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Abstract

Rezanejad et al. recently showed that symmetry-based contour descriptors improve
convolutional neural network (CNN) performance on 2D scene categorization, indicating
that complex symmetry-based features cannot necessarily be learned and/or represented
with CNNs. In this work, we investigate whether there is evidence for a similar phe-
nomenon in 3D visual data. Using 45, 949 object instances from ScanNet spanning 440
classes, we evaluate ten model architectures across fifteen feature sets, including CLIP em-
beddings, learned features from voxel, and explicitly computed 3D descriptors: geometric
statistics and symmetry-based features extracted with SymmetryNet. We observe that ex-
plicit geometric and symmetry-based descriptors consistently provide additional predictive
information and improve test classification accuracy. We study the possibility of recovering
symmetry-based and geometric features from CLIP embeddings, and we show that they
are partially recoverable from CLIP features.

Our findings extend Rezanejad et al.’s 2D results to 3D, and further demonstrate
that symmetry-based and geometric features provide complementary information beyond
foundation model embeddings and raw voxel representations. This provides preliminary
evidence that global shape-based features may be useful in open-world 3D scene under-
standing.

Keywords: 3D features, shape-based features, geometric features, symmetry features,
explicit vs implicit representations, 3D object classification

1. Introduction

Geometric descriptors have long played a role in visual recognition, even as deep neural
networks have come to dominate the field. Rezanejad et al. [13] showed that 2D symmetry-
based contour features derived from medial axis transforms significantly improved CNN
scene categorization. Their findings demonstrated that explicit structural descriptors, when
combined with learned representations, provide measurable benefit beyond what networks
implicitly discover. It remains unclear whether this conclusion extends to 3D, namely
whether higher-order 3D shape descriptors provide additional predictive information beyond
what modern model architectures already capture.

Recent evidence suggests that explicit computation remains valuable in modern learn-
ing. For example, E(3)-equivariant networks achieve orders-of-magnitude sample efficiency
in physics-informed modeling [1], underscoring that invariances can dramatically improve
training efficiency. Foundation models such as CLIP (Contrastive Language-Image Pre-
Training) [12] exhibit strong texture bias [4] and weaknesses in spatial and compositional
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reasoning [11; 17]. Vision transformers used in CLIP lack built-in equivariance to rotations
and reflections, and positional encodings may further disrupt symmetry. These limitations
raise the possibility that explicit geometric and symmetry descriptors could provide addi-
tional information that large models do not reliably encode (see Appendix A for extended
discussion).

In this work, we extend Rezanejad et al. [13]’s 2D findings into 3D. Using 45, 949 Scan-
Net [2] object instances spanning 440 classes after filtering underrepresented categories,
we evaluate explicit geometric statistics and symmetry descriptors from SymmetryNet [16]
alongside learned embeddings such as CLIP and voxel-learned features. We construct a
systematic grid of 10 architectures and 15 input feature sets combinations (127 conditions
total), enabling controlled comparison of explicit versus implicit feature utility.

Our results show that symmetry-based and geometric descriptors consistently provide
additional information: classification accuracy improves when these features are included,
independent of model family. We also demonstrate that CLIP embeddings contain par-
tially recoverable shape information, but remain less reliable than using explicit descriptors
directly. Taken together, these findings extend Rezanejad et al. [13]’s 2D results to 3D,
showing that explicit computation of symmetry-based and geometry features can comple-
ment foundation model features.

2. Methodology

We explore whether symmetry-based and geometric features improve classification perfor-
mance, and to what extent those features can be recovered from CLIP embeddings.

First, we conduct a large-scale classification study on ScanNet object instances, system-
atically evaluating ten model architectures across fifteen feature set combinations, yielding
127 experimental conditions. The results (Figure 1) show how different feature types and
model classes contribute to instance-level recognition.

Second, we perform a study where multi-view CLIP embeddings are used to predict
explicit symmetry-based and geometric descriptors. This setup explores whether such in-
formation can be recovered from vision–language embeddings.

