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ABSTRACT

Contrastive learning has emerged as a powerful method in deep learning, ex-
celling at learning effective representations through contrasting samples from dif-
ferent distributions. However, dimensional collapse, where embeddings converge
into a lower-dimensional space, poses a significant challenge, especially in semi-
supervised and self-supervised setups. In this paper, we first theoretically analyze
the effect of large learning rates on contrastive losses that solely rely on the cosine
similarity metric, and derive a theoretical bound to mitigate this collapse. Building
on these insights, we propose CLOP, a novel semi-supervised loss function de-
signed to prevent dimensional collapse by promoting the formation of orthogonal
linear subspaces among class embeddings. Unlike prior approaches that enforce
a simplex ETF structure, CLOP focuses on subspace separation, leading to more
distinguishable embeddings. Through extensive experiments on real and synthetic
datasets, we demonstrate that CLOP enhances performance, providing greater sta-
bility across different learning rates and batch sizes.

1 INTRODUCTION

Recent advancements in deep learning have positioned Contrastive Learning as a leading
paradigm, largely due to its effectiveness in learning representations by contrasting samples from
different distributions while aligning those from the same distribution. Prominent models in
this domain include SimCLR Chen et al. (2020a), Contrastive Multiview Coding (CMC) Tian
et al. (2020a), VICReg Bardes et al. (2021), BarLowTwins Zbontar et al. (2021), among oth-
ers Wu et al. (2018); Henaff (2020); Li et al. (2020). These models share a common two-
stage framework: representation learning and fine-tuning. In the first stage, representation learn-
ing is performed in a self-supervised manner, where the model is trained to map inputs to em-
beddings using contrastive loss to separate samples from different labels. In the second stage,
fine-tuning occurs under a supervised setup, where labeled data is used to classify embeddings
correctly. For practical applicability, a small amount of labeled data is required in the fine-
tuning stage to produce meaningful classifications, making the overall pipeline semi-supervised.
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Figure 1: Illustration of global optima for InfoNCE and
CLOP (this paper). For InfoNCE, global optima are
reached when the model merges samples of the same class
into a single embedding, whether the class arrangement is
ETF (A) or co-linear (B). In contrast, the proposed CLOP
introduces a novel regularizer that encourages embeddings
to occupy a highly separable, full-rank space.

Empirical evidence demonstrates that
these models, even with limited la-
beled data (as low as 10%), can
achieve performance comparable to
fully-supervised approaches on mod-
erate to large datasets Jaiswal et al.
(2020).

Despite the effectiveness of con-
trastive learning on largely unlabeled
datasets, a common issue encoun-
tered during the training process is
Dimensional Collapse. As pointed
out by Jing et al. (2021); Fu et al.
(2022); Rusak et al. (2022); Xue et al.
(2023); Gill et al. (2024); Tao et al.
(2024); Hassanpour et al. (2024), this
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phenomenon describes the collapse of output embeddings from the neural network into a lower-
dimensional space, reducing their spatial utility and leading to indistinguishable classes (see Fig-
ure 1.B). There are two main approaches to resolve this issue: augmentation modification Jing et al.
(2021); Xue et al. (2023); Fu et al. (2022); Tao et al. (2024) and loss modification Fu et al. (2022);
Rusak et al. (2022); Hassanpour et al. (2024). In this paper, we propose an additional term in the loss
function to address the issue of collapse. Our approach to deal with Dimensional collapse involves
selecting prototypes similarly to Zhu et al. (2022); Gill et al. (2024). The key distinction lies in the
fact that, while their approach enforces the embeddings to conform to a simplex Equiangular Tight
Frame (ETF) hyperplane, our method aims to push the embeddings toward distinct orthogonal linear
subspaces, allowing them to occupy the full-rank space (see Figure 1 for intuition). This result in
more distinguishable subspace clusters, which can be more effectively learned by the downstream
classifier.

The main contributions of this paper can be summarized in three perspectives. First, we theoret-
ically identify the impact of an overly large learning rate on contrastive learning loss that is based
solely on cosine similarity as the metric. We provide a theoretical bound for the learning rate to
avoid collapse for k classes under specified conditions. Furthermore, we simplify this bound to a
constant O(1). Second, we analyze the results under moderate learning rates and observe that the
embeddings naturally lie on a hyperplane, which reduces spatial usage and makes it more difficult
for the downstream classifier to learn effectively. Finally, with these findings, we propose a novel
loss term, CLOP, which involves pulling a partial training dataset towards a few orthonormal pro-
totypes. This loss is applicable in both semi-supervised and fully-supervised contrastive learning
settings, where a subset of labeled data is available for training. Through extensive experiments, we
demonstrate the performance superiority of CLOP. Specifically, we show that CLOP is significantly
more stable across different learning rates and smaller batch sizes.

Paper Organization In Section 2, we begin by discussing the necessary background, including re-
cent advancements in both self-supervised and supervised contrastive learning, as well as the analy-
sis of the Dimensional collapse phenomenon in deep learning and contrastive learning, in particular.
In Section 3, we present our theoretical analysis of Dimensional collapse. Next, in Section 4, we
introduce our proposed model, CLOP. Lastly, we present the experimental results on CIFAR-100
and Tiny-ImageNet in Section 5.

2 RELATED WORK

Contrastive learning has gained prominence in deep learning for its ability to learn meaningful rep-
resentations by pulling together similar (positive) pairs and pushing apart dissimilar (negative) pairs
in the embedding space. Positive pairs are generated through techniques like data augmentation,
while negative pairs come from unrelated samples, making contrastive learning particularly effec-
tive in self-supervised tasks like image classification. Pioneering models such as SimCLR Chen
et al. (2020a), CMC Tian et al. (2020a), VICReg Bardes et al. (2021), and Barlow Twins Zbon-
tar et al. (2021) share the objective of minimizing distances between augmented versions of the
same input (positive pairs) and maximizing distances between unrelated inputs (negative pairs).
SimCLR maximizes agreement between augmentations using contrastive loss, while CMC extends
this to multi-view learning Chen et al. (2020a); Tian et al. (2020a). VICReg introduces variance-
invariance-covariance regularization without relying on negative samples Bardes et al. (2021), and
Barlow Twins reduce redundancy between different augmentations Zbontar et al. (2021).

