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ABSTRACT

Training critiquing language models 1 to assess and provide feedback on model out-
puts is a promising way to improve LLMs for complex reasoning tasks. However,
existing approaches typically rely on stronger supervisors for annotating critique
data. To address this, we propose Critique-RL, an online RL approach for develop-
ing critiquing language models without stronger labeling. Our approach operates on
a two-player paradigm: the actor generates a response, the critic provides feedback,
and the actor refines the response accordingly. We first reveal that relying solely on
indirect reward signals from the actor’s outputs for RL optimization often leads to
unsatisfactory critics: while their helpfulness (i.e., providing constructive feedback)
improves, the discriminability (i.e., determining whether a response is high-quality
or not) remains poor, resulting in marginal performance gains. To overcome this,
Critique-RL adopts a two-stage optimization strategy. In stage I, it reinforces
the discriminability of the critic with direct rule-based reward signals; in stage
II, it introduces indirect rewards based on actor refinement to improve the critic’s
helpfulness, while maintaining its discriminability via appropriate regularization.
Extensive experiments across various tasks and models show that Critique-RL
delivers substantial performance improvements. For example, it achieves a 9.02%
gain on in-domain tasks and a 5.70% gain on out-of-domain tasks for Qwen2.5-7B,
highlighting its potential.

1 INTRODUCTION
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Figure 1: Left: Critique-RL achieves better per-
formance and discrimination on MATH. Right:
Inference compute scaling for Critique-RL, with
@2k and @3k indicating sampling amounts that
are 2 times and 3 times the x-axis value, respec-
tively. Critique-RL improves the performance ceil-
ing and is more compute-efficient.

With the development of large language mod-
els (Ouyang et al., 2022; OpenAI, 2023; Tou-
vron et al., 2023; Jiang et al., 2023; Dubey et al.,
2024), providing reliable supervision for them
has become a critical research challenge (Bow-
man et al., 2022; Saunders et al., 2022), espe-
cially for tasks that are difficult even for hu-
mans, such as complex reasoning, sequential
decision-making, and coding (Shinn et al., 2023;
Snell et al., 2024; Qu et al., 2024; Kumar et al.,
2024). This problem is often referred to as scal-
able oversight (Bowman et al., 2022). One ef-
fective method for scalable oversight is to train
critiquing language models to assess and provide
feedback to model outputs (Welleck et al., 2023;
Akyürek et al., 2023; Xi et al., 2024; Yao et al.,
2024). Based on this feedback, actor models can refine and optimize their behavior or outputs.

Existing work in training critique models typically assumes a stronger supervisor to provide labeled
critique data, which is often expensive and difficult to scale (Saunders et al., 2022; Xi et al., 2024;
Bowman et al., 2022). Moreover, the data labeled by the supervisor often differs significantly from

1It can also be referred to as a critique model or critic.
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Figure 2: Left: A case illustrating the two-player actor-critic interaction, including the original
response from the actor, the critique from the critic, and the refinement from the Actor. Right:
Overview of our method and its comparison with baseline RL. The snowflake icon on the Actor
indicates that it is fixed, while the fire icon on the Critic indicates that it will be updated. Our
method employs a two-stage RL process. It optimize discriminability of critique models in Stage I,
and optimize helpfulness while maintaining discriminability in Stage II.

the learner’s output distribution (Kumar et al., 2024). Another line of work does not train the model
but instead relies on the model’s inherent abilities, using prompt engineering to elicit its critiquing
abilities (Bai et al., 2022; Madaan et al., 2023; Dhuliawala et al., 2024). However, such methods
typically assume an oracle verifier during testing, allowing the critique model to bypass discrimination
(i.e., determining whether a response is high-quality) and instead focus only on offering helpful
feedback for revision (Xi et al., 2024; Gou et al., 2024). Without the oracle verifier, they often meet
performance bottleneck (Huang et al., 2024).

In this work, we aim to develop critiquing language models without relying on stronger labeling
or an oracle reward function during testing. To this end, we propose Critique-RL, an online RL
approach based on two-player actor-critic interaction (Yao et al., 2024; Xi et al., 2024) for developing
critique models. In our approach, there are two main roles: the actor and critic. The critic assesses
(discriminability) and provides natural language feedback (helpfulness) for the actor’s output, and the
actor performs refinement accordingly (Saunders et al., 2022).

To build our method, we first use the correctness of the actor’s two attempts to shape the reward
signals for the RL optimization of critique models (§4.1), following approaches like Retroformer
(Yao et al., 2024) and CTRL (Xie et al., 2025), where such indirect signals are shown to reflect the
quality of critiques. However, this approach fails to develop satisfactory critique models, i.e., with
low performance. Delving into the optimization process, we reveal that while the helpfulness of the
critique models improves, their discriminability is not well optimized, leading to an optimization
bottleneck and even a collapse of RL training.

To address the challenges, Critique-RL employes a two-stage RL approach (§4.2). Specifically, as
shown in Figure 2, in the first stage, we optimize the discriminability of the critique models using
direct rule-based reward signals. In the second stage, we introduce indirect rewards based on the
correctness of actor refinement to enhance the helpfulness, while using appropriate regularization
to maintain their discriminability. In-depth training dynamics shows that our method addresses the
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training collapse and stably optimizes both discriminability and helpfulness. Extensive experiments
show that our method outperforms baselines across different models and tasks, yielding a 9.02%
improvement on in-domain tasks and 5.70% improvement on out-of-domain tasks for Qwen2.5-7B.
It is also noteworthy that critique models trained with our method can generalize to unseen tasks,
demonstrating its promise for scalable oversight.

In summary, our main contributions are:

1. Delving into the RL optimization process, we reveal that solely depending on indirect reward
signals of actor’s output correctness cannot develop effective critique models, which poses conflict
and optimization challenges between the discriminative and feedback capabilities of critics.

2. We then propose Critique-RL, a novel two-stage RL approach to develop critique models for
providing accurate assessment and helpful feedback for model outputs.

3. We perform in-depth experiments, ablation and analysis to show the effectiveness and stability of
our method. We hope our work provides insights for the community.

