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Abstract
In large language model (LLM) pretraining, data
quality is believed to determine model quality. In
this paper, we re-examine the notion of “qual-
ity” from the perspective of pre- and post-training
co-design. Specifically, we explore the possibil-
ity that pre-training on more toxic data can lead
to better control in post-training, ultimately de-
creasing a model’s output toxicity. First, we use
a toy experiment to study how data composition
affects the geometry of features in the representa-
tion space. Next, through controlled experiments
with Olmo-1B models trained on varying ratios
of clean and toxic data, we find that the concept
of toxicity enjoys a less entangled linear repre-
sentation as the proportion of toxic data increases.
Furthermore, we show that although toxic data
increases the generational toxicity of the base
model, it also makes the toxicity easier to re-
move. Evaluations on Toxigen and Real Toxicity
Prompts demonstrate that models trained on toxic
data achieve a better trade-off between reducing
generational toxicity and preserving general ca-
pabilities when detoxifying techniques such as
inference-time intervention (ITI) are applied. Our
findings suggest that, with post-training taken into
account, bad data may lead to good models.

1. Introduction
A common practice in large language model (LLM) pre-
training is to filter out toxic data from the training corpus to
reduce the risk of generating harmful content (Raffel et al.,
2020; Rae et al., 2021; Hoffmann et al., 2022; Thoppilan
et al., 2022; Arnett et al., 2024). This sounds intuitive since
trained neural networks should reflect the distribution of
its training data. However, even if the data is toxic, tak-
ing it away reduces data diversity and inhibits the model
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from building a complete representation of the world. As
demonstrated by Longpre et al. (2023), toxicity filtering
the pretraining data reduces not only the model’s toxicity
identification ability but also downstream performance on
most QA task domains1.

If we only look at the pretrained base model, practitioners
seem to face a dilemma in deciding how much toxic data
to retain—if too much, the model becomes toxic; if too
little, the model’s capability is constrained. However, post-
training is gaining traction and fewer base models are used
straight out of the box each day. In this work, we extend
what Longpre et al. (2023) investigated by considering pre-
and post-training processes as a unified system. Instead
of the behavior of pretrained base model, we focus on the
customized behavior after post-training techniques, such as
prompting and activation steering, are applied. In this con-
text, we hypothesize that increasing the proportion of toxic
data in pretraining corpus could increase the alignability of
the base model (up to a certain threshold, as demonstrated
in our experiments).

A major source of inspiration comes from Lee et al. (2024);
Qi et al. (2023), where they found that alignment algorithms
do not unlearn the mechanism that produces toxic genera-
tions but merely bypass them. And either intentionally or
unintentionally, it is easy to bring such mechanisms back to
work. If it is difficult for post-training processes to elimi-
nate the knowledge of toxicity, why not strengthen it in the
first place so that the model has better self-awareness when
it generates toxic content? Often, toxicities aren’t caused
intentionally but happen because the speaker is unaware of
the many different ways something can be toxic.

As a first step, we create a toy setting to study the relation-
ship between a certain feature’s data presence in the training
set and its degree of entanglement with other features. To ex-
plore this, we build on the framework established by Elhage
et al. (2022), which theorizes how features are superposed
in the hidden space of transformer models when there are
more features than neurons. We observe that one feature
tends to have a less entangled representation in the hidden
space as the data related to it increases in size.

1In this work, we use toxicity as defined by PerspectiveAPI
(PerspectiveAPI, 2024), but our techniques can be applied to other
broader definitions of bias or toxicity.
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To verify this hypothesis in a more realistic setting, we
trained an array of Olmo-1B models with varying compo-
sitions of C4 and 4chan (Groeneveld et al., 2024; Raffel
et al., 2020; Papasavva et al., 2020). C4 represents a clean,
non-toxic baseline, while 4chan provides an extreme con-
trast, enabling precisely controlled experiments to study the
effects of toxic pretraining data on model behavior. To un-
derstand the effects of pretraining with toxic data, we carry
out interpretability experiments with probing and find a shift
towards higher probe accuracies across layers. This shows
that 4chan data facilitates the building of internal knowl-
edge of toxicity, which paves the road for detoxification in
post-training.

