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Abstract

We present a node-based storytelling system for multimodal content generation.
The system represents stories as graphs of nodes that can be expanded, edited, and
iteratively refined through direct user edits and natural-language prompts. Each
node can integrate text, images, audio, and video, allowing creators to compose
multimodal narratives. A task selection agent routes between specialized gener-
ative tasks that handle story generation, node structure reasoning, node diagram
formatting, and context generation. The interface supports targeted editing of indi-
vidual nodes, automatic branching for parallel storylines, and node-based iterative
refinement. Our results demonstrate that node-based editing supports control over
narrative structure and iterative generation of text, images, audio, and video. We
report quantitative outcomes on automatic story outline generation and qualitative
observations of editing workflows. Finally, we discuss current limitations such as
scalability to longer narratives and consistency across multiple nodes, and outline
future work toward human-in-the-loop and user-centered creative AI tools.

1 Introduction

Recent progress in generative models makes it possible to easily create text, images, audio, and video
[3]. These capabilities open new possibilities in domains ranging from filmmaking to game design.
Today, the dominant interaction paradigm for generative models based on prompts [8]. However, a
single prompt typically doesn’t fully capture the users intend [16]. To address this, AI-driven content
generation platforms must go beyond one-shot generation to support iterative, human-in-the-loop
workflows where narrative structures can be guided, revised, and extended.

Storytelling presents a challenging opportunity for controllability due to the many ways narratives
can be structured. Stories may unfold through sequential or branching events [11]. Existing AI-driven
systems often struggle to satisfy these constraints, producing workflows that are linear, non-iterative,
and fixed in structure, lacking the flexibility to support both high-level control and targeted edits.

Our approach represents stories as graphs of nodes, where each node corresponds to a scene or event
that can be iteratively created, expanded, or edited through generative AI. This representation makes
the narrative structure explicit and allows users to branch, reorder, or refine content. The system
combines two complementary interaction modes: natural language interaction with a large language
model for high-level edits and node-based interaction for iterative refinements. Each node supports
multi-modal generative AI output such as text, audio, images, and video. Our system contributes a
node-based framework for AI-assisted storytelling by enabling (1) automated story node generation,
(2) selective node-based media editing, and (3) iterative refinement through node branching.

∗Work completed during internship at Microsoft

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: GenProCC: 1st
Workshop on Generative and Protective AI for Content Creation.



2 Related Works

Advances in model architectures and training are beginning to support editable video generation
[2]. For example, recent work explores ControlNet-style video conditioning with edge and depth
maps [18], spatio-temporal encoders that fuse layout and motion cues using motion vectors [6], and
trajectory-based controllers that decouple camera and object motion [15]. Building on these advances,
AI-driven content creation platforms are introducing interfaces that foreground user control, offering
new ways for creators to structure and edit generative outputs. OpenAI’s Sora introduced a storyboard
interface for sequential video generation, allowing users to break a script into discrete scenes and
specify captions for each shot [13]. Google’s Flow leverages Veo, Imagen, and Gemini to enable
filmmakers to produce cinematic clips with scene-level continuity and camera control [4]. Similarly,
Runway Gen-2 provides users with prompt-based video generation and timeline editing [14]. These
systems highlight a growing emphasis on controllability at the level of scenes and sequences, though
they typically remain tied to linear editing metaphors and interfaces.

Node-graph editors have been previously used in AI-driven creative workflows. ComfyUI, an open-
source interface for diffusion models, lets users compose complex generation pipelines through
modular graph representations [17]. In narrative design, visual scripting tools such as Twine have
long demonstrated how stories can be authored and visualized as branching graphs [1]. More recently,
Geneva by Microsoft Research takes high level narrative descriptions and uses LLMs to generate
graph based story representations [7]. Previous work on AI-assisted storyboarding has transformed
scripts into segments, with an emphasis on linear storyboard generation and image outputs, while
lacking support for editable, controllable, multimedia workflows [9].

Our work builds on these directions by integrating a prompt based chat interface with a node-based
story graph for multimodal generation. Unlike linear interfaces, our system emphasizes iterative
editing at the node level for generative content creation, enabling both targeted updates and node
level branching, comparison, and reordering.

3 Methods

We present a storytelling platform that integrates a conversational interface with a node-based
representation for multimedia generation. The system integrate natural language interaction with a
structural graph view, enabling users to iteratively outline, compare, expand, and revise AI generated
content (Fig. 1). This architecture allows both high-level story generation from prompts and specific
updates to selected subset of nodes.