2 RELATED WORK

Prompt engineering for eliciting critiquing ability from language models. As a key technique
for scalable oversight (Bowman et al., 2022), many previous works have explored the use of prompt
engineering to elicit the critiquing and reflection abilities of LLMs (Bai et al., 2022; Madaan et al.,
2023; Ye et al., 2023; Dhuliawala et al., 2024). These methods typically rely on an oracle verifier
including answer matching or external tools at test time for discrimination, allowing the LLM to
focus solely on providing natural language feedback (Xi et al., 2024; Huang et al., 2024). However,
in the absence of an external verifier, even SOTA models face significant challenges (Saunders et al.,
2022; Welleck et al., 2023; Xu et al., 2024; Huang et al., 2024). In this work, we do not assume an
oracle verifier; instead, we train critique models through RL to optimize both discriminability and the
ability to provide helpful feedback.

Fine-tuning language models for critiquing. Previously, a line of work has explored fine-tuning-
based approaches for training critique models (Saunders et al., 2022; Bowman et al., 2022; Xi et al.,
2024). However, these methods primarily rely on a stronger supervisor for data annotation, which is
costly and difficult to scale (Xi et al., 2024). To address this issue, some researchers have proposed
self-improvement-based methods to train models for self-critiquing (Tang et al., 2025; Zheng et al.,
2024; Yuan et al., 2025). Unlike these approaches, we adopt a two-player paradigm and train a
separated critique model through RL.

Reinforcement learning for language models. RL has become an essential component of LLM
post-training, such as RLHF for alignment (Ouyang et al., 2022; Zheng et al., 2023; Wang et al.,
2024; Shao et al., 2024). Additionally, various works have leveraged RL to enhance language models’
performance in reasoning (Snell et al., 2024; Kumar et al., 2024), coding (Kumar et al., 2024), and
decision-making tasks (Shinn et al., 2023). Furthermore, some studies explore using RL to improve
LM’s ability for self-reflection and self-correction (McAleese et al., 2024; Kumar et al., 2024; Welleck
et al., 2023; Shinn et al., 2023; Xu et al., 2024; Ye et al., 2023). Other methods, such as Retroformer
(Yao et al., 2024) and CTRL (Xie et al., 2025), leverage indirect reward signals to optimize critique
model’s helpfulness, targeting decision-making tasks and coding tasks, respectively. However, their
RL phase overlooks the joint optimization of discriminability and helpfulness. Different from them,
we propose a two-stage Critique-RL approach to optimize both discriminability and helpfulness,
effectively developing critique models.

3 PRELIMINARIES

3.1 THE TWO-PLAYER INTERACTION FRAMEWORK

The multi-agent framework in this work consists of two main roles (Yao et al., 2024; Xi et al., 2024):
the actor model and the critique model. It operates through a response-critique-refinement process.

3
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Specifically, given a question x, the actor model is expected to generate an original response y =
πθ(x), which includes both the reasoning trajectory and the final answer. The correctness verifier then
provides an oracle reward roracle(x, y) to the actor model. Subsequently, the critique model πϕ takes
the question-response pair (x, y) as input and produces critique c = πϕ(x, y), which should include
assessment of the response correctness (discriminability) and offer constructive natural language
feedback (helpfulness). Based on this critique, the actor model generates a refinement response
y

′
= πθ(x, y, c), and subsequently receives an oracle reward roracle(x, y

′
). Using these rewards,

i.e., roracle(x, y) and roracle(x, y
′
), we can design different reward functions rc(·) for critique models,

which will be shown in §4.

3.2 POLICY GRADIENT FOR LLMS

Policy gradient methods (Sutton et al., 1999), e.g., REINFORCE (Ahmadian et al., 2024; Kumar
et al., 2024), are common techniques to perform RL on LLMs (Ouyang et al., 2022). For the policy
critique model πϕ parameterized by ϕ, the objective of policy gradient is to find an optimal policy
that maximizes the reward function rc(·). It is typically expressed as maximizing:

Ec∼πϕ(·|x,y),y′∼πθ(x,y,c)
[rc(x, y, c, y

′
)], (1)

where Ec∼πϕ(·|x,y),y′∼πθ(x,y,c)
denotes the expectation over the critique sampled from the critic πϕ

and the refinement response sampled from the actor πθ. This gradient is used to optimize the critique
model via gradient ascent. The positive critique is “reinforced” by increasing its probability.

3.3 EVALUATION METRICS

To evaluate the performance of the critique model, we consider the following metrics: (1)
Acc@Refine: the accuracy of the actor model’s refinement response; (2) ∆: the improvement
in the actor model’s accuracy between the original and refinement response, which measures the
effectiveness of the critique model; (3) ∆c→i: the change rate from an originally correct response
to an incorrect refinement response. A lower value is better; (4) ∆i→c: the change rate from an
originally incorrect response to a correct refinement response. A higher value is better; (5) Acc@Dis:
a direct metric to measure the discriminability of the critique model, which quantifies the accuracy of
whether the correctness accessed by the critic aligns with the true correctness of the original response.

4 METHODOLOGY

4.1 MOTIVATING FINDINGS: RL WITH INDIRECT REWARD SIGNALS IS INSUFFICIENT FOR
TRAINING SATISFACTORY CRITIQUE MODELS

In the two-player actor-critic framework (Yao et al., 2024; Xi et al., 2024), a natural and intuitive way
to optimize the critiquing language models is to shape the reward signals derived from the actor’s
two attempts (original and refinement responses). We explore several reward shaping approaches,
demonstrate their failure modes, and investigate why they fail to incentivize satisfactory critiquing
ability.

Analysis setups: data, models, and training methods. Our preliminary experiments are on
GSM8K (Cobbe et al., 2021), and the backbone model is Qwen2.5-3B (Team, 2024). Following
previous work (Xi et al., 2024), we train an actor model capable of generating responses and
reasonably following critiques. To build the SFT dataset for initializing a base critique model,
we prompt Qwen2.5-3B-Instruct to obtain critique data DSFT = {x, y, c}|DSFT|

i=1 , rather than using
annotations from SOTA commercial models like GPT-4o (OpenAI, 2023). We filter the critique data
based on the correctness of refinement to ensure the quality.

