
DETERMINISTIC BOUNDS AND RANDOM ESTIMATES OF METRIC TENSORS ON NEUROMANIFOLDS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 The high dimensional parameter space of modern deep neural networks — the
012 neuromanifold — is endowed with a unique metric tensor defined by the Fisher
013 information, estimating which is crucial for both theory and practical methods
014 in deep learning. To analyze this tensor for classification networks, we return
015 to a low dimensional space of probability distributions — the core space — and
016 carefully analyze the spectrum of its Riemannian metric. We extend our discoveries
017 there into deterministic bounds of the metric tensor on the neuromanifold. We
018 introduce an unbiased random estimate of the metric tensor and its bounds based
019 on Hutchinson’s trace estimator. It can be evaluated efficiently through a single
020 backward pass, with a standard deviation bounded by the true value up to scaling.

1 INTRODUCTION

024 Deep learning can be considered as a trajectory through *the space of neural networks (neuromani-025*
026 *fold*; Amari 2016), where each point is a neural network instance with a prescribed architecture but
027 different parameters. This work investigates classifier models in the form $p(y|x, \theta)$, where x is the
028 input features, $y \in \{1, \dots, C\}$ is the class labels ($C \geq 2$), and $\theta \in \Theta$ is the network weights and
029 biases. Given an unlabeled dataset $\mathcal{D}_x = \{x_1, x_2, \dots\}$, the intrinsic structure of Θ is specified by the
Fisher Information Matrix (FIM), defined as:

$$030 \quad \mathcal{F}(\theta) := \sum_{x \in \mathcal{D}_x} \mathbb{E}_{p(y|x)} \left[\frac{\partial \log p(y|x, \theta)}{\partial \theta} \frac{\partial \log p(y|x, \theta)}{\partial \theta^\top} \right] = \sum_{x \in \mathcal{D}_x} \mathbb{E}_{p(y|x)} \left[\frac{\partial \ell_{xy}}{\partial \theta} \frac{\partial \ell_{xy}}{\partial \theta^\top} \right], \quad (1)$$

033 where $\ell_{xy}(\theta) := \log p(y|x, \theta)$ denotes the log-likelihood. This is based on a supervised model
034 $x \rightarrow y$. For unsupervised models, one can treat x as constant and apply the same formula. Under
035 regularity conditions, $\mathcal{F}(\theta)$ is a $\dim(\theta) \times \dim(\theta)$ positive semi-definite (psd) matrix varying smoothly
036 with $\theta \in \Theta$. Following Hotelling (1929), and independently Rao (1945), $\mathcal{F}(\theta)$ is used as a metric
037 tensor on Θ , representing a local degenerate inner product¹. For example, one can measure the
038 intrinsic squared distance between θ and $\theta + d\theta$, where $d\theta$ is a small dynamic on Θ , as $d\theta^\top \mathcal{F}(\theta) d\theta$.

039 The FIM is the unique metric tensor (Čencov, 1982) which underpins the *information geometry*
040 of the neuromanifold Θ (Amari, 2016). The most widely used application of the FIM is perhaps
041 geometry-inspired optimizers such as natural gradient (Amari, 1998), Adam (Kingma & Ba, 2015),
042 and their variants (Martens & Grosse, 2015; Pascanu & Bengio, 2014; Yao et al., 2021; Lin et al.,
043 2021). \mathcal{F} is also applied to regularized fine-tuning (Lodha et al., 2023), pruning (Heskes, 2000; Tu
044 et al., 2016) transfer learning (Chen et al., 2018), and overcoming catastrophic forgetting (Kirkpatrick
045 et al., 2017). Theoretically, the FIM provides insights due to its connection with the Hessian of the
046 loss landscape and generalization (Hochreiter & Schmidhuber, 1997), and that any f -divergence is
047 locally characterized by the FIM (Blyth, 1994).

048 Given its deep and broad background, estimating $\mathcal{F}(\theta)$ with *guaranteed quality* is important even in
049 the absence of a specific application pipeline. Inaccurate estimates can lead to overly aggressive or
050 overly conservative learning steps (Amari, 1998), or miscalculated saliency scores and suboptimal
051 pruning decisions (Tu et al., 2016). In learning theory, a loosely estimated FIM undermines the validity

052
053 ¹In the machine learning literature, $\mathcal{F}(\theta)$ is sometimes referred to as a curvature matrix (Martens, 2020) but
actually defines a *singular semi-Riemannian metric* (Sun & Nielsen, 2025) in rigorous terms.

of geodesic distances and the applicability of Cramér–Rao lower bounds, and may distort curvature-based sharpness, which is closely linked to generalization (Hochreiter & Schmidhuber, 1997). As a widely used deterministic approximation, the empirical FIM (eFIM, a.k.a. empirical Fisher, see *e.g.* Le Roux et al. 2007) is given by $\bar{\mathcal{F}}(\theta) := \sum_{(x,y) \in \mathcal{D}} \left[\frac{\partial \ell_{xy}}{\partial \theta} \frac{\partial \ell_{xy}}{\partial \theta} \right]$, where $\mathcal{D} = \{(x_1, y_1), (x_2, y_2), \dots\}$ is a labeled dataset. As another example, the Monte Carlo (MC) estimator $\hat{\mathcal{F}}(\theta) = \frac{1}{m} \sum_{\hat{x}, \hat{y}} \frac{\partial \ell_{\hat{x}\hat{y}}}{\partial \theta} \frac{\partial \ell_{\hat{x}\hat{y}}}{\partial \theta}^\top$, where \hat{x}, \hat{y} are a set of m random samples drawn from \mathcal{D}_x and $p(y | \hat{x})$, respectively, gives an unbiased estimate of $\mathcal{F}(\theta)$ up to scaling.

We advance the state of the art in both deterministic and stochastic approaches to computing the FIM, improving accuracy in terms of bound gap and variance. We made the following contributions: ① Envelopes of the FIM in the statistical simplex (space of output probabilities); ② Deterministic bounds of the FIM for classifier networks and their tightness analysis; ③ A novel family of random FIM estimates based on Hutchinson’s trick (Hutchinson, 1990; Skorski, 2021), which can be computed efficiently with bounded variance; ④ An empirical study to estimate the FIM of DistilBert (Sanh et al., 2019) to showcase the advantages of Hutchinson’s estimate in production settings.

In the rest of this section, we introduce our notations. Section 2 develops fundamental bounds and estimates in low dimensional spaces of probability distributions. Section 3 extends the deterministic bounds into the high dimensional neuromanifold. Section 4 introduces Hutchinson’s FIM estimator and discusses its theoretical properties with numerical simulation on DistilBERT (Sanh et al., 2019). Section 5 positions our work into the literature. Section 6 concludes.

NOTATIONS AND CONVENTIONS

We use lowercase letters such as λ or a for both vectors and scalars, which should be distinguished based on context, and capital letters such as A for matrices. All vectors are column vectors. A scalar-vector or vector-scalar derivative such as $\partial \ell / \partial \theta$ yields a gradient vector of the same shape as the vector. A vector-vector derivative such as $\partial z / \partial \theta$ denotes the $\dim(z) \times \dim(\theta)$ Jacobian matrix of the mapping $\theta \rightarrow z$. $\|\cdot\|$ denote the Euclidean norm for vectors or Frobenius norm for matrices. $\|\cdot\|_\sigma$ denotes the spectral norm (maximum singular value) of matrices. The metric tensors (variants of FIM) are listed in table 1.

Table 1: Metric tensors. We use $\mathcal{I} / \bar{\mathcal{I}} / \hat{\mathcal{I}} / \mathbb{I}$ for simple low-dimensional statistical manifolds and use $\mathcal{F} / \bar{\mathcal{F}} / \hat{\mathcal{F}} / \mathbb{F}$ for neuromanifolds. We optionally use superscripts to indicate the associated parameter space. For example, \mathcal{I}^Δ and \mathcal{F}^Δ denote the metric tensor of the statistical simplex and the space of neural networks with simplex-valued outputs, respectively.

FIM	empirical FIM (eFIM)	Monte Carlo FIM (MC FIM)	Hutchinson FIM
$\mathcal{I}(z) / \mathcal{F}(\theta)$	$\bar{\mathcal{I}}(z) / \bar{\mathcal{F}}(\theta)$	$\hat{\mathcal{I}}(z) / \hat{\mathcal{F}}(\theta)$	$\mathbb{I}(z) / \mathbb{F}(\theta)$

2 GEOMETRY OF LOW-DIMENSIONAL CORE SPACES

Consider a classifier network $p(y | x, \theta) := p(y | z(x, \theta))$, where $z(x, \theta)$ is last layer’s linear output. Due to the chain rule, we plug $\frac{\partial \ell_{xy}}{\partial \theta} = \left(\frac{\partial z}{\partial \theta} \right)^\top \frac{\partial \ell_{xy}}{\partial z}$ into Eq. (1). Then, we can easily arrive at

$$\mathcal{F}(\theta) = \sum_{x \in \mathcal{D}_x} \left(\frac{\partial z}{\partial \theta} \right)^\top \cdot \mathcal{I}(z(x, \theta)) \cdot \frac{\partial z}{\partial \theta}, \quad (2)$$

which is in the form of a Gauss–Newton matrix (Martens et al., 2010), or a pullback metric tensor (Sun, 2020)² from a low dimensional statistical manifold with metric $\mathcal{I}(z)$, to the much higher dimensional neuromanifold with metric $\mathcal{F}(\theta)$. In this section, we rediscover the geometrical structure of the low dimensional statistical manifold, which we refer to as the *core space*, or simply the *core*.

In multi-class classification, y (given a feature vector x) follows a category distribution $p(y = i | x, \theta) = p_i(x, \theta)$, $i = 1, \dots, C$. All possible category distributions over $\{1, \dots, C\}$ form a closed

²Strictly speaking, the pullback tensor requires the Jacobian of $\theta \rightarrow z$ have full column rank everywhere, which is not satisfied in typical settings of deep neural networks. This leads to singular metric tensors.

