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ABSTRACT

Training critiquing language modelsE]to assess and provide feedback on model out-
puts is a promising way to improve LLMs for complex reasoning tasks. However,
existing approaches typically rely on stronger supervisors for annotating critique
data. To address this, we propose Critique-RL, an online RL approach for develop-
ing critiquing language models without stronger labeling. Our approach operates on
a two-player paradigm: the actor generates a response, the critic provides feedback,
and the actor refines the response accordingly. We first reveal that relying solely on
indirect reward signals from the actor’s outputs for RL optimization often leads to
unsatisfactory critics: while their helpfulness (i.e., providing constructive feedback)
improves, the discriminability (i.e., determining whether a response is high-quality
or not) remains poor, resulting in marginal performance gains. To overcome this,
Critique-RL adopts a two-stage optimization strategy. In stage I, it reinforces
the discriminability of the critic with direct rule-based reward signals; in stage
I1, it introduces indirect rewards based on actor refinement to improve the critic’s
helpfulness, while maintaining its discriminability via appropriate regularization.
Extensive experiments across various tasks and models show that Critique-RL
delivers substantial performance improvements. For example, it achieves a 9.02%
gain on in-domain tasks and a 5.70% gain on out-of-domain tasks for Qwen2.5-7B,
highlighting its potential.

1 INTRODUCTION

With the development of large language mod- Quen233B on MATH ___ Scaling Inference Compute on MATH
els (Ouyang et all 2022} [OpenAllL 2023} [Toul = )
vron et al.| 2023} Jiang et al., 2023 |Dubey et al.,
2024), providing reliable supervision for them
has become a critical research challenge (Bow-
man et al., 2022} [Saunders et al., |2022), espe- TS R PP G PPE B
cially for tasks that are difficult even for hu- ES R
mans, such as complex reasoning, sequential

decision-making, and coding (Shinn et al., 2023} Figure 1: Left: Critique-RL achieves better per-
Snell et al., 20245 Qu et al., 2024} |[Kumar et al., formance and discrimination on MATH. Right:
2024). This problem is often referred to as scal- Inference compute scaling for Critique-RL, with
able oversight (Bowman et al., 2022). One ef- @2k and @3k indicating sampling amounts that
fective method for scalable oversight is to train  are 2 times and 3 times the x-axis value, respec-
critiquing language models to assess and provide tively. Critique-RL improves the performance ceil-
feedback to model outputs (Welleck et al., 2023;  ing and is more compute-efficient.

Akytirek et al.,[2023} [Xi et al., [2024; [Yao et al.|

2024])). Based on this feedback, actor models can refine and optimize their behavior or outputs.
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Existing work in training critique models typically assumes a stronger supervisor to provide labeled
critique data, which is often expensive and difficult to scale (Saunders et al.,[2022; Xi et al.| [2024;
Bowman et al.,|2022)). Moreover, the data labeled by the supervisor often differs significantly from

'Tt can also be referred to as a critique model or critic.
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Problem: If a bag of marbles costs $20 and the price increases by 20% of the original
price every two months, how much would a bag of marbles cost after 36 months?

Actor Model (original response):

Let's break it down step by step:

1. The price of the bag of marbles increases by 20/100*$20=$4 every two months.

2. Afier 36 months, the price of the bag of marbles will have increased 36/(2*2)=9 times.

3. The price of the bag of marbles will have increased by $4, 9 times for a total of $4*9=$36.

4. The cost of a bag of marbles after 36 months will be $20+$36=556
The answer is 56. Correctness Verifier: €

Critique Model (critique):

Step sentence: The price of the bag of marbles increases by 20/100%$20=84 every two
months.

Correctness of the step: Correct

Explanation: This step correctly calculates the increase in price every two months, which is
20% of the original price of $20. The calculation is 0.20 * $20 = $4.

Step sentence: After 36 months, the price of the bag of marbles will have increased
36/(2*2)=9 times.

Correctness of the step: Wrong

Explanation: This step is wrong. The price increases every two months, so the number of
increases in 36 months is 36 /2 = 18, not 36 / (2*2) = 9. There are 18 two-month periods in
36 months.
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Actor Model (refinement response):

Let's break it down step by step:

To determine the cost of a bag of marbles after 36 months, we need to consider the
following:

1. Initial Price: The initial price of the bag of marbles is $20.

2. Price Increase Calculation: The price increases by 20% of the original price every two
months. The increase in price every two months is calculated as 0.20 * $20 = $4. 0]
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5. Final Price Calculation: The final price of the bag of marbles after 36 months is the e
initial price plus the total increase. Final price = $20 + $72 = $92. | c Verifi ] refine
The answer is 92. Correctness Verifier: @ CRESEBNEES

Figure 2: Left: A case illustrating the two-player actor-critic interaction, including the original
response from the actor, the critique from the critic, and the refinement from the Actor. Right:
Overview of our method and its comparison with baseline RL. The snowflake icon 3k on the Actor
indicates that it is fixed, while the fire icon & on the Critic indicates that it will be updated. Our
method employs a two-stage RL process. It optimize discriminability of critique models in Stage I,
and optimize helpfulness while maintaining discriminability in Stage II.

the learner’s output distribution (Kumar et al.,[2024). Another line of work does not train the model
but instead relies on the model’s inherent abilities, using prompt engineering to elicit its critiquing
abilities (Bai et al 2022} Madaan et al, 2023}, [Dhuliawala et al.,[2024). However, such methods
typically assume an oracle verifier during testing, allowing the critique model to bypass discrimination
(i.e., determining whether a response is high-quality) and instead focus only on offering helpful
feedback for revision (Xi et al.,[2024}; [Gou et al.| [2024). Without the oracle verifier, they often meet
performance bottleneck (Huang et al.,2024).

In this work, we aim to develop critiquing language models without relying on stronger labeling
or an oracle reward function during testing. To this end, we propose Critique-RL, an online RL
approach based on two-player actor-critic interaction (Yao et all, 2024} [Xi et al.},[2024)) for developing
critique models. In our approach, there are two main roles: the actor and critic. The critic assesses
(discriminability) and provides natural language feedback (helpfulness) for the actor’s output, and the

actor performs refinement accordingly (Saunders et al},[2022).

To build our method, we first use the correctness of the actor’s two attempts to shape the reward
signals for the RL optimization of critique models (§4.1)), following approaches like Retroformer
2024) and CTRL 2025), where such indirect signals are shown to reflect the
quality of critiques. However, this approach fails to develop satisfactory critique models, i.e., with
low performance. Delving into the optimization process, we reveal that while the helpfulness of the
critique models improves, their discriminability is not well optimized, leading to an optimization
bottleneck and even a collapse of RL training.

To address the challenges, Critique-RL employes a two-stage RL approach (§4.2). Specifically, as
shown in Figure 2] in the first stage, we optimize the discriminability of the critique models using
direct rule-based reward signals. In the second stage, we introduce indirect rewards based on the
correctness of actor refinement to enhance the helpfulness, while using appropriate regularization
to maintain their discriminability. In-depth training dynamics shows that our method addresses the
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training collapse and stably optimizes both discriminability and helpfulness. Extensive experiments
show that our method outperforms baselines across different models and tasks, yielding a 9.02%
improvement on in-domain tasks and 5.70% improvement on out-of-domain tasks for Qwen2.5-7B.
It is also noteworthy that critique models trained with our method can generalize to unseen tasks,
demonstrating its promise for scalable oversight.

In summary, our main contributions are:

1. Delving into the RL optimization process, we reveal that solely depending on indirect reward
signals of actor’s output correctness cannot develop effective critique models, which poses conflict
and optimization challenges between the discriminative and feedback capabilities of critics.

2. We then propose Critique-RL, a novel two-stage RL approach to develop critique models for
providing accurate assessment and helpful feedback for model outputs.

3. We perform in-depth experiments, ablation and analysis to show the effectiveness and stability of
our method. We hope our work provides insights for the community.