Next, we train the critique model πϕ using the SFT loss:

LSFT(ϕ) = E(x,y,c)∼DSFT

[
log πϕ(c|x, y)

]
. (2)

We then employ policy gradient (Sutton et al., 1999) to maximize:

Ec∼πRL
ϕ (·|x,y),y′∼πθ(·|x,y,c)

[
rc(x, y, c, y

′)− βKL(πSFT
ϕ (c|x, y)||πRL

ϕ (c|x, y))
]
, (3)

4
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Figure 3: Training dynamics of preliminary experiments. “Acc@Dis Originally Correct” and
“Acc@Dis Originally Incorrect” refer to the discrimination accuracy of originally correct and incorrect
responses, respectively. Baselines using indirect reward signals to optimize helpfulness tend to exhibit
overly conservative or aggressive behavior as the discriminability is not well optimized. In contrast,
our Critique-RL optimizes discriminability in Stage I, and optimizes helpfulness while maintaining
discriminability in Stage II, achieving better in Acc@Refine, ∆c→i and ∆i→c.

where πθ is the fixed actor model, πSFT
ϕ is the SFT model. Each x is a query sampled from the RL

dataset DRL, y is the original response. KL(·||·) means the KL-divergence which constrains the
distance between the RL model and the SFT model, and β is a scaling factor. rc(·) is the reward
function for critique models. Here, with roracle being the oracle reward function that verifies the
correctness of an actor response, rc(·) can be rrefine which represents the correctness of the refinement:

rrefine(x, y, c, y
′) = roracle(x, y

′), (4)

or it can be r∆ which represents the difference in correctness between the actor’s two attempts:

r∆(x, y, c, y′) = roracle(x, y
′)− roracle(x, y). (5)

Moreover, we also include rcorrection as rc(·) for reinforcing the ability to correct incorrect responses:

rcorrection(x, y, c, y
′) =


1.0, roracle(x, y) = 0 and roracle(x, y

′) = 1,

0.2, roracle(x, y) = 1 and roracle(x, y
′) = 1,

0.0, roracle(x, y
′) = 0.

(6)

Empirical findings and behavior analysis. We illustrate the training dynamics during RL in
Figure 3. Optimizing with rrefine and r∆ can reduce ∆c→i, preventing originally correct responses
from being altered incorrectly, but its ∆i→c is not significantly optimized, meaning its error correc-
tion performance is not good enough. This phenomenon reveals that the critique model is overly
conservative, encouraging the actor to not change its answers. As a result, the final Acc@Refine is
not satisfactory.

In contrast, optimizing with rcorrection improves ∆i→c, but fails to effectively reduce ∆c→i. This
means it often provides more aggressive suggestions, encouraging the actor model to correct incorrect
responses, but it also introduces a greater risk of turning originally correct answers into incorrect
ones. Similarly, the final Acc@Refine is also not satisfactory.

Analyzing underlying reasons for the failure modes. To reveal the reasons behind the above
failure modes, we also visualize the discrimination performance of the critiquing language models
during RL in Figure 3. We find that as RL progresses, all three reward functions rrefine, r∆ and
rcorrection fail to optimize discriminability effectively. For originally correct and incorrect responses,
they can only optimize the judgment for one, while the ability to judge the other is reduced. This
may be because both of the indirect reward functions are based on the actor’s responses, targeting
helpfulness and overlooking discriminability. This motivates the proposal of our method.

5
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4.2 TWO-STAGE CRITIQUE-RL

Key challenges. Based on the previous analysis, we have identified two key challenges in RL for
critiquing language models: (1) optimizing the discriminability of critique models to improve their
accuracy in judging both correct and incorrect original responses; (2) improving the quality of the
model’s feedback, i.e., helpfulness, while maintaining its discriminability, to prevent the issues of
being overly aggressive or overly conservative.

Method overview. To address the above challenges, we propose the two-stage Critique-RL. In the
first stage, our method explicitly optimizes the discriminability of the critique model using direct
reward signals. We then use the resulting model πStage-I

ϕ as the initialization for the second stage. In
the second stage, we introduce a reward function based on the actor’s response to optimize the critic’s
helpfulness, while also incorporating appropriate regularization to maintain its discriminability. We
illustrate our method in Figure 2 and the algorithm is summarized in Algorithm 1.

Stage I: optimizing discriminability through direct reward signals. We decouple the discrim-
inability and helpfulness of the critique models (Saunders et al., 2022). In Stage I, we shape the
reward based solely on the actor’s original response. Given (x, y), critique models are prompted to
give correctness judgments for each step, and also provide a judgment for the final answer. Based on
this, we define the discriminability reward function of the critique models as:

rdis(x, y, c) = 1

(
f(x, y, c) = roracle(x, y)

)
, (7)

where f(x, y, c) is the critique model’s judgment of the correctness of the original response. 1(·) is
indicator function that returns 1 only when the condition inside the parentheses holds, and 0 otherwise.
Based on this, our Stage I RL maximizes:

Ec∼πStage-I
ϕ (·|x,y)

[
rdis(x, y, c)− βKL(πSFT

ϕ (c|x, y)||πStage-I
ϕ (c|x, y))

]
, (8)

where the KL divergence with the SFT model is still used to stabilize the training. As shown in Figure
3, our Stage I RL can effectively and stably optimize discriminability, regardless of the correctness of
the original response.

Stage II: optimizing helpfulness while maintaining discriminability. The goal of the second
stage of Critique-RL is to optimize the helpfulness of the critique models without sacrificing their
discriminability, thereby avoiding overly conservative or overly aggressive behavior patterns. To
achieve this, we introduce a reward function rrefine based on actor refinement correctness. Meanwhile,
to preserve the model’s discriminability, we retain rdis and introduce a regularization term based on
the KL divergence with the Stage I model πStage-I

ϕ . Specifically, we maximize the following objective:

Ec∼πStage-II
ϕ (·|x,y),y′∼πθ(·|x,y,c)

[
rrefine + β1rdis(x, y, c)− β2KL(πStage-I

ϕ (c|x, y)||πStage-II
ϕ (c|x, y))

]
,

(9)
where β1 and β2 are scaling factors. As shown in Figure 3, our Stage II effectively optimizes
the model’s helpfulness, increasing ∆i→c and decreasing ∆c→i, ultimately leading to a stable
improvement in Acc@Refine and ∆. Our method also performs strongly on the test set (see §5).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. Focusing on mathematical reasoning tasks, we select 5 different commonly-used tasks,
including free-from and multiple-choice. Following Ding et al. (2025), we construct training set with
the train-split of MATH (Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021), AQUA (Ling et al.,
2017). The testset of the three tasks are used as in-domain testset, while the test-split of SVAMP
(Patel et al., 2021), TheoremQA (Chen et al., 2023), are used as our OOD (out-of-domain) testset.

