holds:586

P(|Si − E[S]| ≤ qr1−ϵ) = 1− ϵ. (36)
For the Beta-Binomial mixture model, E[S] relates to the error rate via:587

P̃BB = P(S < ⌈k/2⌉). (37)

By the quantile stability argument above, we have the bound:588

(1−min(ξ,
τ√
r
))E[S]BB < E[S]adapt < (1 + min(ξ,

τ√
r
))E[S]BB (38)

The error probability of P̃BB is defined using the Beta-Binomial cumulative distribution function:589

P̃BB = P(S < ⌈k/2⌉) = FBB(⌈k/2⌉ − 1), (39)

where FBB is the Beta-Binomial cumulative distribution function. Since FBB is monotonically590

increasing, the error probability P̃adapt follows the same proportional bound.591

(1−min(ξ,
τ√
r
))P̃BB < P̃adapt < (1 + min(ξ,

τ√
r
))P̃BB. (40)

Therefore, we have:592

P̃adapt = (1±min(ξ,
τ√
r
))P̃BB. (41)

C Implementation Details593

In this section, we elaborate on the implementation details of BetaConform.594

We evaluate LLM ensembles with k ∈ 1, 3, 5, 7, 9, 11 models, including GPT-3.5 [Brown et al.,595

2020], GPT-4 [OpenAI et al., 2024], Llama-3.3-70B [Dubey et al., 2024], Qwen-2.5-72B [Yang et al.,596

2024], and InternLM-2.5-20B [Cai et al., 2024]. The experiments cover four domains: hallucination597

detection (HaluEval Li et al., 2023a, TruthfulQA Lin et al., 2021, HalluDial Luo et al., 2024),598

reasoning (PRM800K Lightman et al., 2023, BIG-bench Srivastava et al., 2022, TRAM Wang and599

Zhao, 2023), scoring (ICE-Score Zhuo, 2023, Comp-Analysis Zhang et al., 2024), and alignment600

(JudgeBench Tan et al., 2024, RewardBench Lambert et al., 2024, LLMBar Zeng et al., 2023).601

For all experiments, the sampling temperature of LLMs is set to 1, and the random seeds are not602

fixed. The randomness comes from the Top− P sampling of token generation. Each experiment is603

repeated 30 times to compute the mean and standard deviation of the error margin. The adaptive604

stopping threshold is set to ξ = 0.03 and τ = 25, requiring at least r ≥ 56 samples to meet the605

stopping criteria.606

D Additional Experiments607

In Table 4, we conduct ablation studies on our distribution transfer. Compared to ablated variants,608

our full design achieves the smallest error margin, indicating the effectiveness of our transfer design.609
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Table 4: The ablation study of BetaConform distribution prior transfer. ❶ log(ri) → ri means
the first term log(ri) in Eq. 14 is replaced with ri to still asign a larger dataset higher weight
while not considering source datasets could be magnitudes larger. ❷ CosSim(Ē0, Ēi)→ 1

|Ē0−Ēi|2
refers to replacing the cosine similarity to measure the source datasets and the target dataset with
the reciprocal of the Euclidean distance between the embeddings of the two datasets. This still
assigns more similar datasets higher weights. ❸ No σ(·) means the transfer weight is computed as
λi = log(ri) · CosSim(Ē0, Ēi), without using the sigmoid function σ(·) to reduce the weight of low
similarity datasets

Llama-3.3-70B Qwen-2.5-72B InternLM-20B
Dataset Ablation Error Margin Error Margin Error Margin

log(ri)→ ri 10.94 ± 0.57 9.53 ± 0.70 11.16 ± 0.75

CosSim(Ē0, Ēi)→ 1
|Ē0−Ēi|2

11.90 ± 0.85 13.17 ± 0.68 10.29 ± 0.80

No σ(·) 10.04 ± 0.23 23.03 ± 0.12 8.45 ± 0.10HaluEval

Ours 8.82 ± 0.42 9.19 ± 0.75 8.60 ± 0.64

log(ri)→ ri 13.47 ± 0.66 11.17 ± 1.15 10.65 ± 0.89

CosSim(Ē0, Ēi)→ 1
|Ē0−Ēi|2

15.13 ± 0.71 13.14 ± 0.96 11.03 ± 0.80

No σ(·) 6.87 ± 0.01 16.52 ± 0.03 12.47 ± 0.06TruthfulQA

Ours 3.37 ± 0.10 8.55 ± 0.07 10.18 ± 0.10
log(ri)→ ri 13.55 ± 0.58 15.43 ± 0.86 10.42 ± 1.00

CosSim(Ē0, Ēi)→ 1
|Ē0−Ēi|2

15.54 ± 0.59 15.89 ± 0.65 10.47 ± 0.67j

No σ(·) 12.39 ± 0.00 16.61 ± 0.09 13.00 ± 0.07HalluDial

Ours 12.89 ± 0.77 13.42 ± 0.53 8.72 ± 0.54
log(ri)→ ri 25.97 ± 0.03 21.23 ± 0.04 15.46 ± 0.06

CosSim(Ē0, Ēi)→ 1
|Ē0−Ēi|2

14.43 ± 1.12 11.26 ± 0.99 11.47 ± 0.74

No σ(·) 24.57 ± 0.44 19.26 ± 0.13 10.42 ± 0.08JudgeBench

Ours 9.45 ± 0.59 8.19 ± 0.66 8.03 ± 0.54
log(ri)→ ri 15.00 ± 0.01 17.33 ± 0.02 20.32 ± 0.01