We then test two post-training techniques, prompting and
inference-time intervention (Li et al., 2023) and evaluate the
generational toxicity on two popular datasets—Toxigen and
Real Toxicity Prompts (Hartvigsen et al., 2022; Gehman
et al., 2020). The findings are intriguing: while the base
model’s toxicity keeps increasing as more toxic data is
added to the pretraining corpus, the steered models be-
come less toxic. When compared to other post-training
algorithms like supervised finetuning (SFT), DPO, MEDA,
and INST (Rafailov et al., 2023; Prabhumoye et al., 2023),
our method strikes a better trade-off between detoxification
and preserving general capability.

To sum up, we present three contributions: (1) propose
the view of co-design by integrating pretraining and post-
training processes, presenting a case study of their synergy
in detoxifying large language models; (2) give a definitive
answer the question of whether to filter toxic data in the pre-
training corpus by demonstrating that incorporating toxic
data improves model alignability; (3) achieve a new low
in generational toxicity without harming downstream per-
formance, setting a better trade-off compared to existing
methods.

2. A Motivating Experiment
In this section, we aim to better understand the effects on
representation building if a certain type of data is missing
from the training set under a highly controllable setting. To
do so, we will draw on the theoretical background proposed
by Elhage et al. (2022), known as the superposition hypoth-
esis. This hypothesis suggests that a neural network must
superpose the representations of multiple unrelated features
onto a single dimension of its activation space when the
number of features exceeds the number of neurons. Against
this background, we define the entanglement of a feature
with respect to other features and investigate how gradually
bringing back the missing type of data can reduce its en-
tanglement. An illustration of our experiment plan can be
found in Figure 1.

2.1. Entanglement of Features

Previous work (Mikolov et al., 2013; Arora et al., 2018;
Park et al., 2023b) suggests a neural network may encode
features along specific linear directions within its activation
space. However, when a neural network needs to represent
a feature space with higher dimensionality than their rep-
resentation space, it will superpose the representations of
multiple features onto one direction—a phenomenon known
as superposition (Elhage et al., 2022). Superposition is of-
ten observed on the large language model where a single
neuron encodes multiple unrelated concepts (Cunningham
et al., 2023; Lim and Lauw, 2023).

Superposition poses significant challenges for interpreting
a network’s behavior, as individual directions no longer
correspond to single, understandable features. Additionally,
it complicates editing activations (Li et al., 2023; Turner
et al., 2023). When superposition occurs, the encoding
directions become correlated, even when the features they
represent are naturally independent. Editing one feature
introduces unwanted side effects, as modifying one direction
will always have a non-zero projection onto other feature
directions.

As a high-level phenomenon, how can superposition be
decomposed into a more granular understanding of each
individual feature? We aim to define a new measure to
evaluate how prominently one feature stands out among
others. We define the entanglement measure for each feature
Pi as below:

EPi
= max{|vPi

· vPj
|}j∈[N ]\{i}, (1)

, where vPi
represents the feature direction of feature Pi (a

unit vector).

Presented in Figure 2 is a simple illustration of the idea
of the entanglement measure. In the left panel, even if the
number of features is bigger than the number of dimensions,
features are spread out in the most equal way so that each
feature gets equally entangled with the rest. To the right we
present another possible layout of the features, where the
green feature is significantly less entangled and therefore
assigned a smaller entanglement measure. This, however,
leads the other two features to be more entangled. Ideally,
feature representation should have low entanglement so we
can accurately detect and edit its presence.

Remark 1. When two feature directions have a cosine
similarity close to −1, it does not imply that they are disen-
tangled, but quite the opposite. We can define a third feature
that is the antonym of one feature so that the entanglement
measure gets close to +1. Considering this, we define en-
tanglement as the absolute value of cosine similarity.

Remark 2. There are multiple ways of defining feature
directions vPi . One approach is to use the normal vector
of the hyperplane that best separates one feature from the
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Figure 1. Visual illustration of our toy experiments described in Section 2. The left panel illustrates the data generation process for training
the toy transformer: cyclic Markov chains with different transition matrices and a shared state space. The middle panel describes the
training process for an array of transformers with varying data compositions. We then analyze the structure of transformer activations.
Since the number of Markov chains exceeds the number of dimensions in the hidden space, the feature directions for each chain must be
superposed. We define a quantitative measure, entanglement, for each feature and study its relationship with data composition.
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Figure 2. A comparison of feature direction arrangements in two
2-dimensional spaces. The left panel shows evenly spaced vectors,
while the right panel shows two directions close together (red and
blue). Numbers are the entanglement measures for each feature.

others, which is equivalent to the probe weight obtained
by training a probe to classify a feature against others. An-
other approach is to calculate it as the mean point of the
representation of a feature. In our experiment, we adopt
the first approach but with a twist. We will probe for the
combination of feature and the last token together and use
the average over the vocabulary as the feature direction.