2 RELATED WORK

Prompt engineering for eliciting critiquing ability from language models. As a key technique
for scalable oversight (Bowman et al.l|2022), many previous works have explored the use of prompt
engineering to elicit the critiquing and reflection abilities of LLMs (Bai et al., [2022; Madaan et al.|
2023} Ye et al.,|2023; Dhuliawala et al., 2024). These methods typically rely on an oracle verifier
including answer matching or external tools at test time for discrimination, allowing the LLM to
focus solely on providing natural language feedback (Xi et al., 2024} Huang et al., |2024). However,
in the absence of an external verifier, even SOTA models face significant challenges (Saunders et al.,
2022; [Welleck et al., 2023} [Xu et al., 2024} |Huang et al., [2024). In this work, we do not assume an
oracle verifier; instead, we train critique models through RL to optimize both discriminability and the
ability to provide helpful feedback.

Fine-tuning language models for critiquing. Previously, a line of work has explored fine-tuning-
based approaches for training critique models (Saunders et al.,[2022; Bowman et al.| 2022} Xi et al.}
2024). However, these methods primarily rely on a stronger supervisor for data annotation, which is
costly and difficult to scale (Xi et al.,|2024). To address this issue, some researchers have proposed
self-improvement-based methods to train models for self-critiquing (Tang et al.l 2025} Zheng et al.,
2024} [Yuan et al., 2025)). Unlike these approaches, we adopt a two-player paradigm and train a
separated critique model through RL.

Reinforcement learning for language models. RL has become an essential component of LLM
post-training, such as RLHF for alignment (Ouyang et al.| [2022; |[Zheng et al., 2023; Wang et al.,
2024;|Shao et al.,|2024). Additionally, various works have leveraged RL to enhance language models’
performance in reasoning (Snell et al., 2024} [Kumar et al., [2024), coding (Kumar et al.| 2024), and
decision-making tasks (Shinn et al.,|2023)). Furthermore, some studies explore using RL to improve
LM’s ability for self-reflection and self-correction (McAleese et al.| [2024; [Kumar et al.|[2024; Welleck
et al., [2023; [Shinn et al.| 2023 Xu et al.| 2024; Ye et al.,|[2023). Other methods, such as Retroformer
(Yao et al.| |2024) and CTRL (Xie et al., 2025)), leverage indirect reward signals to optimize critique
model’s helpfulness, targeting decision-making tasks and coding tasks, respectively. However, their
RL phase overlooks the joint optimization of discriminability and helpfulness. Different from them,
we propose a two-stage Critique-RL approach to optimize both discriminability and helpfulness,
effectively developing critique models.

3 PRELIMINARIES

3.1 THE TwWO-PLAYER INTERACTION FRAMEWORK

The multi-agent framework in this work consists of two main roles (Yao et al., 2024 [Xi et al.| 2024):
the actor model and the critique model. It operates through a response-critique-refinement process.
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Specifically, given a question z, the actor model is expected to generate an original response y =
mo(x), which includes both the reasoning trajectory and the final answer. The correctness verifier then
provides an oracle reward 7 gpcle (2, ¥) to the actor model. Subsequently, the critique model g takes
the question-response pair (z, y) as input and produces critique ¢ = 74 (2, y), which should include
assessment of the response correctness (discriminability) and offer constructive natural language
feedback (helpfulness). Based on this critique, the actor model generates a refinement response
y = m(z,y,c), and subsequently receives an oracle reward rompee(z, 3 ). Using these rewards,

i.e., Toracle (T, y) and ropele (2, y/ ), we can design different reward functions . (+) for critique models,
which will be shown in §4]

3.2 PoLiCcY GRADIENT FOR LLMs

Policy gradient methods (Sutton et al.l [1999), e.g., REINFORCE (Ahmadian et al., 2024} [Kumar
et al.,[2024)), are common techniques to perform RL on LLMs (Ouyang et al., 2022). For the policy
critique model 7, parameterized by ¢, the objective of policy gradient is to find an optimal policy
that maximizes the reward function r.(-). It is typically expressed as maximizing:

By (cloy),” ~o(@,9,0) [re(z,y, 6,9 )], M
where ECN% Clos),y’ ~o (2,3.¢) denotes the expectation over the critique sampled from the critic 7

and the refinement response sampled from the actor my. This gradient is used to optimize the critique
model via gradient ascent. The positive critique is “reinforced” by increasing its probability.

3.3 EVALUATION METRICS

To evaluate the performance of the critique model, we consider the following metrics: (1)
Acc@Refine: the accuracy of the actor model’s refinement response; (2) A: the improvement
in the actor model’s accuracy between the original and refinement response, which measures the
effectiveness of the critique model; (3) A™*: the change rate from an originally correct response
to an incorrect refinement response. A lower value is better; (4) A*™¢: the change rate from an
originally incorrect response to a correct refinement response. A higher value is better; (5) Acc@Dis:
a direct metric to measure the discriminability of the critique model, which quantifies the accuracy of
whether the correctness accessed by the critic aligns with the true correctness of the original response.

4 METHODOLOGY

4.1 MOTIVATING FINDINGS: RL WITH INDIRECT REWARD SIGNALS IS INSUFFICIENT FOR
TRAINING SATISFACTORY CRITIQUE MODELS

In the two-player actor-critic framework (Yao et al.| [2024} Xi et al.| [2024)), a natural and intuitive way
to optimize the critiquing language models is to shape the reward signals derived from the actor’s
two attempts (original and refinement responses). We explore several reward shaping approaches,
demonstrate their failure modes, and investigate why they fail to incentivize satisfactory critiquing
ability.

Analysis setups: data, models, and training methods. Our preliminary experiments are on
GSMSK (Cobbe et al., [2021), and the backbone model is Qwen2.5-3B (Team, [2024). Following
previous work (Xi et al.| [2024), we train an actor model capable of generating responses and

reasonably following critiques. To build the SFT dataset for initializing a base critique model,

we prompt Qwen2.5-3B-Instruct to obtain critique data Dsgr = {z, y, c}lizsfﬂ, rather than using

annotations from SOTA commercial models like GPT-40 (OpenAll 2023)). We filter the critique data
based on the correctness of refinement to ensure the quality.

Next, we train the critique model 74 using the SFT loss:

ACSFT(QS) = E(x,y,C)NDSFT IOg 7T¢(C|$7 y) . 2)
We then employ policy gradient (Sutton et al.l [1999)) to maximize:

Ecw‘frs}(-\m,y),y’wwe(-|r,y,c) TC(I7 Y, ¢ y/) - BKL<7T4S1>FT(C|LB3 y)Hﬂ_gL(c‘xa y)):| ) 3

4
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Figure 3: Training dynamics of preliminary experiments. “Acc@Dis Originally Correct” and
“Acc@Dis Originally Incorrect” refer to the discrimination accuracy of originally correct and incorrect
responses, respectively. Baselines using indirect reward signals to optimize helpfulness tend to exhibit
overly conservative or aggressive behavior as the discriminability is not well optimized. In contrast,
our Critique-RL optimizes discriminability in Stage I, and optimizes helpfulness while maintaining
discriminability in Stage II, achieving better in Acc@Refine, A°% and A<,

where g is the fixed actor model, 73" is the SFT model. Each z is a query sampled from the RL
dataset Dgy, y is the original response. KL(:||-) means the KL-divergence which constrains the
distance between the RL model and the SFT model, and 3 is a scaling factor. r(-) is the reward
function for critique models. Here, with 74,1 being the oracle reward function that verifies the
correctness of an actor response, 7 (+) can be 7fne Which represents the correctness of the refinement:

Trefine (LC, Y, ¢, y/) = Toracle(l'v y,)v 4)

or it can be A which represents the difference in correctness between the actor’s two attempts:
AT, Y, ¢,Y") = Toracte (T, Y') — Toracte (2, 4). &)
Moreover, we also include 7comrection as 7 (+) for reinforcing the ability to correct incorrect responses:
1.0, Toracte (7, ¥) = 0 and Torete (2, 9') = 1,
Teorrection (T, Y5 €, Y') = § 0.2, Toracte (7, y) = 1 and 7orete (7, y') = 1, (6)
0.0, Toracte (7, ¥") = 0.