CosSim(Ē0, Ēi)→ 1
|Ē0−Ēi|2

13.29 ± 0.87 14.48 ± 0.45 16.75 ± 0.34

No σ(·) 12.88 ± 0.59 13.74 ± 0.48 16.45 ± 0.26RewardBench

Ours 12.72 ± 0.30 12.84 ± 0.48 16.35 ± 0.36
log(ri)→ ri 13.88 ± 0.01 15.88 ± 0.01 15.45 ± 0.01

CosSim(Ē0, Ēi)→ 1
|Ē0−Ēi|2

16.27 ± 0.81 15.55 ± 0.83 11.90 ± 1.07

No σ(·) 9.53 ± 0.11 13.65 ± 0.01 12.58 ± 0.01LLMBar

Ours 8.03 ± 0.39 9.95 ± 0.30 8.61 ± 0.41

E Python Implementation610

Below we provide the Python-style code for the implementation of our methods611

Listing 1: Adaptive Conformal Sampling
612

import math613

import random614

import numpy as np615

616

# --- Helper Function for Conformal Sampling ---617

def _nonconformity_score_abs_diff_mean(value , mean_value):618

""" Calculates L1 distance between a value and the mean as a619

nonconformity measure."""620

return abs(value - mean_value)621

622

# --- Core Function 2: Adaptive Conformal Sampling ---623

def run_adaptive_conformal_sampling_for_k_value(624

full_dataset_items ,625

k_value_num_models ,626

num_samples_per_batch ,627
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max_batches ,628

epsilon_conformal =0.05,629

convergence_threshold_q_diff =0.01,630

min_batches_before_stopping_check =5631

):632

"""633

Performs adaptive sampling for a fixed k-value (number of models)634

using conformal prediction.635

Samples are drawn in batches until the width of the conformal636

interval (related to q-value) stabilizes.637

638

Args:639

full_dataset_items (list of lists): Each inner list contains640

binary outcomes for a data point across all available641

models.642

k_value_num_models (int): Number of models/outcomes to643

consider from the start of each item.644

num_samples_per_batch (int): Number of items to sample per645

batch.646

max_batches (int): Maximum number of batches to draw.647

epsilon_conformal (float): Significance level for conformal648

prediction (e.g., 0.05 for 95% interval).649

convergence_threshold_q_diff (float): Threshold for q-value650

change to determine stopping.651

min_batches_before_stopping_check (int): Minimum batches652

before checking q-value convergence.653

654

Returns:655

tuple: (collected_success_counts_S , final_q_value ,656

num_batches_processed , sampled_indices_overall)657

- collected_success_counts_S: List of success counts658

for all sampled items.659

- final_q_value: q-value from conformal prediction at660

stopping or max batches.661

- num_batches_processed: Actual number of batches662

processed.663

- sampled_indices_overall: List of original indices of664

the sampled items.665

"""666

if not full_dataset_items:667

return [], None , 0, []668

if not (0 < k_value_num_models <= len(full_dataset_items [0])):669

raise ValueError(f"Invalid k_value_num_models: {670

k_value_num_models}")671

672

all_collected_S_values = [] # Stores S_i = sum(item[:673

k_value_num_models ]) for calibration set674

q_previous = None675

final_q_value = None676

677

indexed_full_dataset = list(enumerate(full_dataset_items))678

available_indices_for_sampling = list(range(len(679

indexed_full_dataset)))680

sampled_indices_overall = []681

682

683

for batch_idx in range(max_batches):684

if len(available_indices_for_sampling) < num_samples_per_batch685

:686

if not available_indices_for_sampling: break # No more687

samples available688

# If remaining samples are less than a batch , sample all689

remaining690

actual_samples_this_batch = len(691

available_indices_for_sampling)692
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else:693

actual_samples_this_batch = num_samples_per_batch694

695

# Sample indices for the current batch without replacement696

from available indices697

chosen_pool_indices = random.sample(698

available_indices_for_sampling , actual_samples_this_batch)699

700

current_batch_items = []701

current_batch_original_indices = []702

703

temp_available_indices = [] # To update available indices for704

the next round705

706

# Build a set for quick removal of chosen indices707

chosen_pool_indices_set = set(chosen_pool_indices)708

for pool_idx in available_indices_for_sampling:709

if pool_idx in chosen_pool_indices_set:710

original_data_idx , item = indexed_full_dataset[711

pool_idx]712

current_batch_items.append(item)713

current_batch_original_indices.append(714

original_data_idx)715

else:716

temp_available_indices.append(pool_idx)717

available_indices_for_sampling = temp_available_indices718

sampled_indices_overall.extend(current_batch_original_indices)719

720

for item in current_batch_items:721

s_value = sum(item[: k_value_num_models ])722

all_collected_S_values.append(s_value)723

724

if not all_collected_S_values: continue725

726

s_mean = np.mean(all_collected_S_values)727

nonconformity_scores = [_nonconformity_score_abs_diff_mean(s,728

s_mean) for s in all_collected_S_values]729

nonconformity_scores_sorted = sorted(nonconformity_scores)730

731

r_calib_size = len(nonconformity_scores_sorted)732

quantile_idx = int(math.ceil(( r_calib_size + 1) * (1 -733

epsilon_conformal))) - 1734

quantile_idx = min(max(quantile_idx , 0), r_calib_size - 1) #735

Ensure index is valid736

737

current_q_value = nonconformity_scores_sorted[quantile_idx]738

final_q_value = current_q_value739

740

if batch_idx >= min_batches_before_stopping_check -1 : #741

batch_idx is 0-indexed742

if q_previous is not None:743

if abs(current_q_value - q_previous) <744

convergence_threshold_q_diff:745

return all_collected_S_values , final_q_value ,746

batch_idx + 1, sampled_indices_overall747

q_previous = current_q_value748

elif batch_idx == 0: # Set q_previous for the first iteration749

q_previous = current_q_value750

751

return all_collected_S_values , final_q_value , max_batches ,752

sampled_indices_overall753754

Listing 2: Mixture of Beta Distributions Fitting via EM
755
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import numpy as np756

