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ABSTRACT

Timeline summarization (TLS) aims to condense large collections of temporally
ordered documents into concise and coherent narratives of key events. While re-
cent advances with large language models (LLMs) have improved, progress in
TLS cannot be assessed objectively due to the lack of reliable evaluation met-
rics. Existing evaluation metrics rely on the assumption that milestones aligned
at the same timestamp convey identical semantic meaning. This design choice
inherently biases against abstractive or semantically equivalent outputs while em-
phasizing temporal consistency (Date F1 and A-ROUGE). Consequently, such
evaluation protocols fail to adequately reflect the genuine improvements brought
by LLMs and deviate from human judgments when comparing the relative mer-
its of different methods. To more faithfully assess whether the predicted time-
line and the reference timeline truly refer to the same events, we propose a new
evaluation framework in which all metrics are grounded on semantically aligned
sentence pairs rather than merely time-aligned milestones. We leverage LLMs to
compute semantic similarity, align sentence pairs via maximum-weight bipartite
matching, and compute the Sematic-Alignment Score. Building on this alignment,
Date-F1 and ROUGE metrics are further introduced to jointly evaluate seman-
tic coverage and temporal fidelity, which we term Semantic-Alignment Date-F1
and Sematic-Alignment-ROUGE, respectively. To validate the effectiveness of
our proposed metrics, we introduce a Full-Stage LLM-TLS approach and conduct
comparisons against prior methods. Experiments demonstrate that FS-LLM-TLS
not only surpasses prior methods on existing evaluation metrics but also that its ad-
vantages are more faithfully and effectively reflected under our evaluation frame-
work, which offers a more comprehensive assessment of method quality. This
evaluation framework establishes a new paradigm for TLS evaluation, laying the
foundation for future experimentation and system development. ! 2

1 INTRODUCTION

Timeline summarization (TLS) condenses large collections of temporally ordered documents into
concise, coherent narratives of key events (Allan et al.l 2001; Tran et al 2007; Yan et al., 2011}
Martschat & Markertl [2017). TLS is crucial for organizing information, enabling efficient access,
and supporting downstream tasks such as event tracking and historical analysis. We follow the Topic
TLS setting (Hu et al., [2024), where given a predefined topic and thousands of related news articles,
the system must perform cross-document summarization and event selection to construct a timeline
presenting the major milestones.

A central obstacle in TLS is its evaluation methodology. Widely used metrics, notably Date FI
(Chieu & Lee, 2004; Martschat & Markert, 2017) and A-ROUGE (Martschat & Markert, 2017;
Steen & Markert, 2019), were designed in the pre-LLM era. Their design assumes milestones
aligned at the same or nearby timestamps refer to identical events, then measures n-gram over-
lap (e.g., ROUGE) within such alignments. This heuristic was reasonable when automatic semantic

!Code and data will be released on GitHub upon paper acceptance.
2Chapters 1, 2, and 5 have been lightly refined with LLM assistance.
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alignment was infeasible, but is inherently shallow: temporal proximity and token overlap are not
semantic equivalence. These metrics often diverge from human judgments, especially when abstrac-
tive models generate semantically correct but lexically diverse outputs, undervaluing genuine LLM
improvements and constraining progress in TLS.

We address this by introducing a new evaluation framework leveraging LLM semantic reasoning.
Instead of assuming temporal alignment equals semantic equivalence, LLMs directly assess whether
two summaries describe the same event. This semantic similarity forms a maximum-weight bipartite
matching between predicted and reference events. On this alignment, we design four complementary
metrics: (i) Semantic-Alignment (SA) Score, quantifying semantic coverage, (ii) SA Date-F1,
measuring temporal fidelity of semantically matched events, (iii)) SA ROUGE, assessing textual
quality independent of timestamps, and (iv) STA ROUGE, requiring both semantic equivalence
and temporal consistency. Together, these disentangle semantic matching, temporal accuracy, and
linguistic quality, aligning evaluation criteria more closely with human judgement.