Figure 1: Conversational AI Interface integrated with a Node Based Multimedia Content Generation
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Large Language Models for Story Generation and Node-Based Diagram Generation. A task
selector agent acts as the orchestration layer of the system, interpreting user input, monitoring changes
in the node diagram environment, routing requests to the appropriate generative task, and updating the
diagram. Each of the tasks is driven by a large language model, specifically GPT-4.1 for its reasoning
and generation capabilities [12]. When a user prompts for a story to be generated, the task selection
agent routes the request to the Generator, which produces narrative text from the input (Fig 2) The
Reasoner then decomposes this text into a set of nodes, assigning edges that represent the narrative
flow and relationships in the story. The Diagrammer formats the node list into a structured graph,
enforcing strict JSON output with node titles, node segments, and edges (Appx A.1). When the user
wants to make targeted changes, the task selection agent routes to the Editor, which regenerates the
selected nodes with user instructions while preserving the existing node structure.

Figure 2: System Overview: From User Input, Task Selection Agent, Generator, Reasoner, Diagram-
mer, Node Graph Represenation, Editor, Context Generator to Multimedia Generation

Node Based Representation for Multi-Media Generation. The node structure acts as the interface
between text generation and media generation. Stories in the system are represented as directed
graphs, where each node contains a text segment and media assets such as audio, images, or video.
The text segment serves as the prompt for generating the media linked to that node. For visual
consistency, the system maintains a rolling story context that is passed to image and video generation
tasks. Audio narration is produced by the GPT-4o’s text-to-speech model, which converts each node’s
text segment into audio narration (Fig. 10). Images are generated by GPT-Image-1 using each node’s
text and contextual story details, while OpenAI’s Sora is used for video generation [12] (Appx. A.7).
By structuring stories as graphs, users can select a node to create media for a single scene, regenerate
assets for a subset of nodes, or preview the entire graph as an audiovisual sequence (Fig. 2). Allowing
users to maintain control over their AI-generated media, while preserving the graph structure.

Graph Based Story Sequencing and Video Export. Stories represented as graphs can be exported
in multiple formats: as a compiled video clip, a visual storyboard, or a JSON graph. The full video
export process handles the integration of audio, visuals, and subtitles (see Appx. A.6 Fig. 17). Each
path through the graph could corresponds to a possible narrative trajectory. Therefore, users have to
option to select specific nodes to export or generate an export sequence based on the graph topology.

4 Experiments and Results

Figure 3: Generating a Sequential Storyline Generation versus a Branching Storyline
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Automated story node generation. To evaluate the system, we constrained the task to short stories
represented as a graph of 8 to 12 nodes. Using a large language model (LLM), we generated 10
user prompts for single narrative stories and 10 user prompts for branching narrative stories. For
single-narrative prompts, the system produced linear story graphs without unintended branching in 8
out of 10 trials. For branching prompts, the system generated parallel paths in 10 out of 10 trials (Fig.
5). These results indicate that the system can generate story graphs for both linear and branching
narrative structures (see Appx. A.2 Fig. 8, Fig.9 for more details).

Selective node-based editing and content creation. The interface supports manual edits directly
in the node context and AI-driven edits. Manual editing was effective for targeted changes, such
as altering specific objects, settings, or scene details, with edits immediately reflected in exported
outputs. AI-assisted editing, allowed for higher-level modifications such as adjusting tone (e.g.,
"make this sound mysterious"), extending descriptions (e.g., "add the fact that her backpack is on the
ground") or condensing narration (Fig. 4). We observed that manual editing was most effective for
specific adjustments, while AI editing was more useful for structural or stylistic revisions. Once the
node is regenerated or edited users can regenerate the media (Appendix A.4, Fig. 12). In addition,
the system supported global edits: users could select all nodes and request a rewrite that preserved
the graph structure while modifying narrative details across the story (Appx A.5, Fig. 14).

Figure 4: Using an LLM to edit selected nodes and make targeted changes to tone and story details

Iterative refinement through branching and comparison. Unlike regular content, generative AI
content can be regenerated and refined output through prompt changes. Our results demonstrated that
a node-based representation can facilitate this AI-driven iterative exploration. Users could duplicate
nodes or branches to create multiple versions of the same storyline, then compare them side by side.
This allowed for experimentation with different stylistic directions while preserving the underlying
structure. Such iteration was not possible in linear prompt-based systems, highlighting the advantage
of the graph-based approach for exploring narratives with generative AI content.