757

# --- Helper Function for Distribution Transfer ---758

def _normalize_vector(v):759

"""L2 normalizes a vector."""760

norm = np.linalg.norm(v)761

return v / norm if norm > 0 else v762

763

# --- Core Function 3: Distribution Transfer for Beta Mixture764

Parameters ---765

def transfer_beta_mixture_parameters(766

target_direct_params ,767

source_params_list ,768

target_mean_embedding ,769

source_mean_embeddings_list ,770

target_data_size ,771

source_data_sizes_list ,772

embedding_similarity_threshold =0.9,773

similarity_scaling_factor =10.0 ,774

min_source_weight_factor =0.0775

):776

"""777

Transfers/adjusts Beta mixture parameters from source domains to a778

target domain779

based on embedding similarity and data size.780

781

Args:782

target_direct_params (tuple): (a1_t , b1_t , a2_t , b2_t , w1_t) -783

Directly estimated parameters for the target domain.784

source_params_list (list of tuples): Each tuple contains785

parameters for a source domain.786

target_mean_embedding (np.array): Mean embedding vector for787

the target domain.788

source_mean_embeddings_list (list of np.array): List of mean789

embedding vectors for source domains.790

target_data_size (int): Number of samples in the target domain791

.792

source_data_sizes_list (list of int): List of data sizes for793

source domains.794

embedding_similarity_threshold (float): Threshold for cosine795

similarity.796

similarity_scaling_factor (float): Scaling factor for the797

similarity score.798

min_source_weight_factor (float): Minimum source weight factor799

, ensuring non -negativity.800

801

802

Returns:803

tuple: Transferred parameters (a1_f , b1_f , a2_f , b2_f , w1_f).804

"""805

if not source_params_list: # No source , return target ’s own806

parameters807

return target_direct_params808

if not (len(source_params_list) == len(source_mean_embeddings_list809

) == len(source_data_sizes_list)):810

raise ValueError("Lengths of source parameters , embeddings ,811

and size lists must match.")812

813

norm_target_emb = _normalize_vector(np.asarray(814

target_mean_embedding , dtype=float))815

816

weight_target = float(target_data_size)817

source_final_weights = []818

819

for i in range(len(source_params_list)):820
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norm_source_emb_i = _normalize_vector(np.asarray(821

source_mean_embeddings_list[i], dtype=float))822

similarity = np.dot(norm_target_emb , norm_source_emb_i)823

824

# Calculate similarity -based weight factor , ensuring non -825

negativity826

similarity_based_factor = similarity_scaling_factor * (827

similarity - embedding_similarity_threshold)828

similarity_based_factor = max(min_source_weight_factor ,829

similarity_based_factor)830

831

current_source_weight = source_data_sizes_list[i] *832

similarity_based_factor833

source_final_weights.append(current_source_weight)834

835

total_combined_weight = weight_target + sum(source_final_weights)836

837

if total_combined_weight <= 1e-9: # If total weight is too small ,838

return target ’s own parameters839

return target_direct_params840

841

num_params_to_transfer = len(target_direct_params)842

final_transferred_params_list = [0.0] * num_params_to_transfer843

844

# Contribution from target parameters845

for i in range(num_params_to_transfer):846

final_transferred_params_list[i] += weight_target *847

target_direct_params[i]848

849

# Contribution from source parameters850

for i, src_params_tuple in enumerate(source_params_list):851

if len(src_params_tuple) != num_params_to_transfer:852

raise ValueError(f"Source parameter tuple {i} length853

mismatch with target parameters.")854

for j in range(num_params_to_transfer):855

final_transferred_params_list[j] += source_final_weights[i856

] * src_params_tuple[j]857

858

final_params_values = [p / total_combined_weight for p in859

final_transferred_params_list]860

861

# Post -process parameters: ensure alpha , beta are positive , and w1862

is in [0,1]863

# Assuming the order is (a1, b1 , a2 , b2, w1)864

a1_f , b1_f , a2_f , b2_f , w1_f = final_params_values865

866

a1_f = max(a1_f , 1e-6)867

b1_f = max(b1_f , 1e-6)868

a2_f = max(a2_f , 1e-6)869

b2_f = max(b2_f , 1e-6)870

w1_f = np.clip(w1_f , 1e-6, 1.0 - 1e-6)871

872

return (a1_f , b1_f , a2_f , b2_f , w1_f)873874

Listing 3: Distribution Transfer for Beta Mixture Parameters
875

import math876

import random877

import numpy as np878

from scipy.stats import beta879

from scipy.special import betaln , gammaln as lgamma # gammaln is scipy880

’s log gamma881

from math import comb # math.comb for combinations882

883

# --- Helper Functions for Beta Mixture and Beta -Binomial ---884
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def _replace_elements_for_beta_pdf(probabilities):885