Recent innovations have improved contrastive learning across various domains. For instance, meth-
ods like structure-preserving quality enhancement in CBCT images Kang et al. (2023) and false
negative cancellation Huynh et al. (2022) have enhanced image quality and classification accuracy.
In video representation, cross-video cycle-consistency and inter-intra contrastive frameworks Wu &
Wang (2021); Tao et al. (2022) have shown significant gains. Additionally, contrastive learning has
advanced sentiment analysis Xu & Wang (2023), recommendation systems Yang et al. (2022), and
molecular learning with faulty negative mitigation Wang et al. (2022b). Xiao et al. (2024) introduces
GraphACL, a novel framework for contrastive learning on graphs that captures both homophilic and
heterophilic structures without relying on augmentations.
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2.1 CONTRASTIVE LOSS

In unsupervised learning, Wu et al. (2018) introduced InfoNCE, a loss function defined as:

LinfoNCE = −
∑
i∈I

log
exp(z⊤i zj(i)/τ)∑
a̸=i exp(z

⊤
i za/τ)

(1)

where zi is the embedding of sample i, j(i) its positive pair, and τ controls the temperature.

Recent refinements focus on (1) component modifications, (2) similarity adjustments, and (3) novel
approaches. Li et al. (2020) use EM with k-means to update centroids and reduce mutual information
loss, while Wang et al. (2022a) add L2 distance to InfoNCE, though both underperform state-of-the-
art (SOTA) techniques. Xiao et al. (2020) reduce noise with augmentations, and Yeh et al. (2022)
improve gradient efficiency with Decoupled Contrastive Learning, though neither surpasses SOTA.
In similarity adjustments, Chuang et al. (2020) propose a debiased loss, and Ge et al. (2023) use
hyperbolic embeddings, but neither outperforms SOTA. Novel methods include min-max InfoNCE
Tian et al. (2020b), Euclidean-based losses Bardes et al. (2021), and dimension-wise cosine similar-
ity Zbontar et al. (2021), achieving competitive performance without softmax-crossentropy.

2.2 SEMI-SUPERVISED AND SUPERVISED CONTRASTIVE LEARNING

Semi-supervised contrastive learning effectively leverages both labeled and unlabeled data to learn
meaningful representations. Zhang et al. (2022) introduced a framework with similarity co-
calibration to mitigate noisy labels by adjusting the similarity between pairs. Inoue & Goto (2020)
proposed a Generalized Contrastive Loss (GCL), unifying supervised and unsupervised learning
for speaker recognition, while Kim et al. (2021) combined contrastive self-supervision with con-
sistency regularization in SelfMatch. In domain adaptation, Singh (2021) utilized class-wise and
instance-level contrastive learning to minimize domain gaps, while Liu & Abdelzaher (2021) devel-
oped a method for Human Activity Recognition (HAR) using semi-supervised contrastive learning
to achieve state-of-the-art performance. In medical image segmentation, Hua et al. (2022) intro-
duced uncertainty-guided voxel-level contrastive learning, and Hu et al. (2021) combined global
self-supervised and local supervised contrast for improved label efficiency. For automatic speech
recognition (ASR), Xiao et al. (2021) reduced reliance on large labeled datasets while maintaining
high accuracy using semi-supervised contrastive learning. In 3D point cloud segmentation, Jiang
et al. (2021) presented a pseudo-label contrastive framework, while Shen et al. (2021) employed
contrastive learning for intent discovery in conversational datasets with minimal labeled data.

Supervised contrastive learning, initially proposed by Khosla et al. (2020), extends contrastive loss
to fully supervised settings, significantly improving task performance. Graf et al. (2021) further ex-
plored its relationship with cross-entropy loss, highlighting its advantages in feature learning, while
Cui et al. (2021) introduced learnable class centers to balance class representations. Domain-specific
applications include recommendation systems, where supervised contrastive learning enhances item
representations Yang et al. (2022), and product matching, where it improves matching accuracy
Peeters & Bizer (2022). It has also been extended to natural language processing as a fine-tuning
objective for pre-trained models Gunel et al. (2020). To address imbalanced datasets and noisy
labels, Targeted Supervised Contrastive Learning (TSC) focuses on under-represented classes in
long-tailed recognition Li et al. (2022b), while Selective-Supervised Contrastive Learning (Sel-CL)
selectively learns from clean data to improve performance under noisy supervision Li et al. (2022a).

2.3 DIMENSIONAL COLLAPSE

Dimensional collapse is a notable phenomenon in deep learning, particularly during the terminal
phase of training. Several works have focused on establishing a theoretical foundation for under-
standing dimensional collapse through geometric and optimization properties. Zhu et al. (2021)
provide a geometric framework that highlights the alignment of classifiers and features in neural
networks with a Simplex ETF structure. Similarly, Mixon et al. (2022) explore it from the perspec-
tive of unconstrained features, showing that collapse naturally occurs without explicit regularization.
Ji et al. (2021) extend this with an unconstrained layer-peeled model, linking collapse to optimiza-
tion processes. Yaras et al. (2022) use Riemannian geometry to show that collapse solutions are
global minimizers. Extensions of dimensional collapse to more complex settings include Jiang et al.
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(2023), who broaden its study to networks with a large number of classes. Rangamani et al. (2023)
analyze intermediate phases of collapse, while Tirer et al. (2023) show that practical networks rarely
achieve exact collapse, yet approximate collapse still occurs. Galanti et al. (2021) explore its role in
transfer learning, demonstrating improvements in generalization. Zhong et al. (2023) apply dimen-
sional collapse to imbalanced semantic segmentation, highlighting its impact on class separation and
feature alignment.

For dimensional collapse in contrastive learning, Jing et al. (2021) examine dimensional collapse in
self-supervised learning. They attribute this to strong augmentations distorting features and implicit
regularization driving weights toward low-rank solutions. To address this, they propose DirectCLR,
which optimizes the representation space and outperforms SimCLR on ImageNet by better pre-
venting collapse. Similarly, Xue et al. (2023) explore how simplicity bias leads to class collapse
and feature suppression, with models favoring simpler patterns over complex ones. They suggest
increasing embedding dimensionality and designing augmentation techniques that preserve class-
relevant features to counter this bias and promote diverse feature learning. Similarly, Fu et al. (2022)
emphasize the role of data augmentation and loss design in preventing class collapse, proposing a
class-conditional InfoNCE loss term that uniformly pulls apart individual points within the same
class to enhance class separation. In supervised contrastive learning, Gill et al. (2024) propose loss
function modifications to follow an ETF geometry by selecting prototypes that form this structure.
In graph contrastive learning, Tao et al. (2024) introduce a whitening transformation to decorrelate
feature dimensions, avoiding collapse and enhancing representation capacity. In medical image seg-
mentation, Hassanpour et al. (2024) address dimensional collapse through feature normalization and
whitening approach to preserve feature diversity. Finally, Rusak et al. (2022) investigate the pref-
erence of contrastive learning for content over style features, leading to collapse. They propose to
leverage adaptive temperature factors in the loss function to improve feature representation quality.