5 Limitation and Conclusions

A key limitation of this work is its reliance on text-based context grounding to maintain consistency
across multiple generations. Future work could integrate image grounding for coherent media
generation across multiple nodes or ground generated media grounded with real world data [5].
Another limitation of the system is its ability to handle longer text and larger node graphs. Future
work could explore hierarchical generation or subgraph-based approaches to preserve clarity and
narrative coherence in longer context generation. We also plan to further conduct user studies with
content creators to gather feedback on the usability of the interface and its impact on their creative
process. By representing AI-generated content as author-able visual nodes, the system can lower
barriers for non-technical users, preserve human agency, and increase access to collaborative human-
AI creation for broader societal impact (Appx. A.8). In conclusion, our work contributes a step
toward AI-assisted creative content generation workflows that are controllable, editable, and iterative.
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Iterative narrative exploration allows creators to experiment with branching storylines, compare
outcomes, and refine narratives through targeted regeneration. By duplicating nodes or branches,
users can explore stylistic or thematic variations without disrupting the overall flow or regenerating
the entire sequence. This process supports side-by-side comparisons of media and text, helping
creators select the branch that best fits their vision. Branching iterations enable nondestructive content
creation, which is especially valuable given the time and computational cost of generating video.

Figure 5: In this example, the “Friends meet the Blue Ghosts” node was regenerated with alternative
descriptions, producing different video interpretations. The system displays both versions side by side,
allowing the user to compare outcomes and select the preferred branch for continuing the narrative.

Figure 6: Media generation menu for audio narration. The author selects one or more nodes and
configures provider, voice, and style instructions; generated clips attach to each card with duration
and playback controls. In this case, the user instructed the AI model to speak in a hopeful tone.
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Figure 7: Example of branching parallel timelines within the story graph. This demonstrates how
the system can represent events occurring at the same time in different narrative threads, allowing
creators to explore and visualize parallel storylines.
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A Technical Appendices and Supplementary Material

A.1 Example of Structured Json Graph Output from Diagrammer LLM Task

{"nodes ":[
{"id":"1" ," data ":{" label ":" City of Lumina Plunged Into Darkness","segment ":" The city of

Lumina was known for its bright lights and bustling streets , but one fateful night ,
everything changed. Without warning , the entire city was plunged into darkness.
Streetlights flickered out , neon signs went dim , and homes were cast into shadow
."}," position ":{"x":50 ,"y":50}} ,

{"id":"2" ," data ":{" label ":"Elena ’s Determination ","segment ":"In the upscale district of
Crestwood , Elena , an emergency room nurse , decided she couldn ’t wait for the power
to return. Her phone ’s battery was low , and she knew the hospital would need all
hands on deck. Grabbing a flashlight , she ventured into the inky night , determined
to make her way to the hospital on foot ."}," position ":{"x":350 ,"y":50}} ,

{"id":"3" ," data ":{" label ":" Marcus Offers Help","segment ":" Across town in the industrial
zone , Marcus , a mechanic , was about to close up his garage when the blackout hit.
With a generator on hand , he decided to stay put , offering help to the stranded
drivers who began to trickle in , searching for assistance in the darkened streets
."}," position ":{"x":350 ,"y":550}} ,

{"id":"4" ," data ":{" label ":" Friends ’ Night Adventure","segment ":"In the heart of the city ,
at Central Park , a group of friends gathered for a night picnic found themselves

enveloped in an unexpected adventure. Sarah , the group ’s unofficial leader ,
suggested they use the opportunity to explore the city ’s hidden corners under the
cloak of darkness. They agreed , setting off with laughter and flashlights , their
spirits undampened by the lack of light ."}," position ":{"x":350 ,"y":1050}} ,

{"id":"5" ," data ":{" label ":" Convergence at the Square","segment ":"As the night wore on,
Elena , Marcus , and Sarah;s group unknowingly moved towards a common destination -the
city ’s main square. Elena trudged tirelessly , guided by the faint glow of her
flashlight and sheer determination. Marcus , having helped as many as he could ,
decided to drive into the city to see if there was more he could do. Sarah ’s group ,
driven by youthful curiosity , meandered through alleyways and side streets ."},"
position ":{"x":650 ,"y":300}} ,