"""886

Replaces 0s and 1s in a list of probabilities with close values887

to avoid issues with beta.pdf calculations.888

"""889

return [0.999999 if x >= 1.0 else 0.000001 if x <= 0.0 else x for890

x in probabilities]891

892

def _beta_binomial_pmf_log(k_trials , num_successes , alpha , beta_param)893

:894

"""895

Calculates the log of the Beta -Binomial PMF: log(P(X=num_successes896

))897

where X ~ BB(k_trials , alpha , beta_param).898

P(X=x) = C(k,x) * Beta(alpha+x, beta+k-x) / Beta(alpha ,beta)899

"""900

if not (0 <= num_successes <= k_trials):901

return -np.inf # Log probability of zero902

903

# Ensure alpha and beta_param are positive904

alpha_stable = max(alpha , 1e-9)905

beta_stable = max(beta_param , 1e-9)906

907

log_C_k_x = lgamma(k_trials + 1) - (lgamma(num_successes + 1) +908

lgamma(k_trials - num_successes + 1))909

910

log_beta_num = betaln(alpha_stable + num_successes , beta_stable +911

k_trials - num_successes)912

log_beta_den = betaln(alpha_stable , beta_stable)913

914

return log_C_k_x + log_beta_num - log_beta_den915

916

def _mixture_beta_binomial_pmf(num_successes , alpha1 , beta1 , alpha2 ,917

beta2 , w1 , k_trials):918

"""919

PMF of the mixture Beta -Binomial model:920

P_mix(X=x) = w1 * BB(k, alpha1 , beta1) + (1-w1) * BB(k, alpha2 ,921

beta2)922

"""923

log_p1 = _beta_binomial_pmf_log(k_trials , num_successes , alpha1 ,924

beta1)925

log_p2 = _beta_binomial_pmf_log(k_trials , num_successes , alpha2 ,926

beta2)927

928

p1 = np.exp(log_p1)929

p2 = np.exp(log_p2)930

931

return w1 * p1 + (1 - w1) * p2932

933

# --- Core Function 1: Mixture of Beta Distributions Fitting via EM934

---935

def fit_mixture_of_betas_em(936

raw_samples_outcomes ,937

num_trials_per_sample ,938

max_iters =100,939

tol=1e-6,940

alpha1_init=None , beta1_init=None ,941

alpha2_init=None , beta2_init=None ,942

w1_init=None943

):944

"""945

Fits a mixture of two Beta distributions using the EM algorithm.946

This model is used for modeling observed success rates p_i = (947

successes for sample i) / num_trials_per_sample.948

949
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Args:950

raw_samples_outcomes (list of lists): Each inner list contains951

binary outcomes (0 or 1) for a data point.952

num_trials_per_sample (int): Number of trials/outcomes to953

consider from the start of each inner list (K or m).954

max_iters (int): Maximum number of iterations for the EM955

algorithm.956

tol (float): Tolerance for convergence.957

alpha1_init , beta1_init , alpha2_init , beta2_init , w1_init:958

Optional initial parameters.959

960

Returns:961

tuple: (alpha1 , beta1 , alpha2 , beta2 , w1) - The estimated962

parameters.963

"""964

num_data_points = len(raw_samples_outcomes)965

if num_data_points == 0:966

raise ValueError("Input raw_samples_outcomes cannot be empty."967

)968

if num_trials_per_sample <= 0:969

raise ValueError("num_trials_per_sample must be positive.")970

971

# Initialize parameters (heuristic based on original code)972

alpha1 = alpha1_init if alpha1_init is not None else 10 *973

num_trials_per_sample974

beta1 = beta1_init if beta1_init is not None else 1 *975

num_trials_per_sample976

alpha2 = alpha2_init if alpha2_init is not None else 1 *977

num_trials_per_sample978

beta2 = beta2_init if beta2_init is not None else 10 *979

num_trials_per_sample980

w1 = w1_init if w1_init is not None else 0.5981

982

alpha1 , beta1 = max(alpha1 , 1e-6), max(beta1 , 1e-6)983

alpha2 , beta2 = max(alpha2 , 1e-6), max(beta2 , 1e-6)984

w1 = np.clip(w1 , 1e-6, 1.0 - 1e-6)985

986

observed_successes = np.array ([sum(sample [: num_trials_per_sample ])987

for sample in raw_samples_outcomes ])988

proportions = observed_successes / num_trials_per_sample989

proportions_for_pdf = np.array(_replace_elements_for_beta_pdf(990

proportions.tolist ()))991

992

for iteration in range(max_iters):993

# E-Step: Calculate responsibilities994

pdf_vals1 = beta.pdf(proportions_for_pdf , alpha1 + 1e-9, beta1995

+ 1e-9) # Add small epsilon for stability996

pdf_vals2 = beta.pdf(proportions_for_pdf , alpha2 + 1e-9, beta2997

+ 1e-9)998

999

numerator1 = w1 * pdf_vals11000

numerator2 = (1 - w1) * pdf_vals21001

denominator = numerator1 + numerator21002

denominator[denominator < 1e-9] = 1e-9 # Avoid division by1003

zero1004

1005

resp1 = numerator1 / denominator1006

resp2 = numerator2 / denominator1007

1008

# M-Step: Update parameters (using weighted method of moments1009

for Beta parameters)1010

w1_new = np.mean(resp1)1011

w1_new = np.clip(w1_new , 1e-6, 1.0 - 1e-6)1012

1013

# Update alpha , beta for component 11014
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sum_resp1 = np.sum(resp1)1015