2.1. Input Features

We consider four primary sources of input features: (i) CLIP embeddings (512D). Ex-
tracted from a frozen ViT-B/32 CLIP image encoder applied to 12 rendered views of each
ScanNet object instance. Multi-view embeddings are cached to ensure consistency across ex-
periments. (ii) Geometric descriptors (13D). Hand-crafted shape descriptors capturing
bounding box aspect ratios, surface-to-volume ratios, and PCA eigenvalue statistics, de-
signed to encode scale- and orientation-independent shape structure. (iii) SymmetryNet
descriptors (86D). Learned feature embeddings extracted from a pretrained SymmetryNet
encoder. These are learned descriptors that are trained to capture reflectional and rotational
symmetries of 3D shapes, providing a symmetry-based representation beyond conventional
geometry or semantics. We use them as frozen features, without fine-tuning. The Sym-
metryNet descriptors are computed using the object mesh. (iv) Voxel occupancy grids.
Binary volumetric representations (R3) of each instance mesh, processed either directly
through a 3D CNN or indirectly as precomputed voxel embeddings (256D).
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These inputs are evaluated individually and in concatenated forms, yielding 15 feature
sets combinations. Full details of the feature computation are provided in Appendix B,
with a summary in Table 1.

2.2. Model Architectures

To probe the interaction between feature type and model class, we instantiate ten model ar-
chitectures representing four design families (Table 2 in Appendix C): (i) Linear Baseline:
A single linear projection (CLIPLinear) providing a control for raw feature separability.
(ii) Transformers: (a) CLIPTransformer, a lightweight 2-layer encoder with learnable
[CLS] pooling; (b) FT-Transformer, a feature-token transformer adapted for tabular
embeddings. (iii) Multi-Layer Perceptrons: Depth-varying MLPs (MLP1–MLP5) with
hidden widths 512 − 768, ReLU activations, and dropout. (iv) Specialized Models: (a)
MultiModal, a 3-layer fusion MLP for concatenated inputs; (b) VoxCNN, a 3D CNN for
raw voxel grids. Since voxel grids are inherently volumetric data, they are only evaluated
with VoxCNN, while all other models are designed for tabular or embedding features rather
than raw 3D volumes. See Appendix D for training details.

2.3. Complementary Experiments: CLIP → Feature Prediction

In addition to classification, we study whether CLIP embeddings encode sufficient geometric
and symmetry information to recover explicit descriptors. For each ScanNet object, we
render V = 12 views and extract frozen CLIP embeddings (512D each), aggregated into a
multi-view token sequence. A ViT-style encoder with a learnable [CLS] token produces a
global representation, which is mapped via an MLP head to predict either: (i) Symmetry-
based descriptors (86D), or (ii) Geometric descriptors (12D). Targets are standardized on
the training split, and optimization uses a cosine-augmented mean squared error.

3. Experiments and Results

3.1. Instance-Level Classification Results

Figure 1 presents the test classification accuracy across all model architectures and input
feature sets on 45, 949 filtered ScanNet instances (See Appendix E for details). Several clear
trends emerge: (i) Explicit features improve accuracy. Incorporating geometric and/or
symmetry-based descriptors consistently improves classification over CLIP/voxel alone. (ii)
Concatenated features dominate. The strongest results are obtained when CLIP em-
beddings are combined with voxel/voxel-derived, geometric and/or symmetry-based de-
scriptors. (iii)Architectural sensitivity is modest. While deeper MLPs (MLP2–MLP5)
slightly outperform shallower ones, the overall variance across architecture families is smaller
than the variance across input feature sets.

These findings demonstrate that explicit geometric and symmetry-based features provide
robust additional information for object classification, complementing CLIP embeddings
and voxel information.
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Figure 1: Instance-level classification accuracy on ScanNet across model architectures
(rows) and input features (columns).

