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Abstract

Truth discovery is a general name for a broad range of sta-
tistical methods aimed to extract the correct answers to ques-
tions, based on multiple answers coming from noisy sources.
For example, workers in a crowdsourcing platform. In this pa-
per, we consider an extremely simple heuristic for estimating
workers’ competence using average proximity to other work-
ers. We prove that this estimates well the actual competence
level and enables separating high and low quality workers in
a wide spectrum of domains and statistical models. Under
Gaussian noise, this simple estimate is the unique solution
to the Maximum Likelihood Estimator with a constant regu-
larization factor.
Finally, weighing workers according to their average proxim-
ity in a crowdsourcing setting, results in substantial improve-
ment over unweighted aggregation and other truth discovery
algorithms in practice.

Introduction
“All happy families are alike; each unhappy family is un-
happy in its own way.”

— Leo Tolstoy, Anna Karenina

Consider a standard crowdsourcing task such as identi-
fying which images contain a person or a car (Deng et al.
2014), or identifying the location in which pictures were
taken (McLaughlin 2014). Such tasks are also used to con-
struct large datasets that can later be used to train and test
machine learning algorithms. Crowdsourcing workers are
usually not experts, thus answers obtained this way often
contain many mistakes (Vuurens, de Vries, and Eickhoff
2011; Wais et al. 2010), and multiple answers are aggregated
to improve accuracy.

From a theory/statistics perspective, “truth discovery” is
a general name for a broad range of methods that aim to
extract some underlying ground truth from noisy answers.
While the mathematics of truth discovery dates back to the
early days of statistics, at least to the Condorcet Jury Theo-
rem (Condorcet 1785), the rise of crowdsourcing platforms
suggests an exciting modern application of aggregating com-
plex labels from varied domains such as image processing
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and natural language, to healthcare. For example, the Etch-
a-Cell project uses volunteers to trace the boundary of tu-
mors on Electron Microscopy images ((Spiers et al. 2021),
see Fig. 1).

Yet, the vast majority of the theoretical literature on truth
discovery follows Condorcet by focusing on binary, multi-
label or sometimes real-valued questions (see Related Work
section), while specific applications with complex labels of-
ten rely on specialized algorithms.

Many of these algorithms aim to identify first the most
competent workers. While some of them employ highly so-
phisticated analysis, others are much more direct: for ex-
ample, Kobayashi (2018) suggests a ‘frustratingly easy’ al-
gorithm that ranks workers by their average cosine simi-
larity to others in a text summarization task; and Kurvers
et al. (2019) prove that the Hamming distance of a worker
from others is correlated with her competence in answer-
ing yes/no questions. Of course, using average similarity or
distance is not a new idea, and is extensively employed out-
side the context of aggregation, for example in Games with a
Purpose (Von Ahn and Dabbish 2008; Huang and Fu 2013)
to identify outliers, and in peer prediction to incentivize ef-
fort (Witkowski et al. 2013).

In this paper we argue that average similarity is a pow-
erful tool, with nothing special about Cosine or Hamming
similarity in particular. Our main observation can be written
as follows:

Theorem (Anna Karenina principle, informal). The ex-
pected average similarity of each worker to all others, is
roughly linearly increasing in her competence.

Essentially, the theorem says that as in Tolstoy’s novel,
“good workers are all alike,” whereas “each bad worker is
bad in her own way” and thus not similar to other workers.

Contribution and Paper Structure
After the preliminary definitions , we prove a formal ver-
sion of the Anna Karenina principle and show how it can
be used to identify poor workers without assuming specific
label structure. We show how additional assumptions lead
to tighter corollaries of exactly or approximately linear re-
lation between pairwise similarity and competence. To the
best of our knowledge these are the first formal guarantees
on general-domain truth discovery.
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In Section the next section we focus on the widely studied
case of Gaussian noise. We prove that the average distance to
other workers coincides with the Maximum Likelihood Es-
timator (MLE) for workers’ (in)competence—the first guar-
antee of this type regarding average similarity or distance.

We then explain how to leverage the Anna Karenina prin-
ciple for aggregation using a simple algorithm (P-TD). We
demonstrate on real and synthetic data, that P-TD substan-
tially improves aggregation accuracy, competing well with
advanced and domain-specific algorithms.

Most proofs, as well as additional empirical results are
available in the full version of the paper on arXiv:
https://arxiv.org/abs/1905.00629.