if sum_resp1 < 1e-6:1016

alpha1_new , beta1_new = alpha1 , beta1 # Keep old if weight1017

is too small1018

else:1019

mean_p1_w = np.sum(resp1 * proportions) / sum_resp11020

var_p1_w = np.sum(resp1 * (( proportions - mean_p1_w)**2))1021

/ sum_resp11022

mean_p1_w = np.clip(mean_p1_w , 1e-6, 1.0 - 1e-6)1023

if var_p1_w <= 1e-9 or var_p1_w >= mean_p1_w * (1.0 -1024

mean_p1_w) * (1-1e-6): # Check if variance is valid1025

# Invalid or too small variance , use heuristic (e.g.,1026

high confidence)1027

alpha1_new = mean_p1_w * (num_trials_per_sample * 10)1028

# Larger concentration1029

beta1_new = (1.0 - mean_p1_w) * (num_trials_per_sample1030

* 10)1031

else:1032

common_factor = (mean_p1_w * (1.0 - mean_p1_w) /1033

var_p1_w) - 1.01034

alpha1_new = mean_p1_w * common_factor1035

beta1_new = (1.0 - mean_p1_w) * common_factor1036

1037

# Update alpha , beta for component 21038

sum_resp2 = np.sum(resp2)1039

if sum_resp2 < 1e-6:1040

alpha2_new , beta2_new = alpha2 , beta21041

else:1042

mean_p2_w = np.sum(resp2 * proportions) / sum_resp21043

var_p2_w = np.sum(resp2 * (( proportions - mean_p2_w)**2))1044

/ sum_resp21045

mean_p2_w = np.clip(mean_p2_w , 1e-6, 1.0 - 1e-6)1046

if var_p2_w <= 1e-9 or var_p2_w >= mean_p2_w * (1.0 -1047

mean_p2_w) * (1-1e-6):1048

alpha2_new = mean_p2_w * (num_trials_per_sample * 10)1049

beta2_new = (1.0 - mean_p2_w) * (num_trials_per_sample1050

* 10)1051

else:1052

common_factor2 = (mean_p2_w * (1.0 - mean_p2_w) /1053

var_p2_w) - 1.01054

alpha2_new = mean_p2_w * common_factor21055

beta2_new = (1.0 - mean_p2_w) * common_factor21056

1057

alpha1_new , beta1_new = max(alpha1_new , 1e-6), max(beta1_new ,1058

1e-6)1059

alpha2_new , beta2_new = max(alpha2_new , 1e-6), max(beta2_new ,1060

1e-6)1061

1062

# Check for convergence1063

param_diff = (abs(alpha1 - alpha1_new) + abs(beta1 - beta1_new1064

) +1065

abs(alpha2 - alpha2_new) + abs(beta2 - beta2_new1066

) +1067

abs(w1 - w1_new))1068

if param_diff < tol:1069

alpha1 , beta1 , alpha2 , beta2 , w1 = alpha1_new , beta1_new ,1070

alpha2_new , beta2_new , w1_new1071

break1072

alpha1 , beta1 , alpha2 , beta2 , w1 = alpha1_new , beta1_new ,1073

alpha2_new , beta2_new , w1_new1074

1075

return alpha1 , beta1 , alpha2 , beta2 , w11076

1077

# --- Utility Function: Calculate Majority Vote Success Probability1078

from Mixture ---1079
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def calculate_majority_vote_success_prob_from_mixture(1080

k_trials_for_vote ,1081

alpha1 , beta1 ,1082

alpha2 , beta2 ,1083

w1_mixture_weight1084

):1085

"""1086

Calculates the probability of achieving majority success given1087

Beta -Binomial mixture parameters.1088

Majority success is defined as number of successes >= ceil(1089

k_trials_for_vote / 2).1090

1091

Args:1092

k_trials_for_vote (int): Total number of trials (e.g., number1093

of LLMs).1094

alpha1 , beta1: Parameters for the first Beta -Binomial1095

component.1096

alpha2 , beta2: Parameters for the second Beta -Binomial1097

component.1098

w1_mixture_weight (float): Mixture weight for the first1099

component.1100

1101

Returns:1102

float: Probability of majority vote success.1103

"""1104

if k_trials_for_vote <= 0: return 0.01105

majority_threshold = math.ceil(k_trials_for_vote / 2.0)1106

1107

prob_sum_for_majority = 0.01108

for num_successes in range(int(majority_threshold),1109

k_trials_for_vote + 1):1110

prob_sum_for_majority += _mixture_beta_binomial_pmf(1111

num_successes , alpha1 , beta1 , alpha2 , beta2 ,1112

w1_mixture_weight , k_trials_for_vote1113

)1114

return prob_sum_for_majority11151116

F Limitations and Future Work1117

The two-component Beta-Binomial mixture improves over simpler models but may still underfit1118

complex judgment distributions. Prior transfer depends on text embedding quality and assumes1119

textual similarity implies similar judgments—an assumption that may not always hold. The current1120

design also focuses on binary/scoring tasks and requires an odd number of annotators.1121

Future work could explore more flexible mixture models, robust prior transfer methods beyond textual1122

similarity, task-specific features, and extensions to diverse judgment formats and ensemble sizes.1123

G Broader Impacts1124

BetaConform can reduce the cost of LLM ensemble evaluations, supporting broader use in QA,1125

benchmarking, annotation, and MLOps. It enables scalable, reliable assessment but requires careful1126

attention to estimation error and modeling assumptions, especially in high-stakes applications.1127
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NeurIPS Paper Checklist1128

The checklist is designed to encourage best practices for responsible machine learning research,1129

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove1130

the checklist: The papers not including the checklist will be desk rejected. The checklist should1131

follow the references and follow the (optional) supplemental material. The checklist does NOT count1132

towards the page limit.1133

Please read the checklist guidelines carefully for information on how to answer these questions. For1134

each question in the checklist:1135

• You should answer [Yes] , [No] , or [NA] .1136

• [NA] means either that the question is Not Applicable for that particular paper or the1137

relevant information is Not Available.1138

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).1139

The checklist answers are an integral part of your paper submission. They are visible to the1140