Models and baselines. Our experiments are mainly conducted on Qwen2.5 series (Team, 2024),
i.e., Qwen2.5-3B and Qwen2.5-7B. Besides, we also conduct experiments on other models like
Qwen2.5-72B, Llama3.2 (Dubey et al., 2024) and DeepSeek-R1-Distill-Qwen-7B (DeepSeek-AI,
2025) (see Appendix D and Section 6). We include several baselines: (1) SFT which fine-tunes

6
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Table 1: Main results. The best performance is in bold and underlined, while the second-best
performance is underlined. Our method is marked in blue . No Critic means the actor model
perform reasoning only, and we report the reasoning performance. For other methods, we report the
Acc@Refine performance for the acc column.

Model Method MATH GSM8K AQuA
Acc ∆ Acc@Dis Acc ∆ Acc@Dis Acc ∆ Acc@Dis

Qwen2.5-3B

No Critic 36.90 − − 66.03 − − 50.00 − −
SFT 44.24 7.34 66.51 69.14 3.11 76.34 46.46 −3.54 61.97
STaR 44.38 7.48 66.97 71.95 5.91 74.79 50.39 0.39 66.13
Retroformer 44.54 7.64 65.11 70.51 4.47 77.59 51.18 1.18 58.44
CTRL 46.14 9.24 69.29 70.58 4.55 76.71 53.54 3.54 62.20
Critique-RL 48.60 11.70 82.80 75.89 9.86 87.44 56.69 6.69 69.92

Qwen2.5-7B

No Critic 45.74 − − 75.66 − − 63.39 − −
SFT 51.84 6.10 67.59 78.77 3.11 79.42 59.45 −3.94 68.67
STaR 54.06 8.32 69.71 80.52 4.85 81.03 57.87 −5.51 72.18
Retroformer 52.34 6.60 68.03 80.82 5.16 77.05 63.39 0.00 70.56
CTRL 53.86 8.12 71.42 81.35 5.69 83.44 64.96 1.57 71.66
Critique-RL 58.40 12.66 85.20 87.72 12.05 90.43 65.75 2.36 78.09

models with critique data. (2) STaR (Zelikman et al., 2022) which iteratively fine-tunes critique
models on self-generated data and filtered based on the refinement correctness of the actor. (3) RL
baselines that leverages indirect outcome-based reward as baselines, i.e., Retroformer (Yao et al.,
2024) which uses PPO and CTRL (Xie et al., 2025) which uses GRPO.

Implementation details. All experiments are conducted on 8 NVIDIA A800 GPUs. To initialize
an actor that can reason and refine based on the critiquing feedback, we follow Ding et al. (2025); Xi
et al. (2024) to construct a dataset of 21, 973 reasoning traces and 12, 000 refinement responses. For
critique data, we construct a set of 6, 000 examples, with 2, 000 examples in each training task. For
fine-tuning actors, we set epoch to 3 and learning rate to 5e − 6, and remains fixed during further
training phase; for fine-tuning critics, we set epoch to 5 and learning rate to 5e− 6. We use the same
base model for the actor and the critique model. For STaR and RL, we perform SFT to obtain an
initialized model. In RL, we set KL coefficient to 0.01. In Critique-RL, we use RLOO as our base
algorithm as it performs well and does not require a value model. In Stage II, β1 is set to 0.2. We
train the critique model for 500 steps at each stage and report best results. During evaluation, the
temperature is set to 0. For inference-compute scaling and Pass@K, we set temperature to 0.7.

5.2 MAIN RESULTS

Generally, critique models can significantly improve actor’s reasoning performance. The re-
sults in Table 1 demonstrate that when introducing critique models, the actor’s reasoning performance
can be boosted by a large margin. For example, in the MATH task, even the SFT Baseline outperforms
the model without a critic by 7.34 and 6.10 points on the 3B and 7B models, respectively. This
suggests that critique models are an effective scalable oversight method, as discussed in Saunders
et al. (2022); McAleese et al. (2024).

RL-based methods outperforms fine-tuning-based ones. Both SFT and STaR methods lead to
promising critique models, but in most cases, online RL-based methods perform better, especially
our Critique-RL. For instance, on the 3B model, our method surpasses the SFT method by an average
of 7.11 points on accuracy across three datasets. It is worth noting that on AQuA, fine-tuning-based
SFT and STaR may lead to negative impact on performance, while our method provides significant
positive improvements. This reveals that online RL methods have greater potential and adaptability
in eliciting the model’s critiquing ability, similar to the findings in McAleese et al. (2024).

Critique-RL consistently outperforms other baselines in discrimination and final accuracy. In
terms of discrimination, our method also significantly outperforms other baselines, such as surpassing
CTRL by 5.31, 6.36 points for 3B and 7B models on GSM8K, respectively. This reveals that our
discrimination-related reward shaping can effectively optimizes discriminability. Thanks to this and
the helpfulness reward design in the second stage, our method shows a significant improvement
in final performance compared to other baselines. For example, on the 7B model, our method
outperforms Retroformer by an average of 5.11 and 12.69 points on accuracy and discriminability,
across three datasets.
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5.3 ITERATIVE IMPROVEMENT OF CRITIQUE-RL

21 22 23 24 25

Number of samples
44

45

46

47

48

49

Iterative Refinement: MATH

21 22 23 24 25

Number of samples

70

72

74

76

78

Iterative Refinement: GSM8K

Sft critic Critique-RL

Figure 4: Results of iterative critique-refinement
of Critique-RL using Qwen2.5-3B.

Furthermore, we validate the iterative improve-
ment capability of Critique-RL through two key
aspects: (1) Iterative refinement process: Dur-
ing the i-th iteration, the critic generates cri-
tique ci = πϕ(x, y0, c1, ..., ci−1, yi−1), while
the actor produces the refined response yi =
πθ(x, y0, c1, ..., yi−1, ci) accordingly. (2) Itera-
tive training process: We alternately conduct the
two-stage training of Critique-RL (Stage I and
Stage II) to optimize the critique model. The
detailed results are shown in Figure 4 and Table
2, respectively.

Table 2: Results of iterative training of Critique-RL
using Qwen2.5-3B on MATH.

Method Acc ∆ Acc@Dis
No Critic 36.9 − −

SFT 44.2 7.3 66.5

Critique-RL

Iteration 1, Stage I 45.9 9.0 78.7
Iteration 1, Stage II 48.6 11.7 82.8
Iteration 2, Stage I 49.5 12.6 85.0
Iteration 2, Stage II 51.0 14.1 86.5

First, as demonstrated in Figure 4, through itera-
tive critique and refinement, the model exhibits
consistent Acc gains on Qwen2.5-3B, with each
iteration achieving measurable improvements.
Second, iterative training leads to further perfor-
mance enhancement, with detailed results using
Qwen2.5-3B on MATH dataset shown in Ta-
ble 2. Specifically, both Stage I and Stage II
of Critique-RL demonstrate consistent improve-
ment in Acc and Acc@Dis metrics. Compared to the first iteration, the second iteration improves by
2.40 and 3.68 points on accuracy and discriminability.

