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education friendship growth Mount Fuji trophystyle reference

Figure 1: Given a set of icons as style reference, IconDM can generate high-quality icons with consistent style features from
textual descriptions, thereby expanding the initial icon set.

ABSTRACT
Icons are ubiquitous visual elements in graphic design. However,
their creation is non-trivial and time-consuming. To this end, we
draw inspiration from the booming text-to-image field and propose
Text-Guided Icon Set Expansion, a task that allows users to create
novel and style-preserving icons using textual descriptions and a
few handmade icons as style reference. Despite its usefulness, this
task poses two unique challenges. (i) Abstract Concept Visualiza-
tion. Abstract concepts like technology and health are frequently en-
countered in icon creation, but their visualization requires a mental
grounding process that connects them to physical and easy-to-draw
concepts. (ii) Fine-grained Style Transfer. Unlike ordinary images,
icons exhibit far richer fine-grained stylistic elements, including
tones, line widths, shapes, shadow effects, etc, setting a higher
demand on capturing and preserving them during generation.

To address the challenges, we propose IconDM, a method based
on pre-trained text-to-image (T2I) diffusion models. It involves a
one-shot domain adaptation process and an online style transfer
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process. The domain adaptation aims to improve the pre-trained
T2I model in understanding abstract concepts by finetuning on
high-quality icon-text pairs. To achieve so, we construct IconBank,
a large-scale dataset of 2.3 million icon-text pairs, where the texts
are generated by the state-of-the-art vision-language model from
icons. In style transfer, we introduce a Style Enhancement Mod-
ule into the T2I model. It explicitly extracts the fine-grained style
features from the given reference icons, and is jointly optimized
with the T2I model during DreamBooth tuning. To assess IconDM,
we present IconBench, a structured suite with 30 icon sets and 100
concepts (including 50 abstract concepts) for generation. Quanti-
tative results, qualitative analysis, and extensive ablation studies
demonstrate the effectiveness of IconDM.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks.

KEYWORDS
icon generation, text-to-image, denoising diffusion models, style
transfer

1 INTRODUCTION
We live in a world full of graphic design. Icons, the visual symbols
encompassing a variety of styles and connotations, are widely used
in graphic design of different contexts, such as branding, user in-
terfaces, and way-finding systems. Compared to lengthy text, they
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not only offer a more engaging visual representation, but also help
users comprehend complex information in a more intuitive and
effective manner. Additionally, icons have the ability to transcend
language barriers, making them universally understood symbols.

The creation of icons, however, involves careful consideration
of their visual appearance and expressiveness, making it a non-
trivial and time-consuming task for human designers. Specifically,
a well-designed icon should be expressive and easy to recognize,
conveying its meaning at a glance. While this requirement can be
met relatively easily for icons delivering concrete, physical concepts
like calendar, it becomes challenging for those abstract and intricate
concepts, such as technology, system, and education, as it requires a
mental grounding process that connects these concepts to physical
objects. For instance, education icons are typically visualized by an
open book. Furthermore, to achieve visual harmony and enhance
user experience, icons within a graphic design are expected to
follow a particular design style and share common stylistic elements,
including tones, line widths, shapes, shadow effects, etc (see the
style reference in Figure 1). But unfortunately, it can be laborious to
ensure style consistency, especially for large icon sets. Thus, such
requirements bring a huge workload to human designers.

To ease the burdens of designers, we draw inspiration from the
booming text-to-image field [4, 37, 41–43, 46, 55] and introduce
a novel task, called Text-Guided Icon Set Expansion. Given a few
handmade icons as style reference, the task aims to synthesize novel
and stylized icons based on textual descriptions (see Figure 1). In
this way, users can build a large set of style-coherent icons easily,
without the tedious style-preserving creation process and the tough
mental grounding process for abstract concepts.

While Text-Guided Icon Set Expansion closely relates to the
booming fields of text-to-image and style transfer [9, 12, 37, 43, 45,
50], we find existing methods fall short in the task, primarily due
to the following two reasons. (i) Abstract Concept Visualization. As
mentioned earlier, abstract concepts are frequently encountered in
icon creation. Although state-of-the-art text-to-image (T2I) diffu-
sion models [37, 43] have achieved impressive results in generating
high-quality images from text, they still struggle to ground abstract
concepts to proper physical objects and render them in an icon-like
style (see Figure 5). This is potentially caused by the lack of high-
quality icon-text paired data in the training corpus of prevalent T2I
models [47, 48]. (ii) Fine-Grained Style Transfer. Unlike ordinary im-
age styles, icon styles contain extremely rich fine-grained stylistic
elements, such as shapes, colors, shadows, as shown in Figure 1. As
a result, transferring icon style is much more challenging. While
previous approaches [9, 12, 45, 50] have successfully synthesized
novel images that follow user-provided styles, directly applying
them to icons leads to poor style preservation, especially for those
fine-grained stylistic elements, as we will show in Section 4.