108 statistical simplex $\Delta^{C-1} := \{(p_1, \dots, p_C) : \sum_{i=1}^C p_i = 1; \forall i, p_i \geq 0\}$. The superscript $C-1$
109 denotes the dimensionality of Δ and can be omitted. If $p \in \text{int}(\Delta^{C-1})$ (interior of Δ^{C-1}), we can
110 reparameterize $p = \text{SoftMax}(z)$, where $z \in \mathfrak{R}^C$ is the logits. The core Δ^{C-1} is a curved space,
111 where p or z serves as a coordinate system in the sense that different choices of p or z yield different
112 distributions. By Eq. (1), the FIM is:
113

$$\mathcal{I}^\Delta(z) = \mathbb{E} [(e_y - p)(e_y - p)^\top] = \text{diag}(p) - pp^\top, \quad (3)$$

114 where $\text{diag}(\cdot)$ means the diagonal matrix constructed with a given diagonal vector. In below,
115 depending on context, $\text{diag}(\cdot)$ also denotes a diagonal vector extracted from a square matrix. e
116 (without subscripts) denotes a vector of all ones, e_y denotes the one-hot vector with only the y 'th bit
117 activated, and e_{ij} denotes the binary matrix with only the ij 'th entry set to 1. Note z is a redundant
118 coordinate system as $\dim(z) = C > C-1$. If $z \in \text{int}(\Delta^{C-1})$, $\mathcal{I}^\Delta(z)$ has a one-dimensional kernel:
119 one can easily verify $\mathcal{I}^\Delta(z)(te) = 0$ for all $t \in \mathfrak{R}$.
120

121 By noting that $\mathcal{I}^\Delta(z)$ is a rank-1 perturbation of the diagonal matrix $\text{diag}(p)$, we can apply Cauchy's
122 interlacing theorem and study the spectral properties of $\mathcal{I}^\Delta(z)$.
123

124 **Theorem 1** (Spectrum of Simplex FIM). *Assume the spectral decomposition $\mathcal{I}^\Delta(z) = \sum_{i=1}^C \lambda_i v_i v_i^\top$,
125 where $\lambda_1 \leq \dots \leq \lambda_C$. Then $\lambda_1 = 0$; $v_1 = e/\|e\|$; $\sum_{i=1}^C \lambda_i = 1 - \|p\|^2$; and*

$$\max \{p_i(1 - p_i)\} \cup \left\{ p_{(C-1)}, \frac{1 - \|p\|^2}{C-1} \right\} \leq \lambda_C \leq \min \left\{ p_{(C)}, 2 \max_i (p_i(1 - p_i)), 1 - \|p\|^2 \right\},$$

126 where $p_{(C-1)}$ and $p_{(C)}$ denote the second-largest and the largest elements of p , respectively.
127

128 The largest eigenvalue of $\mathcal{I}^\Delta(z)$, denoted as λ_C , and its associated eigenvector correspond to the
129 “most informative” direction at any $z \in \Delta^{C-1}$. By Theorem 1, λ_C can be bounded from above and
130 below. The bound gap is at most $\min\{p_{(C)} - p_{(C-1)}, \max_i(p_i(1 - p_i))\}$. We have found through
131 numerical simulations that, in practice, the bounds in Theorem 1 are quite tight and can provide an
132 estimate of λ_C within a narrow range. The lemma below gives lower and upper bounds of $\mathcal{I}^\Delta(z)$,
133 both with a simpler structure than $\mathcal{I}^\Delta(z)$, in the space of psd matrices based on Löwner partial order.
134

135 **Lemma 2.** *$\forall z \in \text{int}(\Delta^{C-1})$, assume the spectral decomposition $\mathcal{I}^\Delta(z) = \sum_{i=1}^C \lambda_i v_i v_i^\top$, where
136 $\lambda_1 \leq \dots \leq \lambda_{C-1} < \lambda_C$. Then, $\lambda_C v_C v_C^\top \preceq \mathcal{I}^\Delta(z) \preceq \text{diag}(p)$. Moreover, $\lambda_C v_C v_C^\top$ is the
137 best rank-1 representation of $\mathcal{I}^\Delta(z)$ in the sense that no rank-1 matrix $B \neq \lambda_C v_C v_C^\top$ satisfies
138 $\lambda_C v_C v_C^\top \preceq B \preceq \mathcal{I}^\Delta(z)$. Meanwhile, $\text{diag}(p)$ is the best diagonal representation of $\mathcal{I}^\Delta(z)$ in the
139 sense that no diagonal matrix $D \neq \text{diag}(p)$ satisfies $\mathcal{I}^\Delta(z) \preceq D \preceq \text{diag}(p)$.*

140 The simplex FIM is upper-bounded by a diagonal matrix and lower bounded by a rank-1 matrix. By
141 Lemma 2, $\lambda_C v_C v_C^\top$ is the *lower-envelope* (greatest lower bound) of $\mathcal{I}^\Delta(z)$ in rank-1 matrices, and
142 $\text{diag}(p)$ is the *upper-envelope* (least upper bound) of $\mathcal{I}^\Delta(z)$ in diagonal matrices. If the bounds in
143 Lemma 2 are used as a deterministic estimate of $\mathcal{I}^\Delta(z)$, the error can be controlled, as shown below.
144

145 **Lemma 3.** *We have $\forall z \in \Delta$, $\|\mathcal{I}^\Delta(z) - \text{diag}(p)\| = \|p\|^2 \geq \frac{1}{C}$; meanwhile, $\|\mathcal{I}^\Delta(z) - \lambda_C v_C v_C^\top\| \leq$
146 $\min \left\{ 1 - \|p\| - p_{(C-1)}, \sqrt{\sum_{i=2}^{C-1} p_{(i)}^2} \right\}$, where $p_{(i)}$ denote the entries of p sorted in ascending order.*

147 Note $\sqrt{\sum_{i=2}^{C-1} p_{(i)}^2}$ is the Euclidean norm of *trimmed* p , i.e. the vector obtained by removing p 's
148 smallest and largest elements. By Lemma 3, the upper bound $\text{diag}(p)$ always incurs an error of at
149 least $1/C$. Depending on p , the lower bound $\lambda_C v_C v_C^\top$ can more accurately estimate $\mathcal{I}^\Delta(z)$ as the
150 error can go to zero.
151

152 Alternatively, one can use random matrices to estimate $\mathcal{I}^\Delta(z)$. By Eq. (3), the rank-1 matrix
153 $R(y) = (e_y - p)(e_y - p)^\top$ is an unbiased estimator of $\mathcal{I}^\Delta(z)$. The MC FIM of Δ is $\hat{\mathcal{I}}^\Delta(z) =$
154 $\frac{1}{m} \sum_{i=1}^m R(\hat{y}_i)$, where \hat{y}_i are random samples from the distribution specified by z . The associated
155 eFIM is $\bar{\mathcal{I}}^\Delta(z) = R(y)$, where y is a given empirical sample. The lemma below shows the worst
156 case error of $\bar{\mathcal{I}}^\Delta(z)$.
157

158 **Lemma 4.** *$\forall z \in \Delta^{C-1}$, $\exists y \in \{1, \dots, C\}$, such that $\|R(y) - \mathcal{I}^\Delta(z)\| \geq 1 + \|p\|^2 - \lambda_C - 2p_{(1)}$
159 $\geq 2\|p\|^2 - 2p_{(1)}$.*

The first “ \geq ” is tighter but the second ” \geq ” is easier to interpret. The term $\|p\|$ can be as large as 1 (when p is close to one-hot). In such cases, using $R(y)$ to estimate $\mathcal{I}^\Delta(z)$ may incur significant error if y is adversarially chosen.

In classification tasks with multiple binary labels, we assume $p(y_i = 1 | x) = p_i$ ($i = 1, \dots, C$) and that all dimensions of y are conditional independent given x . All such distributions form a C -dimensional hypercube $\mathcal{C}^C(p) = \{(p_1, \dots, p_C) : \forall i, 0 \leq p_i \leq 1\}$, which is the product space of 1-dimensional simplices. Consider $p_i = \sigma(z_i) := 1/(1 + \exp(-z_i))$ for $i = 1, \dots, C$. In this case, the FIM is a diagonal matrix, given by

$$\mathcal{I}^C(z) = \text{diag}((p_1(1 - p_1), \dots, p_C(1 - p_C))) = \text{diag}(\sigma'(z_1), \dots, \sigma'(z_C)). \quad (4)$$

In what follows, unless stated otherwise, our results pertain to the core Δ as it is more commonly used and has a more complex FIM as compared to \mathcal{C} .

3 FIM FOR CLASSIFIER NETWORKS — DETERMINISTIC ANALYSIS

We give a lower and upper bound of $\mathcal{F}^\Delta(\theta)$ (Proposition 5) and analyze each bound gap (Propositions 7 and 8). Our bounds result from simple matrix analysis and are more operational than related theoretical bounds such as monotonicity of the FIM under marginalization or coarse-graining (Amari, 2016). Our bounds are novel in that ① they are built on envelopes (tightest bound) in the core, and ② they depend on the order statistics of the output probability vector.

3.1 DETERMINISTIC LOWER AND UPPER BOUNDS

By Eq. (2), the neuromanifold FIM $\mathcal{F}(\theta)$ is determined by both the core space and the parameter-output Jacobian $\frac{\partial z}{\partial \theta}$. Similar to Lemma 2, we can have lower and upper bounds of $\mathcal{F}^\Delta(\theta)$ in the space of psd matrices (although these bounds are not envelopes as in Lemma 2).

