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Abstract

Human annotator simulation (HAS) serves as a001
cost-effective substitute for human evaluation002
tasks such as data annotation and system assess-003
ment. It is important to incorporate the variabil-004
ity present in human evaluation into HAS, since005
it helps capture diverse subjective interpreta-006
tions and mitigate potential biases and over-007
representation. This work introduces a novel008
framework for modelling variability in HAS.009
Conditional softmax flow (S-CNF) is proposed010
to model the distribution of subjective human011
annotations, which leverages diverse human an-012
notations via meta-learning. This enables the013
efficient generation of annotations that exhibit014
human variability for unlabelled input. In ad-015
dition, a wide range of evaluation metrics are016
adopted to assess the capability and efficiency017
of HAS systems in predicting the aggregated018
behaviours of human annotators, matching the019
distribution of human annotations, and simulat-020
ing the inter-annotator disagreements. Results021
demonstrate that the proposed method achieves022
state-of-the-art performance on two real-world023
human evaluation tasks: emotion recognition024
and toxic speech detection1.025

1 Introduction026

Human evaluation is fundamental to machine learn-027

ing research. It guides processes such as data anno-028

tation and model assessment, including for instance029

perceptual quality evaluation (Ma et al., 2015;030

Talebi and Milanfar, 2018; Ramesh and Sanam-031

pudi, 2022), annotation generation for weak su-032

pervision (Ratner et al., 2016; Wu et al., 2022a),033

and model optimization based on human prefer-034

ence (Schatzmann et al., 2007; Gür et al., 2018;035

Ruiz et al., 2019; Shi et al., 2019; Lin et al., 2021).036

Collecting human annotations or evaluations often037

requires substantial resources and may expose hu-038

man annotators to distressing and harmful content039

1Code will be available upon acceptance.

in sensitive tasks (e.g., toxic speech detection, suici- 040

dal risk prediction, and depression detection). This 041

inspires the exploration of human annotator simula- 042

tion (HAS) as a scalable and cost-effective alterna- 043

tive, which facilitates large-scale dataset evaluation, 044

benchmarking, and system comparisons. 045

Variability is a unique aspect of real-world hu- 046

man evaluation. Individual variations in cognitive 047

biases, cultural backgrounds, and personal experi- 048

ences (Hirschberg et al., 2003; Wiebe et al., 2004; 049

Haselton et al., 2015) can lead to variability in hu- 050

man interpretation (Maniati et al., 2022). It has 051

been argued that achieving a single deterministic 052

“ground truth” in subjective tasks like human evalu- 053

ation is not feasible, nor essential (Alm, 2011; Wu 054

et al., 2022b). Therefore, HAS should incorporate 055

the variability present in human evaluation rather 056

than solely relying on majority opinions. This mit- 057

igates potential biases and over-representation in 058

scenarios where dominant opinions could poten- 059

tially overshadow minority viewpoints, thus pro- 060

moting fairness and inclusivity. 061

This work investigates modelling subjective 062

human annotation distributions and simulating 063

human-like annotations. We propose a novel frame- 064

work which formulates HAS as a zero-shot density 065

estimation problem. A new model, conditional soft- 066

max flows (S-CNFs), is proposed which leverages 067

diverse human annotations via meta-learning. This 068

enables the efficient generation of annotations that 069

exhibit human variability for unlabelled input. To 070

the best of our knowledge, this is the first work that 071

incorporates human variability into HAS without 072

requiring human annotators to be dynamically in- 073

volved in the process, while remaining scalable for 074

large crowd-sourced datasets. Moreover, a range 075

of evaluation metrics are adopted to assess the ca- 076

pability and efficiency of HAS systems regarding 077

prediction of the majority opinion, estimation of 078

the human annotation distribution, and simulation 079

of the inter-annotator disagreements. The proposed 080
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approach is evaluated on two real-world applica-081