{"id":"6" ," data ":{" label ":" Gathering at the Square","segment ":" Their paths converged at
the square , a place usually bursting with life but now eerily silent. Here , the
community gathered , drawn by a mysterious glow emanating from a lone solar -powered
art installation standing defiantly in the darkness. People shared stories , comfort ,
and resources , as the city , despite its fractured state , found unity in the shared

experience ."}," position ":{"x":950 ,"y":300}} ,
{"id":"7" ," data ":{" label ":" Lights Return and Lasting Connections ","segment ":"As dawn

approached , the lights flickered back to life , but the connections forged in the
shadows lingered , leaving Lumina brighter than before ."}," position ":{"x":1250 ,"y
":300}}

],
"edges ":[
{"id":"e1 -2"," source ":"1" ," target ":"2"} ,
{"id":"e1 -3"," source ":"1" ," target ":"3"} ,
{"id":"e1 -4"," source ":"1" ," target ":"4"} ,
{"id":"e2 -6"," source ":"2" ," target ":"6"} ,
{"id":"e3 -6"," source ":"3" ," target ":"6"} ,
{"id":"e4 -6"," source ":"4" ," target ":"6"} ,
{"id":"e5 -6"," source ":"5" ," target ":"6"} ,
{"id":"e6 -7"," source ":"6" ," target ":"7"}]}

A.2 Evaluation of Story Graph Generation

For automated story node generation, we evaluated 10 prompts for linear narratives and 10 prompts
for branching narratives. The system produced correct linear graphs in 8/10 cases (80%, 95% CI
[44%–97%]) and branching graphs in 10/10 cases (100%, 95% CI [69%–100%]). These binomial
confidence intervals were calculated to reflect uncertainty given the small sample sizes, providing a
measure of statistical significance for the reported success rates.

Below are the meta-prompts used to generate example prompts for the experiments to test branching
and sequential narratives.

Generate 10 user prompts for a short story that can be represented as a branching
narrative with parallel events. There should be around 8-12 events. The prompt
should be around 1 to 3 sentences long. Return only the prompts , nothing else.

Generate 10 user prompts for a short story that can be represented as a linear sequence
of events. There should be around 8-12 events in total. The prompt should be around
1 to 3 sentences long. Return only the prompts , nothing else.
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Table 1: Branching narrative prompts used in evaluation

# Branching narrative prompt Result

1 A group of friends enters a haunted mansion, each taking a different hallway that leads
to strange encounters before they reunite.

Pass

2 A colony ship lands on an alien world, where different crew members explore separate
regions that reveal conflicting discoveries.

Pass

3 A royal court faces a crisis: the king seeks peace, the queen demands war, and advisors
pursue secret plots that intertwine.

Pass

4 A city is struck by a mysterious blackout, forcing residents across different neighbor-
hoods to make choices that eventually converge.

Pass

5 A team of treasure hunters splits up inside a vast cave system, each path filled with
traps and clues pointing to the same artifact.

Pass

6 A rebellion begins in a futuristic city, where different factions take divergent actions
that may ultimately decide the same fate.

Pass

7 A group of scientists investigates a spreading anomaly, with each researcher following
a separate theory until their findings intersect.

Pass

8 A traveling circus arrives in a new town, and performers’ separate adventures—on
stage, in the streets, and in secret—eventually collide.

Pass

9 A family separated during a natural disaster each struggles to survive in different
locations, working toward reunion.

Pass

10 A medieval village faces an approaching army, with villagers choosing to fortify
defenses, hide in the forest, or negotiate, all leading to a shared resolution.

Pass

Table 2: Linear narrative prompts used in evaluation

# Linear narrative prompt Result

1 A child sets out to find their lost dog and faces a series of challenges along the way. Pass
2 An archaeologist explores an ancient tomb, uncovering traps, puzzles, and a final

treasure.
Pass

3 A knight embarks on a quest to rescue a captured friend, passing through forests,
mountains, and dungeons.

Pass

4 A group of astronauts lands on Mars and follows a series of steps to establish the first
colony.

Fail

5 A chef attempts to prepare a complex dish, encountering difficulties but completing it
step by step.

Pass

6 A musician travels from town to town, slowly building recognition until reaching a
grand concert.

Pass

7 A fisherman battles a storm at sea, struggling with wind, waves, and exhaustion before
making it back to shore.

Pass

8 A teacher prepares their students for an important exam, overcoming obstacles in study
sessions until the final test.

Fail

9 A young inventor builds a flying machine, refining it through a series of trials until it
finally succeeds.

Pass

10 A messenger must deliver an important letter across dangerous terrain, encountering
challenges one after another until the mission is complete.