Proposition 5. *If $p(y | x, \theta) \in \Delta^{C-1}$ is categorical, then $\forall \theta \in \Theta$, we have*

$$\sum_{x \in \mathcal{D}_x} \sum_{i=C-k+1}^C \lambda_i \left(\frac{\partial z}{\partial \theta} \right)^\top v_i v_i^\top \frac{\partial z}{\partial \theta} \preceq \mathcal{F}^\Delta(\theta) \preceq \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C p(y | x, \theta) \frac{\partial z_y}{\partial \theta} \left(\frac{\partial z_y}{\partial \theta} \right)^\top$$

for all $k \in \{1, \dots, C-1\}$, where $\lambda_i := \lambda_i(x, \theta)$ and $v_i := v_i(x, \theta)$ denote the i 'th eigenvalue and eigenvector of $\mathcal{I}(z(x, \theta))$, ordered such that $\lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_C$.

Remark. The LHS is a sum of $|\mathcal{D}_x|$ (number of samples in \mathcal{D}_x) matrices, each of rank k . Its rank is at most $k|\mathcal{D}_x|$. The RHS is a sum of $C|\mathcal{D}_x|$ matrices of rank-1 and potentially has a larger rank.

Remark. By Theorem 1, $\lambda_1 = 0$. Therefore, the first “ \preceq ” turns to “ $=$ ” when $k = C-1$.

If $p(y | x)$ is in \mathcal{C} , then $\mathcal{I}^C(z(x, \theta))$ is diagonal as in Eq. (4). By Eq. (2), we have $\mathcal{F}^C(\theta) = \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C p_y(1 - p_y) \left(\frac{\partial z_y}{\partial \theta} \right)^\top \left(\frac{\partial z_y}{\partial \theta} \right)$, which is similar to the upper bound in Proposition 5. In summary, $\mathcal{F}(\theta)$ can be bounded or computed using the Jacobian $\frac{\partial z}{\partial \theta}$ as well as the output probabilities $p(y | x, \theta)$. The following analysis depends on the spectral properties of $\frac{\partial z}{\partial \theta}$. Across our formal statements, we denote the singular values of $\frac{\partial z}{\partial \theta}$, sorted in ascending order, as $\sigma_1(x, \theta) \leq \dots \leq \sigma_C(x, \theta)$. In Proposition 5, by taking the trace on all sides, the trace of the FIM can be bounded from above and below.

Corollary 6. *If $p(y | x, \theta) \in \Delta^{C-1}$ is categorical, then it holds for all $\theta \in \Theta$ that*

$$\sum_{x \in \mathcal{D}_x} \lambda_C(x, \theta) \sigma_1^2(x, \theta) \leq \sum_{x \in \mathcal{D}_x} \sum_{i=2}^C \lambda_i(x, \theta) \sigma_{C+1-i}^2(x, \theta) \leq \text{tr}(\mathcal{F}^\Delta(\theta)) \leq \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C p(y | x, \theta) \left\| \frac{\partial z_y}{\partial \theta} \right\|^2.$$

These bounds are useful to get the overall scale of $\mathcal{F}^\Delta(\theta)$ without computing its exact value. The proposition below gives the error of the upper bound in Proposition 5 in terms of Frobenius norm.

Proposition 7. *We have $\forall \theta \in \Theta$ that*

$$\sqrt{\sum_{x \in \mathcal{D}_x} \left\| \left(\frac{\partial z}{\partial \theta} \right)^\top p(x, \theta) \right\|^4} \leq \left\| \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C p(y | x, \theta) \left(\frac{\partial z_y}{\partial \theta} \right)^\top \frac{\partial z_y}{\partial \theta} - \mathcal{F}^\Delta(\theta) \right\| \leq \sum_{x \in \mathcal{D}_x} \|p(x, \theta)\|^2 \sigma_C^2(x, \theta),$$

where $p(x, \theta) = \text{SoftMax}(z(x, \theta))$ denotes the output probability vector.

216 We use Frobenius norm for matrices but it is not difficult to bound the spectral norm using similar
 217 techniques. By Proposition 7, the error of the upper bound scales with the 2-norm (maximum singular
 218 value) of the parameter-output Jacobian $\frac{\partial z}{\partial \theta}$. As in the core space, the FIM upper bound remains
 219 loose. For example, let p tend to be one-hot, the LHS in Proposition 7 does not vanish but scales with
 220 certain rows of $\frac{\partial z}{\partial \theta}$ corresponding to the predicted y . Naturally, we also want to examine the error of
 221 the lower bound in Proposition 5, as detailed below.

222 **Proposition 8.** *We have that for all $\theta \in \Theta$ and all $k \in \{1, \dots, C-1\}$,*

$$224 \quad 225 \quad 226 \quad \left\| \sum_{x \in \mathcal{D}_x} \sum_{i=C-k+1}^C \lambda_i \left(\frac{\partial z}{\partial \theta} \right)^\top v_i v_i^\top \frac{\partial z}{\partial \theta} - \mathcal{F}^\Delta(\theta) \right\| \leq \sum_{x \in \mathcal{D}_x} \sqrt{\sum_{i=2}^{C-k} \sigma_{i+k}^4(x, \theta) p_{(i)}^2(x, \theta)}.$$

228
 229 Clearly, as p approaches a one-hot vector, all elements in the trimmed vector $p_{(i)}$, for $i = 2, \dots, C-1$,
 230 tend to zero, and the error approaches zero since its upper bound on the RHS goes to zero. From this
 231 view, the lower bound in Proposition 5 is a better estimate as compared to the upper bound.

232 **Remark.** *By noting that $0 \leq \sigma_i(x, \theta) \leq \sigma_C(x, \theta)$, we relax the bound in Proposition 8 and get*

$$234 \quad 235 \quad 236 \quad \left\| \sum_{x \in \mathcal{D}_x} \sum_{i=C-k+1}^C \lambda_i \left(\frac{\partial z}{\partial \theta} \right)^\top v_i v_i^\top \frac{\partial z}{\partial \theta} - \mathcal{F}^\Delta(\theta) \right\| \leq \sum_{x \in \mathcal{D}_x} \sqrt{\sum_{i=2}^{C-k} p_{(i)}^2(x, \theta) \cdot \sigma_C^2(x, \theta)}.$$

238 *The estimation error of the low-rank lower bound in Proposition 5 is controlled by the norms of
 239 the Jacobian and the trimmed probabilities $(p_{(2)}, \dots, p_{(C-k)})$. The latter is upper bounded by
 240 $p_{(C-k)}(x, \theta)$, the $(k+1)$ 'th largest probability of each sample x . By comparing with the second “ \leq ”
 241 in Proposition 7, one can easily observe that Proposition 8 is tighter in general.*

243 3.2 EMPIRICAL FIM (EFIM)

245 Recall from the introduction, the eFIM $\bar{\mathcal{F}}(\theta)$ gives a biased, deterministic estimate of $\mathcal{F}(\theta)$. Intuitively,
 246 when the network is trained, computations based on the given labels are close to the expectation
 247 w.r.t. $p(y | x)$, and the eFIM is expected to approximate $\mathcal{F}(\theta)$ well. However, the bias of $\bar{\mathcal{F}}(\theta)$ can be
 248 enlarged if y is set adversarially. By simple derivations, $\bar{\mathcal{F}}(\theta) = \sum_{x \in \mathcal{D}_x} \left(\frac{\partial z}{\partial \theta} \right)^\top \cdot R(y) \cdot \frac{\partial z}{\partial \theta}$. Observe
 249 that it is similar to Eq. (2), except $\mathcal{I}(z(x, \theta))$ is replaced by its empirical counterpart $R(y)$. If the
 250 neural network output is in Δ , the error of eFIM can be bounded, as stated below.

251 **Proposition 9.** $\forall \theta \in \Theta, \forall y$, we have $\|\mathcal{F}^\Delta(\theta) - \bar{\mathcal{F}}^\Delta(\theta)\|_\sigma \leq \sum_{x \in \mathcal{D}_x} (1 + \|p(x, \theta)\|^2) \sigma_C^2(x, \theta)$.

254 Here we need to switch to the spectral norm $\|\cdot\|_\sigma$ to get a simple expression of the upper bound.
 255 The approximation error in terms of the spectral norm is controlled by the spectral norm of the
 256 parameter-output Jacobian. The error by Frobenius norm is even larger. The bound is loose as
 257 compared to Propositions 7 and 8.

258 We have found in Lemma 4 that using $R(y)$ to approximate $\mathcal{I}^\Delta(z)$ suffers from a large error if y is
 259 chosen in a tricky way. The same principle applies to using $\bar{\mathcal{F}}(\theta)$ to approximate $\mathcal{F}(\theta)$.

260 **Proposition 10.** $\forall \theta \in \Theta, \forall x, \exists y$, such that

$$262 \quad 263 \quad 264 \quad \left\| \left(\frac{\partial z}{\partial \theta} \right)^\top \mathcal{I}^\Delta(z(x, \theta)) \frac{\partial z}{\partial \theta} - \left(\frac{\partial z}{\partial \theta} \right)^\top R(y) \frac{\partial z}{\partial \theta} \right\|_\sigma \geq \sigma_1^2(x, \theta) |1 + \|p(x, \theta)\|^2 - \lambda_C(x, \theta) - 2p_{(1)}(x, \theta)|.$$

265
 266 In the above inequality, the LHS is the error of $\bar{\mathcal{F}}(\theta)$ for one single $x \in \mathcal{D}_x$. Therefore, when y is
 267 set unfavorably, the eFIM suffers from an approximation error that scales with the smallest singular
 268 value of $\frac{\partial z}{\partial \theta}$. Among all the investigated deterministic approximations of \mathcal{F}^Δ , the lower bound in
 269 Proposition 5 provides the smallest guaranteed error but is relatively expensive to compute. We solve
 the computational issues in the next section.