To validate the metrics, we extend LLM-TLS into a Full-Stage variant (FS-LLM-TLS) that inte-
grates LLMs across the pipeline. We show improvements under existing protocols, and demonstrate
that our framework yields more discriminative comparisons against the strong baseline LLM-TLS
(Hu et al., 2024). Importantly, the proposed metrics better capture the advantages of LLM-driven
TLS that traditional evaluation fails to reveal.

Our contributions are:

* A novel evaluation framework for TLS grounded in semantic alignment rather than tem-
poral heuristics.

* New metrics — SA Score, SA Date-F1, SA ROUGE, STA ROUGE — jointly measuring
semantic coverage, temporal fidelity, and textual quality.

* A FS-LLM-TLS method used to benchmark these metrics and expose improvements hid-
den by mainstream protocols.

2 RELATED WORK

2.1 EVALUATION METRICS FOR TLS

Evaluation is a persistent challenge in TLS. Early work relied on ROUGE (Lin, 2004}, which ignores
temporal structure (Zhou et al.,|2023;|Nguyen et al.; 2022). Time-aware metrics emerged with|Chieu
& Lee (2004) and culminated in Martschat & Markert| (2017), introducing Date F1 for timestamp
overlap and A-ROUGE for overlap after temporal alignment (Steen & Markert, 2019} |Ghalandari
& Ifrim| [2020). Variants such as Date-Agree ROUGE saw little adoption for being overly strict or
inconsistent with human judgment (Tran et al.,2020; Martschat & Markert, |2018}; Nguyen & Shirai,
2018)). Designed before modern LLMs, these metrics lacked tools for reliable semantic judgment.

Semantic-oriented metrics later emerged. BERTScore (Zhang et al., |2020) measures token-level
similarity with contextual embeddings, and QuestEval (Scialom et al.,|2021) evaluates whether sum-
maries answer reference-based questions. While advancing semantic evaluation, they were not tai-
lored for TLS and fail to capture both temporal fidelity and semantic coverage. Recent LLM-based
methods like G-Eval (Liu et al., [2023) and pairwise event judgments (Walden et al., 2024} |Qorib
et al.| 2024) show stronger alignment with human evaluation.

2.2 METHODS FOR TIMELINE SUMMARIZATION

TLS methods have evolved considerably. Early pipelines were extractive, selecting salient sentences
or events and ordering them chronologically (Allan et al.l 2001} [Tran et al.l 2007} |Yan et al.,[2011).
Neural and clustering-based methods later improved salience modeling and redundancy reduction
(Martschat & Markert, 2017; Ghalandari & Ifrim| [2020), though many baselines still relied on shal-
low heuristics (Ghalandari & Ifrim, 2020). The rise of LLMs introduced a new direction: Hu et
al. (Hu et al., 2024) proposed LLM-TLS, using LLMs as semantic oracles to cluster moments
into milestones and generate coherent timelines. This has become a strong baseline across datasets,
outperforming earlier neural and heuristic systems (Min et al., |2024; /Ahmed et al.| 2024} |Lu et al.,
20235 (Wu et al., 2024).
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3 PROBLEM ANALYSE

3.1 TEMPORAL HEURISTIC METRICS

Current TLS evaluation framework is largely dominated by two time-aligned metrics: Date F1 and
A-ROUGE. The evaluation proceeds in two steps. First, predicted and reference events are aligned
strictly by date, and Date F1 is computed to capture temporal fidelity. Next, A-ROUGE com-
putes content overlap conditioned on this temporal alignment by applying ROUGE to summaries of
aligned events within a small tolerance window. The exact definitions are given below.