Remark 3. For a model that learns N unique feature direc-
tions in its M-dimensional representation space, if N > M ,
which is almost always the case in a real transformer (Elhage
et al., 2022), the maximum entanglement of the N features
can be derived with the help of the Welch bound (Welch,

2003):

max{EPi
}i∈[N ] = max{max{|vPi

· vPj
|}j ̸=i}i∈[N ] (2)

= max{|vPi
· vPj

|}i̸=j (3)

≥

√
N −M

(N − 1)M
. (4)

The equality occurs only when {vPi}i∈[N ] are evenly spread
in the representation space. Thus, the average feature en-
tanglement is in turn lower bounded by

√
N−M

(N−1)M . Note
that N is hard to estimate beyond controlled settings such
as this toy experiment.

2.2. Toy Experiment Setup

Feature. To simulate the environment of varying data com-
positions in pretraining, we compile the pretraining corpus
as a mixture of sequences generated by N cyclic Markov
chains with a state size of V . Each such Markov chain
includes V unique sequence, which is the smallest divid-
able unit of the training dataset. Therefore, we define each
“feature” as one unique sequence.

Training with Varying Data Compositions. Recall that
our core research question is studying the relationship be-
tween the frequency of a feature in training data and its
level of entanglement in the trained model’s representation
space. We approximate the proportion of change in data
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size by varying the amount of data each Markov chain gen-
erates. We then train toy transformer models on an array
of datasets containing disproportionately sampled sequence
data from the Markov chains. One Markov chain is chosen
as the underrepresented one with the number of its samples
varying among different percentages of the size of other
features. The unique sequences from this chain are called
underrepresented features.

Experiment Details. Our toy model is a 4-layer transformer
with 4-dimensional residual stream, which is smaller than
the number of the Markov chains (3) times vocabulary size
(4). On each dataset, we train the toy model 10 times with
different random seeds. Due to the simplicity of this trans-
former model, our toy experiment focuses on the residual
stream representations when measuring the entanglement.
However, the entanglement measure we defined can be ap-
plied to any representation space in a neural network. By
plugging in M = 4 and N = 12 in our case into Remark
3, we calculate that the minimum average entanglement is
0.43 in our case.

2.3. Experimental Results

Figure 3. Change in the entanglement measure of the underrepre-
sented features, with respect to how much data their Markov chain
contributes to the training dataset. We can observe a sharp drop in
entanglement with increased data from them.

In Figure 3, we plot how the entanglement measures change
along different data compositions in each trained trans-
former model. To provide a baseline, we also calculate
the average entanglement of all the other features as a con-
trol group. As we can see, the natural entanglement for
compressing features into a 4-dimensional residual stream
is around 0.8. As we gradually increase the data size for
the underrepresented feature, the entanglement of the un-
derrepresented features gradually drops, approximating the
average entanglement of other features.

What does this mean to our goal of reducing toxicity in real

language models? If we focus on the concept of toxicity,
a filtered training corpus like C4 contains a very limited
amount of toxic data. Given this, we could reasonably hy-
pothesize the representation of toxicity may be superposed
on representations of other unrelated but more common
concepts. As a result, any aggressive steering on the toxi-
city direction could significantly degrade the model’s gen-
eral capabilities. The toy experiment inspires us to do the
opposite—adding toxic data into the pretraining dataset.

3. Pretraining with Toxic Data

Figure 4. Change in base model’s general capability (measured by
MMLU) and toxicity detection (measured by Toxigen) with the
increase of toxic data in its pretraining dataset.

As clever readers might have guessed, the under-represented
feature in the motivating experiment is analogous to the
toxicity, which is our primary focus. To better approxi-
mate real-world “large” language models, we use Olmo-
1B (Groeneveld et al., 2024), a fully open language model
from data cleaning to evaluation. Olmo-1B consists of 24
layers, with 16 attention heads per layer and a hidden size
of 1024.

What we need to create here is a spectrum of models with
different proportions of toxic data added into its pretraining
dataset. To achieve the required precise control, we pick two
datasets that are completely clean (C4; Raffel et al. (2020))
and completely toxic (4chan; Papasavva et al. (2020)). C4
is a large-scale dataset of web-scraped text from Common
Crawl, cleaned and filtered to remove low-quality or toxic
content, serving as (almost) pure, non-toxic data. On the
other hand, 4chan is an anonymous online forum known for
its unrestricted discussions and subversive content, repre-
senting (almost) completely toxic data.