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it1141

(after eventual revisions) with the final version of your paper, and its final version will be published1142

with the paper.1143

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.1144

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a1145

proper justification is given (e.g., "error bars are not reported because it would be too computationally1146

expensive" or "we were unable to find the license for the dataset we used"). In general, answering1147

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we1148

acknowledge that the true answer is often more nuanced, so please just use your best judgment and1149

write a justification to elaborate. All supporting evidence can appear either in the main paper or the1150

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification1151

please point to the section(s) where related material for the question can be found.1152

IMPORTANT, please:1153

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",1154

• Keep the checklist subsection headings, questions/answers and guidelines below.1155

• Do not modify the questions and only use the provided macros for your answers.1156

1. Claims1157

Question: Do the main claims made in the abstract and introduction accurately reflect the1158

paper’s contributions and scope?1159

Answer: [Yes]1160

Justification: Our method sections and the experiment section matches the decription of our1161

method in the abstract and introduction.1162

Guidelines:1163

• The answer NA means that the abstract and introduction do not include the claims1164

made in the paper.1165

• The abstract and/or introduction should clearly state the claims made, including the1166

contributions made in the paper and important assumptions and limitations. A No or1167

NA answer to this question will not be perceived well by the reviewers.1168

• The claims made should match theoretical and experimental results, and reflect how1169

much the results can be expected to generalize to other settings.1170

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1171

are not attained by the paper.1172

2. Limitations1173

Question: Does the paper discuss the limitations of the work performed by the authors?1174

Answer: [Yes]1175
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Justification: In the Section F, we discuss about the limitations and future work of1176

BetaConform.1177

Guidelines:1178

• The answer NA means that the paper has no limitation while the answer No means that1179

the paper has limitations, but those are not discussed in the paper.1180

• The authors are encouraged to create a separate "Limitations" section in their paper.1181

• The paper should point out any strong assumptions and how robust the results are to1182

violations of these assumptions (e.g., independence assumptions, noiseless settings,1183

model well-specification, asymptotic approximations only holding locally). The authors1184

should reflect on how these assumptions might be violated in practice and what the1185

implications would be.1186

• The authors should reflect on the scope of the claims made, e.g., if the approach was1187

only tested on a few datasets or with a few runs. In general, empirical results often1188

depend on implicit assumptions, which should be articulated.1189

• The authors should reflect on the factors that influence the performance of the approach.1190

For example, a facial recognition algorithm may perform poorly when image resolution1191

is low or images are taken in low lighting. Or a speech-to-text system might not be1192

used reliably to provide closed captions for online lectures because it fails to handle1193

technical jargon.1194

• The authors should discuss the computational efficiency of the proposed algorithms1195

and how they scale with dataset size.1196

• If applicable, the authors should discuss possible limitations of their approach to1197

address problems of privacy and fairness.1198

• While the authors might fear that complete honesty about limitations might be used by1199

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1200

limitations that aren’t acknowledged in the paper. The authors should use their best1201

judgment and recognize that individual actions in favor of transparency play an impor-1202

tant role in developing norms that preserve the integrity of the community. Reviewers1203

will be specifically instructed to not penalize honesty concerning limitations.1204

3. Theory assumptions and proofs1205

Question: For each theoretical result, does the paper provide the full set of assumptions and1206

a complete (and correct) proof?1207

Answer: [Yes]1208

Justification: For Proposition 1 and Proposition 2, we provide the assumption and proof in1209

Section B.1 and Section B.2.1210

Guidelines:1211

• The answer NA means that the paper does not include theoretical results.1212

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1213

referenced.1214

• All assumptions should be clearly stated or referenced in the statement of any theorems.1215

• The proofs can either appear in the main paper or the supplemental material, but if1216

they appear in the supplemental material, the authors are encouraged to provide a short1217

proof sketch to provide intuition.1218

• Inversely, any informal proof provided in the core of the paper should be complemented1219

by formal proofs provided in appendix or supplemental material.1220

• Theorems and Lemmas that the proof relies upon should be properly referenced.1221

4. Experimental result reproducibility1222

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1223

perimental results of the paper to the extent that it affects the main claims and/or conclusions1224

of the paper (regardless of whether the code and data are provided or not)?1225

Answer: [Yes]1226

Justification: In Section E, we provide the implementation detail of our method and experi-1227

ments. In Section A, we provide the detailed description of our method.1228
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Guidelines:1229

• The answer NA means that the paper does not include experiments.1230

• If the paper includes experiments, a No answer to this question will not be perceived1231

well by the reviewers: Making the paper reproducible is important, regardless of1232

whether the code and data are provided or not.1233

• If the contribution is a dataset and/or model, the authors should describe the steps taken1234

to make their results reproducible or verifiable.1235

• Depending on the contribution, reproducibility can be accomplished in various ways.1236

For example, if the contribution is a novel architecture, describing the architecture fully1237

might suffice, or if the contribution is a specific model and empirical evaluation, it may1238

be necessary to either make it possible for others to replicate the model with the same1239

dataset, or provide access to the model. In general. releasing code and data is often1240

one good way to accomplish this, but reproducibility can also be provided via detailed1241

instructions for how to replicate the results, access to a hosted model (e.g., in the case1242

of a large language model), releasing of a model checkpoint, or other means that are1243

appropriate to the research performed.1244

• While NeurIPS does not require releasing code, the conference does require all submis-1245

sions to provide some reasonable avenue for reproducibility, which may depend on the1246

nature of the contribution. For example1247

(a) If the contribution is primarily a new algorithm, the paper should make it clear how1248

to reproduce that algorithm.1249

(b) If the contribution is primarily a new model architecture, the paper should describe1250

the architecture clearly and fully.1251

(c) If the contribution is a new model (e.g., a large language model), then there should1252

either be a way to access this model for reproducing the results or a way to reproduce1253

the model (e.g., with an open-source dataset or instructions for how to construct1254

the dataset).1255

(d) We recognize that reproducibility may be tricky in some cases, in which case1256

authors are welcome to describe the particular way they provide for reproducibility.1257