Empirical findings and behavior analysis. We illustrate the training dynamics during RL in
Figure 3| Optimizing with e and ra can reduce A%, preventing originally correct responses
from being altered incorrectly, but its A*~¢ is not significantly optimized, meaning its error correc-
tion performance is not good enough. This phenomenon reveals that the critique model is overly
conservative, encouraging the actor to not change its answers. As a result, the final Acc@Refine is
not satisfactory.

In contrast, optimizing with 7¢orection IMproves A7 but fails to effectively reduce A% This
means it often provides more aggressive suggestions, encouraging the actor model to correct incorrect
responses, but it also introduces a greater risk of turning originally correct answers into incorrect
ones. Similarly, the final Acc@Refine is also not satisfactory.

Analyzing underlying reasons for the failure modes. To reveal the reasons behind the above
failure modes, we also visualize the discrimination performance of the critiquing language models
during RL in Figure [3| We find that as RL progresses, all three reward functions 7efine, 7aA and
Teorrection fail to optimize discriminability effectively. For originally correct and incorrect responses,
they can only optimize the judgment for one, while the ability to judge the other is reduced. This
may be because both of the indirect reward functions are based on the actor’s responses, targeting
helpfulness and overlooking discriminability. This motivates the proposal of our method.
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4.2 TwoO-STAGE CRITIQUE-RL

Key challenges. Based on the previous analysis, we have identified two key challenges in RL for
critiquing language models: (1) optimizing the discriminability of critique models to improve their
accuracy in judging both correct and incorrect original responses; (2) improving the quality of the
model’s feedback, i.e., helpfulness, while maintaining its discriminability, to prevent the issues of
being overly aggressive or overly conservative.

Method overview. To address the above challenges, we propose the two-stage Critique-RL. In the

first stage, our method explicitly optimizes the discriminability of the critique model using direct
reward signals. We then use the resulting model witage'] as the initialization for the second stage. In
the second stage, we introduce a reward function based on the actor’s response to optimize the critic’s
helpfulness, while also incorporating appropriate regularization to maintain its discriminability. We

illustrate our method in Figure[2]and the algorithm is summarized in Algorithm|[I]

Stage I: optimizing discriminability through direct reward signals. We decouple the discrim-
inability and helpfulness of the critique models (Saunders et al} [2022)). In Stage I, we shape the
reward based solely on the actor’s original response. Given (z, y), critique models are prompted to
give correctness judgments for each step, and also provide a judgment for the final answer. Based on
this, we define the discriminability reward function of the critique models as:

Tdis(xa Y, C) =1 (f(a:, Y, C) = Toracle(ma y)) , @)

where f(z,y, c) is the critique model’s judgment of the correctness of the original response. 1(-) is
indicator function that returns 1 only when the condition inside the parentheses holds, and 0 otherwise.
Based on this, our Stage I RL maximizes:

E, el [,9) [rdis(% y,¢) — BRL(rS " (clz, )| (el y))} : (8)

where the KL divergence with the SFT model is still used to stabilize the training. As shown in Figure
[3] our Stage I RL can effectively and stably optimize discriminability, regardless of the correctness of
the original response.

Stage II: optimizing helpfulness while maintaining discriminability. The goal of the second
stage of Critique-RL is to optimize the helpfulness of the critique models without sacrificing their
discriminability, thereby avoiding overly conservative or overly aggressive behavior patterns. To
achieve this, we introduce a reward function 7.5, based on actor refinement correctness. Meanwhile,
to preserve the model’s discriminability, we retain r4;s and introduce a regularization term based on

the KL divergence with the Stage I model F(Sﬁtage—l. Specifically, we maximize the following objective:

Stage-1

|:T’reﬁne + 61 Tdis (CE, Y, C) — 52KL(7T¢ Stage-11

(el )72 (el )
&)
where 1 and (3 are scaling factors. As shown in Figure [3} our Stage II effectively optimizes
the model’s helpfulness, increasing A*~¢ and decreasing A", ultimately leading to a stable
improvement in Acc@Refine and A. Our method also performs strongly on the test set (see §3).

(&

E Stage-II
~ry S |2,y) Y e ()

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. Focusing on mathematical reasoning tasks, we select 5 different commonly-used tasks,
including free-from and multiple-choice. Following |Ding et al.| (2025)), we construct training set with
the train-split of MATH (Hendrycks et al., [2021]), GSM8K (Cobbe et al.} [2021), AQUA (Ling et al.,
2017). The testset of the three tasks are used as in-domain testset, while the test-split of SVAMP
(Patel et al.,|2021), TheoremQA (Chen et al.| 2023)), are used as our OOD (out-of-domain) testset.

Models and baselines. Our experiments are mainly conducted on Qwen2.5 series (Team, 2024,
i.e., Qwen2.5-3B and Qwen2.5-7B. Besides, we also conduct experiments on other models like
Qwen2.5-72B, Llama3.2 (Dubey et al., 2024)) and DeepSeek-R1-Distill-Qwen-7B (DeepSeek-Al,
2025) (see Appendix [D]and Section [6). We include several baselines: (1) SFT which fine-tunes
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Table 1: Main results. The best performance is in bold and underlined, while the second-best
performance is underlined. Our method is marked in blue . No Critic means the actor model
perform reasoning only, and we report the reasoning performance. For other methods, we report the
Acc@Refine performance for the acc column.

Model Method MATH GSMSK AQuA
Acc A Acc@Dis  Acc A Acc@Dis  Acc A Acc@Dis
No Critic 36.90 — - 66.03 — — 50.00 - -
SFT 44.24 7.34 66.51 69.14 3.11 76.34 46.46 —3.54 61.97
Qwen2.5-3B STaR 44.38 7.48 66.97 71.95 5.91 74.79 50.39  0.39 66.13
: Retroformer 44.54  7.64 65.11 70.51 4.47 77.59 51.18 1.18 58.44
CTRL 46.14  9.24 69.29 70.58  4.55 76.71 53.54  3.54 62.20
Critique-RL  48.60 11.70 82.80 75.89 9.86 87.44 56.69 6.69 69.92
No Critic 45.74 — — 75.66 — — 63.39 — -
SFT 51.84  6.10 67.59 78.77  3.11 79.42 59.45 —3.94 68.67
Qwen2.5-7B STaR 54.06 8.32 69.71 80.52  4.85 81.03 57.87 —5.51 72.18
. Retroformer  52.34  6.60 68.03 80.82 5.16 77.05 63.39  0.00 70.56
CTRL 53.86 8.12 71.42 81.35 5.69 83.44 64.96 1.57 71.66

Critique-RL  58.40 12.66 85.20 87.72 12.05 90.43 65.75 2.36 78.09

models with critique data. (2) STaR (Zelikman et al.| [2022) which iteratively fine-tunes critique
models on self-generated data and filtered based on the refinement correctness of the actor. (3) RL
baselines that leverages indirect outcome-based reward as baselines, i.e., Retroformer (Yao et al.,
2024) which uses PPO and CTRL (Xie et al.,[2025) which uses GRPO.

Implementation details. All experiments are conducted on 8 NVIDIA A800 GPUs. To initialize
an actor that can reason and refine based on the critiquing feedback, we follow Ding et al.| (2025)); X1
et al.| (2024) to construct a dataset of 21, 973 reasoning traces and 12, 000 refinement responses. For
critique data, we construct a set of 6, 000 examples, with 2,000 examples in each training task. For
fine-tuning actors, we set epoch to 3 and learning rate to 5e — 6, and remains fixed during further
training phase; for fine-tuning critics, we set epoch to 5 and learning rate to 5e — 6. We use the same
base model for the actor and the critique model. For STaR and RL, we perform SFT to obtain an
initialized model. In RL, we set KL coefficient to 0.01. In Critique-RL, we use RLOO as our base
algorithm as it performs well and does not require a value model. In Stage II, 3; is set to 0.2. We
train the critique model for 500 steps at each stage and report best results. During evaluation, the
temperature is set to 0. For inference-compute scaling and Pass@ K, we set temperature to 0.7.