3 THEORETICAL ANALYSIS

The first part of this section delves into a theoretical examination of complete collapse, which refers
to the phenomenon where all embeddings converge to a single point in contrastive learning. Initially,
we show that complete collapse is a local minimum for the InfoNCE loss by showing that linear
embeddings result in a zero gradient (Lemma 1). This result is demonstrated using the InfoNCE loss,
but it can be applied to the majority of current loss functions that rely solely on cosine similarity
as a similarity metric. This holds across various settings, including unsupervised Henaff (2020);
Chen et al. (2020a); Cui et al. (2021); Xiao et al. (2020); Yeh et al. (2022); Wang et al. (2022a),
semi-supervised Hu et al. (2021); Shen et al. (2021), and supervised contrastive learning Khosla
et al. (2020); Cui et al. (2021); Peeters & Bizer (2022); Li et al. (2022b). Subsequently, we discuss
the effect of a large learning rate in producing complete collapse. We derive an upper-bound on the
learning rate to avoid collapse under mild assumptions (Theorem 1).

In the latter part of this section, we examine the phenomenon of dimensional collapse, where the
embedding space of a model progressively shrinks to a lower-dimensional subspace (Lemma 2). We
describe how cosine-similarity optimization drives this collapse without achieving the formation of a
Simplex Equiangular Tight Frame (ETF). Specifically, we demonstrate that under gradient descent,
which minimizes the total class cosine similarity loss Lclass, the embeddings — initially spanning the
full space — contract into a lower-dimensional subspace where they are not equidistant (not ETF).

3.1 LARGE LEARNING RATE CAUSES COMPLETE COLLAPSE

The concept of the InfoNCE loss, as defined in Eq. (1), aims to encourage the embeddings to form
distinguishable clusters in high-dimensional space, thereby facilitating classification for downstream
models. However, in Lemma 1, we demonstrate that the worst-case scenario — where all embed-
dings become identical or co-linear — also constitutes a local optimum for the InfoNCE loss. This
includes non-unique global optima, which we will further explore in Section 3.2. This observation
suggests that, from a theoretical perspective, InfoNCE exhibits instability, as both the best and worst
solutions can lead to stationary points.
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Lemma 1. Let F : Rm → Rm′
be a family of Contrastive Learning structures, where m and m′

denote the dimensions of the inputs and embeddings, respectively. If a function f ∈ F is trained
using the InfoNCE loss, then there exist infinitely many local minima where all embeddings
produced by f are all equal or co-linear.

The proof of Lemma 1 relies on the observation that the embeddings are only compared against
each other. If all embeddings are either identical or co-linear, the gradient vanishes due to the lack
of angular differences, as well as the normalization process. The full proof of Lemma 1 is presented
in Appendix C.

The remainder of this section focuses on the causes of reaching local minima. In particular, we
examine the role of a large learning rate in causing complete collapse. To understand the dynamics
of contrastive learning, it is crucial to consider two forces acting on each embedding: the gravita-
tional force within the same class and the repulsive force between different classes. Contrary to the
common belief that the gravitational force is responsible for inducing collapse, we observe that the
primary cause of complete collapse in contrastive learning is the overshooting of the repulsive force.

Mean

Gradient

Class Embeddings

Iteration 1 with
ideal  Learning Rate

Iteration 1 with
too-large  Learning Rate

Iteration 0

A B C

Figure 2: Illustration of the effect of repulsive force in
contrastive learning. Light blue dots represent the indi-
vidual class embedding, while the dark blue dot repre-
sents the mean of all class embeddings.

Figure 2 illustrates this phenomenon. For
simplicity of analysis, assume that the
model has successfully merged samples
from the same class into a single class em-
bedding. Each light blue dot represents
one class embedding, while the dark blue
dot represents the mean of all class em-
beddings. In practice, the mean is un-
likely to be located at the center of the
space. The purpose of the repulsive force
is to arrange the class embeddings more
uniformly across the space and center the
mean of the class embeddings, as shown in
Figure 2.B with a small learning rate.

However, when the learning rate is too high, the repulsive force causes the class embeddings to
overshoot, as shown in Figure 2.C with a large learning rate. Due to the normalization operation
inherent in contrastive learning, the class embeddings tend to converge, which ultimately results
in the local minima characterized as complete collapse, as stated in Lemma 1. This overshooting
phenomenon necessitates the upper-bounding of the learning rate to better regulate the repulsive
force, ensuring optimal space utilization of class embeddings.

In Theorem 1, we establish an upper bound for the learning rate of the gradient descent step, where
k represents the total number of class embeddings. This result is derived under the same assumption
that embeddings of the same class are aggregated into a single class embedding by the upstream
model. As shown in Figure 2, the shift in the class embedding mean is a critical phenomenon
associated with complete collapse. Consequently, the upper bound is obtained by constraining the
movement of the class embedding mean, ensuring that the mean in the next step remains strictly
non-increasing.

Theorem 1. Consider k class embeddings uniformly distributed on the surface of an m-
dimensional unit ball, where m ≥ k > 2. The upper bound on the learning rate µ for the
gradient descent step, to minimize cosine similarity scores between class embeddings while
preventing the class embedding mean from increasing by a ratio of (1 + ε), is given by:

(1− η)2 ≤
(
1 +

η

k − 1
− 2η

k
− 2

η2

k(k − 1)
+

η2k

(k − 1)2

)
(1 + ε)2. (2)

Setting ε = 0 guarantees a non-increasing mean, and provides an O(1) upper bound for the
learning rate.
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Figure 3: Numerical experiment conducted on tightness of Theorem 1. Left & Middle: Singular
value spectra of X at different training epochs (color-coded from blue to red). The Left panel
shows successful optimization with a learning rate of 2.0, while the Middle panel demonstrates
optimization failure (complete collapse) at a learning rate of 2.1. Right: The maximum learning
rates preventing collapse over 5 consecutive trials, for varying class embedding sizes, are plotted
against the theoretical upper bound (ε = 0) from Theorem 1.