Pass

Narrative Type Correct / Total Success Rate 95% CI
Linear 8 / 10 80% [0.44, 0.97]
Branching 10 / 10 100% [0.69, 1.00]

Table 3: Evaluation of story node generation across 10 prompts for each narrative type.
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Figure 8: Example of Branching Narratives generated by the system

Figure 9: Example of Single Sequence Narratives generated by the system

A.3 Media Generation Menu and User Customization

The media generation menu lets users create audio, images, and video at the node level. Users select
any subset of nodes, set options such as voice and brief style instructions, and launch generation.
Requests are queued, progress is shown inline on each node, and the resulting assets are written back
to the selected nodes without altering their text. The system carries forward a rolling story context to
promote consistency across nodes. Users can rerun the menu to regenerate only the selected nodes or
batch apply new settings to a branch before exporting a preview or a compiled video.
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Figure 10: Media generation menu for audio narration. The author selects one or more nodes and
configures provider, voice, and style instructions; generated clips attach to each card with duration
and playback controls. In this case, the user instructed the AI model to speak in a mysterious way.

A.4 Node-Level Editing and Media Regeneration

Figure 11: The Airlock Inspection and Entry node describes Dr. Morales and Engineer Singh
approaching the airlock with visible tension

Node-level editing allows targeted revisions to specific parts of a story without regenerating the entire
narrative. In the top figure, the Airlock Inspection and Entry node describes Dr. Morales and Engineer
Singh approaching the airlock with visible tension. The associated media reflects this. In the bottom
figure, the same node was edited to add details about the entrance. This textual change directly
influenced the regenerated media, producing imagery with the people walking towards the entrance
door. By comparing the two figures, we see how selective editing of a single node propagates into
meaningful differences in the generated media while the rest of the story graph remains unchanged.
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Figure 12: The Airlock Inspection and Entry node was edited to include details about the entrance,
and the regenerated media reflects this change by showing the crew walking directly toward the
airlock door.

A.5 Node Based Global Graph Level Editing and Media Regeneration

Graph-level editing enables simultaneous modification of multiple nodes, allowing creators to shift
tone or style across entire story branches without altering the underlying structure. This global update
not only streamlined the text but also influenced the associated media regeneration, producing visuals
and audio. The overall graph structure remains unchanged, ensuring that edits adjust content while
preserving narrative coherence. By operating at the graph level, the system provides a powerful
mechanism for large-scale yet coherent adjustments, preserving narrative flow while adapting the
creative direction across all branches.

Figure 13: Initial version of the branching story graph, where each path (Jenny’s Path, Tom’s
Path, Raj’s Path) is described in detail. The editing prompt “make these parts shorter and sound
adventurous” is issued to update the narrative.
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Figure 14: Updated story graph after applying the edit. Each path is rewritten in a more concise and
adventurous style, demonstrating how graph-level editing modifies multiple nodes simultaneously
while maintaining the branching structure

Figure 15: Node-based story extension. A new node is added introducing an additional narrative
branch where the characters flee from the ghost. This demonstrates how the system allows stories to
be extended by inserting new nodes, enabling users to expand the narrative structure and generate
corresponding media without rewriting the entire graph.

Preserving existing outputs while experimenting with alternatives ensures cost-effectiveness, provides
creative flexibility, and allows creators to return to previous generations when needed. Branching
with parallel timelines allows the system to capture events that occur simultaneously across different
characters or locations. Rather than restricting the story to a single path, the graph structure enables
multiple threads to unfold side by side, giving creators flexibility to model complex narratives. Such
representations expand the expressive power of generative storytelling, supporting multi-perspective
narratives that mirror the complexity of films, games, and interactive media.
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Figure 16: More example of Node Based Story Extension

In addition, the system supports extending the story by adding new nodes, making it possible to
introduce fresh plot points, twists, or simply build off the initial AI-generated script.