In this paper, we propose IconDM, a method based on pre-trained
T2I diffusion models for Text-Guided Icon Set Expansion (see Fig-
ure 2). IconDM involves a one-shot domain adaptation process and
an online style transfer process. In domain adaptation, IconDM aims
to improve the base T2I model to understand abstract concepts and
generate icon-like images. To achieve this, we construct IconBank, a
large-scale dataset consisting of 2.3 million icon-text pairs crawled
from the Internet, and finetune the pre-trained T2I model on it.
Since icons from the Internet are only paired with a few concise

keywords, and directly using such data to finetune the T2I model
may affect performance [1, 6], we utilize a state-of-the-art vision-
language model (LLaVA [27]) to generate detailed descriptions for
icons and finetune the model with a proper mix of concise keywords
and detailed descriptions. In style transfer, IconDM takes a icon set
with a few handmade, style-consistent icons as input and learns to
synthesize novel while style-preserving icons. Here, we adopt the
state-of-the-art personalizationmethodDreamBooth [45] with Low-
Rank adaptation (LoRA) [18]. While DreamBooth tuning is capable
of grasping some coarse-grained stylistic elements from reference,
it struggles to capture those fine-grained ones, partly because it
does not have an explicit modeling of reference icons [60]. To ad-
dress this limitation and better capture the fine-grained stylistic
elements, we introduce a light-weight Style Enhancement Module
(SEM) into the T2I model. It explicitly extracts style features from
the reference icons, and is jointly optimized with the T2I model
during DreamBooth tuning.

To evaluate IconDM, we introduce IconBench, a structured suite
consisting of 30 diverse icon sets and 100 concepts for generation
(50 of them are abstract concepts). We implement IconDM on the ba-
sis of Stable Diffusion XL [37]. Both the qualitative and quantitative
results on IconBench show that IconDM outperforms existing text-
guided style transfer methods in generating faithful, aesthetic and
style-preserving icons. Extensive ablation studies also demonstrate
the effectiveness of the domain adaptation process in improving
abstract concept visualization and the Style Enhancement Module
in boosting style preservation, especially for fine-grained stylis-
tic elements. Furthermore, we also show that IconDM seamlessly
works with ControlNet [59] to offer more controllability.

In summary, our contributions are as follows:
• We introduce Text-guided Icon Set Expansion, a novel task
that allows users to expand icon sets using text prompts and
a few reference icons, streamlining the design process.

• We present IconDM, a method based on the pre-trained T2I
diffusion model. It leverages a domain adaptation process
and a style transfer process with a light-weight Style En-
hancement Module to tackle the challenging task.

• We construct IconBank, a large-scale dataset consisting of 2.3
million icon-text pairs from the Internet, and introduce Icon-
Bench, a structured test suite including 30 icon sets and 100
concepts for method evaluation.

2 RELATEDWORK
Text-to-Image Generation. The recent success of diffusion de-
noising probabilistic models (DDPMs) [14] has brought new life
to the field of text-to-image generation. Different from their GAN
counterparts [2, 8, 10, 33, 40], DDPMs use a denoising U-Net [44]
to gradually remove noise and obtain clean images from Gaussian
noise. Thanks to the effectivemodel architecture and large-scale (im-
age, text) datasets [47, 48], current T2I models [4, 35, 37, 41, 43, 46]
can generate fairly high-quality images based on text prompts.
In addition to text-to-image, DDPMs have also been applied to
other computer vision tasks and achieved impressive results, such
as image editing [11, 22, 57], inpainting [25, 29], video genera-
tion [13, 16, 30], 3D shape rendering [26, 45] and so on. Notably,
although these T2I models are good at synthesizing open-domain
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U-Net

: A verification icon. Text Model

LoRA

Icon Set Expansion

(b) Style Transfer

label: 5G
description: A 5G signal source with a 
blue circle and white 5G lettering.