Related Work
The Condorcet Jury Theorem (Condorcet 1785) was perhaps
the first formal treatment of truth discovery, and extensions
to experts with heterogeneous competence levels were sur-
veyed by Grofman, Owen, and Feld (1983). The idea of es-
timating workers’ competence in order to improve aggrega-
tion is thus underlying many of the algorithms in the area (a
recent survey is in (Li et al. 2016)). We should note that self-
reporting of accuracy often leads to poor results (Gadiraju
et al. 2017; Prelec, Seung, and McCoy 2017).

Average similarity We have mentioned in the introduc-
tion the two applications of average similarity to truth dis-
covery that we are aware of. Both of them assume a specific
label structure and (somewhat surprisingly) both are quite
recent: Kobayashi (2018) proved that cosine similarity ap-
proximates a known kernel density estimator. Kurvers et al.
(2019) focused on binary questions with independent errors,
showing both theoretically and empirically that the expected
average Hamming proximity correlates with the true compe-
tence, albeit without comparing to any other algorithm.

Our Anna Karenina theorem entails the Kurvers et al.
result as a special case, and provides explicit performance
guarantees for the heuristic suggested by Kobayashi.

Domain-specific algorithms Many truth-discovery algo-
rithms have been proposed for specific label structures,
mostly for categorical (multiple-choice) and real-valued la-
bels. Often these algorithms entwine accuracy and ground
truth estimation, by iteratively aggregating labels to obtain
an estimate of the ground truth, and using that in turn to es-
timate workers competence. This approach was pioneered
by the EM-style Dawid-Skene estimator (Dawid and Skene
1979), with many follow-ups (Karger, Oh, and Shah 2011;
Gao and Zhou 2013; Aydin et al. 2014; Xiao et al. 2016;
Zhao and Han 2012; Li et al. 2012).

Another class of algorithms uses spectral methods to infer
the competence and/or other latent variables from the co-
variance matrix of the workers (Parisi et al. 2014; Zhang
et al. 2016), or from their pairwise Hamming similarity (Li,
Baba, and Kashima 2018). Note that covariance can also be
thought of as a measure worker similarity in the context of
binary labels. In rank aggregation, every voting rule can be
considered as a truth-discovery algorithm (Mao, Procaccia,
and Chen 2013; Caragiannis, Procaccia, and Shah 2013).

Some of these works also provide formal convergence
guarantees and/or bounds on the error that are subject to as-
sumptions on the distribution of answers.

General labels When there are complex labels that are not
numbers or categories, but for example contain text, graph-
ics and/or hierarchical structure, there may not be a natural
way to aggregate them but we would still want to evaluate
workers’ competence.

Two recent papers suggest to use the pairwise distance
(or similarity) matrix as a general domain-independent ab-
straction, then applying sophisticated algorithms on this
matrix: The multidimensional annotation scaling (MAS)
model (Braylan and Lease 2020) extends the Dawid-Skene
model by calculating the labels and competence levels
that would maximize the likelihood of the observed dis-
tance matrix, using the Stan probabilistic programming lan-
guage; Another approach is to find a ‘core’ of good work-
ers (Kawase, Kuroki, and Miyauchi 2019), by looking for a
dense subgraph of the similarity matrix.

While we adopt the approach that pairwise similarity is
the right domain-independent abstraction for general labels,
we argue that usually there is no need for such complex al-
gorithms: a ‘frustratingly easy’ average is sufficient.

Preliminaries
We consider a set N of n workers, each providing a report
in some space Z. We denote elements of Z (typically m-
length vectors, see below) in bold. Thus, an instance of a
truth discovery is a pair 〈S = (si)i∈N , z〉, where si ∈ Z is
the report of worker i, and z ∈ Z is the ground truth. S is
also called a dataset.1

Noise model We do not make any assumptions regarding
the ground truth z. The type ti of a worker determines her
distribution of answers. A dataset is constructed in two steps:

(1) Sample a finite population of workers i.i.d from a dis-
tribution T (called a proto-population) over a set of
types T . For our running example, suppose that T is
uniform over [50, 200], n = 5 and sampled types are
~t = (55, 80, 100, 120, 165), where lower types will pro-
vide better estimation in expectation (note that we use an
arrow accent for n-length vectors).

(2) Workers each report their answers S, which depend on
the ground truth z, on their types, and on a random factor.
z and S for our example are shown in Table 1 and Fig. 2.

Formally, a noise model is a function Y : Z×T → ∆(Z).
That is, the report of worker i is a random variable si sam-
pled from Y(z, ti). We note that T , Y and z together induce
a distribution Y(z, T ) over answers (and thus over datasets),
where s ∼ Y(z, T ) means we first sample a type t ∼ T and
then a report s ∼ Y(z, t).