5.2 MAIN RESULTS

Generally, critique models can significantly improve actor’s reasoning performance. The re-
sults in Table[T]demonstrate that when introducing critique models, the actor’s reasoning performance
can be boosted by a large margin. For example, in the MATH task, even the SFT Baseline outperforms
the model without a critic by 7.34 and 6.10 points on the 3B and 7B models, respectively. This
suggests that critique models are an effective scalable oversight method, as discussed in|Saunders
et al.|(2022); McAleese et al.|(2024).

RL-based methods outperforms fine-tuning-based ones. Both SFT and STaR methods lead to
promising critique models, but in most cases, online RL-based methods perform better, especially
our Critique-RL. For instance, on the 3B model, our method surpasses the SFT method by an average
of 7.11 points on accuracy across three datasets. It is worth noting that on AQuA, fine-tuning-based
SFT and STaR may lead to negative impact on performance, while our method provides significant
positive improvements. This reveals that online RL methods have greater potential and adaptability
in eliciting the model’s critiquing ability, similar to the findings in McAleese et al.| (2024).

Critique-RL consistently outperforms other baselines in discrimination and final accuracy. In
terms of discrimination, our method also significantly outperforms other baselines, such as surpassing
CTRL by 5.31, 6.36 points for 3B and 7B models on GSM8K, respectively. This reveals that our
discrimination-related reward shaping can effectively optimizes discriminability. Thanks to this and
the helpfulness reward design in the second stage, our method shows a significant improvement
in final performance compared to other baselines. For example, on the 7B model, our method
outperforms Retroformer by an average of 5.11 and 12.69 points on accuracy and discriminability,
across three datasets.
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5.3 ITERATIVE IMPROVEMENT OF CRITIQUE-RL

Furthermore, we validate the iterative imprOVe— Iterative Refinement: MATH Iterative Refinement: GSM8K
ment capability of Critique-RL through two key o &

aspects: (1) Iterative refinement process: Dur- ji *

. . . . . . . 74

ing the ¢-th iteration, the critic generates cri- w0 7,

tique ¢; = my(x, Yo, €1, ..., Cim1,Yi—1), While 4 "

the actor produces the refined response y; = I R U S S N S

. Number of samples Number of samples
mo(Z, Yo, €1, -, Yi—1, ¢;) accordingly. (2) Itera-
Sft critic Critique-RL

tive training process: We alternately conduct the

two-stage training of Critique-RL (Stage I and Figure 4: Results of iterative critique-refinement
Stage II) to optimize the critique model. The f Critique-RL using Qwen2.5-3B.
detailed results are shown in Figure 4 and Table

[2] respectively.

First, as demonstrated in Figure[d through itera- Table 2: Results of iterative training of Critique-RL
tive critique and refinement, the model exhibits using Qwen2.5-3B on MATH.
consistent Acc gains on Qwen2.5-3B, with each

iteration achieving measurable improvements. %eg;ﬁi %Cg A Acc@Dis
Second, iterative training leads to further perfor- SFT 442 7.3 66.5
mance enhancement, with detailed results using Iterationlls stage I 459 9.0 78.7

. .. Iteration 1, Stage I 48.6  11.7 82.8
Qwen2.5-3B on MATH dataset shown in Ta-  Critique-RL 1o 5 'Gpee T 495 126 85.0

ble[2] Specifically, both Stage I and Stage II Iteration 2, Stage Il 51.0 14.1  86.5

of Critique-RL demonstrate consistent improve-

ment in Acc and Acc@Dis metrics. Compared to the first iteration, the second iteration improves by
2.40 and 3.68 points on accuracy and discriminability.

6 DISCUSSION AND ANALYSIS

Ablation on different stages. We conduct ab- Table 3: Ablation study using Qwen2.5-3B. We
lation experiments to validate the importance of report the Acc@Refine. “w/0” means without;
different components. The results are shown in “Stage II w/o discrimination” means in Stage II, we
Table 3] Both Stage I and Stage II are crucial, remove - 4is and KL(Fitage-I‘ |7r2tage—ﬂ) : “Stage I w/
and removing ejther 'of them leads' toa perfor- . A7 and “Stage T W/ Tcomection” mean replacing the
mance d.rop.fl.“hls indicates that 0p.t1m1z1ng~b0.th Trefine With the corresponding reward function.
discriminability and helpfulness is essential in

developing critique models. Method — et — em it —
cC eline CcC s cC eline CcC s
Ablation on reward design for Stage II.  cCriiqueRL Ours) 8.6 82.8 56.7 69.9
. -w/o Stage I 47.6 79.7 53.9 66.5
Next, we perform a deeper analysis of the re-  -woostgen 159 787 547 68.2
Ward design in Stage II First lf we remove -Stage IT w/o discrimination 47.3 7.7 53.5 61.6
. ) Stage T w/ra 48.2 82.6 53.9 68.4
the discrimination-related rg, and KL-based St/ reomeio T £2.0 AT 684
N Stage-1|| _Stage-II _
regularization KL (7 "*""| |7 **7), the discrim-

inability and accuracy suffer a significant drop. This further emphasizes that when optimizing for
helpfulness, it is crucial to maintain the model’s discrimination ability. Second, when we replace
the reward function 7y, in Stage II with another reward function, i.e., 7 A and 7correction, W€ Observe
a slight performance drop. This may be because 7efpne directly optimizes the Acc@Refine metric,
which aligns most closely with the test-time scenario.

Analysis of helpfulness when the oracle verifier Is available. Many previous works have relied on
an external oracle verifier to assess the actor’s reasoning results (Bai et al.} 2022; Madaan et al.,|2023;
Ye et al.| 2023} [Dhuliawala et al., [2024)). In this scenario, the model’s judgment ability is isolated,
allowing us to better evaluate the critique model’s helpfulness. We conduct relevant experiments,
and the results are shown in Figure[5] We find that when the oracle verifier is available, all baselines
show performance improvements. In this case, our method still outperforms others across different
datasets and models, indicating that our approach significantly enhances the model’s helpfulness.
Furthermore, comparisons with other RL baselines reveal that the optimization of discriminability in
our method also implicitly contributes to the improvement of helpfulness, suggesting that the two
abilities are not entirely independent. This further emphasizes the importance of optimizing both
abilities jointly in developing critique models.
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Qwen2.5-3B on MATH Qwen2.5-3B on GSM8K Qwen2.5-3B on AQuA
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533 80 78.7
502 73.6 9 60 6 571 58.7 o1 o
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Figure 5: Performance with and without the oracle verifier. When the oracle verifier is available,
the model no longer needs to make discrimination and just needs to provides useful feedback. This
allows us to evaluate the model’s helpfulness more accurately.

Evaluation of test-time inference compute scaling for Critique-RL. We investigate whether
Critique-RL can be combined with inference-time compute scaling strategy. Following (Qu et al.
(2024); Snell et al.| (2024); [Xi et al.| (2024)), we leverage the commonly used majority vote (MV @ K)
(Wang et al.} 2023) which evaluates whether the most frequent answer among K samples is correct.
The results of MATH are shown in Figure [T] and the results of GSM8K are shown in Figure [6] of
Appendix [F] Compared to the baseline, Critique-RL significantly increases the performance ceiling
and shows a more sustained upward trend as inference compute scales. More importantly, performing
K x response-critique-refinement sampling is more compute-efficient than conducting 3K x parallel
sampling responses, suggesting the compute-efficiency of Critique-RL.