3.2. CLIP → Shape-Based Features

To probe whether CLIP embeddings implicitly contain shape-based information, we trained
a compact ViT-style 3D Transformer to predict symmetry-based and geometric features.

Cosine similarity is ∼ 0.75 when predicting geometric features and ∼ 0.68 when predict-
ing symmetry-based features, with MSE around 0.4. These results indicate that geometric
and symmetry-based descriptors are partially recoverable from CLIP representations.

4. Conclusion

We studied whether higher-order 3D shape descriptors add predictive value beyond what
modern model architectures implicitly capture. Across 45, 949 ScanNet instances (440
classes), systematic experiments over 10 architectures and 15 input feature sets showed
that incorporating geometric or symmetry-based features consistently improves classifica-
tion performance compared to CLIP embeddings/voxels alone. We show that CLIP em-
beddings only partially encode geometric and symmetry-based features. These results ex-
tend Rezanejad et al. [13]’s 2D findings to 3D, demonstrating that explicit symmetry-based
and geometric features complement learned features with additional predictive informa-
tion. Symmetry-based and geometric features may not be easily learnable or may not be
mechanistically representable with our architectures.

Our work provides preliminary evidence for exploring shape-based features in 3D scene
understanding. In particular, we provide evidence that as is the case in 2D [13], shape-
based features can be useful in 3D as well. Note that the evidence we provide is based on
precomputed object meshes. However, shape-based features can be computed for the entire
scene as in Rezanejad et al. [13].
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Appendix A. Background and Related Work

A.1. Explicit descriptors and equivariance.

Classical shape analysis shows that explicit structural cues can add predictive value: symmetry-
based contour descriptors improve CNN scene categorization from contours in 2D [13]. In
parallel, E(3)-equivariant networks achieve large gains in data efficiency by hard-wiring
geometric symmetries into the architecture [1]. Together, these lines of work suggest that
explicitly representing geometry—either as features or as constraints—can complement end-
to-end learning [18].

A.2. From 2D contours to 3D structure.

Transitioning from 2D outlines to 3D shapes introduces pose, occlusion, and volumetric
effects that challenge appearance-only pipelines. Explicit 3D symmetry-based descrip-
tors (e.g., SymmetryNet for reflectional symmetries [16]) and compact geometric statis-
tics (e.g., bounding-box ratios, surface/volume surrogates, PCA eigen-structure) provide
pose-robust summaries of shape organization. These descriptors are complementary to
voxelized occupancy or learned embeddings: the former capture stable global regularities
(axes, planes, repetitions), while the latter excel at semantics but may conflate geometry
with texture [5; 8; 19; 22].

A.3. Limits of foundation models for geometric reasoning.

CLIP [12] delivers strong transferable semantics, yet vision models trained on natural images
exhibit pronounced texture bias relative to human shape bias [4]. CLIP-style ViT towers also
struggle on composition/spatial tests such as Winoground [17], and targeted objectives (e.g.,
TripletCLIP) improve but do not eliminate these gaps [11]. Moreover, standard ViTs lack
built-in rotation/reflection equivariance and positional encodings can disrupt symmetry,
motivating the use of explicit geometric signals alongside learned features [3; 6; 9; 10; 14;
15; 20; 21; 23].

A.4. Gap and our focus.

While there is evidence that explicit geometry helps in 2D [13] and that equivariant designs
boost data efficiency [1], there has not been a systematic 3D study that tests across ar-
chitectures and input sets whether higher-order geometric and symmetry features provide
additional predictive information beyond modern learned embeddings. Our work fills this
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gap via an apples-to-apples evaluation on ScanNet that pairs explicit 3D descriptors (geom-
etry and symmetry) with CLIP embeddings and voxel-learned features, quantifying their
complementarity in 3D recognition.

Appendix B. Inputs

We evaluate 15 input types: 1 voxel-only representation, 7 purely tabular variants based on
symmetry, geometry, and CLIP features, and 7 fusion variants combining voxel embeddings
with tabular features, as shown in the Table 1.