270 **4 HUTCHINSON'S ESTIMATE OF THE FIM**

271 **4.1 LIMITATIONS OF MONTE CARLO ESTIMATES**

274 The quality of the MC estimate $\hat{\mathcal{F}}(\theta)$ can be arbitrarily bad. Consider the single neuron model
 275 $z = \theta x$ for binary classification, where z, θ, x are all scalars, and θ is close to zero. Then $p \approx \frac{1}{2}$ is
 276 a fair Bernoulli distribution. $\mathcal{I}(z) = p(1-p) \approx \frac{1}{4}$. The Jacobian is simply $\frac{\partial z}{\partial \theta} = x$. and $\mathcal{F}(\theta) =$
 277 $\mathbb{E}_{p(x)} \left[\frac{\partial z}{\partial \theta} \mathcal{I}(z) \frac{\partial z}{\partial \theta} \right] \approx \frac{1}{4} \mathbb{E}_{p(x)}[x^2]$. A basic MC estimator takes the form $\hat{\mathcal{F}}(\theta) = \frac{1}{4m} \sum_{i=1}^m x_i^2$,
 278 where x_i 's are independently and identically distributed according to $p(x)$. Its variance is $\text{Var}(\hat{\mathcal{F}}) =$
 279 $\frac{1}{4m} [\mathbb{E}_{p(x)}(x^4) - \mathbb{E}_{p(x)}^2(x^2)]$. We let $p(x)$ be a heavy tailed distribution, e.g. Student's t-distribution
 280 with $\nu > 4$ degrees of freedom, so that $\text{Var}(\hat{\mathcal{F}})$ is large while $\mathcal{F}(\theta)$ is small. Then $\mathbb{E}_{p(x)}(x^2) = \frac{\nu}{\nu-2}$
 281 and $\mathbb{E}_{p(x)}(x^4) = \frac{3\nu^2}{(\nu-2)(\nu-4)}$. The ratio $\frac{\mathbb{E}_{p(x)}(x^4)}{(\mathbb{E}_{p(x)} x^2)^2} = \frac{3(\nu-2)}{\nu-4}$ can be arbitrarily large when $\nu \rightarrow 4^+$.
 282 Therefore the coefficient of variation (CV) $\text{Std}(\hat{\mathcal{F}})/\mathcal{F}(\theta)$ is unbounded. Throughout our analysis,
 283 the CV is a key indicator of the quality of a FIM estimator, as a bounded CV for a random variable X
 284 ensures the random estimator's probability mass within $[0, \alpha\mu]$, where $\alpha > 1$ and $\mu \geq 0$ is the mean
 285 of X . If $\text{CV} = \frac{\text{Std}X}{\mu} \leq K$, then by Cantelli inequality, we have
 286 $\text{CV} = \frac{\text{Std}X}{\mu} \leq K$, then by Cantelli inequality, we have

288
$$\mathbb{P}(X \geq \alpha\mu) = \mathbb{P}(X \geq \mu + (\alpha-1)\mu) \leq \mathbb{P}\left(X \geq \mu + \frac{\alpha-1}{K} \text{Std}X\right) \leq \left(1 + \left(\frac{\alpha-1}{K}\right)^2\right)^{-1}.$$

291 The general case is more complicated, but follows a similar idea. The variance of MC estimators
 292 depends on the 4th moment of the Jacobian $\frac{\partial z}{\partial \theta}$ w.r.t. $p(x)$ while the mean value $\mathcal{F}(\theta)$ only depends
 293 on the 2nd moment of $\frac{\partial z}{\partial \theta}$. The ratio of the variance to $\mathcal{F}^2(\theta)$, or the CV $\text{Std}(\hat{\mathcal{F}})/\mathcal{F}(\theta)$, is unbounded
 294 without further assumption on $p(x)$. One can increase the number of samples m to reduce variance.
 295 However, this is computationally expensive especially in online settings.

296 **4.2 HUTCHINSON'S ESTIMATE**

299 In light of the challenges of MC estimates, we introduce a new way to get an unbiased estimate of the
 300 FIM. First, compute the scalar-valued function

301
$$\mathfrak{h}(\mathcal{D}_x, \theta) := \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C \sqrt{\tilde{p}(y|x, \theta)} \ell_{xy}(\theta) \xi_{xy}, \quad (5)$$

304 where ξ_{xy} is a standard multivariate Gaussian vector of size $C|\mathcal{D}|$ or a Rademacher vector,
 305 and $\tilde{p}(y|x, \theta)$ has the same value as $p(y|x, \theta)$ but is *non-differentiable*, meaning its gradient
 306 is always zero, preventing error from back-propagating through $\tilde{p}(y|x, \theta)$. This \tilde{p} can
 307 be implemented by `Tensor.detach()` in PyTorch (Paszke et al., 2019) or similar func-
 308 tions in other auto-differentiation (AD) frameworks. Second, the gradient vector $\frac{\partial \mathfrak{h}}{\partial \theta} =$
 309 $\sum_{x \in \mathcal{D}_x} \sum_{y=1}^C \sqrt{p(y|x, \theta)} \frac{\partial \ell_{xy}}{\partial \theta} \xi_{xy}$ can be evaluated via AD, e.g. by `h.backward()` in Pytorch.
 310 Third, the random psd matrix $\mathbb{F}(\theta) := \frac{\partial \mathfrak{h}}{\partial \theta} \frac{\partial \mathfrak{h}}{\partial \theta^T}$, which we refer to as the “Hutchinson's estimate” (of
 311 the FIM), can be used to estimate $\mathcal{F}(\theta)$. By straightforward derivations,
 312
$$\mathbb{E}_{p(\xi)}(\mathbb{F}(\theta)) = \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C \sum_{x' \in \mathcal{D}_x} \sum_{y'=1}^C \sqrt{p(y|x, \theta)} \sqrt{p(y'|x', \theta)} \frac{\partial \ell_{xy}}{\partial \theta} \frac{\partial \ell_{x'y'}}{\partial \theta^T} \mathbb{E}_{p(\xi)}[\xi_{xy} \xi_{x'y'}] = \mathcal{F}(\theta). \quad (6)$$

313 The last “=” is because $\mathbb{E}_{p(\xi)}(\xi_{xy} \xi_{x'y'}) = 1$ if $x = x'$ and $y = y'$, and $\mathbb{E}_{p(\xi)}(\xi_{xy} \xi_{x'y'}) = 0$ otherwise.
 314 Considering $\frac{\partial \mathfrak{h}}{\partial \theta}$ as an implicit representation of the FIM, its **computational cost** is ① evaluating the
 315 \mathfrak{h} function, ② the backward pass to compute the gradient of \mathfrak{h} . The cost is the same as evaluating
 316 the gradient of the loss $-\sum_{x \in \mathcal{D}_x} \sum_{y=1}^C \ell_{xy}(\theta)$, noting that \mathfrak{h} is the log-likelihood randomly flipped
 317 by a Gaussian/Rademacher vector. Moreover, \mathfrak{h} can reuse the logits already computed during the
 318 forward pass. Therefore $\frac{\partial \mathfrak{h}}{\partial \theta}$ requires merely one additional backward pass, making it practical for
 319 large scale networks. In summary, $\mathbb{F}(\theta)$ is a *universal estimator* of $\mathcal{F}(\theta)$ for general statistical model,
 320 which is independent of neural network architectures and applicable to non-neural network models as
 321 well. Hutchinson's estimate has guaranteed quality, as formally established below.

324 **Proposition 11.** $\mathbb{E}_{p(\xi)}(\mathbb{F}(\theta)) = \mathcal{F}(\theta)$. If $p(\xi)$ is standard multivariate Gaussian, then
 325 $\text{Var}(\mathbb{F}_{ii}(\theta)) = 2\mathcal{F}_{ii}(\theta)^2$; if $p(\xi)$ is standard multivariate Rademacher, $\text{Var}(\mathbb{F}_{ii}(\theta)) = 2\mathcal{F}_{ii}(\theta)^2 -$
 326 $2\sum_{x \in \mathcal{D}_x} \sum_{y=1}^C p^2(y|x) (\frac{\partial \ell_{xy}}{\partial \theta_i})^4$.
 327

328 It is known that Rademacher distribution yields smaller variance for Hutchinson's estimator compared
 329 to the Gaussian distribution. In what follows, $p(\xi)$ is Rademacher by default. By Proposition 11,
 330 $\text{Std}(\mathbb{F}_{ii}(\theta)) \leq \sqrt{2}\mathcal{F}_{ii}(\theta)$. Thus the CV $\text{Std}(\mathbb{F}_{ii}(\theta))/\mathcal{F}_{ii}(\theta)$ is bounded by $\sqrt{2}$. We only investigate
 331 the diagonal of Hutchinson's estimate because the diagonal FIM is widely used, but our results can
 332 be readily extended to off-diagonal entries.
 333

334 **Remark.** For a dataset with J minibatches, each with a diagonal FIM $\mathbb{F}_{ii}^{(j)}(\theta)$ computed with
 335 an independent probe, we have $\mathbb{F}_{ii}(\theta) = \sum_{j=1}^J \mathbb{F}_{ii}^{(j)}(\theta)$. By Proposition 11, $\text{Var}(\mathbb{F}_{ii}(\theta)) =$
 336 $\sum_{j=1}^J \text{Var}(\mathbb{F}_{ii}^{(j)}(\theta)) \leq 2 \sum_{j=1}^J (\mathcal{F}_{ii}^{(j)}(\theta))^2 \leq 2(\mathcal{F}_{ii}(\theta))^2$. Moreover, we roughly approximate
 337 $\mathbb{F}_{ii}(\theta) \approx J \mathbb{F}_{ii}^{(j)}(\theta)$. Then, $\text{Var}(\mathbb{F}_{ii}(\theta)) \leq 2 \sum_{j=1}^J \left(\frac{\mathcal{F}_{ii}(\theta)}{J}\right)^2 = \frac{2}{J}(\mathcal{F}_{ii}(\theta))^2$. At the dataset level,
 338 the variance is inversely proportional to J , while the computation cost grows linearly with J ,
 339 presenting a typical accuracy–computation trade-off.
 340

341 **Remark.** Taking trace on both sides of $\mathbb{E}_{p(\xi)}(\mathbb{F}(\theta)) = \mathcal{F}(\theta)$, we get $\mathbb{E}_{p(\xi)}(\|\frac{\partial \mathbb{F}}{\partial \theta}\|^2) = \text{tr}(\mathcal{F}(\theta))$. The
 342 squared Euclidean-norm of $\frac{\partial \mathbb{F}}{\partial \theta}$ is an unbiased estimate of the trace of the FIM. This is useful for
 343 computing related regularizers (Peebles et al., 2020).
 344