Text Model

… …

Initialization

(a) Domain Adaptation

Sampling

U-Net

Figure 2: An overview of the proposed IconDM. In domain adaptation, we leverage IconBank to finetune the full parameters of
U-Net. The weights then serve as initialization for the style transfer process. To better achieve style preservation, we introduce
a Style Enhancement Module (SEM) in style transfer, explicitly injecting the style features 𝑔 of reference icons 𝑥style into the
model. After the two processes, IconDM can generate visually appealing, faithful and style-preserving icons 𝑥0 based on the
style reference icons 𝑥style and the text prompt 𝑐.

images, they still have difficulty generating images in specific do-
mains, such as icons. To overcome this limitation, in this work,
we construct a large-scale icon-text dataset, named IconBank, and
finetune the pre-trained T2I models on it for icon generation.

Text-Guided Style Transfer. Stylized image generation from
text guidance has been widely studied, especially on T2I diffu-
sion models [5, 9, 12, 34, 45, 50, 54, 60]. Existing methods can be
grouped into 3 categories: (i) optimization-based [9, 24, 45, 50, 60];
(ii) optimization-free [5, 34, 38, 54]; and (iii) training-free [12, 53].
In particular, (i) optimization-based approaches finetune the model
on a few reference images containing the target style. For example,
Textual Inversion [9] optimizes the embedding of special tokens
bound to the style while keeping all other parameters fixed. Dream-
Booth [45] instead finetunes all the weights of U-Net [44], and it ad-
ditionally introduces a prior preservation loss to avoid catastrophic
forgetting of acquired knowledge. Some parameter-efficient fine-
tuning techniques [17, 18] are adopted, seeking a trade-off between
performance and computation resource. (ii) Optimization-free ap-
proaches [5, 34, 54], on the other hand, finetune a T2I model on
large-scale stylized images such as WikiArt [20] for real-time styl-
ized text-to-image generation. Due to the lack of pairwise (reference
image, sample) data, they have to use the sample itself (or a cropped
patch) as the reference image, potentially causing content leakage.
To resolve this, the recent DEADiff [38] builds two paired datasets,
and it proposes a content-style decouple mechanism and a non-
reconstructive learning method for real-time style transfer. (iii)
There are also training-free approaches that accomplish stylized im-
age generation without any parameters tuning in offline or online.
StyleAligned [12] introduces an attention-sharing operation with
AdaIN [19] modulation during the diffusion process to maintain
style consistency with the first image in the batch. InstantStyle [53]
proposes to inject reference image features into style-specific blocks
in U-Net so as to achieve effective style transfer without the need of

weight tuning. In our initial attempts, we found that optimization-
based methods produce the highest quality icons, which drives us
to design IconDM. To overcome existing methods’ shortcomings
in capturing fine-grained stylistic elements, we introduce a Style
Enhancement Module (SEM) into the T2I model for explicit style
feature modeling. In this way, the icons generated by IconDM have
a more consistent style than the baselines.

Icon Generation. Icon Generation is an emerging topic in com-
puter vision. Previous methods [32, 36, 58] typically utilize GANs
to generate icons that satisfy specific class conditions. For example,
Yang et al. [58] employ StyleGAN [21] to generate icons from 8
pre-defined categories, including weather, emotion, clothes and
so on. They incorporate a self-attention mechanism and spectral
normalization operation to enhance the quality and diversity of
the generated icons. Chen et al. [7] propose IconGAN with dual
discriminators to achieve icon generation conditioned on both app
and theme labels. IconShop [56] adopts autoregressive Transform-
ers [52] to synthesize scalable icons from texts, further improving
practicality and flexibility. However, they suffer from the following
shortcomings. First, previous approaches only consider semantic
conditions and do not provide style control over the generated icons,
thereby lacking the capabilities of producing icons in a desired style.
Second, the work primarily focuses on concrete, physical concepts
but does not delve into the generative capabilities of abstract con-
cepts. In this paper, we present IconDM that for the first time allows
users to generate new icons of either concrete or abstract concepts
and control their styles to be consistent with reference icons.