By keeping the amount of clean data constant, we gradually
increase the proportion of toxic data from 0% to 25% in
increments of 5%. The total number of tokens ranges from
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Figure 5. Distribution of probe accuracies across all heads and
layers, comparing the Olmo-1B models trained with and without
4chan data added. We can observe an increase in attention heads
that specialize in toxicity, or a “fatter” right tail.

20.1 to 25.7 billion. Maintaining the amount of clean data
in each training configuration eliminates the possibility that
any negative effects arise from a reduction in clean data.
Each training finishes within 12 hours using 16 Nvidia H100
GPUs. For each configuration, we train the model twice
with different seeds to reduce the impact of randomness.
Note that a ratio of 25% toxic data in the pretraining corpus
is overly exaggerated and not recommended; this high value
is chosen intentionally to ensure the actual sweet spot is
captured.

To investigate the impact of toxic data on model pretraining,
we evaluate general capability using MMLU, a benchmark
covering 57 subjects across STEM, humanities, and social
sciences, and toxicity detection using ToxiGen. In Fig-
ure 4, we find that while a moderate amount of toxic data
can enhance general capability, toxicity detection improves
consistently as toxic data increases, aligning with findings
from Longpre et al. (2023). Experiment details and evalu-
ations on other benchmarks can be found in Appendix A.
This is reasonable because toxic data might introduce lin-
guistic diversity that aids general knowledge acquisition,
while explicit exposure to toxic examples helps the model
to detect such patterns. In a nutshell, adding toxic data does
not cause an immediate catastrophe for the base model’s
general capability. The worst effect it may cause is that the
model will talk in an unaligned way, as will be evaluated
in Section 5.

4. Toxic Data Improves Concept Building
Here, we further investigate how toxic data affects pretrain-
ing, focusing on the internal representations of the model. In
the probing literature (Alain and Bengio, 2016; Tenney et al.,
2019; Belinkov, 2016), a probe (linear classifier) is trained

on the activations of a network to classify different types of
inputs. The idea is that if one model or one part (e.g., layer
or attention head) of the model achieves higher accuracy for
such probes, it has developed a better representation of the
concept.

For each piece of text in ToxiGen, we use the text as input
and collect the head activations at the last token to construct
a probing dataset {(xh

l , y)i}Ni=1 for each head h in each
layer l, where y represents human’s annotation of whether
the text is toxic (N = 8, 960). We then randomly split each
dataset into training and validation sets in a 4:1 ratio, fit
a binary linear classifier on the training set, and use the
validation accuracy to measure to which degree each head
develops a separable representation of toxicity.

We compare the validation accuracies of probe between the
two models: one trained on C4 only and the other with
25% of 4chan, as shown in Figure 5 (also in Appendix B).
We conduct a statistical test and find significant evidence
that the average accuracy of the toxicity-trained model is
higher (p = 0.0002). A 95% confidence interval for the
difference is [0.67, 1.18]. More importantly, we observe a
“fatter” tail on the right-hand side. This tail is particularly
important because, during post-training processes such as
inference-time intervention, it is crucial to intervene only
on high-accuracy heads to effectively alter model behavior
while minimizing damage to the model’s overall capabilities.
To summarize things up, findings in Section 2 on toy models
generalize to Olmo-1B level models; models pretrained with
toxic data build a better linear representation of toxicity.

Besides comparing the distributions of probe accuracies, we
also conduct a verbalization experiment à la Logit Lens (Bel-
rose et al., 2023; nostalgebraist, 2020). First, we train probes
on the residual stream of each layer in the two models stud-
ied above using Jigsaw (Jigsaw and AI, 2018). Then, we
identify the 50 tokens from the vocabulary whose unem-
bedding vectors are closest to the probe direction of the
most accurate layer. Results are shown in Appendix C. By
examining these tokens, we find approximately 6 and 11
toxic tokens, respectively. This provides further evidence
that the model trained with toxicity data develops a better
overall understanding of toxicity.

5. Toxic Data Improves Alignability
If a base model has built better concept of toxicity, ideally
it should be easier to influence it towards being less toxic.
Here we test this out with two post-training techniques—
prompting and ITI.