tions: emotion recognition and toxic speech detec-082

tion. Results demonstrate that the proposed method083

achieves state-of-the-art performance on modelling084

variability in HAS.085

2 Human Annotator Simulation (HAS)086

2.1 The Variability in Human Evaluation is087

Valuable088

Each individual’s perception of the world is unique089

and influenced by their physical state and cognitive090

biases. This leads to diverse and subjective inter-091

pretations. Such subjectivity can be manifest in var-092

ious tasks such as emotion recognition (Hirschberg093

et al., 2003; Mihalcea and Liu, 2006), perceptual094

quality assessment (Wiebe et al., 2004; Seshadri-095

nathan et al., 2010), and user experience evalua-096

tion (Zen and Vanderdonckt, 2016). Rather than097

seeking to reduce the variability in annotations, it098

is important to account for annotators’ subjective099

interpretations when designing a human annotator100

simulator. The importance of variability in HAS101

can be demonstrated by the following examples:102

Revealing data ambiguity. Incorporating the103

variability in human perception empowers HAS to104

reveal potential ambiguity or complexity in data,105

providing valuable insights for further analysis.106

Mitigating bias and over-representation. In-107

corporating the variability in human judgements108

prevents HAS from being biased towards a cer-109

tain perspective and ignoring minority viewpoints,110

leading to a more inclusive representation of opin-111

ions where all viewpoints are given due considera-112

tion (Dixon et al., 2018; Hutchinson et al., 2020).113

Improving model alignment. Optimization114

based on human feedback has led to superior perfor-115

mance on tasks such as text generation (Christiano116

et al., 2017; Ouyang et al., 2022; Rafailov et al.,117

2023), which aligns the behaviour of language mod-118

els with human preferences. HAS could be helpful119

in this task, as it is an efficient and cost-effective120

alternative to generating human feedback.121

2.2 Problem Formulation122

Denote an event as di, which consists of a de-123

scriptor (e.g., an utterance or text) xi and a set124

of Mi human annotations Di = {η(m)
i }Mi

m=1 for xi.125

Note that different events may be labelled by differ-126

ent sets of annotators. Given a dataset of training127

events D = {(xi,Di)}Ni=1, HAS aims to model the128

conditional annotation distribution p(ηi|xi) given129

the observations Di of ηi provided by different an- 130

notators. For a unseen test descriptor x∗, HAS can 131

then predict p(η∗|x∗) to simulate human-like an- 132

notations D∗ = {η(m)
∗ }M∗

m=1 in a way that reflects 133

how it would be labelled by human annotators. 134

2.3 Related Work 135

Prior work mainly investigated three approaches to 136

simulating human annotations. 137

The first approach uses a single proxy variable η′
i 138

(e.g., majority vote) to summarize all annotations 139

for each descriptor xi (Kim et al., 2013; Djuric 140

et al., 2015; Patton et al., 2016; Poria et al., 2017). 141

This creates a proxy dataset D′ = {(xi,η
′
i)}Ni=1 142

and converts HAS into a supervised learning prob- 143

lem, which is usually solved by fitting a discrimina- 144

tive model to estimate the conditional distribution 145

for the proxy variable. During testing, given an 146

unseen descriptor x∗, the model predicts the proxy 147

variable η′
∗ for x∗. Clearly, modelling a single 148

proxy variable as in this approach fails to take into 149

account the subjectivity and diversity in human be- 150

haviour and perception. Other work incorporated 151

the variance of human annotations into the proxy 152

variable (Deng et al., 2012; Prabhakaran et al., 153

2012; Plank et al., 2014; Dang et al., 2017; Han 154

et al., 2017; Leng et al., 2021). However, all these 155

approaches still focus on obtaining the “correct” la- 156

bel (e.g., aiming for improved prediction accuracy) 157

and minimizing the discrepancy among annotators 158

(e.g., reducing “noise” in annotations) rather than 159

embracing inter-annotator disagreements. 160

The second approach explicitly models the be- 161

haviours of different annotators using different in- 162

dividual models in an ensemble or different heads 163

in a single model (Fayek et al., 2016; Chou and 164

Lee, 2019; Davani et al., 2022). This approach is 165

computationally feasible only when the number of 166

annotators is relatively small and when a sufficient 167

quantity of annotation is available for each annota- 168

tor, which is not applicable to large crowd-sourced 169

datasets (Lotfian and Busso, 2019; Mathew et al., 170

2021) that are common in real-world applications. 171

The third approach approximates subjective 172

probability distributions using Markov chain 173

Monte Carlo with people (Sanborn and Griffiths, 174

2007; Harrison et al., 2020), which requires hu- 175

man annotators to be involved in the process in a 176

dynamic setting. These methods present the de- 177

scriptor x∗ to human participants and asks them 178

to provide a sequence of decisions D∗ following 179

2



or

. . .

𝒚𝒚(1) ∼ p𝜽𝜽(𝒚𝒚|𝒙𝒙)

p𝜽𝜽(𝒗𝒗|𝒙𝒙)Descriptor 𝒙𝒙

Conditioning Augmenting

Sampling

Sampling

p(𝒚𝒚|𝒗𝒗)

𝒚𝒚(M) ∼ p𝜽𝜽(𝒚𝒚|𝒙𝒙)

. . .

𝒈𝒈𝜦𝜦(𝒙𝒙)

p𝚲𝚲(𝒛𝒛|𝒙𝒙)

Transforming

𝒇𝒇𝝓𝝓 𝒛𝒛

Angry Sad Happy

Simulated 
annotation 1

“It's ridiculous”

Simulated 
annotation M

Angry Sad Happy

Figure 1: Diagram for the proposed zero-shot human annotator simulation framework.

the Metropolis-Hasting acceptance rule. The an-180

notation distribution p(η∗|x∗) is then estimated181

based on D∗. In other words, this requires access182

to human annotations D∗ for estimating the annota-183

tion distribution for each x∗, and there is no obvi-184

ous way to transfer information between different185

events. Therefore, these methods cannot be applied186

to simulate annotation distributions for unlabelled187

test descriptors.188

3 A Meta-learning Framework for HAS189

This paper proposes a novel framework for HAS190

that meta-learns a conditional softmax flow (S-191

CNF) to estimate the human annotation distribution192

p(η|x) across all training events D. The proposed193

model learns to learn (i.e., meta-learns) how to194

estimate the underlying distribution of human an-195

notations Di for any given descriptor xi by lever-196

aging the diverse human annotations, rather than197

designing a proxy variable to summarize Di as in198

the first approach described in Sec. 2.3. Unlike199

the second approach in Sec. 2.3 which separately200

models each individual human annotator with a dif-201

ferent model, our method is compatible with large202

crowd-sourced datasets since it amortizes across203

annotators with a single S-CNF model. Moreover,204

our model is a zero-shot human annotation sim-205

ulator which can estimate the human annotation206

distribution p(η∗|x∗) for any unseen test descrip-207

tor x∗ without access to any human annotations D∗208

for x∗, in contrast to the third method in Sec. 2.3209

which requires human annotators to be dynamically210

involved in the process of labelling x∗.211

3.1 A Latent Variable Model for HAS212

The proposed framework for HAS is realized by a213

latent variable model2:214

pθ(y|x) =
∫∫

p(y|v)pϕ(v|z)pΛ(z|x)dvdz,

(1)

215

2For clarity, we use different notations for human annota-
tions η and model outputs y.

where the conditional prior pΛ(z|x) learns to sum- 216

marize useful information about the input descrip- 217

tor x and encode the possible disagreements over x 218

among different human annotators, which is helpful 219

for the likelihood pϕ(y|z) =
∫

p(y|v)pϕ(v|z)dv 220

to simulate human-like annotations for x. 221

The proposed zero-shot human annotator sim- 222

ulator is illustrated in Figure 1. Specifically, 223

the conditional prior is modelled by a condi- 224

tional factorized Gaussian distribution pΛ(z|x) = 225

N (z|µΛ(x), diag(σ
2
Λ(x))) whose mean µΛ(x) 226

and variance σ2
Λ(x) are parameterized by a neural 227

network gΛ with parameters Λ. 228

The intermediate variable v is obtained by a 229

deterministic invertible transformation pϕ(v|z) = 230

δ(v−fϕ(z)), where fϕ(z) is parameterized by an 231

invertible neural network with parameters ϕ, and 232

δ(·) is the multivariate Dirac delta function. This 233

results in a conditional normalizing flow (CNF): 234

pθ(v|x) =
∫

δ(v − fϕ(z))pΛ(z|x)dz

= pΛ
(
f−1
ϕ (v)

∣∣∣x) ∣∣∣∣∣det
(
∂f−1

ϕ (v)

∂v

)∣∣∣∣∣ ,
(2) 235

where det(·) denotes the determinant operator, 236

∂f−1
ϕ (v)/∂v denotes the Jacobian matrix of 237

f−1
ϕ (v), and θ := {ϕ,Λ} denotes all parameters 238

in this base CNF. This modelling choice has the 239

advantage of having tractable marginal likelihood 240

as in Eqn. (2) while not restricting the intermediate 241

variable v to a specific type of distribution as in 242

previous methods (e.g., Gaussian (Han et al., 2017) 243

and Student-t (Wu et al., 2023)), thus offering en- 244

hanced tractability, flexibility and generality. In 245

addition, samples can be efficiently drawn from 246

this model by first drawing z ∼ pΛ(z|x) from the 247

conditional prior and then computing the determin- 248

istic flow transformation v = fϕ(z). 249

Finally, the output variable y is obtained by aug- 250

menting the intermediate variable v with the trans- 251

formation p(y|v). For continuous annotations, the 252

identity transformation p(y|v) = δ(y− v) is used. 253
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Figure 2: Illustration of the S-CNF workflow. gΛ is the
feature encoder, fϕ is an invertible neural network, hΩ

is the variational encoder.