3 ICONDM
In this section, we elaborate on IconDM for Text-Guided Icon Set Ex-
pansion. It is an optimization-based method built upon pre-trained
T2I diffusion models. IconDM involves a domain adaptation and a
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style transfer process (see Figure 2). Domain adaptation aims to im-
prove the pre-trained T2I model in understanding abstract concepts
and generating images in an icon-like style. To achieve so, we con-
struct IconBank, a large-scale icon-text dataset, and perform exten-
sive text revisionwith the state-of-the-art vision-languagemodel. In
style transfer, IconDM takes as input a few handmade icons for ref-
erence, and learns to synthesize novel while style-preserving icons
using DreamBooth-LoRA [18, 45]. To better capture fine-grained
stylistic elements in reference, we introduce a light-weight Style
Enhancement Module into the T2I model.

In what follows, we first introduce the background of T2I dif-
fusion models and then present the domain adaptation and style
transfer process, respectively.

3.1 Preliminary
Diffusion denoising probabilistic models (DDPMs) are a class of
generative models that have gained significant attention in recent
years due to their ability to generate high-quality images. Given
an input image 𝑥0, their forward diffusion process gradually adds
noise to the image to create a series of noisy images 𝑥1, 𝑥2, ..., 𝑥𝑇 ,
where 𝑇 is the total number of steps in the diffusion process. The
noisy image 𝑥𝑡 at each time step 𝑡 can be represented as a linear
combination of the clean image 𝑥0 and Gaussian noise 𝜖 ∼ N(0, I):

𝑥𝑡 =
√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖. (1)

Here, 𝛼𝑡 =
∏𝑡

𝑖=1 𝛼𝑖 . And {𝛼𝑡 }𝑇𝑡=1 denotes a pre-defined variance
schedule, which guarantees that 𝛼𝑇 ≈ 0, so that the images 𝑥0
will be diffused to a standard Gaussian noise 𝑥𝑇 ∼ N(0, I). In the
reverse process, DDPMs are trained to progressively denoise the
noisy image 𝑥𝑡 and obtain a cleaner image 𝑥𝑡−1 :

𝑥𝑡−1 =
1

√
𝛼𝑡

(𝑥𝑡 −
1 − 𝛼𝑡√
1 − 𝛼𝑡

𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑐)) + 𝜎𝑡𝜖, (2)

where 𝜖𝜃 is a denoising neural network parameterized by 𝜃 , 𝑐 is the
condition for image generation and 𝜎𝑡 reflects the noise intensity at
time step 𝑡 . In the implementation, 𝜖𝜃 typically adopts a U-Net [44]
architecture. According to Equation 2, DDPMs can create new im-
ages from a random noise 𝑥𝑇 after 𝑇 iterations. With 𝑥𝑡 known as
in Equation 1, the training objective of diffusion models is to mini-
mize the 𝐿2 distance between the predicted noise 𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑐) and its
ground truth 𝜖 . For stable training, the loss function is expressed
as the following simplified formulation [14, 15]:

Lsimple
ddpm = E𝑡∼[1,𝑇 ],𝜖∼N(0,I)

[
∥𝜖𝜃 (𝑥𝑡 , 𝑡, 𝑐) − 𝜖 ∥2

2
]
. (3)

Although DDPMs can synthesize high-fidelity images, their for-
ward and reverse process both occur directly in pixel space, which
can be computationally expansive during training and inference. To
address this issue, latent diffusion models (LDMs) propose to diffuse
and denoise in latent space. Specifically, they leverage a pre-trained
variational auto-encoder (VAE) [23] to map an image 𝑥 to a low-
dimensional latent vector 𝑧 using an encoder 𝜙enc, i.e., 𝑧 = 𝜙enc (𝑥),
and map it back using a decoder 𝜙dec. Then, the forward process,
reverse process and loss function can all be represented in a similar
way to pixel space. For example, the loss function in latent space is:

Lsimple
ldm = E𝑡∼[1,𝑇 ],𝜖∼N(0,I)

[
∥𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐) − 𝜖 ∥2

2
]
. (4)

risk stock market medicine bank statistics teamwork subscription candy

Figure 3: Some samples from IconBank.

# icons # sets # icons per set Avg. 𝐿label Avg. 𝐿desc
2,383,832 51,350 46.42 1.27 10.21

Table 1: The statistics of IconBank. Avg. 𝐿label represents the
average word length of icon labels. Avg. 𝐿desc represents the
average word length of icon descriptions.