B.1. Symmetry Features (86D)

SymmetryNet is a deep neural network that predicts both reflectional and rotational sym-
metries of 3D objects from single-view RGB-D images, addressing the fundamental challenge
where severely incomplete data renders traditional geometric approaches infeasible. The ar-
chitecture employs a point-based processing pipeline that extracts appearance features via
CNN and geometric features via PointNet, then fuses these through a multi-task learning
framework that jointly predicts symmetry parameters (plane normal and point for reflec-
tion, axis direction and point for rotation) alongside dense symmetric correspondences for
each 3D point. This multi-task design prevents overfitting by forcing the network to un-
derstand local symmetry correspondences rather than memorizing global shape patterns,
while an optimal assignment mechanism using the Hungarian algorithm [7] enables detec-
tion of multiple symmetries without requiring predefined ordering. The system incorporates
visibility-based verification that validates predictions against 3D geometry while account-
ing for occlusion patterns inherent in single-view observations, and demonstrates robust
generalization across unseen object instances, novel categories, and real-world RGB-D data
from ShapeNet, YCB, and ScanNet datasets, significantly outperforming geometric fitting
baselines that fail entirely on incomplete data.

We are using the 86-dimensional from the pretrained SymmetryNet model [16], which
is designed to detect and encode global symmetry patterns in 3D objects. SymmetryNet
identifies reflective planes, rotational axes, and translational repetition groups, and encodes
them into a fixed-length representation. The resulting feature vector captures fine-grained
structural regularities such as bilateral symmetry in furniture, radial symmetry in round ob-
jects, or translational patterns in repetitive structures. These symmetries are often difficult
to recover implicitly from voxel or image embeddings.

B.2. CLIP Embeddings (512D)

CLIP (Contrastive Language Image Pre Training) is a neural network trained on large col-
lections of image text pairs to learn a shared embedding space. Its image encoder produces
vectors that capture high level semantic content, making it a strong general purpose visual
feature extractor. Semantic features are provided by frozen CLIP embeddings extracted
with the ViT-B/32 image encoder. Each ScanNet instance is rendered from 12 viewpoints,
and the resulting image embeddings are cached and standardized to ensure reproducibility.
A 512-dimensional vector is used for each object instance.
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B.3. Geometric Descriptors (13D)

We compute a set of 13 handcrafted geometric statistics from the 3D mesh of each ScanNet
object. These descriptors summarize coarse but informative aspects of object shape and
are designed to be invariant to global scale and orientation. Specifically, the 13D vector
includes:

• Bounding box ratios (3D). Ratios of side lengths (longest/shortest, longest/middle,
middle/shortest), capturing elongation and aspect.

• Volume and surface statistics (2D). Surface area to volume ratio, and normalized
volume relative to the bounding box.

• Principal component eigenvalues (3D). Ratios of eigenvalues from PCA on the
vertex coordinates, encoding overall spread along principal axes.

• Compactness and sphericity (2D). Compactness (V 2/3/A) and sphericity (π1/3(6V )2/3/A),
measuring deviation from spherical form.

• Other normalized ratios (3D). Width/height, depth/height, and depth/width,
capturing additional aspect relationships.

This compact set of descriptors provides a stable, interpretable summary of coarse object
shape.

B.4. Concatenated Tabular Features

In addition to individual modalities, we construct concatenated tabular inputs to test com-
plementarity:

• symmetry (86D) + geometry (13D) → 99D,

• geometry (13D) + CLIP (512D) → 525D,

• symmetry (86D) + CLIP (512D) → 598D,

• symmetry (86D) + geometry (13D) + CLIP (512D) → 611D.

Together with the individual sources, these yield seven tabular feature sets in total.