Generalization to OOD tasks. We Table 4: Out-of-domain evaluation of Critique-RL.
also validate the generalization of the

. .. SVAMP TheoremQA
models trained by Critique-RL on OOD Model Method Ae P10 Acc Pam@lo
tasks. The resglts in Table!ZI shovy that No Criic 707 99.0 51 318
the models trained still delivers signifi- SFT 747 95.7 15.3 36.1

cant performance improvements’ further Qwen2.5-3B  Retroformer  75.0 96.0 16.1 37.0

. : : CTRL 760 957 158 365
demonstrating the potential of this scal- CritqueRL  78.3 963 168 378

able oversight approach. NoCritic 803 9057 194 398
SFT 83.0 95.7 20.5 41.9

. " Qwen2.5-7B  Retroformer  84.0 96.0 20.0 42.3

Performance of our trained critique CTRL 5.1 06.7 211 12.9
models on actor models with differ- Critique-RL  89.7 97.0 214  43.0

ent capability levels. To further inves-
tigate the Critique-RL in varying base Table 5: Performance on DeepSeek-R1-Distill-Qwen-7B
models, we conduct two types of exper- as actor.

iments. In the first setting, we use a Method __Tn-Domain: MATH-500 0OD: TheoremQA
strong reasoning model DeepSeek-R1- etho Acc A Acc@Dis Ace A Acc@Dis

Distill-Qwen-7B (DeepSeek-All [2025) No Critic ~ 84.60 - - 21.63 - -

> : SFT 85.60 1.00 8340  29.75 813  24.38
as our actor model while using Qwen2.5- g romer 8550 120 8480 2038 775 2238
7B as our critic model. This evaluation CTRL 85.80 1.20 8480  29.00 7.38  21.25

setting investigates the generalization of ~ _Critique-RL 86.60 2.00 93.00 30.38 8.75 51.13
Critique-RL to reasoning models. The

results in Table ] reveal that, besides non-reasoning models (Qwen2.5-3B, Qwen2.5-7B) with struc-
tured CoT, our method is also effective for reasoning models with complex CoT structures on both
in-domain and out-of-domain tasks, particularly in terms of the Acc@Dis achieved by the critique
models. While DeepSeek-R1-Distill-Qwen-7B already performs strongly on MATH-500, critique
models can still offer marginal gains in reasoning accuracy. More impressively, on the TheoremQA
dataset which spans diverse domains including Math, EECS, Physics and Finance, critique mod-
els substantially boost performance, highlighting the strong generalization ability of our approach.
Notably, Critique-RL outperforms SFT, Retroformer, and CTRL by 26.75, 28.75, 29.88 points in
Acc@Dis, respectively, on the TheoremQA dataset—doubling the performance of these baselines.

In the second setting, we use Qwen2.5-72B-Instruct as the actor model and Qwen2.5-7B as the
critique model to investigate weak-to-strong generalization.
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The results in Table[6]show that Critique- Table 6: Performance on Qwen2.5-72B-Instruct as actor.
RL improves actor performance even in

In-Domain: MATH-500 OOD: TheoremQA

large-scale settings, though with less pro- Method Acc A Acc@Dis  Acc A Acc@Dis
nounced gains compared to smaller-actor NOS(ErTitiC ;g%g o0 soo0 3%?2 05 9300

. . . J. . . DL 4] J.
settings. Nonetheless, it still outperforms  peiiformer 7920 010 80.60 2175 038 2138
baselines on both in-domain and out- CTRL 7940 030  79.40 2150 0.3  21.13

of-domain tasks. Notably, our method ~_Critique-RL 80.30 1.20 89.20  23.50 210  46.63
achieves significantly higher discrimina-
tion, confirming the effectiveness of our discrimination-based reward shaping.

More experiments and qualitative analysis. We conduct extensive experiments to show the effec-
tiveness and working mechanism of Critique-RL, with the detailed results presented in the Appendix:
(1) In addition to the Qwen2.5 series (Team) 2024)), we evaluate our method on different architectures
including Llama3.2 (see Appendix [D). (2) We compare Critique-RL with other refinement methods
including Self-Refine (Madaan et al., 2023)), SuperCorrect (Yang et al.,|2024) and Critic-Cot (Zheng
et al., 2024), and the results are presented in Appendix [E| (3) We also perform test-time scaling
analysis of sampling multipe refinement on the same response, with results presented in Appendix
[Fl (4) We conduct experiments on summarization tasks using CNN/DailyMail (Hermann et al.|
2015)) dataset to investigate our method’s generalization ability on open-ended tasks where rule-based
verifier cannot be directly applied, the results are in Appendix [G] (5) We perform a qualitative analysis
on how Critique-RL works and provide several examples in Appendix [J}

7 CONCLUSION

In this paper, we propose Critique-RL, an RL approach for developing critique models. Through
in-depth analysis, we highlight the importance of explicitly optimizing model discriminability and
propose a two-stage RL approach that effectively optimizes both discriminability and helpfulness.
We validate its stability and superiority through detailed experiments, and further uncover its working
mechanism through ablation studies and analyses. We hope that our work can provide insights for the
scalable oversight community of language models.

ETHICS STATEMENT

This paper presents Critique-RL, a novel two-stage RL approach to develop critiquing language
models for providing accurate assessment and helpful feedback for model outputs. We firmly state
that this work is intended for ethical and constructive purpose. While no immediate societal harms
are evident, this approach enables scalable supervision by training models with minimal direct human
oversight. Nevertheless, its potential susceptibility to misuse warrants proactive measures to ensure
responsible governance.

REPRODUCIBILITY STATEMENT

We claim our detailed experiment setting in In addition, we upload anonymized versions of our
data and code in a Zip file with a Readme file to ensure easy reproduction of all reported results.
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A THE USE OF LARGE LANGUAGE MODELS

LLMs are utilized in this manuscript for partial grammatical checks and language polishing. The
authors are fully responsible for the final content.

B ALGORITHM OF CRITIQUE-RL

Our main algorithm is summarized in Algorithm T}

Algorithm 1: Critique-RL

Input: Actor model 7y, base critique model 74, SFT dataset Dsgr, RL dataset Dgy, function that
extracts the correctness of a response judged by a critique f, oracle reward function
T'oracle, discrimination reward function 7 ;.

Procedure Supervised Fine-tuning:

wiFT — T

Update 73" by minimizing Lser(¢) = E(4,y,0)Dgr | 108 T (cl, y) |5
Procedure Critique-RL Stage I: optimizing discriminability through direct reward signals.
Stage-1 SFT.
T STy s
for batch in Dy, do
for x in batch do
Stage-1,

Generate y and ¢ with 7g and 7,

Compute discrimination reward with rqs(x, y, ¢) = 1 ( f(z,y,¢) = Torace (T, y)) ;
end
Update ﬂzmge'l by maximizing

Stage-1
ECNﬂiage-l(.‘m’y) [rdis(wa Y, C) - 5KL(7T3>FT(C|$7 y)‘|7r¢tag (C|1'7 y)):| 5

end

Procedure Critique-RL Stage II: optimization helpfulness while maintaining discriminability.
7T_Stage—II «— 7_‘_Stage—l,

for batch in Dry, do
for z in batch do
Generate y, ¢ and y with 79 and ﬂZtage-H;

Compute discrimination reward with rqs(x,y,¢) = 1 (f(a:, Y, €) = Toracle (2, y)) ;

Compute refinement reward with 7efine = Toracte (Z, Y );
end

Update ﬂitage'n by maximizing E__ [7” refine + B174is (T, Y, €) —

Stage-IT
T SN |2,y) sy e (e, ysc)

Stage-T Stage-1I
BoKL(my ™ (cl, y) |y ™ (cla, ) |-

end

C PERFORMANCE ON MORE CHALLENGING BENCHMARKS

To further validate the effectiveness of Critique-RL, we conduct experiments using Qwen2.5-7B-
Instruct and evaluated on the AIME2024, AIME2025 (AIME, 2025), and GPQA-Diamond (Rein et al.,
2024) benchmarks. We used General-Reasoner-7B (Ma et al., [2025) as the actor and constructed
a training set of 30k examples based on the Weblnstruct-Verified (Ma et al. [2025) dataset for
RL training. The experimental results are in Table [7] The experimental results demonstrate that
our method significantly improves the critique model’s discriminability, with particularly notable
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Table 7: Performance on challenging benchmarks using Qwen2.5-7B-Instruct.