345 An alternative Hutchinson's estimate based on the equivalent FIM expression $\mathcal{F}(\theta) =$
 346 $4 \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C \left[\frac{\partial \sqrt{p(y|x, \theta)}}{\partial \theta} \frac{\partial \sqrt{p(y|x, \theta)}}{\partial \theta^\top} \right]$ (see e.g. the first unnumbered equation in Sun & Nielsen
 347 2017) is detailed in section B. We find that in practice its performance is similar to the above \mathbb{F} .
 348

349 Note that a sample of the random matrix $\mathbb{F}(\theta)$ is always rank-1: $\text{rank } \mathbb{F}(\theta) = 1 \leq \text{rank } \mathcal{F}(\theta)$,
 350 but the expectation of $\mathbb{F}(\theta)$ has the same rank as $\mathcal{F}(\theta)$. Ideally, one can compute the numerical
 351 average of more than one $\mathbb{F}(\theta)$ samples to reduce variance and recover the rank, each requiring a
 352 separate backward pass. Due to computational constraints in deep learning practice, much fewer
 353 (e.g., 1) samples are used. Instead, accumulated statistics along the learning path $\theta_1 \rightarrow \theta_2 \rightarrow \dots$
 354 can be used to maintain a (exponential) moving average of $\mathbb{F}(\theta_i)$. The underlying assumption is
 355 that $\theta_1, \theta_2, \dots$ connected by small learning steps lie close to one another in the parameter space.
 356 Therefore, averaging $\mathbb{F}(\theta_i)$ provides a reasonable approximation of the local FIM with sufficient
 357 rank.
 358

359 4.3 DIAGONAL CORE

360 For multi-label classification, and for computing the upper bound in Proposition 5, the core matrix
 361 is diagonal, in the form $\mathcal{I}^{\text{DG}}(z(x, \theta)) = \text{diag}(\zeta_1(x, \theta), \dots, \zeta_C(x, \theta))$, and the associated FIM
 362 is $\mathcal{F}^{\text{DG}}(\theta) = \sum_{x \in \mathcal{D}_x} \left(\frac{\partial z}{\partial \theta} \right)^\top \cdot \mathcal{I}^{\text{DG}}(z(x, \theta)) \cdot \frac{\partial z}{\partial \theta}$. In the former case, $\zeta_y(x, \theta) = p(y|x, \theta)(1 -$
 363 $p(y|x, \theta))$; in the latter case, $\zeta_y(x, \theta) = p(y|x, \theta)$. Here, the tensor superscript — e.g., “DG” for
 364 diagonal; “LR(k)” and “LR” for low-rank — indicates the parametric form of the core FIM, in
 365 contrast to denoting the core space as in \mathcal{I}^Δ . We define the scalar valued function
 366

$$367 \mathfrak{h}^{\text{DG}}(\theta) := \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C \sqrt{\zeta_y(x, \theta)} z_y(x, \theta) \xi_{xy}, \quad (7)$$

368 where ξ_{xy} are standard Rademacher samples that are independent across all x and y . Similar to
 369 the derivation steps in section 1, we first compute the random vector $\frac{\partial \mathfrak{h}^{\text{DG}}}{\partial \theta}$ through AD, and then
 370 compute $\mathbb{F}^{\text{DG}}(\theta) := \frac{\partial \mathfrak{h}^{\text{DG}}}{\partial \theta} \frac{\partial \mathfrak{h}^{\text{DG}}}{\partial \theta^\top}$ (or its diagonal blocks) to estimate $\mathcal{F}^{\text{DG}}(\theta)$.
 371

372 For computing the upper bound in Proposition 5, $\tilde{\zeta}_y(x, \theta) = \tilde{p}_y(x, \theta)$, then we find that Eq. (5) and
 373 Eq. (7) are similar. The only difference is that, the “raw” logits z_y in Eq. (7) is replaced by $\ell_{xy}(\theta) =$
 374 $z_y - \log \sum_y \exp(z_y)$ in Eq. (5). Compared to $\frac{\partial z_y}{\partial \theta}$, the gradient $\frac{\partial \ell_{xy}}{\partial \theta} = \frac{\partial z_y}{\partial \theta} - \sum_y p(y|x, \theta) \frac{\partial z_y}{\partial \theta}$ is
 375 centered. Due to their computational similarity, in practice, one should use Eq. (5) instead of Eq. (7)
 376

378 and get an unbiased estimate of $\mathcal{F}^\Delta(\theta)$. Eq. (7) is useful when the dimensions of y are conditional
 379 independent given x , e.g. for computing $\mathcal{F}^C(\theta)$.
 380

381 4.4 LOW-RANK CORE 382

383 By Proposition 5, $\mathcal{F}^\Delta(\theta) \succeq \mathcal{F}^{\text{LR}(k)}(\theta) := \sum_{x \in \mathcal{D}_x} \sum_{i=C-k+1}^C \lambda_i(x, \theta) \left(\frac{\partial z}{\partial \theta} \right)^\top v_i(x, \theta) v_i^\top(x, \theta) \frac{\partial z}{\partial \theta}$.
 384 We define

$$385 \quad \mathfrak{h}^{\text{LR}(k)}(\theta) = \sum_{x \in \mathcal{D}_x} \sum_{i=C-k+1}^C \sqrt{\tilde{\lambda}_i(x, \theta)} \tilde{v}_i^\top(x, \theta) z(x, \theta) \xi_x, \quad (8)$$

388 where ξ_x are independent standard Rademacher samples, and $k \in \{1, \dots, C-1\}$. For computing
 389 $\mathfrak{h}^{\text{LR}(k)}(\theta)$, we only need $k|\mathcal{D}_x|$ Rademacher samples, as compared to $C|\mathcal{D}_x|$ samples for computing
 390 $\mathfrak{h}(\theta)$ and $\mathfrak{h}^{\text{DG}}(\theta)$. Correspondingly, $\mathbb{F}^{\text{LR}(k)}(\theta) := \frac{\partial \mathfrak{h}^{\text{LR}(k)}}{\partial \theta} \frac{\partial \mathfrak{h}^{\text{LR}(k)}}{\partial \theta^\top}$ is used to estimate $\mathcal{F}^{\text{LR}(k)}(\theta)$.
 391 When $k=1$, we simply denote $\mathcal{F}^{\text{LR}} := \mathcal{F}^{\text{LR}(1)}$, $\mathfrak{h}^{\text{LR}} := \mathfrak{h}^{\text{LR}(1)}$, and $\mathbb{F}^{\text{LR}} := \mathbb{F}^{\text{LR}(1)}$.
 392

393 It remains to compute $\lambda_i(x, \theta)$ and $v_i(x, \theta)$, which requires spectral decomposition of a $C \times C$ matrix
 394 for each $x \in \mathcal{D}_x$. The cost is only acceptable when C is small to moderate. In our CIFAR-100
 395 experiments ($C=100$), the computational speed of $\mathbb{F}^{\text{LR}(k)}$ drops to roughly half that of \mathbb{F} . If $k=1$,
 396 however, $\lambda_C(x, \theta)$ and $v_C(x, \theta)$ can be computed more efficiently using the power iteration. By
 397 Eq. (3), starting from a random unit vector v_C^0 , we compute

$$398 \quad v_C^{t+1} = \frac{\mathcal{I}^\Delta(z)v_C^t}{\|\mathcal{I}^\Delta(z)v_C^t\|} = \frac{p \circ v_C^t - p^\top v_C^t p}{\|p \circ v_C^t - p^\top v_C^t p\|},$$

401 for $t = 1, 2, \dots$, until convergence or until a fixed number of iterations is reached. Then, $\lambda_C =$
 402 $p^\top (v_C \circ v_C) - (p^\top v_C)^2$. For computing λ_C and v_C for all $x \in \mathcal{D}_x$, the per-iteration computational
 403 cost is $\mathcal{O}(C|\mathcal{D}_x|)$. The number of iterations required increases as the spectral gap $\gamma := \lambda_C - \lambda_{C-1}$
 404 decreases. Convergence can be slow when γ is small (e.g., for near-uniform output distributions).
 405 In our implementation, we simply use a fixed iteration budget of $T=30$. All our estimators: \mathfrak{h} ,
 406 \mathfrak{h}^{DG} and $\mathfrak{h}^{\text{LR}(k)}$ can be computed solely based on the neural network output logits $z(x, \theta)$ for each
 407 $x \in \mathcal{D}_x$.
 408