Date F1. This metric measures overlap between the sets of predicted and reference dates, ignoring
event content. Let Dp and Dy denote the sets of dates in the predicted and reference timelines,
respectively. Precision (Pya.) and Recall (R4a) are defined as:

|Dp N Dg| |Dp N Dg|
Poe = ——————, Ragte = ———7—
date | DP‘ date | DRl
The Date F1 score is then computed as the harmonic mean:
Date-F1 = 2PdateRdate

P, date T Rdate ’

A-ROUGE. This metric relaxes exact matching by aligning predicted and reference events ac-
cording to their nearest dates within a tolerance window 7 (default: 42 days in the Tilse toolkit
(Hu et al., 2024)). Let le and df denote the dates of the i-th predicted and j-th reference events,

respectively, and y/, yJR their associated summaries. The alignment set is
My ={(i,5) | |47 = dj'| <7, j = argmin|d;” — di'[}.
A-ROUGE,, is then computed as the average ROUGE,, score (Lin} 2004) over aligned pairs:

A-ROUGE,, =

P R
A Z ROUGE,, (y/, y).
(i,5)eEM~
Both metrics are inherently fime-aligned. Date F1 ignores semantics entirely, while A-ROUGE
assumes temporal proximity implies semantic equivalence. Even with the 42 day tolerance, they
cannot reliably determine whether two summaries describe the same underlying event, and thus
often diverge from human judgments (Martschat & Markert, [2017).

3.2 LLM-TLS

Hu et al. (Hu et al.| 2024) introduce LLM-TLS, a four-stage pipeline that moves from documents
to moments, clusters them into events, selects representative sentences, and orders them into mile-
stones to form the timeline. Their central contribution lies in establishing this moment-to-milestone
pipeline as the first comprehensive LLM-based framework for TLS, and more broadly in fram-
ing timeline summarization as a new research paradigm where large language models bridge fine-
grained evidence and higher-level narrative milestones.

Despite its contributions, LLM-TLS exhibits sev- Clustersize lstrbution and coverage indicators

eral notable limitations. In Stage 1, the prompt = Topic coverage
design emphasizes generating concise news snip- £ et covenae
pets, which often capture only the immediate
event while overlooking the real milestone in the
background that may be critical for the topic. For
instance, in the case of Al Gore from dataset En-
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Figure 1: Cluster-size and coverage indicators



Under review as a conference paper at ICLR 2026

to a single representative sentence using traditional ranking algorithms such as TextRank (Mihalcea
& Tarau, 2004) or PageRank (Brin & Pagel|1998]), a process that discards complementary details and
produces incomplete summaries. Finally, in Stage 4, milestone selection relies purely on statistical
frequency, assuming that clusters with more snippets denote more important events. This assumption
is problematic: different event types are covered with varying intensity, most clusters contain very
few snippets, and human annotators rarely agree that two reports necessarily imply higher salience
than one. In practice, many topics do not even contain enough clusters with two or more snip-
pets to fill the required number of milestones, further exposing the weaknesses of frequency-based
selection. This phenomenon is shown in Figure [T}

4 METHOD

We propose two components: a semantic-alignment evaluation framework and an enhanced LLM-
driven pipeline for TLS. The framework introduces Semantic-Alignment Metrics, which use se-
mantic consistency as the foundation and evaluate temporal fidelity and textual quality. This ensures
milestones are judged more faithfully. To validate the metrics, we extend LLM-TLS into FS-LLM-
TLS, integrating LLMs throughout timeline construction.

4.1 SEMANTIC-ALIGNMENT METRICS
4.1.1 DESIGN RATIONALE

Our design refers to the principle of human judgment: people are less tolerant of semantic errors than
temporal ones. In long timelines, a shift of a month is acceptable, but a small semantic mismatch
means different events. Thus, a milestone must first be semantically aligned. If not, writing quality
or timestamp accuracy is irrelevant. Based on this, we calculate SA Score, with SA Date-F1 testing
timestamp accuracy and SA-ROUGE testing summary quality. STA-ROUGE combines both, giving
the strictest evaluation.

4.1.2 METRIC DEFINITIONS

Semantic-Alignment Score (SA Score). To establish a principled foundation for semantic align-
ment, we design a candidate-based alignment strategy grounded in semantic similarity. Given a
predicted timeline P = {(d}’,y/)}, and a reference timeline R = {(df,yf)}/< . Here df
and df denote the dates of the i-th predicted and j-th reference events, and 7, y]R their associated
summaries. We first compute pairwise similarity scores.