Methods GPQA-Diamond AIME2024 AIME2025
Acc A Acc@Dis Acc Delta Acc@Dis Acc A Acc@Dis
No Critic 34.30 - - 11.98 - - 6.67 - -
SFT 35.86 1.56 41.20 12.30 0.32 22.71 7.50 0.83 6.67

Critique-RL  37.37 3.07 51.52 13.75 1.77 53.44 850 1.83 30.10

improvements on the challenging reasoning datasets AIME2024 and AIME2025. Without fine-grained
hyperparameter adjustments, our method outperforms the baseline across all three benchmarks,
proving the effectiveness of Critique-RL in complex reasoning scenarios.

D PERFORMANCE ON VARYING MODEL SERIES

Table 8: Performance on LLlama3.2-3B with GSM8K.

GSMS8K
Method Acc A Acc@Dis
No Critic 49.28 - -
SFT 50.80 1.52 68.11

Retroformer 52.08 2.81 63.85
CTRL 52.24  2.96 66.01
Critique-RL  52.99 3.72 75.04

To evaluate the effectiveness and generalization capability of Critique-RL, we conduct experiments
using the Llama3.2-3B (Dubey et al.| 2024) model on the GSMS8K dataset. As shown in Table@
Critique-RL proves effective not only on Qwen2.5 models but also on Llama3.2 models, particularly
in enhancing the discriminability of the critique models. These results highlight the adaptability and
robust performance of Critique-RL across different model architectures.

E COMPARISON WITH OTHER IMPORTANT REFINEMENT METHODS

To further validate the advantages of Critique-RL over other refinement methods, we conduct
evaluations of other refinement methods including Self-Refine (Madaan et al., |[2023)), SuperCorrect
(Yang et al.,[2024)) and Critic-Cot (Zheng et al.,|2024) with Qwen2.5-3B on GSMS8K. For a fairer
comparison, we train the models in Self-Refine and Critic-CoT using the same dataset(sampled
from Qwen2.5-3B-Instruct) as Critique-RL. In terms of SuperCorrect, we choose Deepseek-R1
(DeepSeek-AlL 2025) as the teacher model to create both the Hierarchical Thought Templates and
positive critique datasets. The results are presented in Table[9] Critique-RL significantly outperforms
all other methods in both Acc and Acc@Dis, surpassing Critic-CoT and SuperCorrect by 5.31 and
3.11 points in terms of Acc, respectively. Moreover, Critique-RL outperforms Self-Refine across
refinement iterations, demonstrating its greater effectiveness. Notably, SuperCorrect exhibited poor
discriminability, likely because it simply used teacher model data as positive examples and student
model data as negative ones for DPO training. Given the GSM8K dataset’s simplicity, the student
model’s output is not consistently inferior to teacher model’s, leading to potential impairment to the
model’s discriminability.

These refinement methods are implemented using SFT (Self-Refine), self-improve (Critic-CoT) or
intricate SFT+DPO (SuperCorrect) approaches, wheras Critique-RL employs an online RL methodol-
ogy, which accounts for its observed performance advantages.

F MORE TEST-TIME SCALING RESULTS

The results of inference compute scaling on GSM8K are illustrated in Figure[6] Similar to the findings
on MATH, Critique-RL is more compute-efficient and significantly increases the performance ceiling,
validating the potential of our approach. In addition, we evaluate the refine compute scaling of
SFT and Critique-RL across MATH, GSMS8K, and AQUA, as illustrated in Figure[/| Critique-RL
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Table 9: Comparison with other refinement methods with Qwen2.5-3B on GSMS8K.

GSMSK
Method Acc Acc@Dis
iteration=1  71.42 75.84
Self-Refine i ation=2 7271 76.52
Critic-CoT 70.58 74.70
SuperCorrect 72.78 62.17
Critique-RL (Ours) 75.89 87.44

consistently achieves approximately twice the sampling efficiency of SFT. Notably, with the 7B

model on GSMSK, Critique-RL’s Pass@1 even surpasses the SFT’s Pass @64, demonstrating the
effectiveness of our approach.

%0 Scaling Inference Compute: GSM8K
M
+4%1
851 . 4x %l
M 204
@ 80
k]
2751
: -
< -
<01 A Crlflf]ue RL
w/o critic (@k)
651 w/o critic (@2k)
w/o critic (@3k)

21 22 23 24 2 2° 27
Number of samples

Figure 6: Inference compute scaling for Critique-RL, with @2k and @3k indicating sampling
amounts that are 2 times and 3 times the x-axis value, respectively. Critique-RL improves the
performance ceiling and is more compute-efficient.
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Figure 7: Refine compute scaling for Critique-RL and SFT critic with Qwen2.5-3B and Qwen2.5-7B.

G PERFORMANCE ON SUMMARIZATION TASK

For open-ended tasks where rule-based verifiers cannot be directly applied, reward signals can be

provided through additional reward models or Al feedback (e.g., using GPT-40 (OpenAl, |2023) for
judgement).
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We conduct experiments of Critique-RL with Qwen2.5-7B-Insturct (Team) 2024)) on summarization
task using CNN/DailyMail (Hermann et al., 2015) dataset. Specifically, given an article x, the actor
model generates an original summary y. The reward model (Skywork-Reward-V2-Llama-3.1-8B
(Liu et al.l [2025)) then evaluates the summary, with its output linearly scaled to a 1-10 range, i.e.,
Toracle (T, ¥). Subsequently, the critique model produces critique ¢, which includes comments about
the summary across key criteria, a quality score from 1-10, and improvement suggestions. The actor
model then generates a revised summary y’ accordingly, which is also scored by the reward model to
yield a refinement Score Trefine = Toracle (Z, 3’ ). Based on this, we define the discrimination reward
function of the critique model as:

|f(2,y,c) — roracle(xvy)‘)
é

where f(x,y, ¢)is the quality score of the original summary from critique model. ¢ is the permissible
maximum error range.

Tdis(xv Y, C) = max(O, 1-

In stage I, we optimize the discriminability of the critique model using r4s(, y, ¢); In stage II, we
optimize the helpfulness while maintaining discriminability using the following reward function:

Tstagell = T'refine + Blrdis (:Ea Y, C)

In our experiments, we select 5000 training and 1000 test queries from CNN/DailyMail 3.0.0’s
official splits. The results are presented in the Table [I0]

The results reveal that Critique-RL can effec- Table 10: Performance on summarization task us-
tively optimize discriminability, yielding im- ing Qwen2.5-7B-Instruct. We report the original
provement in summary quality. We use MSE  Score by reward model. The MSE@Dis stands
and MAE to measure the error between the for mean square error, and MAE@Dis stands for
quality scores produced by the critique model mean absolute error, where smaller values indicate
and those from the reward model. Specifi- stronger discrimination abilities.

cally, Critique-RL outperforms baseline by 0.87

points in Score, 7.87 points in MSE@Dis and CNN/MD

1.79 points in MAE@Dis. These improvements Scoret Deltat MSE@Dis, MAE@Dis)

demonstrate the strong generalization ability of  No Critic 19.69 - - -
7B-Instruct 1994 0.25 9.46 2.77

our approach to open-ended tasks, contributing

X Critique-RL (Ours)  20.81 1.12 1.59 0.98
to scalable oversight.

H VALIDATING THE EFFECTIVENESS OF CRITIQUE MODEL

Introducing a separate critique model leads to increased manual effort and additional complexity.
To validate the usage of the critique model, we compare Critique-RL with actor-only RL method to
show that training a critique model provides significant benefits over directly optimizing the actor.
In particular, for actor-only method, we conduct experiments on directly RL the actor and SCoRe
(Kumar et al., |2024); for actor-critic paradigm, we use a SFT-based critique model as well as our
Crituge-RL. For a fairer comparison, we train the actor model using the same reasoning traces as
Critique-RL in direct RL and using the same reasoning, critique and refinement dataset as Critique-RL
in SCoRe. All experiments are conducted with Qwen2.5-7B on the Math dataset.

Table 11: Comparison with actor-only RL method.