3.2 Domain Adaptation
The purpose of domain adaptation is to finetune the T2I model for
the icon domain, boosting its capability of understanding abstract
concepts and generating images in an icon-like style. To accomplish
this goal, we construct a large-scale icon-text dataset.
IconBank. As a dataset for domain adaptation, IconBank should
meet the following two requirements. (i) Diversity. IconBank should
contain icons in a wide variety of styles and also cover a wide range
of concepts, from concrete, physical concepts to abstract, intricate
concepts. (ii) High-Quality Textual Description. As highlighted in
prior work [1, 6, 49], the quality of textual descriptions can largely
impact the model performance.

To this end, we collect icons from Flaticon1, one of the largest
free online databases of manually designed icons. Icons in Flaticon
are organized into sets, where the icons in a specific set share the
same style. In addition, each icon in Flaticon is paired with a few
concise textual labels, typically indicating its concept (see Figure 3).
However, such concise labels or keywords may bring additional
learning difficulty for T2I models, especially for abstract concepts.
Hence, we follow the practice of previous work [6], and adopt the
state-of-the-art vision-language model (LLaVA [27]) to generate
detailed textual descriptions for icons. Empirically, we find that the
instruction “Please describe the icon in one sentence, the more detailed
the better.” can produce satisfactory results for LLaVA. An example
of the generated icon description is shown in Figure 2a. Table 1 lists
the statistics of the constructed IconBank. It contains 2.3 million
icons from 51k sets and each icon is paired with a concise label and
a detailed description. More examples and detailed procedures to
construct the dataset are available in the supplementary materials.
Training.We finetune the T2I diffusion model on IconBank with
Equation 4. To support icon generation from either a concise label
or a detailed description, we sample the text prompt 𝑐 for an icon
from its label and description with equal probability.

3.3 Style Transfer
In style transfer, IconDM is given an initial set of icons X and
learns to synthesize novel icons that share the same style with
those in X, including some fine-grained stylistic elements such as
shapes, lines, 3D structure, shadows, etc. To meet this challenging
requirement, the key insight of IconDM is to add explicit style

1https://www.flaticon.com/
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guidance during model training and inference. This is achieved by
a carefully designed Style Enhancement Module (SEM).
Style Enhancement Module. SEM uses a lightweight style con-
volutional layer to extract style features of reference icons and
injects them into the denoising process of T2I model (see Figure 2b).
Specifically, SEM takes as input𝑀 icons {𝑥𝑖style}

𝑀
𝑖=1 as style refer-

ence from the initial icon set X and uses a VAE encoder to map
them into the latent space:

𝑦𝑖 = 𝜙enc (𝑥𝑖style), (5)

where 𝑦𝑖 denotes the latent vector of 𝑥𝑖style. Then, these resulting
latent vectors {𝑦𝑖 }𝑀

𝑖=1 are aggregated, fused with the sample’s latent
vector 𝑧𝑡 at time step 𝑡 , and feeded into the U-Net for denoising:

𝑓𝑡 = conv_in(𝑧𝑡 ),

𝑔 =
1
𝑀

𝑀∑︁
𝑖=1

style_conv_in(𝑦𝑖 ), (6)

ℎ𝑡 = 𝑓𝑡 + 𝜆𝑔.

Here, conv_in represents the original input convolutional layer of
U-Net. style_conv_in is the aforementioned trainable style con-
volutional layer, which has the same parameter shapes as conv_in.
𝜆 is a hyper-parameter that controls the style strength. When 𝜆 = 0,
the model degenerates into a vanilla T2I model without additional
style guidance. Finally, we obtain the fused feature ℎ𝑡 and feed it
into U-Net for denoising. Since ℎ𝑡 contains style features, IconDM
can explicitly take advantage of it to capture fine-grained style
characteristics of reference icons during training and inference,
and then generate new icons that are more consistent with the tar-
get style. For training stability, the added style_conv_in adopts
a zero-initialization strategy [59], ensuring that its output is 0 at
the beginning of training. This strategy helps prevent too drastic
distribution shifts in the generation space.
Training and Inference. We employ the LoRA [18] variant of
DreamBooth [45] to finetune the domain-adapted T2I model and
the SEM module for style transfer. In each iteration, we sample
a batch of training icons from X and pair each of them with 𝑀

reference icons. Note that the reference icons for each sample are
guaranteed to exclude the training sample itself. In inference, given
a text prompt, we sample𝑀 reference icons from X and perform
the denoising process to obtain a stylized icon.