Sij = sim(yﬁyf) € 10,1],

where sim(+) is derived from an encoder ¢(-). These scores serve only as soft weights for candidate
retrieval. For each reference milestone y]R, we select the top- K.,ng candidates.

Cj = TOPKZG[M] Sij, Keand = 2,
ensuring that only the most semantically relevant predicted events are considered. K yq is the
candidate pool size (default 5), and ¢(-) specifies the similarity backbone.

For each candidate i € C;, we query the LLM with a yes/no prompt: “Do y/” and yJR describe the
same underlying event?” This yields a binary judgment.

dij = 1[LLM—judge(ylP,ij) = Yes] € {0,1}.
Vi = {Iel%f dij,
which indicates whether yf is successfully matched by at least one predicted candidate. The
matched set is then .
M={("7) v =11 = argiec{?%iﬂ Sij}-
Here M denotes a generic set of candidate index pairs (4, j) between predicted and reference time-
lines, while M is the optimized set actually retained after candidate filtering and LLM judgment.
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In other words, M represents the search space of all possible alignments, and M is the final align-
ment outcome. Finally, the SA Score is computed as the fraction of reference milestones that are
semantically covered:

1K
SA Score = e Zyj.
j=1
Here K is the number of reference milestones.

Semantic-Alignment Date-F1 (SA Date-F1). Among semantically aligned pairs, we further
check whether timestamps coincide. Let D" = {df’ | (i,j) € M,d] = df'} and D" =

{dff | (i,5) € M, df’ = df'}. We compute

D maich Dmatch
P = 7] | Rsnawe = |RR||
and define
SA Date-F1 = 2P5a-date L5 A-date

Psa-date + Rsa-date

Note that in our setting |P| = |R], so the denominators coincide and precision and recall are always
identical; hence, in subsequent tables we report only the unified F1 score for SA Date-F1.

Semantic-Alignment ROUGE (SA-ROUGE). Finally, we compute ROUGE-n between sum-
maries of each (7, j) € M and average:

1
SA-ROUGE, = — > ROUGE,(y/,yf).
| (i.)eM

Semantic & Temporal-Alignment ROUGE (STA-ROUGE). To jointly enforce semantic con-
sistency and temporal fidelity, we further introduce STA-ROUGE. Specifically, we restrict ROUGE
(Lin, 2004) computation to pairs (¢, j) € M that are not only judged semantically equivalent by the
LLM (d;; = 1) but also have timestamps within a small tolerance window ¢, i.e., |d2]-3 — df\ <e,
consistent with A-ROUGE practice. Formally,

STA-ROUGE,, = Al Z ROUGE, (y/,y}"),
| time (i,j)eﬁxl\ﬁmc
where Py —~
Mlime = {(Zaj) eM | |df3 - d?| é 6}'
This metric captures both semantic alignment and correct temporal grounding within tolerance,
providing a stricter assessment of timeline summarization quality.

4.2 FS-LLM-TLS

Our framework extends the four-stage pipeline of LLM-TLS (Hu et al., 2024)) and redefines the role
of LLMs for greater efficiency, informativeness, and alignment with human judgment. As shown
in Figure [2] the process moves from snippet extraction, where an LLM generates a timestamped
event snippet for each document, to event clustering based on semantic similarity and temporal
proximity, to cluster-level abstractive summarization that produces a single milestone description,
and finally to timeline construction by selecting and ordering L milestones. While retaining the
overall structure of LLM-TLS, we redesign three stages—unified snippet extraction, cluster-level
abstractive summarization, and hybrid milestone selection—so the LLM operates consistently across
the pipeline and aligns with our semantic evaluation metrics.

We redesign how LLMs are deployed in three stages of the pipeline to maximize the potential of
LLM in these tasks.

(i)Unified argument-aware snippet extraction. For each document the LLM simultaneously
extracts structured arguments (who, what, when) and generates a grounded 1-2 sentence snippet.
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Figure 2: Overview of FS-LLM-TLS pipeline.