However, real-world human evaluation tasks often254

involve discrete annotations (e.g., human annota-255

tors are usually instructed to choose from a prede-256

fined set of options). In the next section, a new257

model class is introduced to accommodate discrete258

annotations.259

3.2 Conditional Softmax Flows (S-CNFs)260

We propose a new model class called condi-261

tional softmax flow (S-CNF) to accommodate262

discrete annotations. The workflow of S-CNF263

is illustrated in Figure 2. S-CNFs augment the264

base CNFs by applying the softmax function265

p(y|v) = δ (y − softmax(v)) to transform the266

continuous intermediate variable v into categor-267

ical probabilities y. Let c be a categorical vari-268

able with probability P(c = k|y) = yk (k =269

1, · · · ,K), which represents the categorical anno-270

tation for an descriptor x, with P(c = k|v) =271 ∫
ykδ (y − softmax(v)) dy = softmax(v)k. The272

marginal likelihood of S-CNF is given by273

Pθ(c = k|x) =
∫

P(c = k|v)pθ(v|x)dv (3)274

where pθ(v|x) is the marginal likelihood of the275

base CNF defined in Eqn. (2). Since the marginal276

likelihood of the S-CNF given in Eqn. (3) is an-277

alytically intractable due to the softmax transfor-278

mation, we propose to approximate it using vari-279

ational inference (Wainwright et al., 2008) with a280

learnable mean-field Gaussian variational posterior 281

qΩ(v|y) = N (v|µΩ(y),diag(σ
2
Ω(y))), whose 282

mean µΩ(y) and variance σ2
Ω(y) are parameter- 283

ized by a neural network hΩ with parameters Ω. 284

This can be seen as a probabilistic inverse of the 285

softmax transformation p(y|v). Applying Jensen’s 286

inequality to the log marginal likelihood of the S- 287

CNF in Eqn. (3), we obtain a tractable evidence 288

lower bound (ELBO): 289

log Pθ(c = k|x) ≥ EqΩ(v|y)[log P(c = k|v)
+ log pθ(v|x)− log qΩ(v|y)].

(4) 290

It is worth noting that the softmax flow likelihood 291

P(c = k|v) = softmax(v)k places non-zero prob- 292

ability mass for every category k = 1, · · · ,K, 293

which is different from argmax flow (Hoogeboom 294

et al., 2021) whose likelihood only places prob- 295

ability mass for a single category. From a mod- 296

elling perspective, softmax flow has a better capac- 297

ity to represent the variability and uncertainty in 298

human annotations. From an optimization perspec- 299

tive, the ELBO for softmax flow is always well- 300

defined, whereas the ELBO for argmax flow is not 301

defined when the model output does not match the 302

human annotation in which case the log-likelihood 303

would be log(0) and requires additional threshold- 304

ing tricks to fix (Hoogeboom et al., 2021). 305

3.3 A Meta-learning Objective for S-CNFs 306

Using the variational approximation defined in 307

Eqn. (4), the loss L(θ,Ω;di) for S-CNF on a sin- 308

gle event di can be defined as the average negative 309

ELBO evaluated on the set of the human anno- 310

tations Di = {η(m)
i }Mi

m=1 for the corresponding 311

descriptor xi: L(θ,Ω;di) = 312

− 1

Mi

Mi∑
m=1

E
qΩ(v|η(m)

i )

[
K∑
k=1

η
(m)
i,k log P(ci = k|v) 313

+ log pθ(v|xi)− log qΩ(v|η
(m)
i )

]
, (5) 314

where the expectation over the variational posterior 315

is approximated by Monte Carlo simulation with 316

the reparameterization trick (Kingma and Welling, 317

2014). Following the episodic training scheme 318

(Vinyals et al., 2016; Snell et al., 2017; Chen et al., 319

2023), we treat density estimation on each event 320

as a learning problem and randomly sample a sub- 321

set of such learning problems to train on at each 322

step during meta-training. This results in a meta- 323

learning objective across the training events in D: 324

Lmeta(θ,Ω;D) = Edi∼p(D)[L(θ,Ω;di)], (6) 325
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where p(D) denotes the uniform distribution over326

D. Intuitively, this objective maps each human327

annotation to the latent space of the correspond-328

ing descriptor by the S-CNF during meta-training,329

which helps the model to build a diverse latent rep-330

resentation that captures the variability in human331

annotations across different descriptors.332

At test time, the S-CNF can simulate human-like333

annotations for an unseen, unlabelled descriptor x∗334

by first drawing v
(m)
∗ ∼ pθ(v|x∗) from the base335

CNF then applying the softmax function y
(m)
∗ =336

softmax(v
(m)
∗ ) for m = 1, · · · ,M∗, where M∗337

denotes the number of annotations to be simulated.338

Note that each sample of S-CNF is a categorical339

distribution with probabilities y(m)
∗ . More details340

can be found in Appendix D.341

4 Experimental Setup342

The proposed framework for variability-aware343

HAS is evaluated on two real-world applications344

for speech and natural language processing: emo-345

tion class labelling and toxic speech detection. A346

wide range of evaluation metrics are adopted to347

assess the performance of HAS systems.348

4.1 Evaluation Tasks and Datasets349

Emotion class labelling. The highly subjective per-350

ception of emotion often results in disagreements351

among human annotators. Most emotion datasets352

employ multiple annotators to label each utterance353

while prior works typically use the majority vote354

as the ground-truth (Busso et al., 2008; Poria et al.,355

2019; Wu et al., 2021). A variability-aware HAS356

system better handles different opinions among hu-357

man annotators and enhances the fairness of emo-358

tion class annotation. MSP-Podcast (Lotfian and359

Busso, 2019) is one of the largest publicly available360

datasets in speech emotion recognition, which con-361

tains natural English speech from podcast record-362

ings annotated using crowd-sourcing. Each utter-363

ance has 6.7 annotations on average. Release 1.6364

was used in our experiments, which contains 50k+365

utterances from 1k+ speakers. The standard splits366

of training, validation and test were used. Emotion367

labels were grouped into five categories: angry, sad,368

happy, neutral, and other. 16.5% of the utterances369

do not have a majority agreed emotion class.370

Toxic speech detection aims to filter out harm-371

ful language, which is crucial for respectful online372

environments and healthy communications among373

users. A variability-aware HAS system accounts374

for comprehensive understanding of hate speech, 375

which is a good substitute for human annotators to 376

reduce their exposure to distressing and harmful 377

content. HateXplain (Mathew et al., 2021) was 378

used in our experiments, which is a popular dataset 379

for toxic speech detection, which contains 20k+ 380

text posts from Twitter and Gab. These posts are 381

labelled using crowd-sourcing with the commonly 382

used three-category annotation: hate, offensive, 383

normal. Each post is annotated by three annotators. 384

Cases where all three annotators choose a different 385

class (919 out of 20,148 posts) were originally ex- 386

cluded from the standard split of the dataset. We 387

incorporate these cases into our training, validation, 388

and test sets in an 8:1:1 ratio to better reflect the 389

inter-annotator disagreements, resulting in 16,118 390

posts for training, 2,014 for validation, and 2,016 391

for testing. 392

4.2 Evaluation Metrics 393

A range of metrics are adopted to assess the em- 394

pirical performance of HAS systems in terms of 395

majority prediction, distribution matching, and hu- 396

man variability simulation. 397

Majority prediction. Classification accuracy 398

(Acc) for the majority vote is evaluated for all test 399

inputs with majority-agreed human annotations. 400

Distribution matching. Negative log likelihood 401

(NLL) is used to evaluate how well the model esti- 402

mates the human annotation distribution: NLLall = 403

− 1
N

∑N
i=1(

1
Mi

∑Mi
m=1 log pθ(η

(m)
i |xi)). 404

Inter-annotator disagreement simulation. 405

Apart from evaluating the goodness of fit, ad- 406

ditional metrics are adopted to explicitly mea- 407

sure how well the model simulates the variabil- 408

ity and disagreements in human annotations: (i) 409

the root mean squared error of the standard de- 410

viations of the annotations for all test inputs: 411

RMSEs =
√

1
N

∑N
i=1 (σi − si)