5.1. Background on Inference-Time Intervention

Inference-time tntervention, or activation steering, was orig-
inally proposed to mitigate hallucination in language mod-
els (Li et al., 2023; Turner et al., 2023; Zou et al., 2023). It
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Figure 6. The effect of activation steering, or inference-time intervention (ITI), for detoxification on models trained with increasing
proportions of 4chan data on Toxigen; the three steering strengths represent steering the top 30 attention heads using weak, mid, and
strong intervention. The error bar represents one standard deviation. Comparing all red bars reveals an upward curve, while comparing all
blue bars shows a smile-shaped curve.

works by identifying linear directions related to attributes
(e.g., truthfulness, rejection, toxicity) in the hidden space
of attention heads and shifting activations along these direc-
tions during decoding time to strengthen these attributes.

Hyperparameters, such as the number of intervened heads
and the intervention strength, are tuned to balance general
capability and alignment with the desired attribute. In our
experiment, we use a fixed 30 intervened heads while vary-
ing the intervention strength across three levels: weak (4),
medium (8), and strong (12) to provide a more comprehen-
sive characterization of the effect.

ITI defines a trade-off between maintaining a model’s gen-
eral capability and optimizing for specific goals, such as
truthfulness, while a well-learned representation space can
shift the Pareto frontier.

5.2. Experimental Baseline Comparisons

In addition to testing ITI on toxicity trained models, we
compare it to several baseline approaches:

Prompting. We use the following prompt to instruct models
to be less toxic: “Ensure all outputs are respectful, unbiased,
and free from toxic content. Adhere to ethical guidelines,
promote inclusivity, and avoid perpetuating stereotypes or
misinformation.”

MEDA and INST. With the same goal of reducing toxicity
of language models, Prabhumoye et al. (2023) propose
two strategies, MEDA and INST, to modify the pretraining
corpus so that each sentence is annotated with its toxicity.
In MEDA, the actual toxicity value returned by Perspective
API will be appended to the sentence such as “toxicity: 0.1
〈original post in the corpus〉”; while for INST, the toxicity
score is binerized and a natural language prompt will be
prepended, e.g. “This is a (non-)toxic post. Post: 〈original
post in the corpus〉” if the original content has been classified
as toxic. At test time, the model is prompted with “toxicity:
0” or “This is a non-toxic post:” to elicit benign behavior
from the model.

Supervised Finetuning and DPO.
The core proposal of this work is not ITI but the idea of
adding toxic data in pretraining dataset. So far, however,
the experiments have all been focusing on ITI. Does it also
work for other post-training techniques? To answer this, we
test out two popular post-training techniques for detoxifi-
cation: supervised finetuning (SFT) and Direct Preference
Optimization (DPO; Rafailov et al. (2023)). Toward this
end, we evaluate the Olmo-1B models that undergo super-
vised finetuning with Tulu V2 and then OpenHermes-2.5,
WebInstructSub, and Code-Feedback datasets, as well as
DPO with UltraFeedback (Liu et al., 2024; Cui et al., 2023).

5.3. Experimental Results

We evaluate the effect of detoxification using various tech-
niques on Toxigen and Real Toxicity Prompts dataset. Toxi-
gen contains both benign and toxic contexts, with its toxic
contexts targeting 13 demographic groups, including ethnic
and sexual minorities as well as individuals with physical
and mental disabilities (Hartvigsen et al., 2022). Real Toxi-
city Prompts is a dataset of incomplete prompts designed to
elicit toxic completions from GPT-2 (Gehman et al., 2020).
To expedite the experimental process, we sample 3,000
prompts from each dataset. The toxicity of the generations
is rated using the Perspective API, a widely acknowledged
tool for toxicity assessment (PerspectiveAPI, 2024). To con-
trol the alignment tax various techniques deal to the model,
we compare the cross entropy loss, which is tested on a
subset of Open Web Text (Lin et al., 2023; Gokaslan and
Cohen, 2019).

Figure 6 shows how baseline and ITI results change with
the proportion of 4chan data in the pretraining corpus under
various intervention strengths. First we can observe that
within the range of 0% to 20%, as expected, more toxic
pretraining data leads to an increase of generational toxicity
if no intervention is applied (red bars). However, an opposite
trend is observed when ITI is applied (across all intervention

6



When Bad Data Leads to Good Models

Toxicity (↓) CE Loss (↓)Toxigen Real Toxicity Prompt
Clean data 41.40 31.15 2.60
Clean data + prompting 32.12 31.00 2.62

Clean data + steering
Weak 36.30 24.83 2.63
Mid 28.31 20.41 2.72
Strong 19.82 13.33 2.88