4 EXPERIMENTS
4.1 Experimental Setting
Implementation Details. We adopt the state-of-the-art Stable
Diffusion XL (SDXL) as our base text-to-image model. (i) In domain
adaptation, we tune the full parameters of its U-Net [44] while
keeping the parameters of the text encoder and VAE fixed, since
they contribute little to domain adaptation. We conduct training on
A100-80G GPUs with a batch size of 4, and employ AdamW [28]
to optimize for about 500K iterations with a learning rate of 1e-5.
Notably, domain adaptation is only performed once and does not
require further adaptation to a specific icon set. (ii) In style transfer,
the parameters of U-Net are first initialized from the resulting
model of domain adaptation. Since we use the LoRA variant of
DreamBooth, the model can be trained on a single 16G V100 GPU

with a batch size of 2 and a learning rate of 1e-4. We empirically
find that 5,000 steps are sufficient to attain remarkable style transfer
performance. As for hyper-parameters, the rank number of LoRA
is set to 4, the number of style reference icons that are used in SEM
is 𝑀 = 3, and style strength is 𝜆 = 1.0. The icon resolution is set
to 512 × 512. At inference, we adopt DDIM [51] sampler with 50
steps. For both domain adaptation and style transfer, we refer to
the public Diffusers implementation2. In addition, we empirically
find that the preservation loss in DreamBooth leads to unstable
training, and hence, we disable it in our implementation.
IconBench. To evaluate the effectiveness of IconDM on Text-
Guided Icon Set Expansion, we introduce a structured evaluation
suite called IconBench. In particular, we randomly collect another
30 icon sets from Flaticon, which do not overlap with the icon
sets in IconBank. With the help of ChatGPT, we collect 100 test
concepts, including 50 concrete concepts and 50 abstract concepts.
Please refer to the supplementary materials for the complete list of
concepts. For each style and each concept, we generate 4 different
icons, resulting in a total of 30×100×4 = 12000 icons for evaluation.
Evaluation Metrics. We evaluate the generated results from two
perspectives, namely text fidelity and style consistency. In terms of
text fidelity, we measure it by the CLIP [39] cosine similarity be-
tween the generated icons and text prompts. For a fair comparison,
all methods use the same text prompt “A flat icon of the concept {}” to
compute CLIP text embeddings. To better understand the model’s
capability of visualizing abstract concepts, the CLIP score is further
divided into CLIP (Concrete) and CLIP (Abstract), which are com-
puted on concrete concepts and abstract concepts, respectively. As
for style consistency, we leverage the DINO [3] score to evaluate
it [12]. For each icon set, we calculate the average cosine similarity
between DINO embeddings of the generated and reference icons.
The calculations are again averaged over the 30 test icon sets. We
do not use CLIP image embedding to measure style consistency
since it focuses more on semantic-level features.
Compared Baselines. We compare IconDM against training-free,
optimization-free and optimization-based approaches, respectively.
Concretely, we choose StyleAligned [12] and InstantStyle [53]
as the training-free baselines. We choose DEADiff [38] as our
optimization-free baseline. Since optimization-based approaches
are typically better at capturing fine-grained stylistic elements,
we mainly compare against them, including Textual Inversion [9],
DreamBooth [45], Custom Diffusion [24] and StyleDrop [50]. For
StyleDrop, we use an unofficial implementation3, since it is not
open-source yet. For all other baselines except DEADiff (only has
the SD-1.5 version), we adopt their SDXL version models for a fair
comparison.

4.2 Main Results
Qualitative Results. Due to the space limitation, we only select
the best qualitative results from each category of approaches for
qualitative comparison (see Figure 4)4. The results indicate that (i)
IconDM can visualize abstract concepts in a meaningful manner.
For example, it uses a chip to represent technology and a bulb to

2https://github.com/huggingface/diffusers/
3https://github.com/aim-uofa/StyleDrop-PyTorch
4Please refer to the supplementary materials for a more comprehensive comparison
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Figure 4: Qualitative comparison between IconDM and other baselines. Please note that the gray borders around these icons are
not generated by the models but are added later for a better visual experience.

represent inspiration, allowing users to understand the underlying
abstract concepts in an instant. (2) IconDM is proficient in fine-
grained style transfer including color (the calendar color in the 1st
row, color gradient in the 4th row), shape (round border in the 2nd
row), line (line width in the 4th row), 3D effect (shadow in the 6th
row) and even anthropomorphic effect (eyes in the 3rd row). In
addition to these fine-grained stylistic elements, our approach also

ensures that the overall style of the generated icons is consistent
with the reference ones, as evidenced by the 5th row. (3) Our ap-
proach can generate visually attractive icons. These three aspects
of advantages allow IconDM to successfully address the aforemen-
tioned challenges and achieve Text-Guided Icon Set Expansion.
However, the baseline methods all produce unsatisfactory results.
Both the training-free method InstantStyle and optimization-free
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Methods CLIP (Concrete) CLIP (Abstract) DINO