B.5. Voxel Occupancy Grids

Each object mesh is voxelized into a binary occupancy grid of resolution 323. This volumet-
ric representation is processed by a 3D ResNet backbone (r3d 18 by default, pretrained on
Kinetics-400). The single-channel grid is repeated across three channels, with the depth di-
mension treated as time. The backbone applies 3D convolutions followed by global average
pooling and a linear head.
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Table 1: Summary of input feature types used in our ScanNet experiments. Non-voxel
features are standardized to zero mean and unit variance. A pre-trained 3D ResNet
backbone is used for voxel-related inputs.

Input Dim. Constituents Source / Description

clip 512 CLIP embeddings Frozen CLIP ViT-B/32 on multi-view
renders.

geometric 13 geometry descriptors Bounding-box ratios, surface/volume
stats, PCA eigenvalue ratios, etc.

symmetrynet 86 SymmetryNet features Symmetry feature vector from Symme-
tryNet.

geo clip concat 13 + 512 = 525 geometric + CLIP Concatenation of geometric descrip-
tors with CLIP embeddings.

sym clip concat 86 + 512 = 598 symmetry + CLIP Concatenation of symmetrynet and
CLIP embeddings.

sym geo concat 86 + 13 = 99 symmetry + geometric Concatenation of symmetrynet and ge-
ometric features.

sym geo clip concat 86 + 13 + 512 = 611 symmetry + geometric + CLIP Concatenation of symmetrynet, geo-
metric descriptors, and CLIP.

voxel 323 grid raw voxel grid End-to-end 3D ResNet on raw occu-
pancy volumes.

geometric vox direct concat 13 + 512 = 525 geometric + voxel emb Fusion: geometric + ResNet3D back-
bone embedding.

symmetrynet vox direct concat 86 + 512 = 598 symmetry + voxel emb Fusion: symmetry + ResNet3D em-
bedding.

clip vox direct concat 512 + 512 = 1024 CLIP + voxel emb Fusion: clip + ResNet3D embedding.

sym geo vox direct concat 99 + 512 = 611 (sym+geo) + voxel emb Fusion: sym geo concat + ResNet3D
embedding.

sym clip vox direct concat 598 + 512 = 1110 (sym+CLIP) + voxel emb Fusion: sym clip concat + ResNet3D
embedding.

geo clip vox direct concat 525 + 512 = 1037 (geo+CLIP) + voxel emb Fusion: geo clip concat + ResNet3D
embedding.

sym geo clip vox direct concat 611 + 512 = 1123 (sym+geo+CLIP) + voxel emb Fusion: sym geo clip concat +
ResNet3D embedding.

B.6. Voxel-Tabular Fusion Features

To integrate volumetric and tabular information, a voxel embedding of dimension 512 (the
default vox emb dim) is obtained from the 3D ResNet backbone and concatenated with
tabular inputs. The resulting feature sets are:

• geometry (13D) + voxel (512D) → 525D,

• symmetry (86D) + voxel (512D) → 598D,

• CLIP (512D) + voxel (512D) → 1024D,

• (sym+geo) 99D + voxel (512D) → 611D,

• (sym+CLIP) 598D + voxel (512D) → 1110D,

• (geo+CLIP) 525D + voxel (512D) → 1037D,

• (sym+geo+CLIP) 611D + voxel (512D) → 1123D.
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Summary. Across all settings, we study 15 input types: one voxel-only, seven tabular
variants, and seven voxel–tabular fusion variants. This design enables systematic evaluation
of semantic, geometric, and symmetry-based features in isolation and in combination with
volumetric representations.

Appendix C. Models

Model architectures are shown in Table 2.
“Tabular” inputs include clip, geometric, symmetrynet, and all of their concatena-

tions, as well as precomputed voxel CNN embeddings (voxcnn emb.npy). “Voxel grid (raw)”
refers to occupancy volumes (voxel.npy/vox.npy).

Table 2: Model architectures used in our 3D experiments.