This single-prompt formulation preserves background milestones that may be omitted by purely
extractive prompts and improves factual consistency between arguments and snippets.
(ii)Cluster-level abstractive summarization. Rather than selecting a single representative sentence
with TextRank/PageRank, we use the LLM to abstract over all snippets in a cluster. By aggregating
complementary evidence, the milestone descriptions become more informative and semantically
richer, improving recall and coherence.

(iii)Hybrid milestone selection with batched LLM reasoning. We first select the top nL clusters
by size (n = 0.5), then apply a two-pass, batched LLM selection over the remaining candidates
(capped at =~ 4L) to choose the most important (1 — n)L milestones while staying within context
limits.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate our framework on three benchmark datasets: Entities, Crisis, and T17. Following the
baseline work of Hu et al. (Hu et al., |2024)), we make explicit the data statistics and configurations.
The T17 dataset (Tran et al., |2013) consists of 9 predefined topics and spans roughly 7 months
of real-world news data. The Crisis dataset (Rajaby Faghihi et al.| 2022) encompasses 4 topics,
similarly covering long-span armed conflict or crisis news. The Entities dataset (Ghalandari &
Ifrim| 2020) is larger, containing 47 distinct topics, with time-ranges extending up to 12 years.

Following previous work, we report three primary metrics: (1) Date F1 for temporal alignment, (2)
AR1 (A-ROUGE-1), and (3) AR2 (A-ROUGE-2). Martschat & Markert (2017) further proposed
stricter variants such as date-agreement ROUGE as well as other alignment-based measures, but
these have rarely been adopted in subsequent TLS work due to their overly severe penalization or
limited interpretability. In addition, to reflect human perspectives more directly, we employ two
supplementary metrics: (4) CE (Content Equivalence), which counts the number of semantically
consistent milestones between predicted and reference timelines regardless of timestamps, and (5)
DACE (Date-Agreement Content Equivalence), which further requires both semantic consistency
and temporal correctness. These metrics approximate how humans judge whether key events are
correctly captured and temporally faithful.
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Unless otherwise specified, we use the LLaMA2-13B-Instruct model throughout all experi-
ments. For reproducibility, the prompt templates for each stage of our pipeline, the model hyperpa-
rameters, and detailed configuration of all LLMs are provided in the Appendix.

5.2 OVERALL RESULTS UNDER MAINSTREAM AND OUR METRICS
This experiment evaluates the effectiveness of our FS-LLM-TLS method compared with the baseline

across three benchmark datasets: Entities, Crisis, and T17. As shown in Tablem we report results
under two complementary metrics frameworks and human perspectives.

Table 1: Overall performance comparison of metrics and method

Dataset Method Standard Metrics Semantic-Alignment Metrics Human Perspective
Date F1 AR1 AR2 SA-Score SA-DateF1 SA-R1 SA-R2 STA-R1 CE DACE
Entities  Baseline 0.232 0.091  0.037 0.281 0.152 0.115 0.049 0.086 6.31 3.36
Entities ~ Ours (n=0.5) 0.256  0.095 0.040 0.330 0.172 0.130 0.061 0.099 7.98 4.38
Crisis Baseline 0.530 0312 0.156 0.644 0.488 0.338 0.170 0.277 89.74 66.27
Crisis Ours (n=0.5) 0.545 0.325 0.163 0.680 0.535 0.358 0.182 0.299 97.92 77.04
T17 Baseline 0380 0267 0.121 0.482 0.404 0.352 0.062 0.237 36.74 32.17
T17 Ours (n=0.5) 0.410  0.280 0.130 0.523 0.458 0.392 0.074 0.269 48.12 41.03

Across all datasets, FS-LLM-TLS outperforms the baseline under both Standard and Semantic-
Alignment Metrics. Standard Metrics improve modestly (+4-6%), reflecting limited sensitivity to
semantic reasoning. SA metrics show larger gains (+10-16%), with SA-Score strongest, and their
consistency aligns more closely with human perspectives. This indicates that date-aligned metrics
compress differences in event selection and sentence quality, while SA metrics reveal the true per-
formance gap. The advantage stems from FS-LLM-TLS strengthening semantic completeness and
milestone selection, where LLMs excel. Thus, SA metrics capture the core challenge of TLS—event
selection quality—and amplify differences between FS-LLM-TLS and the baseline. On the hetero-
geneous Entities dataset, SA-Score improves by +24.6% versus only +10.3% with Date F1, con-
firming its superior discriminative power.