2, where σi = 412

1
K

∑K
k=1

√
1
Mi

∑Mi
m=1(η

(m)
i,k − η̄i,k)2 and si = 413

1
K

∑K
k=1

√
1

M∗

∑M∗
m=1(y

(m)
i,k − ȳi,k)2; (ii) the ab- 414

solute error of the average standard deviations of 415

the annotations for all test inputs: E(s̄) = |σ̄ − s̄|, 416

where σ̄ =
∑N

i=1 σi and s̄ =
∑N

i=1 si; (iii) Fleiss’s 417

kappa (κ) (Fleiss, 1971), a real number between −1 418

and +1, with −1 indicating no observed agreement 419

and +1 indicating perfect agreement. The absolute 420

error between the kappas of human annotations (κ) 421

and simulated annotations (κ̂) for all test inputs is 422

reported: E(κ̂) = |κ̂− κ|. 423
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4.3 Baselines424

The proposed S-CNF method is compared to base-425

lines of various types such as ensemble methods,426

Bayesian methods, and conditional generative mod-427

els. This includes deep ensemble (Ensemble) (Lak-428

shminarayanan et al., 2017), Monte-Carlo dropout429

(MCDP) (Gal and Ghahramani, 2016), Bayes-by-430

backprop (BBB) (Blundell et al., 2015), condi-431

tional variational autoencoder (CVAE) (Kingma432

and Welling, 2014), conditional argmax flow (A-433

CNF) (Hoogeboom et al., 2021), and Dirichlet434

prior network (DPN) (Malinin and Gales, 2018;435

Wu et al., 2022b). We fit each method to all avail-436

able human annotations for all utterances in the437

training set, tune hyperparameters on the valida-438

tion set, and report performance on the test set.439

M∗ = 100 samples are used to compute evalua-440

tion metrics at test time. Ensemble only consists441

of 10 systems due to its expensive computational442

cost. Details about the configuration of the baseline443

models can be found in Appendix E.444

4.4 Backbone Architecture445

All compared methods use the same upstream-446

downstream feature encoder gΛ to extract fea-447

tures from descriptors. The upstream model (Bom-448

masani et al., 2021) is pre-trained on a large amount449

of unlabelled data to learn universal representations.450

WavLM (Chen et al., 2022) and RoBERTa (Liu451

et al., 2019) are used as the pre-trained upstream452

models for speech and text descriptors respectively.453

The downstream model consists of two Trans-454

former encoder blocks followed by two fully con-455

nected (FC) layers, which are fine-tuned to target456

specific applications. The invertible flow model fθ457

uses three real NVP blocks (Dinh et al., 2017) and458

the variational encoder hΩ contains an FC layer.459

Details about the structure and implementation can460

be found in Appendix D and Appendix F.461

5 Results and Analysis462

The proposed method is evaluated according to the463

setup in Sec. 4. The evaluation results along with464

case study of representative examples demonstrates465

the superior capability of the proposed method in466

capturing the aggregated behaviours of human an-467

notators, matching the distribution of human an-468

notations, and simulating the variability of human469

interpretation. For each metric, mean value with470

standard error over three independent runs are re-471

ported for all methods.472

Emotion Acc (↑) NLLall (↓)

MCDP 0.582±0.003 1.423±0.012
Ensemble 0.603±0.002 1.458±0.004

BBB 0.565±0.010 1.459±0.011
DPN 0.581±0.006 1.459±0.011

CVAE 0.275±0.000 1.661±0.000
A-CNF 0.583±0.002 1.430±0.006
S-CNF 0.591±0.002 1.403±0.011

Toxic Acc (↑) NLLall (↓)

MCDP 0.656±0.009 0.951±0.032
Ensemble 0.682±0.002 0.909±0.012

BBB 0.670±0.001 0.670±0.001
DPN 0.581±0.006 1.158±0.002

CVAE 0.406±0.000 1.150±0.000
A-CNF 0.628±0.003 0.892±0.011
S-CNF 0.673±0.002 0.837±0.008

Table 1: Comparison to the baselines in terms of ma-
jority prediction and distribution matching. CVAE col-
lapses to one category for all inputs. The best value in
each column is shown in bold and the second best is
underlined.

5.1 Performance 473

Table 1 compares all methods in terms of majority 474

prediction and distribution matching. The Ensem- 475

ble achieves the best majority prediction accuracy 476

(Acc) at the cost of training 10 independent sys- 477

tems. The proposed S-CNF achieves the second- 478

best majority prediction accuracy with only a tenth 479

of the computational cost of Ensemble during train- 480

ing and testing. Despite this, we stress that achiev- 481

ing the highest accuracy is not the goal of HAS 482

since accuracy only measures the majority predic- 483

tion performance and ignores variability in the an- 484

notations. More importantly, S-CNF is the best at 485

matching the distributions of human annotations 486

(in terms of NLLall) among all compared methods. 487

Table 2 reports the test results for all compared 488

methods regarding inter-annotator disagreement 489

annotator simulation. S-CNF again outperforms 490

all compared methods in modelling the variabil- 491

ity in human annotations, evident by the smallest 492

RMSEs, E(s̄) and E(κ̂). 493

5.2 Computational Time Cost 494

The computational time cost of all of compared 495

methods for the two tasks studied in the paper are 496

shown in Table 3. Denote M∗ as the number of 497

annotations to be simulated. The Ensemble model 498

with M∗ members involves training and testing M∗ 499

individual models, which costs M∗× more training 500
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Emotion class labelling Toxic speech detection
RMSEs (↓) E(s̄) (↓) E(κ̂) (↓) RMSEs (↓) E(s̄) (↓) E(κ̂) (↓)

MCDP 0.294±0.001 0.193±0.000 0.467±0.005 0.300±0.002 0.129±0.003 0.143±0.008
Ensemble 0.271±0.003 0.160±0.004 0.344±0.017 0.289±0.001 0.100±0.003 0.064±0.006

BBB 0.289±0.005 0.187±0.008 0.511±0.034 0.949±0.021 0.300±0.009 0.127±0.022
DPN 0.296±0.001 0.193±0.001 0.104±0.016 0.296±0.001 0.193±0.001 0.104±0.016

CVAE 0.333±0.000 0.244±0.000 — 0.345±0.000 0.208±0.000 —
A-CNF 0.239±0.001 0.097±0.002 0.382±0.015 0.297±0.001 0.087±0.008 0.198±0.027
S-CNF 0.218±0.000 0.020±0.002 0.068±0.021 0.263±0.001 0.002±0.001 0.026±0.012

Table 2: Comparison to the baselines in terms of inter-annotator agreement simulation. CVAE collapses to one
category for all inputs. The best value in each column is shown in bold and the second best is underlined.