The proof proceeds by establishing an upper bound on the norm of each class embedding, which is
dependent on the step size after a gradient descent step. This enables us to derive an upper bound
for the shifted mean. By comparing the upper bound of the shifted mean with the original mean,
we guarantee that the mean remains non-increasing throughout the gradient descent process, thus
preventing complete collapse. The detailed proof of Theorem 1 can be found in Appendix D.

To study the tightness of our bound, we perform numerical experiments to determine the high-
est learning rate possible without resulting in complete collapse. The results are presented in
Figure 3, where we apply gradient descent to minimize the cosine similarity between each vec-
tor on a 100-dimensional unit ball. Specifically, let the class embedding matrix be denoted as
X := [x1, . . . ,xk] ∈ R100×k. Assuming the model has successfully collapsed the samples from
each class into a single class embedding, the InfoNCE loss (Eq. (1)) can be simplified to:

Lclass(X) := −
∑
i ̸=j

[X⊤X]ij . (3)

The left and middle figures of Figure 3 show the singular value spectrum of the same 30 class
embeddings, with learning rates of 2.0 and 2.1, respectively. It is important to note that, according
to Theorem 1, the upper bound for non-increasing class embedding means is 2.03. The left figure
demonstrates successful learning with a low final loss, while the middle figure—where the learning
rate is just 0.1 higher—results in complete collapse, as the singular values are nearly zero for all
ranks except the first. Notably, collapse occurs early in training in the middle figure, aligning with
the expectation from Figure 2, which suggests that overshooting may occur when the of Figure 3
are well-distributed across the space. Additionally, although the left figure successfully minimizes
the total cosine similarity, there are signs of dimensional collapse, as the singular value of the last
dimension gradually drops to zero. This indicates that adjusting the learning rate alone cannot
prevent dimensional collapse, a topic we will explore further in Section 3.2.

In the right figure of Figure 3, we plot the maximum learning rates that prevent collapse over 5
consecutive trials for varying number of class embeddings, comparing them to the theoretical upper
bound from Theorem 1. The theoretical upper bound closely aligns with the highest successful
learning rate recorded. The reason our bound is tighter than the highest recorded successful learning
rate is that we guarantee the class embedding mean is non-increasing over gradient steps (i.e., ε = 0),
providing the safest bound for the learning rate.

3.2 COSINE-SIMILARITY CAUSES DIMENSIONAL COLLAPSE

There are three widely discussed methods for arranging k class embeddings in an m-dimensional
space, where m ≥ k, to achieve optimal spatial utility. The first method is the Simplex Equiangular
Tight Frame (ETF), as introduced in Zhu et al. (2021); Graf et al. (2021). This approach arranges the
vectors on a hyperplane such that all vectors are equidistant from each other. ETF is frequently used
to explain the phenomenon of dimensional collapse observed in the final layer of a neural network.
The second method involves arranging k vectors to be mutually orthogonal. The third method
divides the k vectors into equal-sized groups, where within each group, the vectors form pairs that
point in opposite directions. Additionally, the vectors from different groups are orthogonal to each
other.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Rank Index

10 4

10 2

100

Si
ng

ul
ar

 V
al

ue

Singular Value Spectrum in 100-Dimension Space

k=20
k=40
k=60
k=80
k=100
k=120

0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Cosine Similarity

0

2

4

6

Co
un

t

Pairwise-Cosine Similarities in 100-Dimension Space
k=20
k=40
k=60
k=80
k=100
k=120

Figure 4: Numerical experiments illustrating dimensional collapse with k class embeddings. The
results show that minimizing total cosine similarity via gradient descent leads to convergence within
a subspace of rank k−1 (left), while failing to preserve equal distances between the vectors (right).

While the second ”orthogonal” method yields the most distinguishable classes from a linear algebra
standpoint, the first ”simplex ETF” and third ”inverted groups” methods achieve the optimal value
of the InfoNCE-equivalent Lclass, given as −k. This result is obtained under the same conditions
outlined in Section 3.1, where the model effectively consolidates samples from the same class into
a unified class embedding. However, none of these configurations are commonly observed in con-
trastive learning via gradient descent. Instead, a more common outcome is that the initially full-rank
embedding space gradually collapses into a lower-dimensional subspace, where the embeddings are
no longer equidistant. In this section, we take a microscopic perspective to explore how individual
embeddings adjust to minimize total cosine similarity.

This observation is validated by a simple numerical experiment, where we minimize the pairwise
cosine similarity Lclass among all class embeddings using gradient descent. The class embeddings
are randomly initialized from a Gaussian distribution and normalized to unit norm at each iteration.
As shown in Figure 4, the results demonstrate that gradient descent consistently converges to a
subspace of rank k − 1, where the pairwise similarities vary significantly.

Building on this observation, we present Lemma 2 to illustrate that, in the case of full rank, the
optimal movement for each individual class embedding is to align itself within the subspace spanned
by all other class embeddings. Consequently, the class embedding closest to the others is most
likely to be pushed into this subspace, eventually reaching a local optimum by forming a zero-mean
subspace of rank k − 1.

Lemma 2. Let X = {x1,x2, . . . ,xk−1} be a set of k − 1 linearly-independent unit-norm
class embeddings in an m-dimensional space, where m ≥ k. The optimal arrangement of the
additional individual class embedding xk that minimize the total cosine similarity score Lclass

(Eq. (3)) will result in xk being linearly dependent on the remaining class embeddings in X.

Lemma 2 can be proven by constructing two matrices, X and X′, each consisting of k vectors. One
matrix is full rank, while the other has rank k − 1. The only difference between X and X′ is that
the vector xk in X lies in a distinct dimension, whereas x′

k in X′ is the normalized projection of
xk onto the subspace spanned by the remaining vectors in both X and X′. It can be shown that
Lclass(X) > Lclass(X

′). The complete proof is provided in Appendix E.