6 DISCUSSION AND ANALYSIS

Table 3: Ablation study using Qwen2.5-3B. We
report the Acc@Refine. “w/o” means without;
“Stage II w/o discrimination” means in Stage II, we
remove rdis and KL(πStage-I

ϕ ||πStage-II
ϕ ) ; “Stage II w/

r∆” and “Stage II w/ rcorrection” mean replacing the
rrefine with the corresponding reward function.

Method MATH AQuA
Acc@Refine Acc@Dis Acc@Refine Acc@Dis

Critique-RL (Ours) 48.6 82.8 56.7 69.9
-w/o Stage I 47.6 79.7 53.9 66.5
-w/o Stage II 45.9 78.7 54.7 68.2
-Stage II w/o discrimination 47.3 77.7 53.5 61.6
-Stage II w/ r∆ 48.2 82.6 53.9 68.4
-Stage II w/ rcorrection 47.7 82.0 54.7 68.4

Ablation on different stages. We conduct ab-
lation experiments to validate the importance of
different components. The results are shown in
Table 3. Both Stage I and Stage II are crucial,
and removing either of them leads to a perfor-
mance drop. This indicates that optimizing both
discriminability and helpfulness is essential in
developing critique models.
Ablation on reward design for Stage II.
Next, we perform a deeper analysis of the re-
ward design in Stage II. First, if we remove
the discrimination-related rdis and KL-based
regularization KL(πStage-I

ϕ ||πStage-II
ϕ ), the discrim-

inability and accuracy suffer a significant drop. This further emphasizes that when optimizing for
helpfulness, it is crucial to maintain the model’s discrimination ability. Second, when we replace
the reward function rrefine in Stage II with another reward function, i.e., r∆ and rcorrection, we observe
a slight performance drop. This may be because rrefine directly optimizes the Acc@Refine metric,
which aligns most closely with the test-time scenario.

Analysis of helpfulness when the oracle verifier Is available. Many previous works have relied on
an external oracle verifier to assess the actor’s reasoning results (Bai et al., 2022; Madaan et al., 2023;
Ye et al., 2023; Dhuliawala et al., 2024). In this scenario, the model’s judgment ability is isolated,
allowing us to better evaluate the critique model’s helpfulness. We conduct relevant experiments,
and the results are shown in Figure 5. We find that when the oracle verifier is available, all baselines
show performance improvements. In this case, our method still outperforms others across different
datasets and models, indicating that our approach significantly enhances the model’s helpfulness.
Furthermore, comparisons with other RL baselines reveal that the optimization of discriminability in
our method also implicitly contributes to the improvement of helpfulness, suggesting that the two
abilities are not entirely independent. This further emphasizes the importance of optimizing both
abilities jointly in developing critique models.
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Figure 5: Performance with and without the oracle verifier. When the oracle verifier is available,
the model no longer needs to make discrimination and just needs to provides useful feedback. This
allows us to evaluate the model’s helpfulness more accurately.
Evaluation of test-time inference compute scaling for Critique-RL. We investigate whether
Critique-RL can be combined with inference-time compute scaling strategy. Following Qu et al.
(2024); Snell et al. (2024); Xi et al. (2024), we leverage the commonly used majority vote (MV@K)
(Wang et al., 2023) which evaluates whether the most frequent answer among K samples is correct.
The results of MATH are shown in Figure 1 and the results of GSM8K are shown in Figure 6 of
Appendix F. Compared to the baseline, Critique-RL significantly increases the performance ceiling
and shows a more sustained upward trend as inference compute scales. More importantly, performing
K× response-critique-refinement sampling is more compute-efficient than conducting 3K× parallel
sampling responses, suggesting the compute-efficiency of Critique-RL.

Table 4: Out-of-domain evaluation of Critique-RL.

Model Method SVAMP TheoremQA
Acc Pass@10 Acc Pass@10

Qwen2.5-3B

No Critic 70.7 92.0 15.1 34.8
SFT 74.7 95.7 15.3 36.1

Retroformer 75.0 96.0 16.1 37.0
CTRL 76.0 95.7 15.8 36.5

Critique-RL 78.3 96.3 16.8 37.8

Qwen2.5-7B

No Critic 80.3 95.7 19.4 39.8
SFT 83.0 95.7 20.5 41.9

Retroformer 84.0 96.0 20.0 42.3
CTRL 85.1 96.7 21.1 42.9

Critique-RL 89.7 97.0 21.4 43.0

Table 5: Performance on DeepSeek-R1-Distill-Qwen-7B
as actor.

Method In-Domain: MATH-500 OOD: TheoremQA
Acc ∆ Acc@Dis Acc ∆ Acc@Dis

No Critic 84.60 - - 21.63 - -
SFT 85.60 1.00 83.40 29.75 8.13 24.38

Retroformer 85.80 1.20 84.80 29.38 7.75 22.38
CTRL 85.80 1.20 84.80 29.00 7.38 21.25

Critique-RL 86.60 2.00 93.00 30.38 8.75 51.13

Generalization to OOD tasks. We
also validate the generalization of the
models trained by Critique-RL on OOD
tasks. The results in Table 4 show that
the models trained still delivers signifi-
cant performance improvements, further
demonstrating the potential of this scal-
able oversight approach.

Performance of our trained critique
models on actor models with differ-
ent capability levels. To further inves-
tigate the Critique-RL in varying base
models, we conduct two types of exper-
iments. In the first setting, we use a
strong reasoning model DeepSeek-R1-
Distill-Qwen-7B (DeepSeek-AI, 2025)
as our actor model while using Qwen2.5-
7B as our critic model. This evaluation
setting investigates the generalization of
Critique-RL to reasoning models. The
results in Table 5 reveal that, besides non-reasoning models (Qwen2.5-3B, Qwen2.5-7B) with struc-
tured CoT, our method is also effective for reasoning models with complex CoT structures on both
in-domain and out-of-domain tasks, particularly in terms of the Acc@Dis achieved by the critique
models. While DeepSeek-R1-Distill-Qwen-7B already performs strongly on MATH-500, critique
models can still offer marginal gains in reasoning accuracy. More impressively, on the TheoremQA
dataset which spans diverse domains including Math, EECS, Physics and Finance, critique mod-
els substantially boost performance, highlighting the strong generalization ability of our approach.
Notably, Critique-RL outperforms SFT, Retroformer, and CTRL by 26.75, 28.75, 29.88 points in
Acc@Dis, respectively, on the TheoremQA dataset—doubling the performance of these baselines.