StyleAligned 29.14 27.71 49.89
InstantStyle 31.94 28.01 45.65

DEADiff 31.29 28.45 42.33

Textual Inversion 31.01 25.91 30.22
DreamBooth LoRA 31.58 28.53 52.10
Custom Diffusion 31.98 28.59 51.59
StyleDrop 26.27 26.05 39.50

Ours 32.03 29.07 54.26

Table 2: Quantitative results of each method on Text-Guided
Icon Set Expansion. These methods are divided into 4 parts,
which are training-free, optimization-free, optimization-
based approaches and our proposed IconDM from top to
bottom of the table.

time technology badge protection system emotion

SD
XL

w
/ D

A

Figure 5: Qualitative comparison to demonstrate the effec-
tiveness of domain adaptation (DA).

method DEADiff fail in fine-grained style transfer, and the icons
they generate are of poor quality. Although DreamBooth-LoRA
creates relatively higher-quality icons, it cannot solve the two chal-
lenges. First, it fails to generate some abstract concepts, such as
progress in the 3rd row. Second, its capability of preserving fine-
grained stylistic elements is limited. For instance, it fails to generate
icons with a round border in the 2nd row.
Quantitative Results. Table 2 shows the quantitative results.
From the results, we have the following observations. First, the CLIP
(Abstract) score of all methods is lower than the CLIP (Concrete)
score, which indicates that abstract concepts are more difficult
to render, and their visualization is indeed a challenge in icon
generation. Second, the results show that IconDM outperforms all
baselines on all quantitative metrics, further proving that IconDM
can generate high-quality icons that are faithful to the text prompts
and are consistent with the styles of reference icons.

4.3 Ablation Studies
Effect of Domain Adaptation. Domain adaptation is a crucial
process in IconDM. To investigate its effect, we conduct another
experiment to directly perform style transfer on SDXL without
domain adaptation (denoted as w/o DA). The quantitative metrics
are shown in Table 3. From the results, IconDM achieves better
CLIP (Concrete) and CLIP (Abstract) scores, which proves that the
model gains better visualization capabilities for both concrete and

Methods CLIP (Concrete) CLIP (Abstract) DINO

Ours (𝜆 = 1.0, 𝑀 = 3) 32.03 29.07 54.26

w/o DA 31.24 28.51 54.12

𝜆 = 0.0 (w/o SEM) 31.79 28.91 53.57
𝜆 = 0.5 31.93 29.02 54.11
𝜆 = 2.0 31.96 29.09 54.68

𝑀 = 1 32.00 29.01 54.24

init. from conv_in 31.31 28.71 54.06

Table 3: Ablation studies of IconDM.

style reference w/o SEM Ours style reference w/o SEM Ours

security justice

Figure 6: Qualitative comparison to demonstrate the effec-
tiveness of Style Enhancement Module (SEM).

abstract concepts by training on the large-scale icon dataset. In ad-
dition, we qualitatively compare the icon generation performance
of SDXL before and after domain adaptation (see Figure 5). The
results indicate that (1) the icons generated by SDXL are sometimes
not faithful to the textual descriptions. For example, it produces a
high-definition face based on the text prompt "emotion", which is
slightly off-topic, since the emotion represents the facial expression
rather than the face itself. On the contrary, the icon generated by
SDXL w/ DA skips the details of the face and highlights the facial
expression, making it more aligned with the text prompt. (2) SDXL
struggles to render abstract concepts in a meaningful manner. For
instance, when the prompt "protection" is input into SDXL, it gen-
erates a poor quality icon with unrecognizable content. However,
after domain adaptation, its variant SDXL w/ DA successfully visu-
alizes the concept through a shield, allowing users to immediately
understand the underlying concept. To sum up, both quantitative
and qualitative results demonstrate the effectiveness of domain
adaptation in icon generation. It not only provides the model with
the capability to visualize abstract concepts, but also improves the
fidelity between the generated icons and the input prompts.
Effect of Style Enhancement Module. Style Enhance Module
(SEM) is introduced in the style transfer process to help the model
better capture fine-grained style features. To study its effect, we
disable SEM (by setting 𝜆 = 0, denoted as w/o SEM), degenerat-
ing the personalization method into ordinary DreamBooth-LoRA.
This results in a drop in the DINO score, demonstrating that the
style consistency between the generated icons and style reference
icons is compromised without SEM. Additionally, we also show
the qualitative results in Figure 6. Compared to IconDM, the w/o
SEM variant lacks the capability to generate fine-grained styles. For
example, in the 1st case of Figure 6, the variant does not capture
the shape characteristics of the reference icons and fails to produce
an icon with a round border. In the 2nd case, the variant ignores
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Figure 8: With the support of ControlNet, IconDM can per-
form icon set expansion from canny images.