4 OUR MODEL: CONTRASTIVE LEARNING WITH ORTHONORMAL
PROTOTYPES (CLOP)

To avoid the issue of complete collapse and dimensional collapse, we introduce a novel approach
(CLOP) that promotes point isolation by adding an additional term to the loss function for contrastive
learning. Specifically, we initialize a group of orthonormal prototypes, serving as the target for each
class, following the same idea of class embeddings. The number of orthonormal prototypes matches
the total number of classes in the dataset. We then maximize the similarity between the orthonormal
prototypes and the labeled samples in the training set.

Formally, let S be the labeled training set containing pairs of embeddings and labels, denoted as S =
{(zi, yi) | i ∈ {1, . . . , |S|}}. The set of prototypes, denoted as C, is defined as C = {c1, . . . , ck},
where k represents the number of classes in the dataset. To generate the prototypes C, we randomly
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sample k i.i.d. vectors from an m′-dimensional space, where |zi| = m′. Subsequently, we apply
singular value decomposition (SVD) to obtain the orthonormal basis, denoted as C. This ensures that
each prototype ci is initialized as a unit vector, orthogonal to all other prototypes, at the beginning
of the training process. The CLOP loss is formulated as follows:

LCLOP = LCL + λ

|S|∑
i=1

(1− s(zi, cyi
)), (4)

where LCL represents the primary contrastive learning loss (e.g., InfoNCE, DCL, SupCon), and
s(·, ·) denotes the similarity metric, typically chosen to be the same metric used in LCL.

The primary objective of the CLOP loss is to align all embeddings corresponding to the same class
towards a common target prototype, cyi . Beyond the “gravitational force” and “repulsive force”
provided by the main contrastive loss, the CLOP loss introduces a supervised “pulling force” that
prevents collapse by isolating labeled embeddings into their own dimensions. It is important to note
that, without additional constraints, samples outside of set S may still converge to other unspecified
embeddings, potentially collapsing into a rank-1 subspace. However, a fundamental assumption in
contrastive learning is that augmented samples are treated as being drawn from the same distribution
as the original input data from the same class. Thus, the “gravitational force” between embeddings of
the same class should pull unsupervised embeddings toward the target class embedding prototypes.

InfoNCE CLOP (this paper)

1.00.50.00.51.0

1.00.50.0 0.5 1.0

1.0
0.5

0.0
0.5
1.0

1.00.50.00.51.0

1.00.50.0 0.5 1.0

1.0
0.5

0.0
0.5
1.0

Accuracy: 70.01% Accuracy: 100%

Figure 5: Impact of avoiding dimensional col-
lapse with CLOP (proposed method) on In-
foNCE for contrastive learning. A 3-layer FFN
is trained on synthetic data with 10% labeled
samples, and the output embeddings are vi-
sualized in 3D. KNN classification accuracy
(k = 5) is reported, where the model is trained
on 10% labeled data and tested on the remain-
ing unlabeled data.

To illustrate the effectiveness of CLOP in miti-
gating embedding collapse, we conduct a straight-
forward experiment using synthetically generated
data. We begin by initializing 500 input samples
in a 3-dimensional space, categorized into three
distinct classes. Samples within each class are
initialized within the same linear subspace, with
random Gaussian noise (mean 0, variance 0.05)
added. A 3-layer Feedforward Neural Network
(FFN) is then trained following SimCLR frame-
work. For the baseline methods (InfoNCE, DCL,
BarlowTwin, VICreg), the model is first trained
using a self-supervised approach, where data aug-
mentation is performed by adding random Gaus-
sian noise (mean 0, variance 0.05) and randomly
inverting the sign of the samples with a probability
of 0.5. Following this training phase, the 10% la-
beled samples are used to train a K-Nearest Neigh-
bors (KNN) classifier (with k = 5), simulating the
fine-tuning phase, to predict the labels of the re-
maining unlabeled samples. For methods employ-
ing CLOP, the same 10% labeled samples are used
for the CLOP loss during the initial training phase.

The output embeddings and KNN accuracy are partially presented in Table 5 and fully detailed in Ta-
ble 5 within Appendix B. The color of each point in the output embedding visualizations corresponds
to its ground truth label. As discussed in previous sections, methods utilizing sample-wise cosine
similarity (e.g., InfoNCE and DCL) are expected to push the embeddings into a lower-dimensional
subspace. This effect is clearly visible for InfoNCE in Table 5 and DCL in Table 5. Consistent
with CLOP’s goal of addressing dimensional collapse, we observe that the embeddings trained with
CLOP show more distinct boundaries between classes, with each class being more orthogonal to the
others. The accuracy results further corroborate the improvement in embedding quality facilitated
by CLOP. Additionally, even for methods like VICReg and Barlow Twins (Table 5), which CLOP is
not specifically designed for, we observe better learning outcomes when CLOP is applied. While the
accuracy improvement for VICReg is marginal, the embedding visualizations clearly demonstrate
that CLOP helps distribute the embeddings more evenly, potentially enhancing the model’s ability
to generalize to future tasks.
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Figure 6: Top-1 classification accuracy across different batch sizes. The percentage of labels used
for supervised training is indicated in the legend.
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Figure 7: Top-1 classification accuracy across different different learning rates. The percentage of
labels used for supervised training is indicated in the legend.

5 EXPERIMENT

In this section, we present the experimental results for image classification, conducted with various
batch sizes and learning rates on the CIFAR-100 Krizhevsky et al. (2009), Tiny-ImageNet Le &
Yang (2015), and full ImageNet Deng et al. (2009) datasets. For baseline methods, we implement
the InfoNCE Wu et al. (2018) with a supervised linear classifier for semi-supervised learning and
the SupCon Khosla et al. (2020) for fully-supervised learning. All experiments are performed us-
ing the SimCLR Chen et al. (2020a) framework with ResNet-50 He et al. (2016). In addition to
these baselines, we introduce our novel loss function, CLOP, which incorporates a hand-tuned hy-
perparameter, λ = 1, as defined in the formulation (see Eq. (4)). To ensure a fair comparison with
ETF, we also evaluate performance using ETF as prototypes instead of an orthonormal basis. For
fully-supervised learning, we utilize all labels in the training datasets for both SupCon and CLOP.
In the semi-supervised setting, we employ 10% of the labeled data for both linear classifier and
CLOP training. For all experiments, we report both top-1 (Figure 6, 7) and top-5 (Appendix B)
classification accuracy using the supervised linear classifier.