Emotion Training (sec) Testing (sec)

MCDP 7.20±0.10E+03 1.82±0.01E+04
Ensemble 1.46±0.00E+05 1.67±0.01E+03

BBB 7.55±0.01E+03 1.79±0.01E+04
DPN 6.80±0.01E+03 2.90±0.01E+02

A-CNF 7.04±0.02E+03 2.31±0.07E+02
S-CNF 6.99±0.00E+03 2.12±0.02E+02

Toxic Training (sec) Testing (sec)

MCDP 2.42±0.02E+02 5.99±0.02E+02
Ensemble 2.39±0.01E+03 4.00±0.04E+01

BBB 3.22±0.01E+02 5.79±0.01E+02
DPN 1.92±0.01E+02 2.67±0.02E+01

A-CNF 3.14±0.04E+02 1.40±0.11E+01
S-CNF 2.63±0.02E+02 1.37±0.09E+01

Table 3: Computational wall-clock time. The number
M∗ of annotations to simulate is set to 10 for ensemble
and 100 for all other methods.

time and M∗× more testing time. MCDP and BBB501

require M∗ forward passes during testing to gen-502

erate M∗ samples and therefore cost M∗× more503

testing time. All other methods require a single504

forward pass. S-CNF has slightly longer training505

time than DPN due to sampling procedure in ELBO506

while being the most efficient for testing.507

5.3 Adjusting the Variability of S-CNFs by508

Prior Tempering509

One advantage of S-CNF is that its sample vari-510

ability can be easily controlled on demand without511

re-training by tempering the standard deviation of512

pΛ(z|x) at test time. Figure 3 explores the effect513

of prior tempering on the performance. Overall, the514

trend is clear that the simulated annotations become515

more diverse as the temperature increases, shown516

by the increase in the average standard deviation517

(s̄) and the decrease in Fleiss’s kappa (κ̂) of sim-518

ulated annotations. As the temperature decreases,519
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Figure 3: The effect of prior tempering on S-CNF. The
x-axis corresponds to the prior temperature.

simulated annotations tends to concentrate more 520

around the mean. The default temperature value 1 521

used during training (i.e., no tempering) achieves 522

the best trade-off among majority prediction ac- 523

curacy (Acc), distribution matching (NLLall), and 524

inter-annotator disagreement simulation (in terms 525

of E(s̄) and E(κ̂)). In addition, prior tempering 526

in S-CNF covers a wider range of dynamics than 527

adjusting the dropout rate in MCDP. More details 528

can be found in Appendix H. 529

5.4 Case Study 530

To better illustrate the properties of the annotations 531

simulated by different methods, we visualize the 532
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Figure 4: Visualization of simulated annotations
on the emotion class labelling task for utterance
(a) “0114_0263.wav”, (b) ‘0167_0179_0001.wav”, (c)
“0574_0476.wav”. The x-axis corresponds to emotion
classes Angry, Sad, Happy, Neutral, Others. The y-axis
corresponds to the probability mass. Each sample is a
categorical distribution. The probability mass values of
different categories in each categorical distribution are
connected for the purpose of better visualization.

simulated distributions against the ground-truth dis-533

tributions for three representative examples in Fig-534

ure 4 (more case study examples can be found in535

Appendix I). Overall, the mean of the samples gen-536

erated by S-CNF aligns the best with the average537

human label, indicating its superior performance538

in estimating the aggregated behaviours of human539

annotators. In addition, the samples generated by540

S-CNF are the most diverse among all compared541

methods, which manage to simulate the variability542

of the behaviours of different individual human an-543

notators. In sharp contrast, the samples generated544

by all the other methods highly concentrate around545

their sample means. The visualized result for each546

example is analyzed below.547

In case (a), human annotators reach a consensus.548

The majority of samples generated by S-CNF ex-549

hibit prominent peaks aligned with the ground-truth 550

emotion class “neutral”. In contrast, many samples 551

generated by A-CNF peak at other emotion classes. 552

In case (b), human opinions diverge. The ma- 553

jority of samples generated by S-CNF are sharp 554

categorical distributions peaking at one of the two 555

majority emotion classes “happy” and “neutral”. 556

Additionally, a few samples generated by S-CNF 557

peak at the emotion class “angry”, which manages 558

to simulate the minority viewpoint held by some an- 559

notators. Very few human annotators attribute this 560

utterance to the emotion classes “sad” and “other”, 561

and S-CNF likewise produces scarce samples peak- 562

ing at these classes. 563

In case (c), five human annotators give distinct 564

emotion labels, resulting in a tie in the label means. 565

The tie comes from annotators’ diverse individual 566

perceptions of the emotion rather than consensus 567

on its ambiguity. S-CNF is the only model that can 568

simulate both the diverse behaviours of different 569

individual annotators and the aggregated behaviour 570

of all annotators since the individual samples are 571

sharp categorical distributions peaking at one of the 572

five emotion classes and the mean of the samples 573

aligns well with the label mean. 574

A case study of toxic speech detection exhibits 575

similar trends and can be found in Appendix J. 576

6 Conclusions 577

This paper studied human annotator simulation 578

(HAS), a cost-effective alternative to generating 579

human-like annotations for automatic data labelling 580

and model evaluation. A novel framework is pro- 581

posed to incorporate the variability of human evalu- 582

ations into HAS. It leverages diverse annotations to 583

estimate the distribution of human annotations by 584

meta-learning a conditional softmax flow (S-CNF) 585

on large crowd-sourced datasets. This overcomes 586

the drawbacks of prior work and enables efficient 587

generation of annotations that exhibit human vari- 588

ability for unlabelled test inputs. The proposed 589

method clearly and consistently outperformed a 590

wide range of methods on emotion class labelling 591

and toxic speech detection, achieving the best per- 592

formance for human annotation distribution match- 593

ing and inter-annotator disagreement simulation. It 594

is hoped that the proposed method could help miti- 595

gate unfair biases and over-representation in HAS 596

and reduce the exposure of human annotators to 597

potentially harmful content, thus promoting ethical 598

AI practices. 599
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Limitations600