Category Method Ace MAI;F?C @Dis
Directly RL | 49.78 -
SCoRe 56.52 72.51
SFT 51.84 67.59
Critique-RL | 58.40 85.20

Actor-only

Actor-Critique

The results in Table [IT|show that Critique-RL significantly outperforms Directly RL by 8.62 points
in terms of Acc. Also Critique-RL outperforms SCoRe by 12.69 points in terms of Acc@Dis, and
1.88 points in terms of Acc. Note that during the training process of Critique-RL, the actor model
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remained fixed and is thus inherently weaker in reasoning and refinement than the trained SCoRe
actor model. Importantly, the trained critique model can be flexibly applied to other stronger actor
models (weak-to-strong) and reasoning models to further improve their performance(see Section [6)).
This modularity and transferability are advantages that SCoRe lacks.

Moreover, we conduct the test-time scaling experiment. The majority vote (MV @K) results are as
shown in Table [I2] The results show that even the actor model has been well-trained, generating
parallel responses still underperforms Critique-RL’s response-critique-refinement process. Notably,
Critique-RL’s MV @1 even surpasses Directly RL’s MV @12. This highlights the compute-efficiency
of Critique-RL.

Table 12: Performance comparison between Directly RL and Critique-RL under MV @K.

K Directly RL Critique-RL
MV@K MV@2K MV@3K MV@K

1 49.78 50.05 52.39 58.40

2 50.05 53.49 55.04 59.10

4 53.49 95.08 56.75 65.91

I SENSITIVITY ANALYSIS
For solidness, we provide details about different values for 3, 31, 82 and training steps per stage.

Experiments on different values for 3, 51, and 5. We exemplify our selection of the parameters
B, B1, and B2 by presenting the performance of the Qwen2.5-3B model on the GSM8K dataset as
an example. The results in Table[I3]reveal that these parameters are not sensitive, so we ultimately
choose 5 = 0.01, 51 = 0.9, and B = 0.95 for our experiments.

Experiments on different training steps per stage. We show the performance of the two stages of
Critique-RL at different training steps with Qwen2.5-3B on MATH dataset. The results in Table [I4]
indicate that within 500 steps of Stage I, the model’s discriminability was substantially enhanced,
with Acc@Dis rising from 66.51 to 78.68. During Stage II, the model maintained this discriminability
while further improving helpfulness, with Acc increasing from 45.90 to 48.60.

While further refinement of parameters could potentially yield additional performance gains, the
current experimental outcomes are already statistically sound and adequately substantiate our core
conclusions.

J  QUALITATIVE ANALYSIS

We perform a qualitative investigation into how Critique-RL works and provide several examples
in Appendix [J] In Figure 8] facing the originally incorrect response, the critique model after SFT is
unable to detect errors, leading the actor’s refinement response to retain the same errors. However,
the model trained after Critique-RL identifies the errors in the original response and provides detailed,
constructive suggestions for modification, leading to the correct refinement response. In Figure [0}
model trained after Critique-RL Stage I is able to detect errors, demonstrating its discriminability.
However, the model provides the actor with low-quality suggestion, causing the actor’s refinement
response to be incorrect. In contrast, for the same erroneous original response, model trained after
Critique-RL Stage II not only detects the error but also offers a constructive suggestion, ultimately
leading to the correct refinement response, demonstrating the advantage of two-stage RL process.

To directly assess the quality of critiques generated by Critique-RL, we randomly collect 600 critiques
that successfully helped refine incorrect answer into correct ones. We leverage GPT-40 with ground-
truth answers and solutions as references to evaluate quality more accurately. The results show that
96.2% of these critiques made correct discriminative judgments, and 93.3% were rated as high-quality,
demonstrating that Critique-RL produces reliable and helpful critiques.
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Table 13: Results of different values for 3, 81, and 32 with Qwen2.5-3B on GSM8K.

Parameter Value Acc Delta Acc@Dis
0.008 74.60 8.57 86.24
I} 0.01 75.89 9.86 87.44
0.012 74.22 8.19 87.10
0.88 74.60 8.57 86.18
051 0.9 75.89  9.86 87.44
0.92 74.68 8.65 86.09
0.93 74.68 8.65 85.99
B2 095 75.89 9.86 87.44
0.97 7437 8.34 85.74

Table 14: Results of different training steps per stage with Qwen2.5-3B on MATH.

Critique-RL Stage I  Critique-RL Stage II
Acc Acc@Dis Acc Acc@Dis
0 44.24 66.51 45.90 78.68

100 44.22 68.26 45.88 80.56

200  44.60 71.53 46.82 81.77

300  44.89 75.72 47.02 82.47

400  45.18 78.20 47.90 83.06

500 45.90 78.68 48.60 82.80

Step
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Problem: Each person in a certain household consumes 0.2 kg of rice every meal. Supposing 5 members of the household eat rice every lunch and dinner, how many weeks will a 42 kg

bag of rice last?

Ground Truth Answer:

« Each person eats 0.2 kg/meal x 2 meals/day = <<0.2#2=0.4>>0.4 kg of rice
per day.

So, the 5 members consume 0.4 kg/day/person x 5 people = <<0.4*5=2>>2
kg of rice per day.

In a week, the household consumes 2 kg/day x 7 days/week =
<<2*7=14>>14kg of rice.

« Thus, 42 kg of rice will last 42 kg / 14 kg/week = <<42/14=3>>3 weeks.
The answer is 3.

Actor Model (original response):

Let's break it down step by step:

1. The household consumes 0.2 kg of rice per meal * 2 meals per day = 0.4 kg of rice
per day.

2. The household consumes 0.4 kg of rice per day * 5 days per week = 2 kg of rice per
week.

3. A 42 kg bag of rice will last 42 kg / 2 kg per week =21 weeks.

The answer is 21. Correctness Verifier:

Critique Model after SFT

Critique Model (critique):

Step sentence: The household consumes 0.2 kg of rice per meal * 2 meals per
day = 0.4 kg of rice per day.

Correctness of the step: Correct

Explanation: This step correctly calculates the daily rice consumption by
multiplying the amount consumed per meal (0.2 kg) by the number of meals
per day (2).

Step sentence: The household consumes 0.4 kg of rice per day * 5 days per
week =2 kg of rice per week.

Correctness of the step: Correct

Explanation: This step correctly calculates the weekly rice consumption by
multiplying the daily consumption (0.4 kg) by the number of days in a week
).

Step sentence: A 42 kg bag of rice will last 42 kg / 2 kg per week = 21 weeks.

Correctness of the step: Correct

Explanation: This step correctly calculates the number of weeks the 42 kg bag
of rice will last by dividing the total amount of rice by the weekly consumption
(2 kg per week).

Correctness of the final answer: Correct
Explanation: The final answer of 21 weeks is correct based on the calculations
provided in the solution.
Discrimination Verifier: €

Actor Model (refinement response):
Let's break it down step by step:
1. Calculate the daily rice The 0.2 kg of
rice per meal. Since there are 2 meals per day, the daily consumption is:

0.2 kg/meal x 2 meals/day = 0.4 kg/day.
2. Calculate the weekly rice ion: The hold 0.4 kg of
rice per day. Since there are 5 days per week, the weekly consumption is:

0.4 kg/day x 5 days/week = 2 kg/week.
3. Caleulate how many weeks a 42 kg bag of rice will last: A 42 kg bag of
rice will last:

42 kg + 2 kg/week = 21 weeks.
The answer is 21.

Correctness Verifier: €

Critique Model after Critique-RL Training
Critique Model (critique
Step sentence: The household consumes 0.2 kg of rice per meal * 2 meals per day = 0.4 kg
of rice per day.

Correctness of the step: Wrong
Explanation: This step is wrong because it incorrectly calculates the daily rice
consumption. Since 5 members of the household eat rice every lunch and dinner, and each
person consumes 0.2 kg of rice per meal, the daily consumption is:

5 members X 2 meals/day x 0.2 kg/meal = 2 kg/day

Step sentence: The household consumes 0.4 kg of rice per day * 5 days per week =2 kg of

rice per week.