In the second setting, we use Qwen2.5-72B-Instruct as the actor model and Qwen2.5-7B as the
critique model to investigate weak-to-strong generalization.
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Table 6: Performance on Qwen2.5-72B-Instruct as actor.

Method In-Domain: MATH-500 OOD: TheoremQA
Acc ∆ Acc@Dis Acc ∆ Acc@Dis

No Critic 79.10 - - 21.38 - -
SFT 79.20 0.10 80.20 21.63 0.25 23.00

Retroformer 79.20 0.10 80.60 21.75 0.38 21.38
CTRL 79.40 0.30 79.40 21.50 0.13 21.13

Critique-RL 80.30 1.20 89.20 23.50 2.10 46.63

The results in Table 6 show that Critique-
RL improves actor performance even in
large-scale settings, though with less pro-
nounced gains compared to smaller-actor
settings. Nonetheless, it still outperforms
baselines on both in-domain and out-
of-domain tasks. Notably, our method
achieves significantly higher discrimina-
tion, confirming the effectiveness of our discrimination-based reward shaping.

More experiments and qualitative analysis. We conduct extensive experiments to show the effec-
tiveness and working mechanism of Critique-RL, with the detailed results presented in the Appendix:
(1) In addition to the Qwen2.5 series (Team, 2024), we evaluate our method on different architectures
including Llama3.2 (see Appendix D). (2) We compare Critique-RL with other refinement methods
including Self-Refine (Madaan et al., 2023), SuperCorrect (Yang et al., 2024) and Critic-Cot (Zheng
et al., 2024), and the results are presented in Appendix E. (3) We also perform test-time scaling
analysis of sampling multipe refinement on the same response, with results presented in Appendix
F. (4) We conduct experiments on summarization tasks using CNN/DailyMail (Hermann et al.,
2015) dataset to investigate our method’s generalization ability on open-ended tasks where rule-based
verifier cannot be directly applied, the results are in Appendix G. (5) We perform a qualitative analysis
on how Critique-RL works and provide several examples in Appendix J.

7 CONCLUSION

In this paper, we propose Critique-RL, an RL approach for developing critique models. Through
in-depth analysis, we highlight the importance of explicitly optimizing model discriminability and
propose a two-stage RL approach that effectively optimizes both discriminability and helpfulness.
We validate its stability and superiority through detailed experiments, and further uncover its working
mechanism through ablation studies and analyses. We hope that our work can provide insights for the
scalable oversight community of language models.

ETHICS STATEMENT

This paper presents Critique-RL, a novel two-stage RL approach to develop critiquing language
models for providing accurate assessment and helpful feedback for model outputs. We firmly state
that this work is intended for ethical and constructive purpose. While no immediate societal harms
are evident, this approach enables scalable supervision by training models with minimal direct human
oversight. Nevertheless, its potential susceptibility to misuse warrants proactive measures to ensure
responsible governance.

REPRODUCIBILITY STATEMENT

We claim our detailed experiment setting in §5.1. In addition, we upload anonymized versions of our
data and code in a Zip file with a Readme file to ensure easy reproduction of all reported results.
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A THE USE OF LARGE LANGUAGE MODELS

LLMs are utilized in this manuscript for partial grammatical checks and language polishing. The
authors are fully responsible for the final content.

B ALGORITHM OF CRITIQUE-RL

Our main algorithm is summarized in Algorithm 1.

Algorithm 1: Critique-RL
Input: Actor model πθ, base critique model πϕ, SFT dataset DSFT, RL dataset DRL, function that

extracts the correctness of a response judged by a critique f , oracle reward function
roracle, discrimination reward function rdis.

Procedure Supervised Fine-tuning:
πSFT
ϕ ← πϕ;

Update πSFT
ϕ by minimizing LSFT(ϕ) = E(x,y,c)∼DSFT

[
log πϕ(c|x, y)

]
;

Procedure Critique-RL Stage I: optimizing discriminability through direct reward signals.
πStage-I
ϕ ← πSFT

ϕ ;
for batch in DRL do

for x in batch do
Generate y and c with πθ and πStage-I

ϕ ;

Compute discrimination reward with rdis(x, y, c) = 1

(
f(x, y, c) = roracle(x, y)

)
;

end
Update πStage-I

ϕ by maximizing

Ec∼πStage-I
ϕ (·|x,y)

[
rdis(x, y, c)− βKL(πSFT

ϕ (c|x, y)||πStage-I
ϕ (c|x, y))

]
;

end
Procedure Critique-RL Stage II: optimization helpfulness while maintaining discriminability.

πStage-II
ϕ ← πStage-I

ϕ ;
for batch in DRL do

for x in batch do
Generate y, c and y

′
with πθ and πStage-II

ϕ ;

Compute discrimination reward with rdis(x, y, c) = 1

(
f(x, y, c) = roracle(x, y)

)
;

Compute refinement reward with rrefine = roracle(x, y
′
);

end
Update πStage-II

ϕ by maximizing Ec∼πStage-II
ϕ (·|x,y),y′∼πθ(·|x,y,c)

[
rrefine + β1rdis(x, y, c)−

β2KL(πStage-I
ϕ (c|x, y)||πStage-II

ϕ (c|x, y))
]
.

end

C PERFORMANCE ON MORE CHALLENGING BENCHMARKS

To further validate the effectiveness of Critique-RL, we conduct experiments using Qwen2.5-7B-
Instruct and evaluated on the AIME2024, AIME2025 (AIME, 2025), and GPQA-Diamond (Rein et al.,
2024) benchmarks. We used General-Reasoner-7B (Ma et al., 2025) as the actor and constructed
a training set of 30k examples based on the WebInstruct-Verified (Ma et al., 2025) dataset for
RL training. The experimental results are in Table 7. The experimental results demonstrate that
our method significantly improves the critique model’s discriminability, with particularly notable

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Performance on challenging benchmarks using Qwen2.5-7B-Instruct.