The data in our example (Table 1) was sampled from the
noise modelY that is a multivariate independent Normal dis-
tribution with mean z and variance ti. This is known as Ad-
ditive White Gaussian noise (AWG, see (Diebold 1998)).

1It is ok if si is a partial vector, as long as there is enough
intersection between pairs of workers.
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Figure 1: The Etch-a-Cell project. Left: an Electron Mi-
croscopy (EM) image of a cell. The real boundary of the
tumor is marked in green. Right: multiple annotations by
volunteers. Images taken from (Spiers et al. 2021).

i \ j 1 2 3 4 d(s, z)
ti \ zj 80 0 40 −10

1 55 81 6 41 −14 13.5
2 80 89 −6 35 4 84.5
3 100 105 −18 39 −5 243.7
4 120 68 9 62 −10 177.2
5 165 67 20 58 −20 248.2

UA(S) 82 2.2 47 −9 14.7

Table 1: An example of a dataset sampled from the AWG
model. The bottom row is showing aggregated results using
the unweighted mean.

Workers’ competence Competent workers are close to
the truth. More formally, given some ground truth z and a
distance measure d, we define the fault (or incompetence) of
a worker i as her expected distance from the ground truth,
denoted fi(z) := Esi∼Y(z,ti)[d(si, z)].

g We denote by µT (z) := Es∼Y(z,T )[d(s, z)] the mean
fault, omitting T and/or z when clear from the context.

Distance measures can often be derived from an inner
product. Formally, consider an arbitrary symmetric inner
product space (Z, 〈·, ·〉). This induces a norm ‖x‖2 :=
〈x,x〉 and a distance measure d(x,y) := ‖x−y‖2 (not nec-
essarily a metric). A special case of interest is the normal-
ized Euclidean product on Z = Rm, defined as 〈x,y〉E :=
1
m

∑
j≤m xjyj ; and the corresponding normalized squared

Euclidean distance (NSED), a natural way to capture the
dissimilarity of two items (Carter, Morris, and Blashfield
1989). Note that the fault of a worker in the AWG model
under NSED is her variance, as fi(z) = ti for any z.

Aggregation Given an instance 〈S, z〉, an aggregation
function returns predicted labels ẑ. We define the error as
d(z, ẑ). For example unweighted aggregation in the real-
valued domain simply returns the mean of workers’ answers.
The goal of truth discovery is to find algorithms that return
labels with low expected error, see Table 1.

When the type of every worker is known, for many noise
models there are accurate characterizations of the optimal
aggregation functions. For example, the best linear unbiased
estimator under the AWG model with NSED is taking the
mean of workers’ answers, inversely weighted by their vari-
ance (Aitkin 1935).

Figure 2: A graphical representation of Table 1 (for obvi-
ous reasons we use two 2-dimensional plots instead of a 4-
dimensional one). The blue X marks the ground truth. Work-
ers’ reports are marked by gray circles, whose size is propor-
tional to ti (so smaller circles tend to be closer to the truth).
The mean UA(S) is marked by a green diamond.

Figure 3: Realized average distance πi vs. error. Each point
is a worker.

Fault Estimation
Our key approach is relying on estimating fi using the av-
erage distance of worker i from all other workers. Formally,
we define dii′ := d(si, si′), and the average pairwise dis-
tance is

πi :=
1

n− 1

∑
i′∈N\{i}

dii′ . (1)

Next, we analyze the relation between πi = πi(S) (which
is a random variable) and fi, which is an inherent property
that is deterministically induced by the worker’s type. For an
element s ∈ Z we consider the induced noise variable εs :=
s−z. We denote by Ỹ(z, t) the distribution of εs (where s ∼
Y(z, t)). Thus under NSED we have that d(s, z) = ‖εs‖2.

We define bi(z) := Eεi∼Ỹ(z,ti)[εi] as the bias of a type i
worker, and bT (z) := Eε∼Ỹ(z,T )[ε] as the mean bias of the
proto-population. E.g. in Euclidean space bi(z) is a vector
where bij(z) > 0 if i tends to overestimate the answer of
question j, and negative values mean underestimation.

Our main conceptual result is an approximately linear
connection between the expectations of πi and d(si, z).

Theorem 1 (Anna Karenina Principle).

ES∼Y(z,T )n [πi|ti, z] = fi(z) +µT (z)−2 〈bi(z), bT (z)〉 .