Model Architecture
type

Core design / depth Inputs

CLIPLinear Linear classifier Single fully connected layer (LinearHead) to logits; dropout
0.10

Tabular

CLIP
Transformer

TinyTransformer Project to d = 192; prepend learnable [CLS]; 2 encoder layers
(nhead = 6, FF=384); dropout 0.10

Tabular

FT-Transformer Feature-token
Transformer

Tokenize to d = 256; [CLS] pooling; 2 encoder layers
(nhead = 8, FF=512); dropout 0.10

Tabular

MLP1 Fully connected
(ReLU, Dropout)

Depth = 1; hidden = 512; dropout 0.10 Tabular1

MLP2 Fully connected
(ReLU, Dropout)

Depth = 2; hidden = 640; dropout 0.10 Tabular1

MLP3 Fully connected
(ReLU, Dropout)

Depth = 3; hidden = 768; dropout 0.10 Tabular1

MLP4 Fully connected
(ReLU, Dropout)

Depth = 4; hidden = 768; dropout 0.10 Tabular1

MLP5 Fully connected
(ReLU, Dropout)

Depth = 5; hidden = 768; dropout 0.10 Tabular1

MultiModal MLP for tabular
concatenations

Depth = 3; hidden = 768; dropout 0.10 Tabular1

ResNet3D 3D ResNet
backbone

Pretrained r3d 18 (default; or mc3 18); input voxels 323 with
depth as time; 1→3 channel repeat; global avg pool → linear
head

Voxel
(raw)

1 For any * vox direct concat column, the same heads (Linear/Transformer/MLP) are used but preceded
by a ResNet3D backbone. The voxel grid is encoded to a 512-D embedding (vox emb dim=512),

concatenated with tabular features, and trained end-to-end.

Appendix D. Training Protocol

All classification experiments are conducted on 45,949 ScanNet object instances spanning
440 classes, using a train:validation:test split with a ratio of 8:1:1, after filtering out under-
represented classes (classes with very few instances). Optimization settings are fixed across
architectures to ensure comparability: AdamW optimizer with learning rate 10−5, weight
decay 10−4, and gradient clipping at 1.0. We employ mixed-precision training (AMP) and
early stopping based on validation accuracy (patience = 12 epochs, ∆min = 10−4). For
models using CLIP features, the CLIP encoder is frozen; only the downstream classifier is
trained.
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Appendix E. Dataset Summary

This appendix documents the ScanNet object instance data used in our experiments. The
raw cache contains 45, 949 instances spanning 551 raw class IDs (IDs 0–550). After filtering
out classes with fewer than two instances, 440 valid classes remain. The distribution is
highly imbalanced: a small number of categories dominate, while the majority occur rarely.

Raw Distribution. Figure 2 shows the histogram of all 551 classes (log scale). A
long-tailed distribution is evident, with many classes occurring fewer than 10 times. See
class distribution raw.csv (available at https://anonymous.4open.science/r/NeurReps_
supplementary) for the distribution of all classes.

Class

100
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ce
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nt

ScanNet Class Distribution (RAW) [log scale]

Figure 2: Original class distribution of all 551 classes (log scale).

Filtered Distribution. A stricter filtering threshold (e.g., removing under-represented
classes below τ instances) was used. After removing singleton classes, 440 valid cate-
gories left. This step removes rare outliers while preserving the bulk of the dataset. See
kept classes ge2.csv (available at https://anonymous.4open.science/r/NeurReps_supplementary)
for the distribution of classes after filtered.

Figure 3 presents the most frequent 30 categories after filtering. The largest categories
include wall (8199 instances), chair (4618), books (1645), floor (1551), and door (1475).
These dominate the dataset distribution and provide the strongest training signal.

Summary. In total, our experiments use 45, 949 instances across 440 valid categories.
The dataset’s strong imbalance motivates systematic evaluation across both dominant and
rare classes.
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Shape-Based Features Complement Features Learned from Voxels
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Figure 3: Top 30 most frequent classes after filtering.
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