This work focuses on categorical annotations,601

which is commonly used during human evaluation.602

Other types of annotations can be accommodated603

by designing suitable corresponding output trans-604

formations p(y|v).605

The proposed S-CNF is tested for two represen-606

tative tasks: emotion recognition and toxic speech607

detection with speech and text as input respectively.608

We believe that the proposed method can also be609

general to other tasks, which is kept for future re-610

search directions.611

Ethics Statement612

In this work, all human annotations used for train-613

ing were taken from existing publicly available614

corpora, and no new human annotations were col-615

lected.616

It is hoped that this work could play a part in617

promoting ethical AI practice. Firstly, it has been618

shown that the proposed HAS system can cap-619

ture the inherent variability in human judgements620

and help mitigate biases and the issue of over-621

representation, thus producing a more inclusive622

representation of human opinions. The proposed623

HAS system also has the potential to minimize624

human annotators’ exposure to offensive and/or625

hateful content in some evaluation tasks such as626

HateXplain. However, as with most research in ma-627

chine learning, new modelling techniques could be628

used by bad actors to cause harm more effectively,629

but we do not see how the proposed HAS system630

is more concerning than any other method in this631

regard.632
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A The Sources of Variability in Human902

Evaluation903

Human perception refers to the process by which904

individuals interpret and make sense of the sen-905

sory information they receive from the environ-906

ment. It involves the integration of sensory data,907

cognitive processes, emotions, and previous experi-908

ences. Subjective perception emphasizes that each909

individual’s perception of the world is unique and910

influenced by their internal mental states, beliefs,911

attitudes, and past experiences. As a result, people912

can interpret and react to the same stimuli differ-913

ently, leading to diverse and subjective perceptions.914

Each person’s sensory organs, such as eyes and915

ears, may have slight variations in sensitivity and916

acuity, leading to different perceptions of the same917

stimuli. Cognitive biases, the inherent mental short-918

cuts or tendencies that influence how humans per-919

ceive and process information, can lead to differ-920

ence in judgment and decision-making. People’s921

past experiences, cultural norms, and upbringing922

also shape their perceptions. Different cultural923

backgrounds can lead to distinct interpretations of924

the same event, leading to diverse reaction. The925

variability in humans can manifest in various tasks926

such as colour perception, emotion recognition, art927

appreciation, and feedback preferences.928

Embracing and understanding the variability929

of human perception is vital for various research930

fields such as psychology, neuroscience, human-931

computer interaction, and so on, and has practical932

implications in designing human-centered systems933

and promoting empathy and diversity. It helps cre-934

ate products and interfaces that cater to diverse935

user needs and preferences in fields like human-936

computer interaction and user experience design.937

Being aware of the variability of perception is cru-938

cial in ethical decision-making. It help ensures that939

different perspectives and cultural sensitivities are940

considered, which helps identify and address po-941

tential biases that might disproportionately affect942

certain groups or lead to unfair outcomes.943

B Derivations944

Detailed derivations for the training objectives on945

a single dataset Di = {η(1)
i , · · · ,η(M)

i } with xi946

are presented in this section. For the simplicity of947

notations, the subscription i in our derivations will948

be omitted without ambiguity where possible. The949

meta-learning objectives presented in the paper are950

obtained by averaging such single-task objectives951

across tasks. 952

B.1 Objective Function for the Base CNF 953

Denote the empirical human annotation distribution 954

as pm(y|x) = δ
(
y − η(m)

)
, m = 1, · · · ,M and 955

model output distribution as pθ(y|x). The average 956

KL divergence between them over all M human 957

annotations for this input x is given by: 958

L(θ;D,x) =
1

M

M∑
m=1

KL (pm(y|x) ∥ pθ(y|x))

=
1

M

M∑
m=1

∫
pm(y|x) log pm(y|x)

pθ(y|x)
dy

= − 1

M

M∑
m=1

∫
pm(y|x) log pθ(y|x)dy + const

= − 1

M

M∑
m=1

log pθ(η
(m)|x) + const

959

Minimizing this KL objective is equivalent to max- 960

imizing the average log likelihood log pθ(η
(m)|x) 961

over all human annotations as presented in the pa- 962

per. 963

B.2 Objective Function for S-CNF 964

For categorical annotations, each label η(m) rep- 965

resents the probabilities of all categories in the 966

categorical human annotation distribution: η(m) = 967

[η
(m)
1 , · · · ,η(m)

K ], where η
(m)
k = Pm(c = k|x). 968

Denote the model output distribution as Pθ(c|x). 969

The average KL divergence between them over all 970

M human annotations for this input x is given by: 971

Lexact(θ;D,x) =
1

M

M∑
m=1

KL (Pm(c|x) ∥ Pθ(c|x))

=
1

M

M∑
m=1

K∑
k=1

Pm(c = k|x) log Pm(c = k|x)
Pθ(c = k|x)

= − 1

M

M∑
m=1

K∑
k=1

Pm(c = k|x) log Pθ(c = k|x)

+ const

= − 1

M

M∑
m=1

K∑
k=1

η
(m)
k log Pθ(c = k|x) + const,

972
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where the marginal likelihood is lower bounded973

using variational inference:974

log Pθ(c = k|x) = log

∫
P(c = k|v)pθ(v|x)dv

= log

∫
qΩ(v|η)

P(c = k|v)pθ(v|x)
qΩ(v|η)

dv

≥
∫

qΩ(v|η) log
P(c = k|v)pθ(v|x)

qΩ(v|η)
dv

= EqΩ(v|η) [log P(c = k|v) + log pθ(v|x)
− log qΩ(v|η)] .

975

Therefore, the final negative ELBO objective is976

obtained by977

Lexact = − 1

M

M∑
m=1

K∑
k=1

η
(m)
k log Pθ(c = k|x)

≤ − 1

M

M∑
m=1

K∑
k=1

η
(m)
k EqΩ(v|η(m)) [log P(c = k|v)

+ log pθ(v|x)− log qΩ(v|η(m))
]

= − 1

M

M∑
m=1

EqΩ(v|η(m))

[
K∑
k=1

η
(m)
k log P(c = k|v))

+ log pθ(v|x)− log qΩ(v|η(m))
]

= L(θ,Λ;D,x),

978

where979

log P(c = k|v) = logsoftmax(v)k,980

log pθ(v|x) = pΛ
(
f−1
θ (v)|x

) ∣∣∣∣∣det
(
∂f−1

θ (v)

∂v

)∣∣∣∣∣ ,981

log qΩ(v|η(m)) = N (v|µΩ(η
(m)), diag(σ2

Ω(η
(m)))).982

B.3 The Negative Log Likelihood (NLLall
i ) for983

Categorical Annotations984

The marginal likelihood of S-CNF is intractable,985

which can be approximated using Monte-Carlo sim-986

ulation:987

Pθ(c = k|x) =
∫

P(c = k|v)pθ(v|x)dv

= Epθ(v|x) [P(c = k|v)]

≈ 1

Q

Q∑
j=1

P(c = k|vj), {vj}Qj=1 ∼iid pθ(v|x)

=
1

Q

Q∑
j=1

softmax(vj)k, {vj}Qj=1 ∼iid pθ(v|x)