We can also see this linear relation in three datasets (with
different labels and distance measures) on Fig. 3.
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The proof is rather straight-forward, and is relegated to
the full version of the paper. In particular it shows by di-
rect computation that the expectation of dii′ for every pair
of workers is
E[dii′ |ti, ti′ , z] = fi(z) + fi′(z)− 2 〈bi(z), bi′(z)〉 . (2)
Despite (or perhaps because of) its simplicity, the prin-

ciple above is highly useful for estimating workers’ com-
petence. If πi is roughly linearly increasing in fi, a naı̈ve
approach to estimate fi from the data is by setting f̂i to be
some increasing function of πi.

However there are several obstacles we need to overcome
in order to get theoretical guarantees.

In particular: concentration bounds; estimation of µ; and
the biases that appear in the last term; all of which will be
tackled in the next sections.

For concreteness, we assume in the remainder of the pa-
per, except where explicitly stated otherwise, that the inner
product space (Z, 〈〉) is Rm, and d is NSED.

Concentration bounds How far is the empirical average
πi from its expectation? We show that when the noise on
all questions is independent and bounded, the probability of
a large estimation error decreases linearly with the sample
size min{n,m}.

Domain-independent Bounds
What can be said without symmetry or other assumptions
on the model? We argue that we can at least tell particularly
poor workers from good workers.
Corollary 2. Consider a “bad” worker i∗ with fi∗ > 9µT ,
and a “good” worker i∗∗ with fi∗∗ < µT . Then E[πi∗ ] >
E[πi∗∗ ]. No better separation is possible (i.e. there is an in-
stance where all the inequalities become equalities).

The proof relies on the following lemma, which is itself
a corollary of the Anna Karenina principle (Thm. 1) and the
Cauchy-Schwarz inequality:
Lemma 3. For any worker i and any γ ≥ 0, if fi = γµ,
then E[πi|ti] ∈ (1±√γ)2µ.

Proof of Corollary 2. By Lemma. 3, E[πi∗∗ ] ≤ 4µ <
E[πi∗ ].

Without further assumptions, this condition is tight. To
see why, consider a population on R where z = 0. The good
worker i∗∗ provides the fixed report si∗∗ = −1, the poor
worker i∗ provides the fixed report si∗ = 3 − δ. However
the measure of types ti∗ , ti∗∗ in T is 0, and w.p. 1 type t′ is
selected with a fixed report s = 1. Note that µ = (s−z) = 1,
and thus fi∗∗ = 1 = µ whereas fi∗ = 9 = 9µ.

However, the reports of i∗, i∗∗ are completely symmetric
around 1, in the absence of more workers there is no way to
distinguish between these two workers, by their disparity or
otherwise.

In the special case of interest when there are only
two types of workers (a situation known as “Hammer-
spammer” (Karger, Oh, and Shah 2011)), Lemma 3 enables
us to separate good from bad workers even more easily. This
essentially depends on the fraction of bad workers and on
their bias.

Symmetric Noise A trivial implication of Theorem is
when the average worker is unbiased:

Corollary 4 (Anna Karenina principle for zero bias). If
bT =0 then E[πi|ti] = fi+µT for all i.

This means that given enough samples, we can retrieve
workers’ exact fault level with high accuracy, by setting
f̂i := πi(S) − µ̂. This will be important later on when we
discuss aggregation.

What if we use other distance measures than NSED? Sup-
pose that d is an arbitrary distance metric over space Z,
z ∈ Z is the ground truth, and si ∈ Z is the report of
worker i. fi and πi are defined as before. Intuitively, we say
that the noise modelY is symmetric if for every point x there
is an equally-likely point that is on “the other side” of z (note
that this in particular implies zero bias).

Theorem 5 (Anna Karenina principle for symmetric noise
and distance metrics). If d is any distance metric and Y is
symmetric, then max{µ, fi} ≤ E[πi|ti] ≤ µ+ fi.

An immediate corollary of Theorem 5 is that for poor
workers with fi ≥ µ, the average distance πi is a 2-
approximation for fi (up to noise). See details and proof in
the full version.

Domain-specific Results
Binary labels Kurvers et al. (2019) considered the aver-
age similarity of workers when answering a set of yes/no
questions, and the type of a worker is her probability pi to
answer correctly independently over each question, a model
known as the one-coin model or the Dawid-Skene model.

They showed that the (expected) average similarity is an
increasing linear function of pi.

Interestingly, the result from (Kurvers et al. 2019) can
also be obtained directly from Theorem 1, by plugging in
the Hamming distance (which is just NSED on the binary
cube {−1, 1}d instead of Rd). This result can also be easily
extended to multiple-choice labels. For details see the full
version.

Cosine similarity When label vectors are normalized, we
have that d(x,y) = 2(1 − cos(x,y)), meaning that rank-
ing workers by decreasing average cosine similarity (as sug-
gested in (Kobayashi 2018)) is the same as ranking them by
increasing average NSED. Our results above provide suffi-
cient conditions for when this separates good workers from
poor ones.