Methods GPQA-Diamond AIME2024 AIME2025
Acc ∆ Acc@Dis Acc Delta Acc@Dis Acc ∆ Acc@Dis

No Critic 34.30 - - 11.98 - - 6.67 - -
SFT 35.86 1.56 41.20 12.30 0.32 22.71 7.50 0.83 6.67

Critique-RL 37.37 3.07 51.52 13.75 1.77 53.44 8.50 1.83 30.10

improvements on the challenging reasoning datasets AIME2024 and AIME2025. Without fine-grained
hyperparameter adjustments, our method outperforms the baseline across all three benchmarks,
proving the effectiveness of Critique-RL in complex reasoning scenarios.

D PERFORMANCE ON VARYING MODEL SERIES

Table 8: Performance on Llama3.2-3B with GSM8K.

Method GSM8K
Acc ∆ Acc@Dis

No Critic 49.28 - -
SFT 50.80 1.52 68.11

Retroformer 52.08 2.81 63.85
CTRL 52.24 2.96 66.01

Critique-RL 52.99 3.72 75.04

To evaluate the effectiveness and generalization capability of Critique-RL, we conduct experiments
using the Llama3.2-3B (Dubey et al., 2024) model on the GSM8K dataset. As shown in Table 8,
Critique-RL proves effective not only on Qwen2.5 models but also on Llama3.2 models, particularly
in enhancing the discriminability of the critique models. These results highlight the adaptability and
robust performance of Critique-RL across different model architectures.

E COMPARISON WITH OTHER IMPORTANT REFINEMENT METHODS

To further validate the advantages of Critique-RL over other refinement methods, we conduct
evaluations of other refinement methods including Self-Refine (Madaan et al., 2023), SuperCorrect
(Yang et al., 2024) and Critic-Cot (Zheng et al., 2024) with Qwen2.5-3B on GSM8K. For a fairer
comparison, we train the models in Self-Refine and Critic-CoT using the same dataset(sampled
from Qwen2.5-3B-Instruct) as Critique-RL. In terms of SuperCorrect, we choose Deepseek-R1
(DeepSeek-AI, 2025) as the teacher model to create both the Hierarchical Thought Templates and
positive critique datasets. The results are presented in Table 9. Critique-RL significantly outperforms
all other methods in both Acc and Acc@Dis, surpassing Critic-CoT and SuperCorrect by 5.31 and
3.11 points in terms of Acc, respectively. Moreover, Critique-RL outperforms Self-Refine across
refinement iterations, demonstrating its greater effectiveness. Notably, SuperCorrect exhibited poor
discriminability, likely because it simply used teacher model data as positive examples and student
model data as negative ones for DPO training. Given the GSM8K dataset’s simplicity, the student
model’s output is not consistently inferior to teacher model’s, leading to potential impairment to the
model’s discriminability.

These refinement methods are implemented using SFT (Self-Refine), self-improve (Critic-CoT) or
intricate SFT+DPO (SuperCorrect) approaches, wheras Critique-RL employs an online RL methodol-
ogy, which accounts for its observed performance advantages.

F MORE TEST-TIME SCALING RESULTS

The results of inference compute scaling on GSM8K are illustrated in Figure 6. Similar to the findings
on MATH, Critique-RL is more compute-efficient and significantly increases the performance ceiling,
validating the potential of our approach. In addition, we evaluate the refine compute scaling of
SFT and Critique-RL across MATH, GSM8K, and AQUA, as illustrated in Figure 7. Critique-RL
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Table 9: Comparison with other refinement methods with Qwen2.5-3B on GSM8K.

Method GSM8K
Acc Acc@Dis

Self-Refine iteration=1 71.42 75.84
iteration=2 72.71 76.52

Critic-CoT 70.58 74.70
SuperCorrect 72.78 62.17

Critique-RL (Ours) 75.89 87.44

consistently achieves approximately twice the sampling efficiency of SFT. Notably, with the 7B
model on GSM8K, Critique-RL’s Pass@1 even surpasses the SFT’s Pass@64, demonstrating the
effectiveness of our approach.
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Figure 6: Inference compute scaling for Critique-RL, with @2k and @3k indicating sampling
amounts that are 2 times and 3 times the x-axis value, respectively. Critique-RL improves the
performance ceiling and is more compute-efficient.
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Figure 7: Refine compute scaling for Critique-RL and SFT critic with Qwen2.5-3B and Qwen2.5-7B.

G PERFORMANCE ON SUMMARIZATION TASK

For open-ended tasks where rule-based verifiers cannot be directly applied, reward signals can be
provided through additional reward models or AI feedback (e.g., using GPT-4o (OpenAI, 2023) for
judgement).
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We conduct experiments of Critique-RL with Qwen2.5-7B-Insturct (Team, 2024) on summarization
task using CNN/DailyMail (Hermann et al., 2015) dataset. Specifically, given an article x, the actor
model generates an original summary y. The reward model (Skywork-Reward-V2-Llama-3.1-8B
(Liu et al., 2025)) then evaluates the summary, with its output linearly scaled to a 1-10 range, i.e.,
roracle(x, y). Subsequently, the critique model produces critique c, which includes comments about
the summary across key criteria, a quality score from 1-10, and improvement suggestions. The actor
model then generates a revised summary y′ accordingly, which is also scored by the reward model to
yield a refinement score rrefine = roracle(x, y

′). Based on this, we define the discrimination reward
function of the critique model as:

rdis(x, y, c) = max(0, 1− |f(x, y, c)− roracle(x, y)|
δ

)

where f(x, y, c)is the quality score of the original summary from critique model. δ is the permissible
maximum error range.

In stage I, we optimize the discriminability of the critique model using rdis(x, y, c); In stage II, we
optimize the helpfulness while maintaining discriminability using the following reward function:

rstageII = rrefine + β1rdis(x, y, c)

In our experiments, we select 5000 training and 1000 test queries from CNN/DailyMail 3.0.0’s
official splits. The results are presented in the Table 10.

Table 10: Performance on summarization task us-
ing Qwen2.5-7B-Instruct. We report the original
Score by reward model. The MSE@Dis stands
for mean square error, and MAE@Dis stands for
mean absolute error, where smaller values indicate
stronger discrimination abilities.

Method CNN/MD
Score↑ Delta↑ MSE@Dis↓ MAE@Dis↓

No Critic 19.69 - - -
7B-Instruct 19.94 0.25 9.46 2.77
Critique-RL (Ours) 20.81 1.12 1.59 0.98

The results reveal that Critique-RL can effec-
tively optimize discriminability, yielding im-
provement in summary quality. We use MSE
and MAE to measure the error between the
quality scores produced by the critique model
and those from the reward model. Specifi-
cally, Critique-RL outperforms baseline by 0.87
points in Score, 7.87 points in MSE@Dis and
1.79 points in MAE@Dis. These improvements
demonstrate the strong generalization ability of
our approach to open-ended tasks, contributing
to scalable oversight.