5.3 INFLUENCE ANALYSIS OF STAGE-WISE OPTIMIZATION ON METRICS AND ABLATION
STUDY

To assess the contribution to the metrics of each optimization step in FS-LLM-TLS, we conduct
a comprehensive ablation study on the Entities dataset. This experiment isolates the effect of in-
dividual stage-level improvements as well as their combinations, thereby illustrating how different
components interact within the full pipeline. The findings is shown in Table

Table 2: Influence analysis of stage-wise optimization on metrics and ablation study

Method Standard Metrics Semantic-Alignment Metrics
Date F1 AR1 AR2 SA-Score SA-Date F1 SA-R1 SA-R2 STA-R1

Baseline 0.232 0.091 0.037 0.281 0.152 0.115 0.049 0.086
FS-LLM-TLS 0.256 0.095 0.040 0.330 0.172 0.130 0.061 0.99
Baseline + S1 0.230 0.092  0.037 0.285 0.154 0.116 0.050 0.086
Baseline + S3 0.232 0.094 0.040 0.285 0.152 0.121 0.052 0.089
Baseline + S4 0.253 0.093 0.039 0.332 0.175 0.127 0.057 0.095
Baseline + S1+S3 0.236 0.095 0.040 0.288 0.156 0.123 0.055 0.95
Baseline + S3+S4 0.252 0.094  0.039 0.346 0.177 0.132 0.058 0.98
Baseline + S1+S4 0.249 0.093 0.039 0.332 0.175 0.131 0.058 0.097

Overall, the ablation shows that both individual optimizations and their combinations improve per-
formance. Only methods with Stage 4 yield clear gains under Semantic-Alignment metrics, es-
pecially SA-Score (+21.7%), while Date F1 rises more modestly (+9.1%). Stage 4’s LLM-based
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selection identifies true “milestones,” whereas Stage 1 and Stage 3 mainly affect sentence qual-
ity, leaving semantic alignment largely unchanged. These results highlight the gap between token-
level ROUGE and semantic similarity. SA metrics provide a necessary complement to traditional
time-prior metrics: SA-Score captures milestone selection, SA-Date F1 temporal accuracy, and SA-
ROUGE sentence quality. Improvements of +26.3%, +24.5%, and +24.6% in SA-Date F1, SA-R2,
and SA-Score confirm FS-LLM-TLS’s advantages in temporal accuracy, sentence quality, and event
selection.

5.4 ANALYSIS ON DISCRIMINATIVE POWER OF SA METRICS

In the previous experiment, we demonstrated that SA metrics are primarily influenced by the quality
of event selection (the task of Stage 4). Building on this finding, in the following experiment we
focus exclusively on Stage 4 across all three datasets. In each case, we vary the proportion of
milestones in the predicted timeline that are selected through LLM-based filtering: 100% (n=0),
75% (n=0.25), and 50% (n=0.5).