AWG Model and Maximum Likelihood
Since AWG has no bias, we know from Cor. 4 that
E[πi(S)|ti] = fi + µ. Thus if we have a good estimate µ̂
of µ, setting f̂i := πi − µ̂ is a reasonable heuristic. In this
section we show that under a slight relaxation of the AWG
model, tweaking the heuristic above provides the MLE for
fi.

Denote µ̄ := 1
2n

∑
i∈N πi(S), that is, half the average

pairwise distance. Note that for unbiased workers, we have
by Cor. 4 that E[ 1n

∑
i∈N πi(S)] = 2µ, and thus µ̄ is an
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unbiased estimator of µ. We thus set f̂NPi := πi − µ̄, where
NP stands for Naı̈ve Proxy.

Computing the MLE From Eq. (2) and zero-bias, we
have that E[dii′ |ti, ti′ ] = fi + fi′ . However even under
the AWG model, the pairwise distances are correlated. For
the analysis, we will neglect these correlations, and assume
that the pairwise distances are all independent conditional
on workers’ types. More formally, under this ‘pairwise’ Ad-
ditive White Gaussian (pAWG) model, dii′ = fi+fi′+ εii′ ,
where all of εii′ are sampled i.i.d. from a normal distribu-
tion with mean 0 and unknown variance. Ideally, we would
like to find f̈ := (f̂i)i∈N that minimize the estimation er-
rors (εii′),2 which is an Ordinary Least Squares (regression)
problem.

We next show how to derive a closed form solution for
the maximum likelihood estimator of the fault ~f , also allow-
ing for a regularization term with coefficient λ. The theorem
might have independent interest as it allows us to estimate a
matrix created from adding a vector to itself (an “outer sum”
matrix) from its off-diagonal entries.
Theorem 6. Let λ ≥ 0, and D = (dii′)i,i′∈N be an arbi-
trary symmetric nonnegative matrix. Then

argminf̈
∑

i,i′∈N :i6=i′
(f̂i+f̂i′−dii′)2+λ‖f̈‖22 =

2(n− 1)~π− 8n(n−1)
4n+λ−4 µ̄

2n+ λ− 4
.

Our main technical result in this paper follows as a direct
corollary of the above theorem, when the matrix D repre-
sents pairwise distances:
Theorem 7. For λ = 4, the regularized maximum likelihood
estimator of ~f in the pAWG model is proportional to f̈NP .

That is, our heuristic estimate f̈NP is in fact the optimal
solution of a regularized pAWG model.

By setting λ = 0 (no regularization) we get a slight vari-
ation of this heuristic f̈ML := ~π − n

n−1 µ̄ (for ‘maximum
likelihood’).

In Fig. 4 we compare implementations of our truth dis-
covery algorithm (defined in Section , derived with different
values of λ. As expected, more regularization leads to better
performance on a small dataset, whereas the unregularized
version is optimal in the limit.

Proof of Theorem 6 for λ = 0. Let P be a list of all n2 − n
ordered pairs of [n] (without the main diagonal) in arbitrary
order. Setting λ = 0, we are left with the following least
squares equation:

min
f̈

∑
i,i′

(f̂i + f̂i′ − dii′)2 = min
f̈
‖Af̈ − d‖22,

where A is a |P | × n matrix with aki = 1 iff i ∈ Pk, and d
is a |P |-length vector with dk = dii′ for Pk = (i, i′).

Fortunately, A has a very specific structure that allows us
to obtain the above closed-form solution. Note that every
row of A has exactly two ‘1’ entries, in the row index i and
column index i′ of Pk; the total number of ‘1’ is 2(n2 − n);

2We use f̈ instead of hat+arrow accent.

Figure 4: A comparison of the P-TD algorithm variants on
a synthetic real-valued dataset. The x-axis shows the num-
ber of questions m, whereas the number of workers is fixed
(n = 5). ‘ORACLE’ weighs workers according to their true
competence.

there are 2n−2 ones in every column; and every two distinct
columns i, i′ share exactly two non-zero entries (at rows k
s.t. Pk = (i, i′) and Pk = (i′, i)). This means that (ATA)
has 2n− 2 on the diagonal and 2 in any other entry.