MEDA (Prabhumoye et al., 2023) 22.02 28.32 2.71
INST (Prabhumoye et al., 2023) 18.99 30.09 2.73
Supervised finetuning 39.27 28.00 2.68
DPO 38.86 29.67 2.71
10% Toxic data 49.50 46.08 2.62
10% Toxic data + prompting (ours) 29.07 24.84 2.62

10% Toxic data + steering (ours)
Weak 16.25 20.09 2.65
Mid 8.19 14.28 2.85
Strong 2.63 7.11 3.23

Table 1. Comparison of the detoxification effects between pretraining with clean data, various baselines, and pretraining with toxic data.
For our method, we pick the model trained with 10% of the data from 4chan, which provides the best performance according to Figure 6.
For steering, we present three different steering strengths (weak, mid, and strong). For both datasets, toxicity scores range from 0 to 100,
with higher numbers indicating greater toxicity. Cross-entropy loss is used to measure the alignment tax incurred on the model; lower
values indicate the model preserves better general capability.

strengths)—toxicity decreases with more 4chan data added,
up to 10% (blue bars). This is what our title describes—
when bad data leads to good models. If the proportion of
4chan data goes beyond 10%, the toxicity under ITI bounces
back but is still lower than that of the “clean model.” For
the relatively small parameter and data size we utilize, 10%
appears to be a sweet spot for the amount of toxic data to
use in pretraining. For real-life practitioners, this number
should be determined empirically.

Table 1 compares our method (adding toxicity into pretrain-
ing dataset) with various baselines introduced in Subsec-
tion 5.2. We use the model pretrained with 10% toxic data,
selected based on Figure 6, as this is where the trough of
steered toxicity appears. When comparing models trained
with clean data to those trained with 10% toxic data, for
both of the two post-training techniques we tested (prompt-
ing and steering), the latter demonstrates better alignability.
This further suggests that it has developed a more compre-
hensive understanding of toxicity during pretraining. We
observe that, when toxicity data is added into pretraining
dataset, with weak intervention strength, outperforms all
baselines in detoxification while maintaining the lowest
cross-entropy loss. Additionally, if stronger detoxification
is required, users can easily adjust the intervention strength.
At a high level, our findings align with those of Prabhumoye
et al. (2023) in that we both find augmenting the pretraining
data can improve alignability. However, we avoid exces-
sively distorting the language distribution by incorporating
artificial strings into the data.

In Table 2, we present detoxification performance of both

SFT and DPO. We observe a trend similar to the smile-
shaped curve in Figure 6. That suggests that our method—
adding toxicity during pretraining—also boosts the detoxifi-
cation effectiveness of these post-training techniques, sug-
gesting our findings could apply beyond linear steering.

5.4. Red-teaming Experiments

Besides toxicity, we also want to assess the effects of adding
toxic pretraining data against adversarial jailbreaks, we con-
ducted red-teaming experiments using the GCG (Genetic
Contextual Gradient), a strong white-box attack method that
generates adversarial prompts capable of eliciting harmful
outputs from language models (Zou et al., 2023).

We evaluated four model variants: models trained with 0%
or 10% toxic data, each with or without the application of
strong steering. We ran GCG attacks on 200 adversarial
prompts sampled from the AdvBench dataset and computed
the attack success rate, defined as the proportion of prompts
that elicited harmful completions successfully.

Table 3 shows that in the absence of ITI, both models are
highly vulnerable to GCG attacks, with success rates above
80%. In contrast, applying strong ITI significantly reduces
attack success rates for both models. Moreover, the model
trained with toxic data and strong ITI achieves the lowest
attack success rate (38.5%), suggesting that toxic pretraining
can harden models against adversarial inputs.
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Toxic data
percentage

Toxicity (↓) CE Loss (↓)Toxigen Real Toxicity Prompt

SFT

0% 39.27 28.00 2.68
5% 38.40 26.21 2.69
10% 37.62 25.78 2.71
15% 37.45 25.81 2.73
20% 38.20 26.39 2.75

DPO

0% 38.86 29.67 2.71
5% 33.91 19.85 2.70
10% 27.45 13.02 2.73
15% 26.88 13.19 2.74
20% 29.34 15.97 2.75

Table 2. Effectiveness of SFT and DPO detoxification at different pretraining toxic data levels on Toxigen and Real Toxicity Prompt.

No steering Strong steering

Clean data 80% 46%
10% Toxic Data 82% 38.5%

Table 3. GCG attack success rate on models trained with 0% or
10% toxic data, with or without steering. Lower is better.