= ȳk,

988

where ȳ = 1
Q

∑Q
j=1 softmax(vj) = 1

Q

∑Q
j=1 yj 989

which is the average of the simulated categorical 990

distributions. Let η̄ = 1
M

∑M
m=1 η

(m) be the aver- 991

age label. 992

Then, the NLLall
i for a single input xi is given 993

by 994

NLLall
i = − 1

M

M∑
m=1

K∑
k=1

η
(m)
i,k log Pθ(c = k|xi)

≈ − 1

M

M∑
m=1

K∑
k=1

η
(m)
i,k log ȳi,k

= −
K∑
k=1

η̄i,k log ȳi,k,

995

which is the cross entropy between the averaged 996

label and averaged sample. 997

C Emotion Label Processing for 998

MSP-Podcast 999

In MSP-Podcast, each annotator can choose from 1000

ten emotion classes to label the primary emotion 1001

of an utterance: Angry, Sad, Happy, Surprise, Fear, 1002

Disgust, Contempt, Neutral, Other. Although only 1003

one option is allowed, they can say other and de- 1004

fine their own emotion class which can be more 1005

than one. During label processing, the original 1006

other class is split into sub-classes depending on 1007

the manual defined label and merged with the pre- 1008

defined labels. The grouping details are shown as 1009

follows: (i) Angry includes angry, disgust, con- 1010

tempt, annoyed; (ii) Sad includes sad, frustrated, 1011

disappointed, depressed, concerned; (iii) Happy 1012

includes happy, excited, amused; (iv) Neutral in- 1013

cludes neutral; (v) Other includes all other emotion 1014

subclasses not listed above. 1015

D Model Structure Details 1016

The procedure of sampling from and optimizing 1017

S-CNF are summarized in Algorithm 1 and 2. 1018

A neural-network-based encoder gΛ is built to 1019

model µΛ(x),σ
2
Λ(x) given input x where Λ is 1020

the model parameters. gΛ follows an upstream- 1021

downstream paradigm. The upstream model is pre- 1022

trained on large amount of unlabelled data to learn 1023

universal representations. The downstream model 1024

uses the learned representation from the upstream 1025

model for specific applications. 1026

For tasks involving speech as input (i.e., emotion 1027

class labelling), WavLM (Chen et al., 2022) is used 1028
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Algorithm 1 Sampling from S-CNF

Input: x
Output: Categorical probability y
Compute µΛ(x),σ

2
Λ(x) = gΛ(x)

Sample z ∼ N (µΛ(x), diag(σ
2
Λ(x))

Compute v = fθ (z)
Compute y = softmax(v)

Algorithm 2 Optimizing S-CNF

Input: x,D = {η(1), · · · ,η(M)}
Output: ELBO LELBO on dataset D
for m = 1, · · · ,M do

Compute µΩ(η
(m)),σ2

Ω(η
(m)) = hΩ(η

(m))
for j = 1, · · · , Q do

Sample vj ∼ qΩ(v|η(m))

Compute L(m)
j =

−
∑K

k=1 η
(m)
k log P(c = k|vj)+log pθ(vj |x)−

log qΩ(vj |η(m))
end for
Compute LELBO

m = 1
Q

∑Q
j=1 L

(m)
j

end for
Compute LELBO = 1

M

∑M
m=1 LELBO

m

as the upstream model. WavLM is a speech founda-1029

tion model pre-trained by self-supervised learning1030

that takes raw waveform as input. The waveform1031

is encoded by a CNN encoder followed by multi-1032

ple Transformer encoders. The BASE+ version31033

of the model is used in this work which has 121034

Transformer encoder blocks with 768-dimensional1035

hidden states and 8 attention heads. The parame-1036

ters of the pretrained WavLM are frozen and the1037

weighted sum of the outputs of the 12 Transformer1038

encoder blocks is used as the speech embeddings1039

feeding into the downstream model.1040

RoBERTa (Liu et al., 2019) is used as up-1041

stream model to encode text input for toxic speech1042

detection, which is a robustly optimized model1043

of BERT (Devlin et al., 2019). RoBERTa is a1044

Transformer-based language model pretrained on a1045

large corpus of English data with the masked lan-1046

guage modelling objective. The BASE version41047

was used in the work which has 12 Transformer1048

layers, 768 hidden units, 12 attention heads, and1049

125 million parameters.1050

The downstream model consists of two Trans-1051

former encoder blocks followed by two FC layers.1052

3https://huggingface.co/microsoft/wavlm-base-plus
4https://huggingface.co/roberta-base

The Transformer encoder layers has a hidden di- 1053

mension of 128 and four attention head. The out- 1054

put layer contains two heads to predict the mean 1055

and standard deviation of the latent distribution 1056

pΛ(z|x). The invertible flow model fθ uses three 1057

real NVP block (Dinh et al., 2017) of dimension 64. 1058

The variational encoder hΩ for S-CNF contains a 1059

FC layer of dimension 64 and two output heads for 1060

the mean and standard deviation of the variational 1061

distribution qΩ(v|y). 1062

E Detailed Configuration of All 1063

Compared Methods 1064

Ensemble consists of 10 systems initialized and 1065

trained using different random seeds. MCDP uses 1066

dropout rate of 0.4. A standard Gaussian prior 1067

is used for BBB. A modified version of EDL is 1068

used (Wu et al., 2023) which is trained by maximiz- 1069

ing the per-observation-based marginal likelihood 1070

with a modified regularization term. Ensemble, 1071

MCDP, BBB, EDL use the same model structure 1072

as gΛ apart from removing the output head for pre- 1073

dicting variance of latent distribution. A modified 1074

version of DPN (Wu et al., 2022b) is used which 1075

is trained by interpolating per-observation-based 1076

marginal likelihood with KL divergence. The co- 1077

efficient of KL term is set to 5.0 for emotion class 1078

labelling and 2.0 for toxic speech detection. CVAE 1079

has the same gΛ structure as S-CNF for modelling 1080

p(z|x), and two 64-d FC layers are used for en- 1081

coder and decoder. A-CNF has identical model 1082

structure as S-CNF. 1083

F Implementation Details 1084

The system was implemented using PyTorch with 1085

the SpeechBrain (Ravanelli et al., 2021) and norm- 1086

flows (Stimper et al., 2023) toolkit. The Adadelta 1087

optimizer was used with an initial learning rate of 1088

1.2 for emotion class labelling and 0.05 for speech 1089

quality assessment. The NewBob learning rate 1090

scheduler was used with annealing factor 0.8 and 1091

patience 1. The system was trained for 30 epochs 1092

and the model with the best validation performance 1093

was used for testing. The number of ELBO sam- 1094

ples was set to 20. All experiments were run with 1095

three different seeds and the average and standard 1096

error are reported. 1097
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Emotion class labelling
RMSEs MAEs E(s̄)

MCDP 0.305 0.233 0.206
Ensemble 0.277 0.222 0.166

BBB 0.284 0.226 0.178
CVAE 0.333 0.244 0.244
DPN 0.297 0.236 0.191

A-CNF 0.223 0.209 0.046
S-CNF 0.218 0.198 0.015

Toxic speech detection
RMSEs MAEs E(s̄)

MCDP 0.297 0.242 0.122
Ensemble 0.290 0.220 0.105

BBB 0.279 0.229 0.115
CVAE 0.345 0.208 0.208
DPN 0.299 0.220 0.178

A-CNF 0.274 0.232 0.062
S-CNF 0.263 0.206 0.002

Table 4: Analysis of standard deviation of simulated
samples.