Table 3: Influence on metrics of LLM’s participation on Stage 4 across datasets

Dataset Method Mainstream Metrics SA Metrics Human Perspective
DateF1 A-R1 A-R2 SA-Score SA-DateF1 SA-R1 SA-R2 STA-R1 CE DACE
Entities ~ Baseline 0.232 0.091  0.037 0.281 0.152 0.115 0.049 0.086 6.31 3.36
Entities ~ S4 (n=0) 0.192 0.088  0.035 0.296 0.148 0.121 0.052 0.088 6.73 3.37
Entities  S4 (n=0.25) 0.243 0.094  0.039 0.338 0.192 0.132 0.060 0.099 7.70 4.38
Entities  S4 (n=0.5) 0.256 0.095  0.040 0.350 0.192 0.135 0.061 0.102 7.98 4.38
Crisis Baseline 0.530 0312 0.156 0.644 0.488 0.338 0.170 0.277 89.74 66.27
Crisis S4 (n=0) 0.485 0.284 0.143 0.636 0.408 0.314 0.158 0.259 91.58 58.76
Crisis S4 (n=0.25) 0.538 0319 0.160 0.674 0.528 0.352 0.178 0.294 97.30 76.43
Crisis S4 (n=0.5) 0.545 0.325  0.163 0.680 0.535 0.358 0.182 0.299 97.92 77.04
T17 Baseline 0.380 0.267  0.121 0.482 0.385 0.352 0.062 0.237 36.74 32.17
T17 S4 (n=0) 0.388 0.270  0.124 0.508 0.412 0.379 0.069 0.260 46.74 37.90
T17 S4 (n=0.25) 0.423 0.288  0.135 0.530 0.448 0.396 0.075 0.270 48.76 41.22
T17 S4 (n=0.5) 0.410 0.280 0.130 0.523 0.446 0.392 0.074 0.269 48.12 41.03

For milestone selection ratios of 75% and 50%, improvements appear across all metrics, with rela-
tive strengths varying by dataset. When milestones are 100% LLM-selected (n=0), Date F1 drops,
yet SA-Score remains stable in Entities (+5.3%) and even rises in T17 (+5.4%), while STA-R1
also increases (+2.3%). This shows that LLMs still identify meaningful events, though by different
principles. In Entities, CE improves by +6.7%, +22.0%, and +26.5% for n=0, 0.25, and 0.5, while
DACE changes by —3.3%, +30.4%, and +30.4%. Correspondingly, SA-Date F1 rises by —2.6%,
+26.3%, and +26.3%, and SA-Score by +5.3%, +20.3%, and +24.6%. These patterns show SA-Date
F1 aligns with DACE, while SA-Score tracks CE, confirming that semantic metrics reflect human
judgments more reliably than date-only metrics. Across datasets, SA-Score under n=0 decreases
slightly in Crisis (—1.2%), increases in T17 (+5.4%), and stays stable in Entities (+5.3%), suggest-
ing that statistical heuristics remain useful but should not dominate evaluation. Relying only on
Date F1 and A-ROUGE would suggest that LLM-only selection underperforms. SA metrics reveal
the opposite: declines come from temporal misalignment, while semantic matching and linguistic
quality improve.

5.5 ROBUSTNESS

To test robustness, we evaluate on medium-scale models of similar size: Qwen3-14B and LLaMA-
2-13B. This cross-model setting checks whether improvements and SA metrics remain consistent
across architectures.

The results show that our method consistently improves over the baseline under both models. More-
over, the Semantic-Alignment metrics exhibit stable and coherent behavior across different archi-
tectures, reinforcing the robustness and generalizability of our evaluation framework.
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Table 4: Model-agnostic evaluation on medium-scale LLMs (13B-14B).

Method Model Standard Metrics Semantic-Alignment Metrics

Date F1 ARI1 AR2 SA-Score SA-Date F1 SA-R1 SA-R2 STA-R1
Baseline LLaMA-2-13B 0.232 0.091 0.037 0.281 0.152 0.115 0.049 0.086
Ours LLaMA-2-13B 0.256 0.095 0.040 0.330 0.172 0.130 0.061 0.99
Baseline Qwen-14B 0.230 0.090 0.037 0.285 0.152 0.114 0.048 0.085
Ours Qwen-14B 0.252 0.095 0.040 0.334 0.180 0.131 0.060 0.094

5.6 SCALABILITY WITH LARGER MODELS

To test scalability, we compare FS-LLM-TLS with the baseline across LLaMA-2 and Qwen3 models
of different sizes, using the Entities dataset for consistency.