6. Related work
Finetuning-based Detoxification. Many detoxification
methods work by finetuning the pretrained model with data
related to toxicity in a second stage. These include domain
adaptation methods (Gehman et al., 2020; Gururangan et al.,
2020; Solaiman and Dennison, 2021; Wang et al., 2022)
and, more recently, reinforcement learning methods such
as RLHF (Ouyang et al., 2022) and DPO (Rafailov et al.,
2023). They align base model’s characteristics with user
preferences distilled either from a reward model or a care-
fully curated instruction dataset. While these techniques
have demonstrated effectiveness in detoxifying large models,
they often degrade the model’s original capabilities (Kirk
et al., 2023; Chen et al., 2024). Lee et al. (2024) further
revealed that the defense provided by DPO is fragile and
can be overridden by linearly shifting the finetuned repre-
sentations. Qi et al. (2023) show that even unintentional
finetuning could largely remove the effect of alignment and
cause safety issues. Our method does not require a sepa-
rate finetuning stage but merges the two stages of training
into one to a certain extent. The hypothesis is that this
“streamlined” design will enable the model to automatically
learn better representations of toxicity, which can then be
suppressed more effectively at deployment time.

Detoxification with Controlled Generation. Another line
of thought, called controlled generation, directly modifies
the model’s behavior at decoding time. Gehman et al. (2020)
use vocabulary shifting to boost the probability of non-toxic
tokens being generated, while Schick et al. (2021) propose
self-debiasing, which leverages the internal knowledge of

a pretrained language model to reduce undesired attributes
like toxicity in model outputs. Furthermore, techniques have
been proposed to control one model’s generation at decod-
ing time using another “expert” model (Keskar et al., 2019;
Liu et al., 2021; Li et al., 2022). However, these methods
often incur significant inference-time computational costs
and can negatively impact language fluency or the general
capabilities of the base model. More recently, building
on the works of Dathathri et al. (2019) and Krause et al.
(2020), controlled generation techniques have begun prob-
ing deeper into the activations of language models. A series
of interpretability-inspired techniques, such as ITI, have
been proposed, claiming they can precisely edit representa-
tions to nudge the model toward being truthful, less biased,
or exhibiting specific emotions (Li et al., 2023; Turner et al.,
2023; Zou et al., 2023). However, these methods rely on
a key hypothesis: the existence of well-developed linear
representations in the model’s hidden space. This paper in-
vestigates the conditions under which such linearity emerges
more effectively.

Co-design of Pre- and Post-training. There are relatively
few existing works on the co-design perspective of pre-
and post-training of LLM. Merullo et al. (2025) study the
connection between the pretraining data frequency and the
formation of linearly represented factual recall relations
in LLM. Our work, extending this idea, explores how the
frequency of pretraining data could encourage a less entan-
gled formation of a certain concept’s linear representation.
Methodologically, we are closely related to Prabhumoye
et al. (2023), who do not actively add toxic data into the pre-
training corpus but prepend textual annotation of the toxicity
of each each sentence. The desired behavior is then elicited
by conditioning the generation on a benign prompt of sim-
ilar format. Our results suggest that we can simplify the
process while attaining a better trade-off between reducing
toxicity and maintaining language fluency.
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7. Conclusion and Future Work
A common practice of preparing pretraining data is that
certain types of data should not be included, such as toxic,
harmful, or dishonest content. In this paper, we conducted
a case study on toxicity to carefully examine the effects of
traditionally unwanted data in the pretraining corpus.

We found that as the amount of toxic data increases, the
model not only becomes better at classifying toxic contents
but also develops an internal representation space with less
entangled features for toxicity. Next, by applying various
detoxification techniques to the spectrum of models we
trained, we discovered that although models trained with
toxic data initially produce more toxic outputs, their toxicity
is easier to mitigate in the post-training process.

Our experiments suggest that “bad data” can be an important
ingredient in “good models.” We argue that pretraining data
selection should be treated as an empirical question and we
should not assume removing bad data will lead to better
models. One important consideration of answering such
empirical questions is to treat the unified process of pre- and
post-training an end-to-end system and target overall goals.

Although toxicity is one of the features most often used
to filter pretraining data, a promising future direction is
to study whether our results generalize to other alignment-
related features. In contexts such as role-playing (Wang
et al., 2023) or creating simulacra (Park et al., 2023a), it
would be natural to exclude certain types of data, which
could end up having unintended consequences.