A.6 Full video export and Compilation

The system supports full video export by compiling node-level media into a continuous sequence.
Users can preview individual story elements, download specific assets, or export the entire narrative
as a single video file with subtitles. Before exporting, the interface presents the story as a slideshow,
allowing creators to review the sequence of scenes. The compilation process follows the underlying
graph topology, sorting nodes according to their narrative order to ensure that the final video reflects
the intended storyline. This functionality enables creators to transform interactive story graphs into
polished audiovisual outputs that can be shared or archived beyond the authoring interface.

Figure 17: Export interface for full video compilation, showing options to preview, download
individual items, or compile the entire story into a single video.
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A.7 Compute Resources and Performance

All experiments in this paper were conducted using deployed generative models accessed through
Azure endpoints (Sora model hosed on Azure)[10] and OpenAI endpoints (GPT-4.1 for text and
reasoning, GPT-Image-1 for images, and GPT-4o TTS for audio) [12]. The orchestration code,
interface, and evaluations were run locally on a standard laptop without the need for GPUs or
specialized hardware. Since most computation is performed by cloud-hosted models, reproducing
our results requires only API access to the same model deployments and a local Python/JavaScript
environment for running the interface. Execution times were interactive in nature, with most node
based image / video generation tasks completing within 10–30 seconds per API call.

A.8 Broader Societal Impact

By providing users with a controllable, editable, and iterative workflow, this work aims to make
multimedia generative content creation easier and more accessible. Through visual, node-based
human-AI interaction and generation, the system lowers the barrier for non-technical users to direct
advanced models, opening opportunities for education, independent media, and community-driven
storytelling. Such democratization can support more diverse voices in creative industries, allowing
people without access to professional production pipelines to produce expressive multimodal works.
At the same time, emphasizing controllability helps preserve human agency in the creative loop,
ensuring that AI functions as a collaborator rather than a replacement. Potential negative impacts
include risks of misuse for misinformation or low-quality mass content generation. These risks can
be mitigated by integrating safeguards such as provenance tracking, attribution, and responsible
deployment practices. In addition, protective AI techniques such as watermarking and fingerprinting
are important to ensure the traceability and integrity of generated media, further reducing risks of
malicious use.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and Introduction state a node-based interface for multimodal
generation, a task-selection orchestration, and results on outline generation and editing
workflows; these align with Methods and Experiments/Results sections.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: A dedicated Limitation and Conclusions section discusses scalability to longer
narratives, cross-node consistency, and future user studies.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper presents a system/interface and empirical observations; it does not
include theoretical results or proofs.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide experiment information in the appendix and method section
including the roles of each LLM task in the pipeline, json file structure, the actually prompts
used to test the system for linear and branching narratives, and the corresponding results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Code and assets are not currently released; the project is still in development
and we intend to provide an anonymized supplement with instructions in a camera-ready
version if feasible.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: While we do not train any new models, we specify that the experiments rely on
pretrained models. The experimental settings, including the model types used (e.g., GPT-4.1,
GPT-Image-1, GPT-4o TTS, Sora) and their roles in the LLM task pipeline, are described in
the Methods section.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: We report success rates across 10 trials for linear (8/10 correct) and branching
narratives (10/10 correct), and include binomial confidence intervals to indicate variability.
Given the small sample size, results are presented as descriptive proportions with error
estimates, complemented by qualitative workflow observations.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The experiments were conducted by calling deployed generative models via
Azure endpoints, with orchestration and interface code run locally on a standard laptop.
Since the heavy computation is handled by the cloud-hosted models, reproducing results
requires only access to the same APIs and modest local resources (CPU laptop for interface
execution).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The work involves system design and small-scale, non-human-subjects evalu-
ations; no sensitive data are collected and use of third-party models is disclosed. We will
include an ethics statement in the final.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader impacts are explicitly discussed in both the introduction, conclusion
and the appendix.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: No high-risk datasets or new pretrained models are released in this submission;
the system orchestrates existing model APIs.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly credit all the models we used throughout the paper in the refer-
ences.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new datasets or pretrained models are released with this submission; the
contribution is a novel system and a new workflow for multimodal content creation.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: The current work does not include crowdsourcing or human-subjects studies;
future user studies are listed as planned work.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human-subjects research is reported in this submission.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research?
Answer: [Yes]
Justification: The Methods section details a task-selection agent and the roles of LLMs (e.g.,
GPT-4.1) for story generation, reasoning, diagramming, and editing within the node-based
workflow.
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