The optimal solution for ordinary least squares is obtained
at f̈ such that (ATA)f̈ = ATd. By the structure of A:

[ATd]i = 2
∑
i′ 6=i

dii′ = 2πi, (3)

and [(ATA)f̈ ]i = 2(n− 2)f̂i + 2
∑
i′∈N

f̂i′ . (4)

Denote
α :=

∑
i∈N

[ATd]i =
∑
i∈N

2
∑
i′ 6=i

dii′ = 4n(n− 1)µ̄, (5)

then by Eq. (4):

α =
∑
i∈N

[(ATA)f̈ ]i =
∑
i∈N

[2(n− 2)f̂i + 2
∑
i′∈N

f̂i′ ] (6)

= 2(n− 2)
∑
i∈N

fi + 2
∑
i′∈N

fi′(
∑
i∈N

1) = 4(n− 1)
∑
i∈N

f̂i.

We can now write the n linear equations as

2(n− 1)πi =[ATd]i =[(ATA)f̈ ]i (By Eqs. (3),(4))

= (2n− 4)f̂i + 2
∑
i′∈N

f̂i′ ⇐⇒

(n− 1)πi = (n− 2)f̂i +
∑
i′∈N

f̂i′ ⇐⇒

f̂i =
πi

n−2
− 1

n−2

∑
i′∈N

f̂i′ =
πi

n−2
− 1

n−2

α

4(n−1)

Eq. (5)
=

n− 1

n− 2
πi −

n

n− 2
µ̄ =

n− 1

n− 2
f̂ML
i ,

as required, since n−1
n−2 is a constant.

Aggregation
Our Proximity-based Truth Discovery (P-TD) algorithm is
a direct adaptation of the Anna Karenina principle. The idea
is very simple:
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ALGORITHM 1: (P-TDD) FOR REAL-VALUED
DATA

Input: Dataset S ∈ Rn×m.
Output: Est. fault levels f̈ ∈ Rn; answers ẑ ∈ Rm.
Compute dii′ ← d(si, si′) for every pair of workers;
for each worker i ∈ N do

set πi ← 1
n−1

∑
i′ 6=i dii′ ; // Step 1

end
Set µ̄← 1

2n

∑
i∈N πi;

for each worker i ∈ N do
Set f̂i ← πi − n

n−1 µ̄; // Step 2

Set wi ← 1
f̂i

;
end
Set ẑ ←

∑
i wisi∑
i wi

; // Step 3

return (f̈ , ẑ);

1. Compute the average distance [or similarity] πi of every
worker;

2. Estimate fault [or competence] f̈ from ~π;
3. Aggregate answers, giving higher weight to workers with

low fault [high competence].

Our default implementation (denoted P-TDD) simply
sets weights proportional to the estimated competence,
which is in turn proportional to the average similarity, as in
(Kobayashi 2018; Kurvers et al. 2019).

As we make more assumptions on the structure of la-
bels and the statistical model, we can use an appropri-
ate Anna-Karenina theorem to improve Step 2, resulting in
a domain-specific implementation P-TDAK . For example,
Alg. 1 shows the implementation for the real-valued domain,
where Step 2 is based on f̈ML defined in Sec. , and Step 3
is based on (Aitkin 1935).

Lastly, we can iteratively repeat the process by computing
the weighted average distance to other workers. This itera-
tive P-TD algorithm is denoted by IP-TD.

Empirical Evaluation
Algorithms We compare the predicted label accuracy of
our algorithms (P-TDD,P-TDAK ,IP-TD) to unweighted
aggregation (UA); to three general-domain algorithms:
MAS (Braylan and Lease 2020), TOP2 and EXP (Kawase,
Kuroki, and Miyauchi 2019); and to domain-specific algo-
rithms: CRH (Li et al. 2014b), IBP (Karger, Oh, and Shah
2011), DS (Dawid and Skene 1979), EVD (Parisi et al.
2014), CATD (Li et al. 2014a), GTM (Zhao and Han 2012),
and KDE (Wan et al. 2016).

Datasets We used the following datasets from five differ-
ent domains. We write the used distance measure in each
domain in brackets.

Categorical (Hamming distance): GG, DOGS,
FLAGS (Shah and Zhou 2015); Predict (Mandal,
Radanovic, and Parkes 2020) (we used data from Oct.8,

under all four treatments); and all six categorical datasets
from (Kawase, Kuroki, and Miyauchi 2019). We used
weighted majority for aggregation.

Real-valued (NSED): BUILDINGS (collected for this pa-
per); TRI (Hart et al. 2018); and EMO (Snow et al. 2008).
Answers aggregated using weighted mean.

Ranking (Kendall-tau): DOTS and PUZZ contain subjec-
tive rankings of four images of dots / 8-puzzle boards,
according to the number of dots they contain / number of
steps from solution (Mao, Procaccia, and Chen 2013).
We also extracted the ranking information from BUILD-
INGS. For aggregation, we used nine different ordinal
voting rules, see full version for details.