409 4.5 NUMERICAL SIMULATIONS

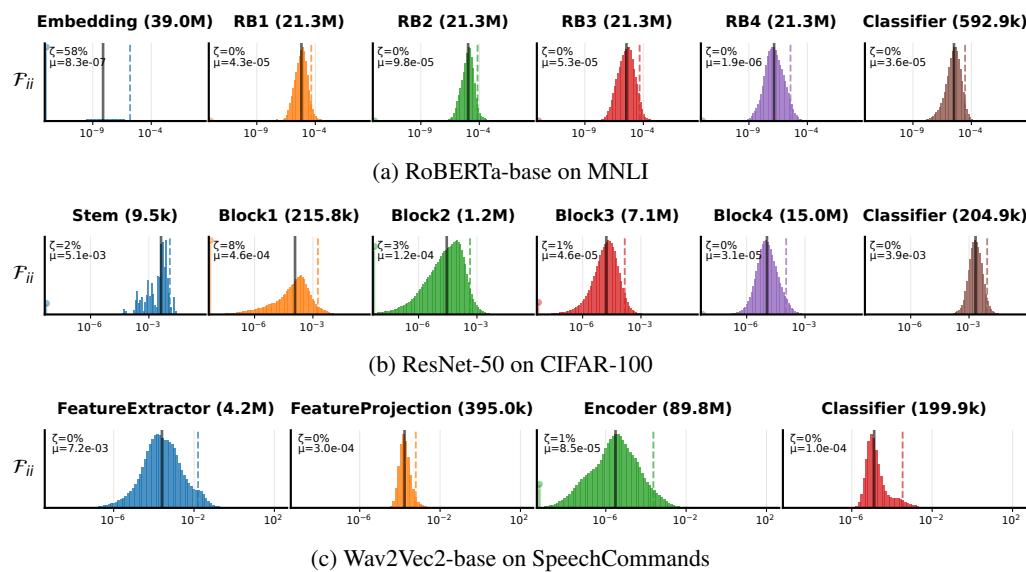
410 We compute the diagonal FIM of the following models: ① DistilBERT (Sanh et al., 2019; Wolf
 411 et al., 2020) fine-tuned on the Stanford Sentiment Treebank v2 (SST-2) (Socher et al., 2013) (with
 412 $C=2$ classes); ② DistilBERT (pretrained) with a randomly initialized classification head for
 413 DBpedia ontology classification (Lehmann et al., 2015) ($C=14$); ③ RoBERTa-base (Liu et al.,
 414 2019) fine-tuned on Multi-Genre Natural Language Inference (MNLI) corpus (Williams et al., 2018)
 415 ($C=3$); ④ ImageNet-pretrained ResNet-50 (He et al., 2016) with a random classification head for
 416 CIFAR-100 image classification (Krizhevsky, 2009) ($C=100$); ⑤ Same as (4) but with an ImageNet-
 417 pretrained EfficientNet-B0 (Tan & Le, 2019) backbone; ⑥ Wav2Vec2-base (Baevski et al., 2020)
 418 (pretrained) with a random classification head on SpeechCommands audio classification (Warden,
 419 2018) ($C=12$).

420 For all datasets, the FIM is computed on a fixed random subset of 128 batches with a batch size of
 421 $B=64$. We evaluate the ground-truth diagonal FIM \mathcal{F}_{ii} using its closed-form expression in Eq. (1),
 422 which requires $8192C$ backward passes and is impractical to use on the full dataset. Figure 1 shows
 423 the FIM histograms of RoBERTa-base, ResNet-50, and Wav2Vec2-base, including the zero atom
 424 (probability mass at zero). Other datasets and models are omitted due to space constraints. The
 425 distribution of \mathcal{F}_{ii} differs substantially across tasks. For example, in RoBERTa-base, the embedding
 426 layers exhibit a large atom at zero corresponding to unobserved vocabulary, whereas intermediate
 427 transformer layers show the largest Fisher information. Similar patterns are observed in other NLP
 428 tasks.

429 We only compare FIM estimators that can be computed using a single backward pass per batch,
 430 including the empirical FIM $\bar{\mathcal{F}}_{ii}(\theta)$, $\mathbb{F}_{ii}(\theta)$ (Hutchinson's unbiased estimate), $\mathbb{F}_{ii}^{\text{DG}}(\theta)$ (upper-biased
 431 estimate of \mathcal{F}_{ii}), $\mathbb{F}_{ii}^{\text{LR}}(\theta)$, and $\mathbb{F}_{ii}^{\text{LR}(2)}(\theta)$ (lower-biased estimate of \mathcal{F}_{ii}). The MC estimate $\hat{\mathcal{F}}$ is
 excluded, because it requires B backward passes per batch (B : batch size) and is less applicable to

432 production settings. Table 2 shows the *relative mean absolute error* (RelMAE), defined as the average
 433 ratio of the absolute error to the ground-truth value, with $\varepsilon = 10^{-12}$ added for numerical stability.
 434 For example, the RelMAE of empirical FIM is $\frac{1}{\dim(\theta)} \sum_{i=1}^{\dim(\theta)} \frac{|\bar{\mathcal{F}}_{ii} - \mathcal{F}_{ii}|}{\mathcal{F}_{ii} + \varepsilon}$. Because \mathcal{F}_{ii} is typically
 435 small in magnitude, RelMAE offers a more interpretable error metric than the mean absolute error
 436 (MAE). In general, \mathbb{F}_{ii} is the most accurate, with a RelMAE of approximately 0.2, corresponding
 437 to $\pm 20\%$ relative deviation from the ground truth. This improvement arises because \mathbb{F} is unbiased,
 438 whereas other baselines are biased. Nevertheless, $\mathcal{F}_{ii}^{\text{LR}}$ and $\mathcal{F}_{ii}^{\text{LR}(2)}$ are the most accurate on SST-2
 439 and MNLI. This is because, on these two tasks, the model is fine-tuned and the core FIM exhibits an
 440 approximately low-rank structure. The empirical FIM and $\mathbb{F}_{ii}^{\text{DG}}$ are the least accurate.
 441

442 The computational speeds of all methods are broadly similar. Hutchinson’s estimate is as fast as
 443 the empirical FIM. In contrast, $\mathcal{F}_{ii}^{\text{LR}}$ and $\mathcal{F}_{ii}^{\text{LR}(2)}$ are more expensive because they rely on power
 444 iterations or spectral decompositions of the core FIM. The bottom line is: to compute the diagonal
 445 FIM, one should choose Hutchinson’s unbiased estimate \mathbb{F} over the empirical FIM $\bar{\mathcal{F}}$. For fine-tuned
 446 models, one may alternatively use \mathbb{F}^{LR} or $\mathbb{F}^{\text{LR}(k)}$ to achieve higher accuracy.
 447



451 Figure 1: Histograms of the ground-truth diagonal FIM entries \mathcal{F}_{ii} on a logarithmic x-axis. The zero
 452 atom is displayed as a vertical bar at the left edge of each plot. From top to bottom, NLP, vision,
 453 and audio tasks are shown. From left to right, successive components from input to output and their
 454 parameters counts are displayed. ζ denotes the zero probability. μ denotes the average value of \mathcal{F}_{ii}
 455 in the component. The solid and dashed vertical lines indicate the median and the p_{95} quantile of
 456 strictly positive values, respectively.
 457

458 Table 2: RelMAE w.r.t. the ground-truth diagonal FIM entries \mathcal{F}_{ii} for different FIM estimators
 459 (columns) across tasks (rows). Numbers in parentheses mean speedup factors relative to the empirical
 460 FIM (larger is faster). CIFAR-100 is used for both ResNet-50 (R) and EfficientNet-B0 (E).
 461

	$\bar{\mathcal{F}}_{ii}$	\mathbb{F}_{ii}	$\mathbb{F}_{ii}^{\text{DG}}$	$\mathcal{F}_{ii}^{\text{LR}}$	$\mathcal{F}_{ii}^{\text{LR}(2)}$
SST-2	1.15 ($\times 1$)	0.18 ($\times 1.07$)	341 ($\times 1.07$)	0.05 ($\times 0.96$)	0.05 ($\times 1.00$)
DBpedia	0.59 ($\times 1$)	0.22 ($\times 1.00$)	0.25 ($\times 1.00$)	0.8 ($\times 0.93$)	0.72 ($\times 0.93$)
MNLI	53.9 ($\times 1$)	0.16 ($\times 1.00$)	8.36 ($\times 0.97$)	0.11 ($\times 0.96$)	0.12 ($\times 0.95$)
CIFAR-100 (R)	0.17 ($\times 1$)	0.11 ($\times 0.99$)	0.11 ($\times 1.01$)	0.97 ($\times 0.97$)	0.95 ($\times 0.46$)
CIFAR-100 (E)	0.17 ($\times 1$)	0.11 ($\times 1.00$)	0.12 ($\times 1.00$)	0.98 ($\times 0.98$)	0.96 ($\times 0.50$)
SpeechCommands	56.8 ($\times 1$)	0.17 ($\times 0.97$)	7.4 ($\times 0.97$)	0.39 ($\times 0.89$)	0.22 ($\times 0.91$)

486 5 RELATED WORK 487

488 A prominent application of Fisher information in deep learning is the natural gradient (Amari, 1998)
489 and its variants. The Adam optimizer (Kingma & Ba, 2015) uses the empirical diagonal FIM.
490 Efforts have been made to obtain more accurate approximations of $\mathcal{F}(\theta)$ at the expense of higher
491 computational cost, such as modeling the diagonal blocks of $\mathcal{F}(\theta)$ with Kronecker product (Martens,
492 2020) of component-wise FIM (Ollivier, 2015; Sun & Nielsen, 2017), or computing $\mathcal{F}(\theta)$ through
493 low rank approximations (Le Roux et al., 2007; Botev et al., 2017). The FIM can be alternatively
494 defined on a sub-model (Sun & Nielsen, 2017) instead of the global mapping $x \rightarrow y$ or based on
495 α -embeddings of a parametric family (Nielsen, 2017). AdaHessian (Yao et al., 2021) uses Hutchinson
496 probes to approximate the diagonal Hessian.
497

498 From theoretical perspectives, the quality of Kronecker approximation is discussed (Martens &
499 Grosse, 2015) with its error bounded. It is well known that the eFIM differs from $\mathcal{F}(\theta)$ (Pascanu &
500 Bengio, 2014; Martens, 2020; Kunstner et al., 2020) and leads to distinct optimization paths. The
501 accuracy of two different MC approximations of $\mathcal{F}(\theta)$ is analyzed (Guo & Spall, 2019; Soen & Sun,
502 2021; 2024; Sun & Spall, 2021), which lie in the framework of MC information geometry (Nielsen &
503 Hadjeres, 2019). By our analysis, the Hutchinson's estimate $\mathbb{F}(\theta)$ has unique advantages over both
504 MC and the eFIM. Notably, the MC estimate in section 4.1 needs to compute $\frac{\partial \ell_{\hat{x}, \hat{y}}}{\partial \theta}$ for each $x \in \mathcal{D}_x$,
505 while $\mathbb{F}(\theta)$ only needs to evaluate one gradient vector $\frac{\partial \mathbb{h}}{\partial \theta}$. Our bounds improves over existing bounds,
506 e.g. those of $\mathcal{F}(\theta)$ (Soen & Sun, 2024), through carefully analyzing the core space.
507