In the case of closed-source models, it may be that access to the model is limited in1258

some way (e.g., to registered users), but it should be possible for other researchers1259

to have some path to reproducing or verifying the results.1260

5. Open access to data and code1261

Question: Does the paper provide open access to the data and code, with sufficient instruc-1262

tions to faithfully reproduce the main experimental results, as described in supplemental1263

material?1264

Answer: [No]1265

Justification: We do not release the code. All the datasets used in this paper are open-source1266

datasets and can be found online with their names.1267

Guidelines:1268

• The answer NA means that paper does not include experiments requiring code.1269

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1270

public/guides/CodeSubmissionPolicy) for more details.1271

• While we encourage the release of code and data, we understand that this might not be1272

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1273

including code, unless this is central to the contribution (e.g., for a new open-source1274

benchmark).1275

• The instructions should contain the exact command and environment needed to run to1276

reproduce the results. See the NeurIPS code and data submission guidelines (https:1277

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1278

• The authors should provide instructions on data access and preparation, including how1279

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1280

• The authors should provide scripts to reproduce all experimental results for the new1281

proposed method and baselines. If only a subset of experiments are reproducible, they1282

should state which ones are omitted from the script and why.1283
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• At submission time, to preserve anonymity, the authors should release anonymized1284

versions (if applicable).1285

• Providing as much information as possible in supplemental material (appended to the1286

paper) is recommended, but including URLs to data and code is permitted.1287

6. Experimental setting/details1288

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1289

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1290

results?1291

Answer: [Yes]1292

Justification: Our work do not involve training. and we directly use the designed valida-1293

tion/test splits of each dataset. The hyperparameters of experiments are described in Section1294

E.1295

Guidelines:1296

• The answer NA means that the paper does not include experiments.1297

• The experimental setting should be presented in the core of the paper to a level of detail1298

that is necessary to appreciate the results and make sense of them.1299

• The full details can be provided either with the code, in appendix, or as supplemental1300

material.1301

7. Experiment statistical significance1302

Question: Does the paper report error bars suitably and correctly defined or other appropriate1303

information about the statistical significance of the experiments?1304

Answer: [Yes]1305

Justification: We provide the mean and standar deviation of our experimental results. The1306

setting is described in Section E.1307

Guidelines:1308

• The answer NA means that the paper does not include experiments.1309

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1310

dence intervals, or statistical significance tests, at least for the experiments that support1311

the main claims of the paper.1312

• The factors of variability that the error bars are capturing should be clearly stated (for1313

example, train/test split, initialization, random drawing of some parameter, or overall1314

run with given experimental conditions).1315

• The method for calculating the error bars should be explained (closed form formula,1316

call to a library function, bootstrap, etc.)1317

• The assumptions made should be given (e.g., Normally distributed errors).1318

• It should be clear whether the error bar is the standard deviation or the standard error1319

of the mean.1320

• It is OK to report 1-sigma error bars, but one should state it. The authors should1321

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1322

of Normality of errors is not verified.1323

• For asymmetric distributions, the authors should be careful not to show in tables or1324

figures symmetric error bars that would yield results that are out of range (e.g. negative1325

error rates).1326

• If error bars are reported in tables or plots, The authors should explain in the text how1327

they were calculated and reference the corresponding figures or tables in the text.1328

8. Experiments compute resources1329

Question: For each experiment, does the paper provide sufficient information on the com-1330

puter resources (type of compute workers, memory, time of execution) needed to reproduce1331

the experiments?1332

Answer: [NA]1333

Justification: The judging process only require inference of LLMs. The distribution estima-1334

tion solely uses CPU.1335
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Guidelines:1336

• The answer NA means that the paper does not include experiments.1337

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1338

or cloud provider, including relevant memory and storage.1339

• The paper should provide the amount of compute required for each of the individual1340

experimental runs as well as estimate the total compute.1341

• The paper should disclose whether the full research project required more compute1342

than the experiments reported in the paper (e.g., preliminary or failed experiments that1343

didn’t make it into the paper).1344

9. Code of ethics1345

Question: Does the research conducted in the paper conform, in every respect, with the1346

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1347

Answer: [Yes]1348

Justification: The anonymity is preserved and we follow the NeurIPS Code of Ethics.1349

Guidelines:1350

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1351

• If the authors answer No, they should explain the special circumstances that require a1352

deviation from the Code of Ethics.1353

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1354

eration due to laws or regulations in their jurisdiction).1355

10. Broader impacts1356

Question: Does the paper discuss both potential positive societal impacts and negative1357

societal impacts of the work performed?1358

Answer: [Yes]1359

Justification: In Section G we discuss the broader impact of our method.1360

Guidelines:1361

• The answer NA means that there is no societal impact of the work performed.1362

• If the authors answer NA or No, they should explain why their work has no societal1363

impact or why the paper does not address societal impact.1364

• Examples of negative societal impacts include potential malicious or unintended uses1365