H VALIDATING THE EFFECTIVENESS OF CRITIQUE MODEL

Introducing a separate critique model leads to increased manual effort and additional complexity.
To validate the usage of the critique model, we compare Critique-RL with actor-only RL method to
show that training a critique model provides significant benefits over directly optimizing the actor.
In particular, for actor-only method, we conduct experiments on directly RL the actor and SCoRe
(Kumar et al., 2024); for actor-critic paradigm, we use a SFT-based critique model as well as our
Crituqe-RL. For a fairer comparison, we train the actor model using the same reasoning traces as
Critique-RL in direct RL and using the same reasoning, critique and refinement dataset as Critique-RL
in SCoRe. All experiments are conducted with Qwen2.5-7B on the Math dataset.

Table 11: Comparison with actor-only RL method.

Category Method MATH
Acc Acc@Dis

Actor-only Directly RL 49.78 -
SCoRe 56.52 72.51

Actor-Critique SFT 51.84 67.59
Critique-RL 58.40 85.20

The results in Table 11 show that Critique-RL significantly outperforms Directly RL by 8.62 points
in terms of Acc. Also Critique-RL outperforms SCoRe by 12.69 points in terms of Acc@Dis, and
1.88 points in terms of Acc. Note that during the training process of Critique-RL, the actor model
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remained fixed and is thus inherently weaker in reasoning and refinement than the trained SCoRe
actor model. Importantly, the trained critique model can be flexibly applied to other stronger actor
models (weak-to-strong) and reasoning models to further improve their performance(see Section 6).
This modularity and transferability are advantages that SCoRe lacks.

Moreover, we conduct the test-time scaling experiment. The majority vote (MV@K) results are as
shown in Table 12. The results show that even the actor model has been well-trained, generating
parallel responses still underperforms Critique-RL’s response-critique-refinement process. Notably,
Critique-RL’s MV@1 even surpasses Directly RL’s MV@12. This highlights the compute-efficiency
of Critique-RL.

Table 12: Performance comparison between Directly RL and Critique-RL under MV@K.

K Directly RL Critique-RL
MV@K MV@2K MV@3K MV@K

1 49.78 50.05 52.39 58.40
2 50.05 53.49 55.04 59.10
4 53.49 55.08 56.75 65.91

I SENSITIVITY ANALYSIS

For solidness, we provide details about different values for β, β1, β2 and training steps per stage.

Experiments on different values for β, β1, and β2. We exemplify our selection of the parameters
β, β1, and β2 by presenting the performance of the Qwen2.5-3B model on the GSM8K dataset as
an example. The results in Table 13 reveal that these parameters are not sensitive, so we ultimately
choose β = 0.01, β1 = 0.9, and β2 = 0.95 for our experiments.

Experiments on different training steps per stage. We show the performance of the two stages of
Critique-RL at different training steps with Qwen2.5-3B on MATH dataset. The results in Table 14
indicate that within 500 steps of Stage I, the model’s discriminability was substantially enhanced,
with Acc@Dis rising from 66.51 to 78.68. During Stage II, the model maintained this discriminability
while further improving helpfulness, with Acc increasing from 45.90 to 48.60.

While further refinement of parameters could potentially yield additional performance gains, the
current experimental outcomes are already statistically sound and adequately substantiate our core
conclusions.

J QUALITATIVE ANALYSIS

We perform a qualitative investigation into how Critique-RL works and provide several examples
in Appendix J. In Figure 8, facing the originally incorrect response, the critique model after SFT is
unable to detect errors, leading the actor’s refinement response to retain the same errors. However,
the model trained after Critique-RL identifies the errors in the original response and provides detailed,
constructive suggestions for modification, leading to the correct refinement response. In Figure 9,
model trained after Critique-RL Stage I is able to detect errors, demonstrating its discriminability.
However, the model provides the actor with low-quality suggestion, causing the actor’s refinement
response to be incorrect. In contrast, for the same erroneous original response, model trained after
Critique-RL Stage II not only detects the error but also offers a constructive suggestion, ultimately
leading to the correct refinement response, demonstrating the advantage of two-stage RL process.

To directly assess the quality of critiques generated by Critique-RL, we randomly collect 600 critiques
that successfully helped refine incorrect answer into correct ones. We leverage GPT-4o with ground-
truth answers and solutions as references to evaluate quality more accurately. The results show that
96.2% of these critiques made correct discriminative judgments, and 93.3% were rated as high-quality,
demonstrating that Critique-RL produces reliable and helpful critiques.
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Table 13: Results of different values for β, β1, and β2 with Qwen2.5-3B on GSM8K.

Parameter Value Acc Delta Acc@Dis

β
0.008 74.60 8.57 86.24
0.01 75.89 9.86 87.44
0.012 74.22 8.19 87.10

β1

0.88 74.60 8.57 86.18
0.9 75.89 9.86 87.44
0.92 74.68 8.65 86.09

β2

0.93 74.68 8.65 85.99
0.95 75.89 9.86 87.44
0.97 74.37 8.34 85.74

Table 14: Results of different training steps per stage with Qwen2.5-3B on MATH.

Step Critique-RL Stage I Critique-RL Stage II
Acc Acc@Dis Acc Acc@Dis

0 44.24 66.51 45.90 78.68
100 44.22 68.26 45.88 80.56
200 44.60 71.53 46.82 81.77
300 44.89 75.72 47.02 82.47
400 45.18 78.20 47.90 83.06
500 45.90 78.68 48.60 82.80
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Figure 8: Example 1 of qualitative analysis. The actor’s original response is incorrect. The model
after SFT is unable to detect errors in the response, leading the actor’s refinement response to retain
the same errors. However, the model trained after Critique-RL identifies the errors in the original
response and provides detailed, constructive suggestions for modification, leading to the correct
refinement response.
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Figure 9: Example 2 of qualitative analysis. The actor’s original response is incorrect. The model
trained after Critique-RL Stage I is able to detect this error, demonstrating its discriminability.
However, the model provides the actor with low-quality suggestion, causing the actor’s refinement
response to be incorrect. In contrast, for the same erroneous original response, model trained after
Critique-RL Stage II not only detects the error but also offers a constructive suggestion, ultimately
leading to the correct refinement response, demonstrating the advantage of two-stage RL process.
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