508 The Hutchinson's stochastic trace estimator is used to estimate the trace of the FIM (Jastrzebski
509 et al., 2021), or the FIM for Gaussian processes (Stein et al., 2013; Geoga et al., 2020) where
510 the FIM entries are in the form of a trace. Closely related to this is computations around the
511 Hessian, where Hutchinson's trick is applied to compute the Hessian trace (Hu et al., 2024), or the
512 principal curvature (Böttcher & Wheeler, 2024), or related regularizers (Peebles et al., 2020). The
513 Hessian trace estimator is implemented in deep learning libraries (Dangel et al., 2020; Yao et al.,
514 2020) and usually relies on the Hessian-vector product. As a natural yet important next step, our
515 estimators leverage both Hutchinson's trick and AD's interfaces, avoid the need for expensive Hessian
516 computations/approximations, and are well-suited in scalable settings. In Eq. (6), we perform a
517 double contraction of a high dimensional tensor indexed by x, y, x', y', i and j (i and j are indices
518 of the FIM) and thereby obtain an unbiased estimator of the full metric tensor $\mathcal{F}(\theta)$ including its
519 substructures and trace. Our estimator can be applied to different classification networks regardless
520 of the network architecture.
521

522 6 CONCLUSION 523

524 We explore the FIM \mathcal{F} of classifier networks, focusing on the case of multi-class classification.
525 We provide deterministic lower and upper bounds of the FIM based on related bounds in the low
526 dimensional core space. We discover a new family of random estimators \mathbb{F} based on Hutchinson's
527 trace estimator. Their estimate has guaranteed quality with bounded variance and can be computed
528 efficiently through auto-differentiation. The proposed \mathbb{F} is readily integrated into deep learning
529 libraries (Dangel et al., 2020; Yao et al., 2020) for efficiently evaluating the FIM or the Hessian. Our
530 analysis in the core space gives insights and useful tools for information geometry where the simplex
531 is widely used. As a limitation, the results here address novel computation of \mathcal{F} but are not directly
532 piped into a downstream application that uses the proposed \mathbb{F} . For example, new deep learning
533 optimizers based on the proposed \mathbb{F} , are not developed here and left as future work. Advanced
534 variance reduction techniques (Meyer et al., 2021) that could improve our proposed random estimator
535 $\mathbb{F}(\theta)$ remain to be investigated.
536

537 ETHICS STATEMENT 538

539 The authors have read the ICLR Code of Ethics the confirm that this research fully complies with the
540 Code of Ethics.
541

REPRODUCIBILITY STATEMENT

The authors confirm that all assumptions and proofs of the theoretical developments are provided in the main text and the appendix. The code to compute the proposed Hutchinson's estimate of the Fisher information matrix will be released upon acceptance.

THE USE OF LARGE LANGUAGE MODELS (LLMs)

The authors acknowledge that LLMs are used for editing purpose (grammar, wording, and translation). LLMs are not used to develop the core results.

REFERENCES

Shun-ichi Amari. Natural gradient works efficiently in learning. *Neural Comput.*, 10(2):251–276, 1998.

Shun-ichi Amari. *Information Geometry and Its Applications*, volume 194 of *Applied Mathematical Sciences*. Springer-Verlag, Berlin, 2016.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. Wav2vec 2.0: A framework for self-supervised learning of speech representations. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 33, pp. 12449–12460. Curran Associates, Inc., 2020.

Stephen Blyth. Local divergence and association. *Biometrika*, 81(3):579–584, 1994.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical Gauss-Newton optimisation for deep learning. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pp. 557–565. PMLR, 2017.

Lucas Böttcher and Gregory Wheeler. Visualizing high-dimensional loss landscapes with Hessian directions. *Journal of Statistical Mechanics: Theory and Experiment*, 2024(2):023401, 2024.

N. N. Čencov. *Statistical Decision Rules and Optimal Inference*. Translations of mathematical monographs. American Mathematical Society, 1982.

Shixing Chen, Caojin Zhang, and Ming Dong. Coupled end-to-end transfer learning with generalized Fisher information. In *2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4329–4338, 2018.

Felix Dangel, Frederik Kunstner, and Philipp Hennig. BackPACK: Packing more into backprop. In *International Conference on Learning Representations (ICLR)*, 2020.

Christopher J. Geoga, Mihai Anitescu, and Michael L. Stein. Scalable Gaussian process computations using hierarchical matrices. *Journal of Computational and Graphical Statistics*, 29(2):227–237, 2020.

Shenghan Guo and James C. Spall. Relative accuracy of two methods for approximating observed Fisher information. In *Data-Driven Modeling, Filtering and Control: Methods and applications*, pp. 189–211. IET Press, London, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, CVPR '16, pp. 770–778. IEEE, 2016.

Tom Heskes. On “natural” learning and pruning in multilayered perceptrons. *Neural Computation*, 12(4):881–901, 2000.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. *Neural Comput.*, 9(1):1–42, January 1997.

Harold Hotelling. Spaces of statistical parameters. *American Mathematical Society Meeting*, 1929. (unpublished. Presented orally by O. Ore during the meeting).

594 Zheyuan Hu, Zekun Shi, George Em Karniadakis, and Kenji Kawaguchi. Hutchinson trace estimation
595 for high-dimensional and high-order physics-informed neural networks. *Computer Methods*
596 in *Applied Mechanics and Engineering*, 424:116883, 2024. ISSN 0045-7825. URL <https://www.sciencedirect.com/science/article/pii/S0045782524001397>.
597

598 M.F. Hutchinson. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing
599 splines. *Communications in Statistics - Simulation and Computation*, 19(2):433–450, 1990.
600

601 Stanislaw Jastrzebski, Devansh Arpit, Oliver Astrand, Giancarlo B Kerg, Huan Wang, Caiming Xiong,
602 Richard Socher, Kyunghyun Cho, and Krzysztof J Geras. Catastrophic Fisher explosion: Early
603 phase Fisher matrix impacts generalization. In Marina Meila and Tong Zhang (eds.), *Proceedings*
604 of the 38th International Conference on Machine Learning, volume 139 of *Proceedings of Machine*
605 *Learning Research*, pp. 4772–4784. PMLR, 18–24 Jul 2021.
606

607 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *International*
608 *Conference on Learning Representations (ICLR)*, 2015.
609

610 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
611 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis,
612 Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in
613 neural networks. *Proceedings of the National Academy of Sciences*, 114(13):3521–3526, 2017.
614 doi: 10.1073/pnas.1611835114.
615

616 Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
617 of Toronto, 2009.
618

619 Frederik Kunstner, Lukas Balles, and Philipp Hennig. Limitations of the empirical Fisher approxima-
620 tion for natural gradient descent. In *Advances in Neural Information Processing Systems (NeurIPS)*,
621 pp. 4133–4144. Curran Associates, Inc., 2020.
622

623 Nicolas Le Roux, Pierre-Antoine Manzagol, and Yoshua Bengio. Topmoumoute online natural
624 gradient algorithm. In *Advances in neural information processing systems*, volume 20, pp. 849–
625 856. Curran Associates, Inc., 2007.
626

627 Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N. Mendes,
628 Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, and Christian Bizer.
629 DBpedia – A large-scale, multilingual knowledge base extracted from wikipedia. *Semantic Web*, 6
630 (2):167–195, 2015.
631

632 Wu Lin, Frank Nielsen, Khan Mohammad Emtiyaz, and Mark Schmidt. Tractable structured natural-
633 gradient descent using local parameterizations. In Marina Meila and Tong Zhang (eds.), *Proceed-
634 ings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of*
635 *Machine Learning Research*, pp. 6680–6691. PMLR, 18–24 Jul 2021.
636

637 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
638 Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized BERT pretraining
639 approach. *CoRR*, abs/1907.11692, 2019. URL <http://arxiv.org/abs/1907.11692>.
640

641 Abhilasha Lodha, Gayatri Belapurkar, Saloni Chalkapurkar, Yuanming Tao, Reshma Ghosh,
642 Samyadeep Basu, Dmitry Petrov, and Soundararajan Srinivasan. On surgical fine-tuning for
643 language encoder. In *EMNLP 2023*, pp. 1–9. EMNLP, 2023.
644

645 James Martens. New insights and perspectives on the natural gradient method. *Journal of Machine*
646 *Learning Research*, 21(146):1–76, 2020.
647

648 James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approximate
649 curvature. In *International Conference on Machine Learning (ICML)*, pp. 2408–2417. PMLR,
650 2015.
651

652 James Martens et al. Deep learning via Hessian-free optimization. In *International Conference on*
653 *Machine Learning (ICML)*, volume 27, pp. 735–742, 2010.
654

648 Raphael A. Meyer, Cameron Musco, Christopher Musco, and David P. Woodruff. Hutch++: Optimal
649 stochastic trace estimation. In *Proceedings of the 4th Symposium on Simplicity in Algorithms*
650 (*SOSA*), pp. 142–155, 2021.

651

652 Frank Nielsen. The α -representations of the Fisher information matrix, 2017. <https://franknielsen.github.io/blog/alpha-FIM/index.html>.

653

654 Frank Nielsen and Gaëtan Hadjeres. Monte Carlo information-geometric structures. In Frank Nielsen
655 (ed.), *Geometric Structures of Information*, pp. 69–103. Springer International Publishing, Cham,
656 2019.

657

658 Yann Ollivier. Riemannian metrics for neural networks I: feedforward networks. *Information and*
659 *Inference: A Journal of the IMA*, 4(2):108–153, 2015.

660 Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. In *International*
661 *Conference on Learning Representations*, 2014.

662

663 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
664 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
665 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
666 Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance deep
667 learning library. In *Advances in Neural Information Processing Systems*, pp. 8024–8035. Curran
668 Associates, Inc., 2019. <https://pytorch.org/>.

669 William Peebles, John Peebles, Jun-Yan Zhu, Alexei A. Efros, and Antonio Torralba. The Hessian
670 penalty: A weak prior for unsupervised disentanglement. In *Proceedings of (ECCV) European*
671 *Conference on Computer Vision*, pp. 581 – 597, August 2020.