Language (GLEU): The TRANSL dataset contains En-
glish translations of Japanese sentences (Braylan and
Lease 2020). The distance measure we used is GLEU,
and there is no aggregation (best worker is selected).

Outlines (Jaccard): The Etch-a-Cell dataset contains
bitmaps of the outline of a tumor in 2D slices of a
cell (Spiers et al. 2021) (see Fig. 1). We use Jaccard
distance on the filled shapes, and aggregate labels using
pixelwise-majority.

In addition we generated synthetic datasets using the AWG
model (real-valued); the one-coin model (categorical); and
Mallows model (ranking). In the HS datasets there are 20%
‘hammers’.

A detailed description of algorithms’ implementation and
datasets is in the full version of the paper.

To obtain robust results we sampled n workers and m
questions without repetition from each dataset (real or syn-
thetic), and repeated the process at least 1000 times for every
combination.

Evaluation The error of every algorithm is the distance
(as specified above) to the ground truth, averaged over all
samples of certain size of a particular dataset.

In the tables, we compute for each algorithm its Relative
Improvement RI(Alg) := Err(Alg)−Err(UA)

Err(Alg)+Err(UA) , where UA
serves as a baseline. Thus RI is in the range [−1, 1] where
negative numbers mean improvement over UA.

In some cases we see that one algorithm has slightly
higher average error (on the graphs) but lower RI, or that the
gap in RI is more substantial. This is since the graphs av-
erage over instances of varying difficulty, so instances with
high baseline error have more effect.

Results Fig. 5 and Table 2 (and more in the full version)
show results on categorical and real-valued data, where there
are many specialized algorithms. We can see that there is no
single ‘state-of-the-art’, as algorithms that do well on some
datasets may have poor performance on other data, or for a
different number of voters/questions. This is especially true
for the three general-domain algorithms.

Yet for moderate n and m, all three versions of our P-TD
consistently provide good results over almost all datasets,
usually beating the three general-domain algorithms, and
doing roughly at par with the best specialized ones. We can
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Categorical k CRH IBP DS EVD EXP TOP2 MAS P-TDD P-TDAK IP-TD
SYN.HS 2 -14% +6% -23% -20% -15% -13% -17% -21% -24% -24%
SYN.N 2 -4% +12% -9% -6% -7% -8% -5% -7% -9% -9%
GG 2 -8% -15% -19% -10% -14% -20% -14% -14% -18% -18%
Pred.T1 2 -1% +9% -1% -1% -1% +0% -1% -1% -1% -1%
Pred.T2 2 -0% +10% +0% -1% -1% +1% +0% -0% -1% -1%
Pred.T3 2 -1% +8% -1% -1% -0% +1% -1% -2% -2% -2%
Pred.T4 2 -1% +7% -2% -4% -1% -1% -2% -3% -3% -3%
SYN 4 -18% − − − -22% -29% -28% -33% -33% -41%
DOGS 10 -1% − − − -2% +0% -3% -4% -4% -4%
FLAGS 4 -17% − − − -29% -31% -27% -21% -22% -30%
Chinese 2 -2% − − − -1% -3% -4% -4% -4% -5%
English 2 -1% − − − -1% -1% -1% -1% -1% -1%
IT 4 -3% − − − -4% -5% -6% -5% -5% -7%
Medicine 4 -3% − − − -13% -16% -9% -8% -8% -12%
Pokemon 6 -11% − − − -25% -27% -17% -22% -22% -27%
Science 5 -1% − − − +1% +1% -1% -3% -3% -3%
Real-valued CRH CATD GTM KDE EXP TOP2 MAS P-TDD P-TDAK IP-TD
SYN.N − -23% -27% -14% +6% -7% -11% +4% -20% -41% -25%
BUILD − -9% +5% -9% +1% -8% +12% +4% -7% -7% -11%
TRI1 − -19% -7% -14% -4% -17% -3% -8% -17% -10% -20%
TRI2 − -9% -6% -5% -4% -11% -12% +1% -7% -4% -11%
EMO − +1% +18% +1% +26% +5% +22% +3% +0% +5% +2%

Table 2: Results (RI) on categorical and real-valued datasets, with n = 10 workers and m = 15 questions . The best result
in each row is underlined, and results that are not statistically different (within 95% confidence interval in a paired t-test) are
marked in bold. Results in gray are worse than unweighted aggregation.

also see that on synthetic real-valued data with Gaussian
noise, the provably-optimal P-TDD is also best in practice.