CLOP Enables Smaller Batch Sizes. We trained models with batch sizes of 32, 64, 128, 256, 512,
1024, and 2048 on CIFAR-100 and ImageNet for 200 epochs and on Tiny-ImageNet for 100 epochs.
The learning rate was fixed at (0.3× batch size/256) for optimal performance. The corresponding
classification accuracies are presented in Figure 6. CLOP consistently outperformed the baseline
methods across all batch sizes. As reported in the original papers Chen et al. (2020a); Khosla
et al. (2020), contrastive learning performs optimally when the batch size exceeds 1024, a finding
corroborated by our experiments. However, with the addition of CLOP, we observe significantly
less performance degradation at smaller batch sizes. Remarkably, CLOP achieved similar accuracy
with a batch size of 32 compared to the baseline SupCon with a batch size of 2048 for CIFAR-100.

CLOP Prevents Collapse with Large Learning Rates. We trained models with learning rates
ranging from 0.1 to 10 on CIFAR-100 and ImageNet for 200 epochs and Tiny-ImageNet for 100
epochs, using a batch size of 1024. The corresponding classification accuracies are presented in
Figure 7. Across both datasets, CLOP consistently outperforms the baseline methods. Moreover,
as demonstrated by Theorem 1, excessively large learning rates can lead to complete collapse, as
clearly observed in the baseline methods at a learning rate of 10 on both datasets. However, with
the incorporation of CLOP into the loss function, we observe a significantly smaller performance
degradation on both datasets.
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λ
CIFAR-100 Tiny-ImageNet

Top-1 Top-5 Top-1 Top-5
0.1 0.745 0.935 0.616 0.868
0.5 0.740 0.931 0.695 0.909
1.0 0.754 0.938 0.696 0.900
1.5 0.760 0.937 0.696 0.893

Table 1: Accuracy of different λ values.

Ablation Study on λ Tuning. To evaluate the sensi-
tivity of the tuning parameter λ in CLOP, we trained
the model with SupCon loss across different λ val-
ues, keeping the batch size fixed at 1024. The clas-
sification accuracy on both CIFAR-100 and Tiny-
ImageNet is reported in Table 1. We observe that
the performance remains stable for λ values ranging
from 0.1 to 1.5, with λ = 1.0 and λ = 1.5 yielding
the best overall performance.

Similarity Metric Top-1 Top-5
Cosine 0.754 0.938

Euclidean 0.749 0.933
Manhattan 0.715 0.899

Table 2: Accuracy of different similarity
metric.

Ablation Study on the Choice of Similarity Metric.
To evaluate the impact of different similarity functions
on Eq. (4), we trained the same ResNet-50 architecture
on CIFAR-100 using cosine similarity, Euclidean simi-
larity, and Manhattan similarity. The results, presented
in Table 5, indicate that cosine similarity, which aligns
with LCL in Eq. (4), achieves the highest performance.

Augmentation Top-1 Top-5
RandAug 0.696 0.9

AutoAug-Imagenet 0.546 0.776
SimCLR 0.499 0.77

Table 3: Accuracy of different augmenta-
tion strategies.

Ablation Study on the Choice of Augmentation
To evaluate the impact of augmentation strategies on
CLOP, we trained the same ResNet-50 model on Tiny-
ImageNet with a batch size of 1024. We selected three
commonly used augmentation methods: 1) RandAug-
ment: Augmentation with three operations randomly
chosen from all image processing functions in PyTorch
(e.g., padding, resizing, cropping, rotation, color jitter,
Gaussian blur, inversion, contrast adjustment, equaliza-
tion); 2) AutoAugment using the ImageNet policy pro-
posed in Cubuk et al. (2018); 3) SimCLR Augmentation
Policy.

6 CONCLUSION

In this paper, we conducted a comprehensive study on dimensional collapse in contrastive learning.
Our contributions are threefold. First, we derived a theoretical upper bound on the learning rate,
which prevents the embedding mean from shifting towards the boundary of the embedding space,
ultimately avoiding complete collapse. Second, we identified the connection between dimensional
collapse and cosine similarity by explaining the tendency of embeddings to reside on a hyperplane
rather than occupying the full embedding space. To avoid dimensional collapse, we proposed a novel
semi-supervised loss function, CLOP, which promotes better separation of the embedding space by
pulling a subset of labeled training data towards orthonormal prototypes.

Our experiments on CIFAR-100, Tiny-ImageNet, and ImageNet demonstrated the effectiveness of
CLOP, showing significant improvements in stability across varying learning rates and batch sizes.
Additionally, our results indicate that CLOP enables the model to perform exceptionally well even
with small batch sizes (e.g., 32), making the method particularly suitable for edge devices with
limited memory.

In future work, we aim to further explore the use of pseudo-labeling for self-supervised learning with
CLOP, reducing dependence on labeled data and extending the method’s applicability to a broader
range of contrastive learning tasks.
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A RELATED WORK

Method Affinity Metric Aff. to Prob. Divergence Function Top-1Top-5
CPC-v2 Henaff (2020) Cosine Softmax CrossEntropy 71.5 90.1
MOCO-v2 Chen et al. (2020b) Cosine Softmax CrossEntropy 71.1 -
SimCLR Chen et al. (2020a) Cosine Softmax CrossEntropy 69.3 89.0

Inclusion/Removal of Terms within InfoNCE
PCL Cui et al. (2021) Cosine Softmax CrossEntropy 67.6 -
LOOC Xiao et al. (2020) Cosine Softmax CrossEntropy Variant - -
DCL Yeh et al. (2022) Cosine Decoupled Sftmx CrossEntropy 68.2 -
RC Wang et al. (2022a) Cosine Softmax CrossEntropy + L2 61.6 -

Adjustments to the Similarity Function of InfoNCE
Debiased Chuang et al. (2020) Floor Cosine Softmax CrossEntropy - -
GCL Koishekenov et al. (2023) Arccosine Softmax CrossEntropy - -
HCL Ge et al. (2023) Cos. + Poincaré Softmax CrossEntropy 58.5 -

Innovations
InfoMin Tian et al. (2020b) Cosine Softmax MinMax CrossEntropy 73.0 91.1
VICref Bardes et al. (2021) Euclidean NA Distance + Var + Cov 73.1 91.1
BT Zbontar et al. (2021) Dimensional Cos. NA L2 73.2 91.0