the anthropomorphic eyes in the reference icons, leading to subop-
timal style transfer performance. However, our IconDM can better
preserve these fine-grained stylistic elements in generated icons. In
summary, SEM is an effective module in icon style transfer. Finally,
we investigate the effect of the hyper-parameter 𝜆 in SEM. As 𝜆
increases (from 0.0 to 2.0), the DINO score gradually gets improved
(from 53.57 to 54.68). This shows that SEM does play a positive role
in icon style transfer and preservation.
Effect of Number of Reference Icons. SEM in our approach can
support any number of icons as style reference. To study the effect
of the number, we use only 1 reference icon during training and
inference of style transfer. From the quantitative results shown in
Table 3, we find that the number of reference icons has little effect
on the metrics. This also displays the excellent robustness of SEM.
Effect of Initialization Strategy. Since the style convolutional
layer style_conv_in in SEM has the same parameter shape as the
input convolutional layer conv_in of U-Net, we use the parameter
of conv_in to initialize style_conv_in and investigate the effect
of initialization strategy. The results are shown in Table 3. This
non-zero initialization strategy harms all three quantitative metrics.
We speculate this is because the non-zero initial hidden states of

style reference w/o LLMs w/ LLMs style reference w/o LLMs w/ LLMs

freedom freedom: A bird flapping 
wings and flying. target target: A soccer ball 

entering a goal net.

Figure 9: IconDM is integrated with LLMs to generate icons.

style_conv_in disrupt the feature space of the model, resulting in
unstable training and affecting performance.

4.4 Feature Visualization
Thanks to the fact that the output of the convolutional layer does not
destroy the spatial correspondence of the input image, we visualize
the output features of the two convolutional layers involved in SEM,
and provide a qualitative explanation for its effectiveness. To be
more specific, we visualize the two output features at the last step
in the reverse process (i.e. 𝑡 = 0, near clean images), and the results
are shown in Figure 7. We observe that the style convolution layer
style_conv_in has significant output values on fine-grained stylistic
elements, such as the 3D effect in case 1 and the shadow in case 2. In
contrast, the output values of the input convolutional layer conv_in
are average over the entire icons. This indicates that the added
layer does pay more attention to the icon style, which qualitatively
explains why our IconDM can achieve better fine-grained style
transfer and preservation.

4.5 More Applications
Combined with LLMs. Given a concept label, we can prompt the
pre-trained large language model (LLM) to generate a detailed de-
scription, and IconDM is capable of generating faithful and stylized
icons accordingly (see Figure 9). In this way, IconDM can generate
icons with more diverse content and richer details.
Combined with ControlNet. Our model can work seamlessly
with ControlNet [59] to expand the icon set based on canny images.
This is practical since designers sometimes not only need to ensure
the semantic correctness of the generated icons, but also need to
control the exact content of the icons. We show some generative
icons in Figure 8. They are of remarkable quality while being stylis-
tically consistent with the reference icons and faithful to the canny
images. More qualitative results for other conditions can be found
in the supplementary materials.

5 CONCLUSION
In this work, we propose a new task named Text-Guided Icon Set
Expansion, aiming to help designers create new icons with con-
trolled styles. To tackle this challenging task, we propose IconDM,
decomposing it into two processes, i.e., domain adaptation and style
transfer. The evaluation on IconBench demonstrates the effective-
ness of our approach. Note that with the support of vectorization
methods [31], IconDM can also generate icons in SVG format. Fi-
nally, we would like to point out that a limitation of our approach
lies in its efficiency, i.e., the style transfer process is optimization-
based and requires online learning for each icon set. In the future,
we plan to seek an optimization-free method for Text-Guided Icon
Set Expansion, thereby enhancing practicality.
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