On real datasets, our IP-TD is usually better, and as
n and m increase sometimes one of the specialized algo-
rithms takes over. Intuitively, real datasets may often have
a some correlation in poor workers’ errors. Iterative algo-
rithms, such as our IP-TD and some of the existing algo-
rithms, are able to overcome this since they gradually rely
more on the largest and most consistent set of workers.

The real strength of our approach shows when labels are
more complex. Table 3 and Fig. 7 show how our simple al-
gorithms are consistently better than the other three algo-
rithms both on ranking data and on both complex annotation
tasks. Results also show that P-TD yields substantial im-
provement regardless of the voting rule in use. Moreover,
while the other algorithms work better on some datasets,
they are highly unstable and often perform worse than the
baseline.

Conclusion
Average proximity can be used as a general scheme to esti-
mate workers’ competence in a broad range of truth discov-
ery and crowdsourcing scenarios. Due to the “Anna Karen-
ina principle,” we expect the answers of competent workers
to be much closer to others, than those of incompetent work-
ers, even under very weak assumptions on the domain and
the noise model. Under more explicit assumptions, the aver-
age distance accurately estimates the true competence.

The above results suggest an extremely simple, general
and practical algorithm for truth-discovery (the P-TD algo-
rithm), that weighs workers by their average proximity to

others, and can be combined with most aggregation meth-
ods. This is particularly useful in the context of existing
crowdsourcing systems where the aggregation rule may be
subject to constraints due to legacy, simplicity, explainabil-
ity, legal, or other considerations (e.g. a voting rule with
certain axiomatic properties). In addition, average proxim-
ity is simple and flexible enough so we can modify it to
deal with challenges outside the scope of the current paper,
such as partial data (Dalvi et al. 2013; Karger, Oh, and Shah
2011; Li et al. 2014a); 3 semi-supervised learning (Yin and
Tan 2011); or worker’s competence that varies across task
types (Braylan and Lease 2020).

Despite its simplicity, the P-TD algorithm substantially
improves the outcome compared to unweighted aggregation.
It is also competitive with other, more sophisticated algo-
rithms, especially in the common case of moderate input
size. We thus conclude that the average similarity heuristic is
indeed a frustratingly easy—and practical—tool for crowd-
sourcing.

An obvious shortcoming of P-TD is that a group of work-
ers that submit similar labels (e.g. by acting strategically)
can boost their own weights. Future work will consider how
to identify and/or mitigate the affect of such groups.

3Preliminary experiments with partial data show similar results
if workers still have nontrivial intersection with some other work-
ers. This is so that average similarity can be reasonably estimated.
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Figure 5: The error on some of the real world datasets as we increase the number of voters n with fixed m = 15 as in the table
(top row), or vary the number of questions m with fixed n = 10 (bottom row). The black line is the error of an Oracle who
knows the true fault values f and uses optimal weights. The thin gray lines are all competing algorithms.

Figure 6: The error on real-valued datasets as we vary m
(keeping n = 10) or n (keeping m = 15).

Ranking v. rule TOP2 MAS P-TD IP-TD
SYN.HS Borda -24% -14% -4% -10%
SYN.N Borda -3% +1% -4% -6%
BUILD Borda +0% +0% -0% +0%
DOTS3 Borda +7% +2% -1% +1%
DOTS5 Borda +9% +4% -1% -1%
DOTS7 Borda +13% +5% -3% -2%
DOTS9 Borda +7% -1% -6% -10%
PUZZ5 Borda +1% +8% -2% -2%
PUZZ7 Borda -7% -18% -15% -20%
PUZZ9 Borda +48% +14% -5% -1%
PUZZ11 Borda +6% +3% -3% -3%
SYN.N Plu. -2% -5% -4% -5%
BUILD Plu. +20% -2% -6% -6%
DOTS3 Plu. +14% +2% -2% -1%
PUZZ5 Plu. +12% +1% -3% -2%
SYN.N Cop. -37% -25% -27% -29%
BUILD Cop. -7% -17% -27% -27%
DOTS3 Cop. +0% -1% -0% -0%
PUZZ5 Cop. -12% -16% -19% -18%
Complex
TRAN best v. -3% -3% -4% -4%
ETCH best v. -39% -39% -43% -42%
ETCH bit. mj. -2% -4% -2% -2%

Table 3: Results (RI) for rankings datasets, under three dif-
ferent voting rules (n = 10, four ranked alternatives), and on
the other complex annotation datasets. EXP removed due to
space constraints, and since it did not have the best results in
any line.

Figure 7: Top: error on DOTS3 under nine different voting
rules. Bottom: error on Etch-a-Cell as number of workers
grows.
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