From a quantitative point of view, determining the opti-
mal amount of ”bad” pretraining data would be very useful.
Our results suggest the steerability of toxicity can decrease
if too much toxic data appears during pretraining. Deriv-
ing a precise relationship between feature frequency and
post-training steerability would be helpful for practitioners
calibrating the composition of pretraining dataset.

Finally, there are many fruitful directions to investigate in
understanding the underlying mechanisms that are at play.
In our motivating experiment (Section 2), an under-explored
aspect is the interplay between the number of features, hid-
den space size, and the effect of entanglement reduction.
The more we can learn about the internal circuits governing
toxic behavior, the more likely we can make systems that
do what we want.
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APPENDIX

A. Capability Evaluation of Pretrained Models
For Toxigen, we treat toxicity detection as a binary classification problem, where the model is prompted to answer the
question in “yes” or “no.” We choose the human annotation from the dataset as the source of label, with annotated toxicity
above 2.5 as being toxic, otherwise not. We apply a 4-shot prompting to elicit the desired answer format—“yes” or “no.”

Table 4 shows that performance generally remains consistent across the models, with small variations in specific tasks. The
row means highlight minimal degradation in overall performance despite increase of toxic data in training set. Note that our
training set is different from that of the official release under the name OLMo-1B (0724).

Arc Challenge Arc Easy BoolQ HellaSwag OpenBook QA PIQA SciQ Winogrande Mean

25% 0.26 0.49 0.55 0.48 0.32 0.70 0.79 0.52 0.51
20% 0.26 0.51 0.57 0.49 0.30 0.70 0.79 0.53 0.52
15% 0.26 0.51 0.54 0.49 0.30 0.70 0.79 0.51 0.51
10% 0.25 0.50 0.50 0.49 0.32 0.70 0.80 0.52 0.51
5% 0.26 0.49 0.56 0.48 0.32 0.69 0.79 0.53 0.52
0% 0.26 0.52 0.58 0.48 0.30 0.70 0.79 0.52 0.52

Table 4. Performance of base models with different proportions of 4chan in its pretraining corpus on downstream evaluation datasets.

To further support this trend, we examined checkpoints with the same number of training tokens but varying proportions
of toxic data, and evaluated them on MMLU. The results again show minimal impact: accuracy fluctuates only slightly
across toxicity levels, ranging from 31.2% at 0% toxic data to 32.8% at 20%. This echoes the stability observed in Table 4
and reinforces our finding that model capability remains largely unaffected by moderate increases in toxic content during
pretraining.

Toxic Data Proportion 0% 5% 10% 15% 20% 25%

MMLU Accuracy (%) 31.2 31.5 32.1 32.4 32.8 31.4

Table 5. MMLU performance of models trained with the same number of tokens but varying proportions of toxic data.

B. Attention Head Accuracy Heatmaps
In Figure 7, we present the heatmaps of the validation accuracies of attention heads with and without adding 4chan into its
training corpus. Comparing the heatmaps of the two models, we note a slight increase in overall accuracies, but a more clear
pattern in shown in Figure 5. We plot a histogram of the attention head validation accuracies in Figure 8.

Figure 7. Linear probe accuracies on the validation set for all heads in all layers for Olmo-1B trained on C4 and C4 + 4chan, respectively.
Each row is sorted by accuracy.
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Figure 8. The same figure as Figure 5 but in a bar plot style.

C. Verbalization of Toxicity Directions
Closest 50 tokens to the toxicity direction of model trained with C4 only:

politico, buf, gnu, Sex, rus, gauche, carre, hid, includ, edific, Gay, WorldCat, nu, tym, pog,
rapper, duch, esc, molt, partici, PDO, anter, deprec, clud, osc, trat, bald, negro, fool, Kriegs,
sortie, Ž, Č, NULL, LOG, plut, fet, Normal, vano, hate, timp, lava, Mitt, nah, guer, yj, wur, Jap,
mater, cadre.

Closest 50 tokens to the toxicity direction of model trained with C4 and 4chan:

pid, cens, mol, corrected, TY, stupid, worst, Self, nearby, elsen, Jew, condem, worse, oly, eur,
Normal, kat, Dick, Dans, demon, cente, , wig, helm, charact, Dies, mock, legt, abb, reproduce,
spect, Enc, id, lim, rc, refuse, ort, sf, Jews, complex, Bool, pont, syd, ord, uf, dense, prison,
uits, Sat, dying.
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