Correctness of the step: Wrong

Explanation: This step is wrong because it incorrectly calculates the weekly rice

consumption. Given the correct daily consumption is 2 kg/day, the weekly consumption is:
2 kg/day x 7 days/week = 14 kg/week

Step sentence: A 42 kg bag of rice will last 42 kg / 2 kg per week = 21 weeks.
Correctness of the step: Wrong
Explanation: This step is wrong because it incorrectly calculates the duration the rice will
last. Given the correct weekly consumption is 14 kg/week, the duration the 42 kg bag will
last is:

42 kg + 14 kg/week = 3 weeks

Correctness of the final answer: Wrong
Explanation: The final answer of 21 weeks is incorrect. The correct answer is 3 weeks.
Discrimination Verifier: @
Actor Model (refinement response):
Let's break it down step by step:
To determine how many weeks a 42 kg bag of rice will last for a household, we need to
consider the following:
1. Daily Rice Consumption Calculation: There are 5 members in the houschold. Each
member consumes 0.2 kg of rice per meal. Each member eats rice at 2 meals per day (lunch
and dinner). Therefore, the total daily rice consumption is:
5 members X 2 meals/day X 0.2 kg/meal = 2 kg/day
2. Weekly Rice C ion C ion: The daily ion is 2 kg. There are 7
days in a week. Therefore, the weekly rice consumption is:
2 kg/dayx7 days/week = 14 kg/week
3. Duration the Rice Will Last: The household has a 42 kg bag of rice. The weekly
consumption is 14 kg. Therefore, the number of weeks the rice will last is:
42 kg + 14 kg/week = 3 weeks

The answer is 3. Correctness Verifier: @

Figure 8: Example 1 of qualitative analysis. The actor’s original response is incorrect. The model
after SFT is unable to detect errors in the response, leading the actor’s refinement response to retain
the same errors. However, the model trained after Critique-RL identifies the errors in the original
response and provides detailed, constructive suggestions for modification, leading to the correct
refinement response.

22



Under review as a conference paper at ICLR 2026

Problem: Dennis uses 1 pound of butter for every dozen croissants that he makes. He needs to make 6 dozen croissants. The grocery store currently has a promotion for buy one pound
of butter get one half off. If the butter costs $4.00 a pound, how much will it cost him to purchase 6 pounds of butter?

Ground Truth Answer:

+ 1 pound of butter makes 1 dozen croissants and he needs to make 6 dozen so
he needs 1*6 = <<1*6=6>>6 pounds of butter.

The butter is $4.00 a pound and currently on sale for buy one get one half
off so every unit of 2 pounds of butter will cost 4*1.5 =
$<<4*1.5-6.00>>6.00.

+ He needs 6 pounds of butter and the current promotion is for a unit of 2
pounds of butter so he needs to buy 6/2 = <<6/2=3>>3 units worth of butter.
The sale price is $6.00 per 2 pounds of butter and he needs to buy 3 units of
butter so 6*3 = $<<6*3=18.00>>18.00 worth of butter.

The answer is 18.

Actor Model (original response):

Let's break it down step by step:

1. He needs to buy 3 pounds of butter because 6 /2 =3.
2. 3 pounds of butter would cost $12 because 3 x 4 =
3. He will pay $6 because 12/2 = 6.

The answer is 6.

Correctness Verifier: €

Critique Model after Critique-RL Stage I Training

Critique Model (critique):

Step sentence: He needs to buy 3 pounds of butter because 6 /2 = 3.
Correctness of the step: Wrong

Explanation: Dennis needs to make 6 dozen croissants, and he uses 1 pound of
butter per dozen. Therefore, he needs 6 pounds of butter. The calculation 6 /2
=3 is incorrect. He needs to buy 6 pounds, not 3.

Step sentence: 3 pounds of butter would cost $12 because 3 x 4 = 12.
Correctness of the step: Wrong
E ion: Although the calculation of the cost is correct (3 pounds at $4
per pound equals $12), the premise is wrong. Dennis needs 6 pounds of butter,
not 3. The correct calculation should be 6 pounds at $4 per pound, which
equals $24.

Step sentence: He will pay $6 because 12/2=6.

Correctness of the step: Wrong

Explanation: The calculation 12 /2 = 6 is correct based on the promotion (buy
one pound get one half off), but it does not apply to the correct amount of
butter needed. Dennis needs 6 pounds, not 3. The correct calculation should be
based on the full price of 6 pounds, which is $24.

Correctness of the final answer: Wrong
Explanation: The final answer of 6 is incorrect. Based on the correct
calculations, Dennis needs 6 pounds of butter at $4 per pound, which totals $24.

Actor Model (refinement response):

Let's break it down step by step:

To determine how much it will cost Dennis to purchase 6 pounds of butter, we

need to consider the following:

1. Butter Requirement: Dennis needs to make 6 dozen croissants, and he uses

1 pound of butter per dozen. Therefore, he needs 6 pounds of butter.

2. Promotion Details: The store has a promotion where you buy one pound of

butter and get the next pound at half price.

3. Cost Calculation:

+ Full Price for 6 Pounds: Since the promotion applies to each pair of
pounds, we need to calculate the cost based on the full price for 6 pounds.

+ Cost for 6 Pounds: The cost of 6 pounds of butter at $4 per pound is $24.
Therefore, the total cost for 6 pounds of butter is $24.

The answer is 24.

Cor

Discrimination Verifier:

ctness Verifier:

(]

Critique Model after Critique-RL Stage II Training
Critique Model (critique):
Step sentence: He needs to buy 3 pounds of butter because 6 /2 = 3.
Correctness of the step: Wrong
Explanation: Dennis needs to make 6 dozen croissants, and he uses 1 pound of butter per
dozen. Therefore, he needs 6 pounds of butter. The promotion does not change the fact that
he needs 6 pounds. The calculation 6 /2 =3 is irrelevant to the problem.

Step sentence: 3 pounds of butter would cost $12 because 3 x 4 = 12
Correctness of the step: Wrong
E Although the is "buy one pound of butter, get one half off," Dennis
needs 6 pounds of butter. The promotion applies to each pound he buys, so for every 2
pounds, he pays $4 + $2 = $6. Since he needs 6 pounds, he can take advantage of the
promotion 3 times (6 pounds / 2 pounds per promotion). Therefore, the total cost is 3 * $6 =
$18.

Step sentence: He will pay $6 because 12/2 = 6.

Correctness of the step: Wrong

Explanation: The calculation "12 /2 = 6" is incorrect. Based on the previous explanation,
the total cost is 3 X $6 = $18. Therefore, he will pay $18 instead of $6.

Correctness of the final answer: Wrong
Explanation: The final answer of 6 is incorrect. Given the promotion, Dennis will pay $18
L ORab g Ui Discrimination Verifier: @

Actor Model (refinement response):

Let's break it down step by step:

To determine how much it will cost Dennis to purchase 6 pounds of butter, we need to

consider the following:

1. Butter Requirement: Dennis needs to make 6 dozen croissants, and he uses 1 pound of

butter per dozen. Therefore, he needs 6 pounds of butter.

2. Promotion Details: The promotion is \"buy one pound of butter, get one half off\" This

means for every 2 pounds of butter purchased, Dennis pays for 1 pound at full price and gets

the second pound at half price.

3. Cost Calculation:

« For every 2 pounds of butter, Dennis pays $4 for the first pound and $2 for the second
pound, totaling $6 for 2 pounds.

« Since Dennis needs 6 pounds, he can take advantage of the promotion 3 times (6 pounds /
2 pounds per promotion).

* Therefore, the total cost is 3 * $6 = $18.

The answer is 18. Correctness Verifier: @

Figure 9: Example 2 of qualitative analysis. The actor’s original response is incorrect. The model
trained after Critique-RL Stage I is able to detect this error, demonstrating its discriminability.
However, the model provides the actor with low-quality suggestion, causing the actor’s refinement
response to be incorrect. In contrast, for the same erroneous original response, model trained after
Critique-RL Stage II not only detects the error but also offers a constructive suggestion, ultimately
leading to the correct refinement response, demonstrating the advantage of two-stage RL process.
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