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1366

(e.g., deployment of technologies that could make decisions that unfairly impact specific1367

groups), privacy considerations, and security considerations.1368

• The conference expects that many papers will be foundational research and not tied1369

to particular applications, let alone deployments. However, if there is a direct path to1370

any negative applications, the authors should point it out. For example, it is legitimate1371

to point out that an improvement in the quality of generative models could be used to1372

generate deepfakes for disinformation. On the other hand, it is not needed to point out1373

that a generic algorithm for optimizing neural networks could enable people to train1374

models that generate Deepfakes faster.1375

• The authors should consider possible harms that could arise when the technology is1376

being used as intended and functioning correctly, harms that could arise when the1377

technology is being used as intended but gives incorrect results, and harms following1378

from (intentional or unintentional) misuse of the technology.1379

• If there are negative societal impacts, the authors could also discuss possible mitigation1380

strategies (e.g., gated release of models, providing defenses in addition to attacks,1381

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1382

feedback over time, improving the efficiency and accessibility of ML).1383

11. Safeguards1384

Question: Does the paper describe safeguards that have been put in place for responsible1385

release of data or models that have a high risk for misuse (e.g., pretrained language models,1386

image generators, or scraped datasets)?1387

30

https://neurips.cc/public/EthicsGuidelines


Answer: [NA]1388

Justification: Our paper does not pose such risks.1389

Guidelines:1390

• The answer NA means that the paper poses no such risks.1391

• Released models that have a high risk for misuse or dual-use should be released with1392

necessary safeguards to allow for controlled use of the model, for example by requiring1393

that users adhere to usage guidelines or restrictions to access the model or implementing1394

safety filters.1395

• Datasets that have been scraped from the Internet could pose safety risks. The authors1396

should describe how they avoided releasing unsafe images.1397

• We recognize that providing effective safeguards is challenging, and many papers do1398

not require this, but we encourage authors to take this into account and make a best1399

faith effort.1400

12. Licenses for existing assets1401

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1402

the paper, properly credited and are the license and terms of use explicitly mentioned and1403

properly respected?1404

Answer: [Yes]1405

Justification: We make proper citation of each dataset used in our paper, and we follow the1406

license of each dataset.1407

Guidelines:1408

• The answer NA means that the paper does not use existing assets.1409

• The authors should citep the original paper that produced the code package or dataset.1410

• The authors should state which version of the asset is used and, if possible, include a1411

URL.1412

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1413

• For scraped data from a particular source (e.g., website), the copyright and terms of1414

service of that source should be provided.1415

• If assets are released, the license, copyright information, and terms of use in the1416

package should be provided. For popular datasets, paperswithcode.com/datasets1417

has curated licenses for some datasets. Their licensing guide can help determine the1418

license of a dataset.1419

• For existing datasets that are re-packaged, both the original license and the license of1420

the derived asset (if it has changed) should be provided.1421

• If this information is not available online, the authors are encouraged to reach out to1422

the asset’s creators.1423

13. New assets1424

Question: Are new assets introduced in the paper well documented and is the documentation1425

provided alongside the assets?1426

Answer: [NA]1427

Justification: The paper does not release new assets.1428

Guidelines:1429

• The answer NA means that the paper does not release new assets.1430

• Researchers should communicate the details of the dataset/code/model as part of their1431

submissions via structured templates. This includes details about training, license,1432

limitations, etc.1433

• The paper should discuss whether and how consent was obtained from people whose1434

asset is used.1435

• At submission time, remember to anonymize your assets (if applicable). You can either1436

create an anonymized URL or include an anonymized zip file.1437

14. Crowdsourcing and research with human subjects1438
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Question: For crowdsourcing experiments and research with human subjects, does the paper1439

include the full text of instructions given to participants and screenshots, if applicable, as1440

well as details about compensation (if any)?1441

Answer: [NA]1442

Justification: The paper does not involve crowdsourcing nor research with human subjects.1443

Guidelines:1444

• The answer NA means that the paper does not involve crowdsourcing nor research with1445

human subjects.1446

• Including this information in the supplemental material is fine, but if the main contribu-1447

tion of the paper involves human subjects, then as much detail as possible should be1448

included in the main paper.1449

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1450

or other labor should be paid at least the minimum wage in the country of the data1451

collector.1452

15. Institutional review board (IRB) approvals or equivalent for research with human1453

subjects1454

Question: Does the paper describe potential risks incurred by study participants, whether1455

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1456

approvals (or an equivalent approval/review based on the requirements of your country or1457

institution) were obtained?1458

Answer: [NA]1459

Justification: The paper does not involve crowdsourcing nor research with human subjects.1460

Guidelines:1461

• The answer NA means that the paper does not involve crowdsourcing nor research with1462

human subjects.1463

• Depending on the country in which research is conducted, IRB approval (or equivalent)1464

may be required for any human subjects research. If you obtained IRB approval, you1465

should clearly state this in the paper.1466

• We recognize that the procedures for this may vary significantly between institutions1467

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1468

guidelines for their institution.1469

• For initial submissions, do not include any information that would break anonymity (if1470

applicable), such as the institution conducting the review.1471

16. Declaration of LLM usage1472

Question: Does the paper describe the usage of LLMs if it is an important, original, or1473

non-standard component of the core methods in this research? Note that if the LLM is used1474

only for writing, editing, or formatting purposes and does not impact the core methodology,1475

scientific rigorousness, or originality of the research, declaration is not required.1476

Answer: [NA]1477

Justification: The core method development in this research does not involve LLMs as any1478

important, original, or non-standard components.1479

• The answer NA means that the core method development in this research does not1480

involve LLMs as any important, original, or non-standard components.1481

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1482

for what should or should not be described.1483
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