G Analysis of Standard Deviation of1098

Simulated Samples1099

It has been observed in Sec. 5.1 that flow models1100

tend to have a larger difference between RMSEs1101

and E(s̄). This section provides detailed analysis1102

to this observation. Let N be the number of test1103

utterances. Three std-related metrics are computed:1104

(i) RMSE between std of predictions and human la-1105

bels: RMSEs =
√

1
N

∑N
i=1 (si − σi)

2; (ii) Mean1106

absolute error between std of predictions and std of1107

human labels: MAEs = 1
N

∑N
i=1 |si−σi|; (iii) Ab-1108

solute error between average std of predictions and1109

average std of human labels E(s̄) = |s̄i − σ̄i|. Re-1110

sults are shown in Table 4. The flow model tends to1111

have larger discrepancy between MAEs and E(s̄).1112

According to the triangular inequality:1113

E(s̄) =

∣∣∣∣∣ 1N
N∑
i=1

si −
1

N

N∑
i=1

σi

∣∣∣∣∣
=

∣∣∣∣∣ 1N
N∑
i=1

(si − σi)

∣∣∣∣∣ ≤ 1

N

N∑
i=1

|si − σi| = MAEs

1114

which show that E(s̄) is a lower bound of MAEs.1115

The equality condition is satisfied when all sam-1116

ples are uniformly either greater than or less than1117

the compared value. Therefore, a larger discrep-1118

ancy between these two values indicates that the1119
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Figure 5: Standard deviation of simulated samples for
emotion class labelling.

standard deviation of some samples exceeds that of 1120

the labels, while for others, it is lower. A smaller 1121

discrepancy indicates that the standard deviation 1122

of samples tend to be consistently larger of smaller 1123

than that of the labels. In Figure 5, 100 test utter- 1124

ances are randomly selected and the std of samples 1125

generated by different models are plotted, which 1126

supports the above conclusion. The proposed S- 1127

CNF has the best performance for matching the 1128

diversity of human annotations. 1129

H Adjusting the Variability of CNFs by 1130

Prior Tempering 1131

Sec. 5.3 has explored the effect of prior tempering 1132

on the performance. More details are provided in 1133

this section. Table 5 shows the effect of prior tem- 1134

pering on the performance of S-CNF. Table 6 shows 1135

the effect of dropout rate on the performance of 1136

MCDP. When the temperature increases or dropout 1137

rate increases, the simulated annotations become 1138

more diverse, shown by the increase in the average 1139

standard deviation (s̄) and the decrease in Fleiss’s 1140

kappa (κ̂) of simulated annotations. Comparing 1141

two tables, it can be seen that prior tempering in 1142

CNF is more efficient and covers a wider range of 1143

dynamics than adjusting the dropout rate in MCDP. 1144
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Emotion class labelling
T Acc NLLall RMSEs s̄ E(s̄) κ̂ E(κ̂)

0.8 0.594 1.395 0.221 0.200 0.044 0.307 0.053
0.9 0.594 1.390 0.219 0.216 0.029 0.259 0.005
1.0 0.593 1.389 0.218 0.229 0.015 0.222 0.032
1.1 0.592 1.389 0.218 0.241 0.004 0.191 0.063
1.2 0.590 1.391 0.219 0.251 0.007 0.166 0.088

Toxic speech detection
T Acc NLLall RMSEs s̄ E(s̄) κ̂ E(κ̂)

0.8 0.671 0.851 0.272 0.125 0.065 0.721 0.115
0.9 0.675 0.842 0.265 0.157 0.033 0.650 0.044
1.0 0.673 0.837 0.263 0.188 0.002 0.580 0.026
1.1 0.671 0.836 0.264 0.216 0.026 0.512 0.094
1.2 0.669 0.837 0.267 0.242 0.052 0.450 0.156

Table 5: Adjusting the variability of CNFs by prior tempering.

Emotion class labelling
dp Acc NLLall RMSEs s̄ E(s̄) κ̂ E(κ̂)

0.1 0.583 1.463 0.303 0.040 0.205 0.791 0.537
0.2 0.589 1.426 0.303 0.040 0.204 0.773 0.519
0.3 0.590 1.415 0.300 0.045 0.199 0.761 0.507
0.4 0.585 1.405 0.296 0.051 0.194 0.723 0.469
0.5 0.589 1.409 0.294 0.053 0.191 0.715 0.461

Toxic speech detection
dp Acc NLLall RMSEs s̄ E(s̄) κ̂ E(κ̂)

0.1 0.661 0.925 0.314 0.049 0.158 0.831 0.225
0.2 0.666 0.916 0.308 0.061 0.147 0.800 0.194
0.3 0.654 0.968 0.299 0.081 0.127 0.750 0.144
0.4 0.662 0.943 0.297 0.085 0.122 0.731 0.125
0.5 0.662 0.896 0.296 0.088 0.120 0.720 0.114

Table 6: Adjusting the variability of MCDP models by dropout rate (dp).

I Further visualised examples: Emotion1145

Class Labelling1146

This section shows additional visualized examples1147

for emotion class labelling when human annotators1148

reach a consensus (Figure 6 (a)(b)), diverge (Fig-1149

ure 6 (c)(d)), and give distinct labels (Figure 6 (e)).1150

Aligned with the findings in Sec. 5.4, the pro-1151

posed S-CNF can better simulate the aggregated1152

behaviour as well as the variability of human anno-1153

tations in all cases.1154

J Further visualised examples: Toxic 1155

Speech Detection 1156

This section shows visualized examples for toxic 1157

speech detection when all three human annotators 1158

provide the same label (Figure 7 (a)(b)), one of 1159

them gives a different label (Figure 7 (c)(d)), and 1160

all three annoators give distinct labels (Figure 7 (e)). 1161

Similar to the observations of the emotion class 1162

labelling task, the proposed S-CNF can better sim- 1163

ulate the aggregated behaviour as well as the vari- 1164

ability of human annotations in all cases. 1165
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Figure 6: Additional visualized examples for emotion class labelling. The y-axis corresponds to the probability mass.
Each sample is a categorical distribution. The probability mass values of different categories in each categorical
distribution are connected for the purpose of better visualization.
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Figure 7: Additional visualized examples for toxic speech detection. The y-axis corresponds to the probability mass.
Each sample is a categorical distribution. The probability mass values of different categories in each categorical
distribution are connected for the purpose of better visualization.
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