Table 4: Overview of Novel Loss Functions and Baseline Results from 2020: Image Classification
Accuracy on ImageNet1K with Unsupervised Learning and Full Label Fine-Tuning. The accuracy
measurements are based on training a standard ResNet-50 with 24M parameters. The symbol ’-’
indicates that the corresponding metric was not reported in the original paper.
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B EXTRA EXPERIMENTS ON CLOP

Loss Fn. InfoNCE DCL VICreg BarlowTwins

Output
Embeddings

1.00.50.00.51.0

1.00.50.0 0.5 1.0

1.0
0.5

0.0
0.5
1.0

1.00.50.00.51.0

1.00.50.0 0.5 1.0

1.0
0.5

0.0
0.5
1.0

1.00.50.00.51.0

1.00.50.0 0.5 1.0

1.0
0.5

0.0
0.5
1.0

1.00.50.00.51.0

1.00.50.0 0.5 1.0

1.0
0.5

0.0
0.5
1.0

Accuracy 68.91% 88.56% 98.64% 82.50%

Output
Embeddings
(w/ CLOP) 1.00.50.00.51.0

1.00.50.0 0.5 1.0

1.0
0.5

0.0
0.5
1.0

1.00.50.00.51.0

1.00.50.0 0.5 1.0

1.0
0.5

0.0
0.5
1.0

1.00.50.00.51.0

1.00.50.0 0.5 1.0

1.0
0.5

0.0
0.5
1.0

1.00.50.00.51.0

1.00.50.0 0.5 1.0

1.0
0.5

0.0
0.5
1.0

Accuracy
(w/ CLOP) 99.89% 100% 99.96% 100%

Table 5: Evaluation of Semi-Supervised Contrastive Learning on Synthetic Data with Different Loss
Functions. A 3-layer Feedforward Neural Network (FFN) is trained on synthetic data with 10% la-
beled samples. Both the input and output embeddings reside in a 3-dimensional space, with the
output embeddings visualized. The color of each point represents its ground truth label. Addition-
ally, the K-Nearest Neighbors (KNN) classification accuracy (k = 5) is reported, where the model
is trained on the labeled 10% of data and tested on the remaining unlabeled data.
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Figure 8: Top-1 classification accuracy across different batch sizes. The percentage of labels used
for supervised training is indicated in the legend.
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Figure 9: Top-1 classification accuracy across different different learning rates. The percentage of
labels used for supervised training is indicated in the legend.
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C PROOF OF THEOREM 1

Proof of Theorem 1. Consider Li as the i-th loss term of LInfoNCE, defined by the following expres-
sion:

Li := − logPi

where Pi denotes the probability that i-th embedding choose its positive pair as closest neighbor:

Pi :=
exp(z⊤i zj(i)/τ)

exp(z⊤i zj(i)/τ) +
∑

a/∈{i,j(i)} exp(z
⊤
i za/τ)

As detailed in Yeh et al. (2022), the gradient of Li with respect to zi, zj(i), and za can be derived as
follows:

− ∂Li

∂zi
:= (1− Pi)/τ

zj(i) −
∑

a/∈{i,j(i)}

exp(z⊤i za/τ)∑
b/∈{i,j(i)} exp(z

⊤
i zb/τ)

za


− ∂Li

∂zj(i)
:=

(1− Pi)

τ
zi

− ∂Li

∂za
:= − (1− Pi)

τ

exp(z⊤i za/τ)∑
b/∈{i,j(i)} exp(z

⊤
i zb/τ)

zi

In the standard setup of self-supervised learning, for any sample, there is one positive pair among I
and the remainder are all negative pairs. By aggregating all the gradient respect to a single sample,
we have the gradient of InfoNCE respect to zi:

−∂LInfoNCE

∂zi
:=

(1− Pi) + (1− Pj(i))

τ
zj(i)−

∑
a/∈{i,j(i)}

(1− Pi)

τ

exp(z⊤i za/τ)∑
b/∈{i,j(i)} exp(z

⊤
i zb/τ)

za

−
∑

a/∈{i,j(i)}

(1− Pa)

τ

exp(z⊤i za/τ)∑
b/∈{a,j(a)} exp(z

⊤
a zb/τ)

za

Now, considering the first scenario, where all embeddings equal, that means that zi = zj(i) = za =
z∗ for all a ∈ I , the loss terms Pi, Pj(i), and Pa converge to a constant P∗, given by:

Pi = Pj(i) = Pa = − log
1

|I| − 1
:= P∗

Consequently, the gradient of LInfoNCE with respect to zi under this assumption reduces to zero,
aligning with our expectations:

−∂LInfoNCE

∂zi
=

2(1− P∗)

τ
z∗ − 2(|I| − 2)

(1− P∗)

τ

1

|I| − 2
z∗ = 0

We establish the existence of local minima in scenarios where all embeddings are identical. Now,
we consider the second scenario where all embeddings generated reside within the same rank-1
subspace. Denoting z∗ as their unit basis, we can represent each embedding zi as:

zi = αz∗, α ∈ {−1, 1}, ∀i
The gradient of the loss function LInfoNCE with respect to zi simplifies to:

− ∂L
∂zi

= βzi

Here, β is a scalar that aggregates contributions from all relevant weights.

It is important to note that zi represents the normalized output of the function f , with z̃i denoting
the original, unnormalized embedding. This implies the following relation:

− ∂L
∂z̃i

= − ∂L
∂zi

∂zi
∂z̃i

=
1

∥zi∥2

(
I− ziz

⊤
i

z⊤i zi

)
βzi = 0,

where I represents the identity matrix.
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D PROOF OF THEOREM 1

Proof. At each step of gradient descent, every point xi moves toward the negative of the mean of
the other points with a step size η. Let the mean of all k points before the gradient descent step be
µ(0) := 1

k

∑k
i=1 x

(0)
i . The update rule for the i-th point is given by:

x
(1)
i = x

(0)
i − η

1

k − 1

(
nµ(0) − x

(0)
i

)
=

(
1 +

η

k − 1

)
x
(0)
i − η

k

k − 1
µ(0).