Table 5: Scalability analysis with larger LLaM A2 models on Entities.

Method Model Standard Metrics SA Metrics
Date F1 AR1 AR2 SA-Score SA-Date F1 SA-R1 SA-R2 STA-R1

Baseline LLaMA-2-13B 0.232 0.091 0.037 0.281 0.152 0.115 0.049 0.086
Ours LLaMA-2-13B 0.256 0.095 0.040 0.330 0.172 0.130 0.061 0.099
Baseline LLaMA-2-70B 0.236 0.093 0.039 0.281 0.152 0.119 0.050 0.088
Ours LLaMA-2-70B 0.262 0.099 0.044 0.352 0.175 0.140 0.068 0.105
Baseline Qwen-14B 0.230 0.090 0.037 0.285 0.152 0.114 0.048 0.085
Ours Qwen-14B 0.252 0.095 0.040 0.334 0.180 0.131 0.060 0.094
Baseline Qwen3-30B 0.234 0.093 0.039 0.280 0.154 0.116 0.050 0.087
Ours Qwen3-30B 0.258 0.096 0.042 0.348 0.176 0.138 0.066 0.104
Baseline Qwen3-235B 0.236 0.095 0.040 0.289 0.159 0.121 0.050 0.088
Ours Qwen3-235B 0.273 0.101 0.047 0.376 0.195 0.148 0.070 0.109

Results show that FS-LLM-TLS scales well with model capacity. Date F1 gains are modest
(+11.1%), while SA-Score improves more substantially (+21.5%) and SA-Date F1 moderately
(+13.4%). This indicates that larger models mainly strengthen event selection rather than tempo-
ral alignment. In contrast, the baseline benefits little from scaling, with only +1.7% in Date F1
and +2.8% in SA-Score. Thus, deeper integration of larger LLMs into the TLS pipeline makes SA
metrics essential for exposing real improvements and limitations.

6 CONCLUSION

We re-examine TLS evaluation in the era of strong models. Existing metrics like Date F1 and
A-ROUGE conflate temporal proximity with semantics, masking real progress. We introduce a
semantic-alignment framework with SA metrics that separates semantic coverage, temporal fidelity,
and textual quality. To validate them, we propose FS-LLM-TLS, a stage-wise pipeline integrating
LLM reasoning in snippet extraction, cluster abstraction, and milestone selection. Gains under tradi-
tional metrics are modest, but SA metrics reveal clear advances in event selection and completeness.
SA metrics thus offer stronger discriminative power and closer alignment with human judgment,
providing a principled framework for future TLS evaluation.

7 LIMITATIONS AND FUTURE WORK

SA metrics still operate at the sentence level and use discrete temporal tags. Future work could
extend them to discourse-aware or cross-document alignment and involve human-in-the-loop eval-
vation. FS-LLM-TLS improves event selection and completeness, but temporal accuracy gains are
limited. Models detect salient events well but struggle with precise dating. Addressing this may
require combining statistical priors with model reasoning for temporal grounding.
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Algorithm 1 One-shot Argument-aware Snip-
pet Extraction

Require: Documents D
LLM M; prompt template P
Ensure: For each d;: structured arguments
(a@ho, qwhat qwhen) and snippet s;
1: fori =1to N do

: prompt < P(d;)
3- (awho what when

{d17"'7dN};

i , , @ s Si) <
M(prompt)
4: end for
5: return {(a@", awhaet qwhen g \}N

Algorithm 2 Cluster-level Abstractive Summa-
rization

Require: Clusters C = {C1,...,Ck}; LLM
M; prompt template P; decoding tempera-
ture 7

Ensure: For each C;: abstractive milestone S;
and representative timestamp ¢;

1: fori =1to K do
U; < SelectAll(C;)
in Cl
prompt « P(U;)
S; + M(prompt; 7)
t; < ModeDate(C;)
end for
return {(t:, ;) X,

> use all snippets

Figure 3: (Left) Snippet extraction with unified argument and summary generation. (Right) Cluster-

level abstractive summarization.
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