After the update, each point x(1)
i is normalized to have unit norm, i.e., x̂(1)

i =
x
(1)
i

∥x(1)
i ∥

. The expected

norm of any updated vector is calculated as:

E[∥x(1)
i ∥2] =

(
1 +

η

k − 1

)2

E
[
∥x(0)

i ∥2
]
+ η2

(
k

k − 1

)2

E
[
∥µ(0)∥2

]
− 2η

k

k − 1

(
1 +

η

k − 1

)
E
[
x
(0)⊤
i µ(0)

]
. (5)

Since x
(0)
i is uniformly distributed on the surface of an m-dimensional unit ball, its covariance is

Cov(x(0)
i ) = 1

mIm. Therefore, the covariance of the mean is

Cov(µ(0)) = Cov

(
1

k

k∑
i=1

x
(0)
i

)
=

1

k2

k∑
i=1

Cov(x(0)
i ) =

1

km
Im.

The second moment of µ(0)’s norm is the trace of its covariance matrix:

E[∥µ(0)∥2] = E[µ(0)⊤µ(0)] = Tr(Cov(µ(0))) =
1

km
Tr(Im) =

1

k
. (6)

Since x
(0)
i and x

(0)
j are independent for i ̸= j, we know that E[x(0)⊤

i x
(0)
j ] = 0. Therefore,

E[x(0)⊤
i µ(0)] = E

1
k
∥x(0)

i ∥2 + 1

k

∑
j ̸=i

x
(0)⊤
i x

(0)
j

 =
1

k
E[∥x(0)

i ∥2]. (7)

Since E[∥x(0)
i ∥2] = 1, substituting equations Eq. (6) and Eq. (7) into Eq. (5), we obtain

E[∥x(1)
i ∥2] =

(
1 +

η

k − 1

)2

+
kη2

(k − 1)2
− 2η

k

k − 1

(
1 +

η

k − 1

)
1

k

= 1 +
η

k − 1
− 2η

k
− 2

η2

k(k − 1)
+

η2k

(k − 1)2
.

Thus, the upper bound of the first-order expectation E[∥x(1)
i ∥] can be denoted by B, where:

E[∥x(1)
i ∥] ≤

√
1 +

η

k − 1
− 2η

k
− 2

η2

k(k − 1)
+

η2k

(k − 1)2
:= B.

After the gradient descent step, the expectation of the new mean µ(1) is bounded as follows:

µ(1) =
1

k

n∑
i=1

x̂
(1)
i ≥ 1

kB

n∑
i=1

x
(1)
i =

1− η

B
µ(0).

To prevent complete collapse in X̂(1), the mean should not increase by more than 1 + ε, where ε
controls the tolerance for mean shift. By setting ε = 0, we can ensure that µ(1) does not exceed
µ(0), thereby providing the safest bound for the learning rate. This implies that the learning rate η
must satisfy 1−η

B ≤ 1 + ε. This gives the condition:

(1− η)2 ≤
(
1 +

η

k − 1
− 2η

k
− 2

η2

k(k − 1)
+

η2k

(k − 1)2

)
(1 + ε)2.
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By setting ε = 0, we can simplify further to obtain the following inequality:(
−2− 1

k − 1
+

2

k

)
+ η

(
1 + 2

1

k(k − 1)
− k

(k − 1)2

)
≤ 0.

For k > 2, we have 1 + 2 1
k(k−1) −

k
(k−1)2 > 0, leading to the bound:

η ≤
2 + 1

k−1 − 2
k

1 + 2 1
k(k−1) −

k
(k−1)2

=
2k3 − 5k2 + 5k − 2

k3 − 3k2 + 4k − 2
= 2 +O

(
1

k

)
.

Since k is an integer, this bound is effectively O(1).

E PROOF OF THEOREM 2

Proof. Consider a list of k class embeddings in m-dimensional space, denoted as X :=
[x1, . . . ,xk] ∈ Rm×k, where m ≥ k and each class embedding has unit norm (i.e., ∥xi∥2 = 1
for all i). The loss function is defined as the sum of pairwise cosine similarities between the class
embeddings (refer to Equation 3). We first assume that all class embeddings are linearly indepen-
dent, implying that Rank(X) = k. Our first goal is to show that there always exists another matrix
X′ ∈ Rm×k with Rank(X′) = k − 1, such that L(X) > L(X′).

To construct such a matrix X′, we select a class embedding xk such that
∑

i̸=k xi ̸= 0. The existence
of such a class embedding xk can be easily established by contradiction. Suppose, for the sake of
contradiction, that for all k,

∑
i ̸=k xi = 0. This would imply that each xi must be zero, i.e., xi = 0

for all i, which contradicts the assumption that the Rank(X) = k. Hence, such a class embedding
xk must exist. Since the class embeddings are linearly independent, xk can be decomposed as a
weighted sum of two unit-norm vectors: one orthogonal to all other class embeddings, and one
lying in the subspace spanned by the remaining class embeddings. Specifically, we write:

xk = ηx⊥
k +

√
1− η2x

∥
k, 0 < η ≤ 1,

where x⊥
k is orthogonal to all other class embeddings and x

∥
k lies in the subspace spanned by the

remaining class embeddings. The loss associated with the k-th class embedding is:

Lk(X) =
∑
i ̸=k

x⊤
i xk =

∑
i ̸=k

x⊤
i

(
ηx⊥

k +
√

1− η2x
∥
k

)
.

Since x⊤
i x

⊥
k = 0 for all i ̸= k, we have:

Lk(X) =
√

1− η2
∑
i ̸=k

x⊤
i x

∥
k.

Now, construct X′ by replacing xk with x
∥
k. The corresponding loss function becomes:

Lk(X
′) =

∑
i ̸=k

x⊤
i x

∥
k.

It is important to note that we can always find
∑

i̸=k x
⊤
i x

∥
k < 0. If this sum is not negative, we can

simply invert the sign of x∥
k, ensuring the sum becomes negative. Since 0 < η ≤ 1, it follows that√

1− η2 < 1. Consequently,
√
1− η2

∑
i ̸=k x

⊤
i x

∥
k >

∑
i ̸=k x

⊤
i x

∥
k. Therefore, we have L(X) >

L(X′), as required.

19


	Introduction
	Related Work
	Contrastive Loss
	Semi-Supervised and Supervised Contrastive Learning
	Dimensional Collapse

	Theoretical Analysis
	Large Learning Rate Causes Complete Collapse
	Cosine-Similarity Causes Dimensional Collapse

	Our Model: Contrastive Learning with Orthonormal Prototypes (CLOP)
	Experiment
	Conclusion
	Related Work
	Extra Experiments on CLOP
	Proof of Theorem 1
	Proof of Theorem 1
	Proof of Theorem 2