672 C. R. Rao. Information and the accuracy attainable in the estimation of statistical parameters. *Bulletin*
673 *of the Calcutta Mathematical Society*, 37(3):81–91, 1945.

674

675 Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version of
676 BERT: smaller, faster, cheaper and lighter. *CoRR*, abs/1910.01108, 2019. URL <http://arxiv.org/abs/1910.01108>.
677 <http://arxiv.org/abs/1910.01108>.

678 Maciej Skorski. Modern analysis of Hutchinson’s trace estimator. In *2021 55th Annual Conference*
679 *on Information Sciences and Systems (CISS)*, pp. 1–5, 2021.

680

681 Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng,
682 and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
683 treebank. In *Empirical Methods in Natural Language Processing (EMNLP)*, pp. 1631–1642, 2013.

684

685 Alexander Soen and Ke Sun. On the variance of the Fisher information for deep learning. In
686 *Advances in Neural Information Processing Systems (NeurIPS)*, volume 34, pp. 5708–5719. Curran
687 Associates, Inc., 2021.

688

689 Alexander Soen and Ke Sun. Trade-Offs of diagonal Fisher information matrix estimators. In
690 *Advances in Neural Information Processing Systems (NeurIPS)*, volume 37, pp. 5870–5912. Curran
691 Associates, Inc., 2024.

692

693 Michael L. Stein, Jie Chen, and Mihai Anitescu. Stochastic approximation of score functions for
694 Gaussian processes. *The Annals of Applied Statistics*, 7(2):1162 – 1191, 2013.

695

696 Ke Sun. Information geometry for data geometry through pullbacks. In *Deep Learning through*
697 *Information Geometry (Workshop at NeurIPS 2020)*, 2020.

698

699 Ke Sun and Frank Nielsen. Relative Fisher information and natural gradient for learning large modular
700 models. In *International Conference on Machine Learning (ICML)*, volume 70 of *Proceedings of*
701 *Machine Learning Research*, pp. 3289–3298. PMLR, 2017.

702

703 Ke Sun and Frank Nielsen. A geometric modeling of Occam’s razor in deep learning. *Information*
704 *Geometry*, 2025. Special Issue: Half a Century of Information Geometry, Part 2. Formerly titled
705 “Lightlike neuromanifolds, Occam’s razor and deep learning”.

702 Shiqing Sun and James C. Spall. Connection of diagonal Hessian estimates to natural gradients in
 703 stochastic optimization. In *Proceedings of the 55th Annual Conference on Information Sciences
 704 and Systems (CISS)*, 2021.

705

706 Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural
 707 networks. In *Proceedings of the 36th International Conference on Machine Learning (ICML)*,
 708 volume 97 of *Proceedings of Machine Learning Research*, pp. 6105–6114. PMLR, 2019.

709

710 Ming Tu, Visar Berisha, Yu Cao, and Jae sun Seo. Reducing the model order of deep neural networks
 711 using information theory. In *IEEE Computer Society Annual Symposium on VLSI, ISVLSI*, pp.
 712 93–98, 2016.

713

714 Pete Warden. Speech Commands: A dataset for limited-vocabulary speech recognition. *CoRR*,
 715 abs/1804.03209, 2018. URL <http://arxiv.org/abs/1804.03209>.

716

717 Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
 718 sentence understanding through inference. In *Proceedings of the 2018 Conference of the North
 719 American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1*, pp. 1112–1122. Association for Computational Linguistics, 2018.

720

721 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 722 Pierrick Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
 723 von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
 724 Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
 725 language processing. In Qun Liu and David Schlangen (eds.), *Empirical Methods in Natural Lan-
 726 guage Processing (EMNLP): System Demonstrations*, pp. 38–45. Association for Computational
 727 Linguistics, 2020. <https://huggingface.co>.

728

729 Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. PyHessian: Neural networks
 730 through the lens of the Hessian. In *IEEE international conference on big data (Big Data)*, pp.
 581–590. IEEE, IEEE Computer Society, 2020.

731

732 Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
 733 AdaHessian: An adaptive second order optimizer for machine learning. In *Proceedings of the
 734 AAAI conference on artificial intelligence*, volume 35, pp. 10665–10673, 2021.

735

736 Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for text
 737 classification. *CoRR*, abs/1509.01626, 2015.

738

739 A FURTHER ANALYSIS IN THE CORE SPACE

740 The lemma below gives the average error (variance) of using $R(y)$ to estimate $\mathcal{I}^\Delta(z)$, where y is a
 741 random variable distributed according to $p(y | z)$.

742 **Lemma 12.** *The element-wise variance of the random matrix $R(y)$, denoted by $\text{Var}(R_{ij})$, is given
 743 by*

$$744 \text{Var}(R_{ij}) = \begin{cases} p_i(1-p_i)(1-4p_i(1-p_i)) & \text{if } i = j; \\ p_i p_j (p_i + p_j - 4p_i p_j) & \text{otherwise.} \end{cases}$$

745 $\forall i, j, \text{Var}(R_{ij}) \leq 1/16$. For both diagonal and off-diagonal entries, the coefficient of variation (CV)
 746 $\text{Std}(R_{ij})/|\mathcal{I}_{ij}^\Delta(z)|$ can be arbitrarily large, where $\text{Std}(\cdot)$ means standard deviation.

747 By Lemma 12, when using the rank-1 matrix $R(y)$ as an estimator of $\mathcal{I}^\Delta(z)$, the absolute error
 748 is bounded, but the relative error given by the CV is unbounded. One may alternatively use the
 749 rank-2 random matrix $R'(y) = e_{yy} - pp^\top$ to estimate $\mathcal{I}^\Delta(z)$. Obviously we have $\mathbb{E}(R'(y)) =$
 750 $\text{diag}(p) - pp^\top = \mathcal{I}^\Delta(z)$ and thus $R'(y)$ is unbiased. The variance appears only on the diagonal
 751 while all off-diagonal entries are deterministic with zero-variance. This $R'(y)$ is not used in our
 752 developments but is of theoretical interest.

756 B AN ALTERNATIVE ESTIMATOR 757

758 We can re-write the FIM in Eq. (1) as
759

$$760 \quad \mathcal{F}(\theta) = 4 \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C \left[\frac{\partial \sqrt{p(y|x, \theta)}}{\partial \theta} \frac{\partial \sqrt{p(y|x, \theta)}}{\partial \theta^\top} \right].
761$$

762 We define
763

$$764 \quad \mathfrak{h}^{\text{sqrt}}(\mathcal{D}_x, \theta) = 2 \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C \sqrt{p(y|x, \theta)} \xi_{xy}, \quad (9)
765$$

766 where ξ_{xy} is a standard multivariate Gaussian vector of size $C|\mathcal{D}|$ or a Rademacher vector. Then, we
767 can use AD to compute
768

$$769 \quad \frac{\partial \mathfrak{h}^{\text{sqrt}}}{\partial \theta} = 2 \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C \frac{\partial \sqrt{p(y|x, \theta)}}{\partial \theta} \xi_{xy},
770$$

771 Then,
772

$$773 \quad \mathbb{F}^{\text{sqrt}}(\theta) := \frac{\partial \mathfrak{h}^{\text{sqrt}}}{\partial \theta} \frac{\partial \mathfrak{h}^{\text{sqrt}}}{\partial \theta^\top} \quad (10)
774$$

775 gives an unbiased estimate of the FIM $\mathcal{F}(\theta)$, with bounded variance (details are straightforward and
776 omitted for brevity).
777

778 This \mathbb{F}^{sqrt} differs from \mathbb{F} in two aspects
779

- 780 • It requires no `detach()` operation;
781
- 782 • The square root can be avoided by noting
783

$$784 \quad \sqrt{p(y|x, \theta)} = \exp \left(\frac{1}{2} \left(z_y(x, \theta) - \log \sum_y \exp(z_y(x, \theta)) \right) \right),$$

785 where $z_y(x, \theta) - \log \sum_y \exp(z_y(x, \theta))$ can be computed via PyTorch’s `log_softmax()`
786 method.
787

788 \mathbb{F}^{sqrt} is numerically more stable because it does not require clipping the operand inside the square
789 root to be above zero. In our experiments, however, we notice little difference with \mathbb{F} . All presented
790 experimental results are produced using \mathbb{F} introduced in the main text.
791

792 C SUPPLEMENTARY EXPERIMENTS 793

794 Figure 2 shows the distribution of the ground truth diagonal FIMs of DistilBERT on SST-2, Distil-
795 BERT on DBpedia, and EfficientNet-B0 on CIFAR-100. The classification head exhibits the largest
796 Fisher information among all components at random initialization, whereas its Fisher information is
797 comparatively small in fine-tuned models. In an early draft, we included experiments on DistilBERT
798 for AG News (Zhang et al., 2015) topic classification ($C = 4$ classes), which has been streamlined
799 to allow space for other types of dataset and to present a more representative range of class counts
800 C . All numerical results presented in this paper are performed on Nvidia H100 SXM5 GPUs on our
801 compute cluster.
802

803 D ACCURACY OF HUTCHINSON’S ESTIMATE ON DIAGONAL AND LOW RANK 804 CORES 805

806 In this section, we show that Hutchinson’s estimates $\mathbb{F}^{\text{DG}}(\theta)$ and $\mathbb{F}^{\text{LR}}(\theta)$ are both unbiased with
807 bounded variances.
808

809 **Proposition 13.** *The random matrix $\mathbb{F}^{\text{DG}}(\theta)$ is an unbiased estimator of $\mathcal{F}^{\text{DG}}(\theta)$. The variance of
810 its diagonal elements is $\text{Var}(\mathbb{F}_{ii}^{\text{DG}}(\theta)) = 2(\mathcal{F}_{ii}^{\text{DG}}(\theta))^2 - 2 \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C \zeta_y^2(x, \theta) (\frac{\partial z_y}{\partial \theta_i})^4$.*

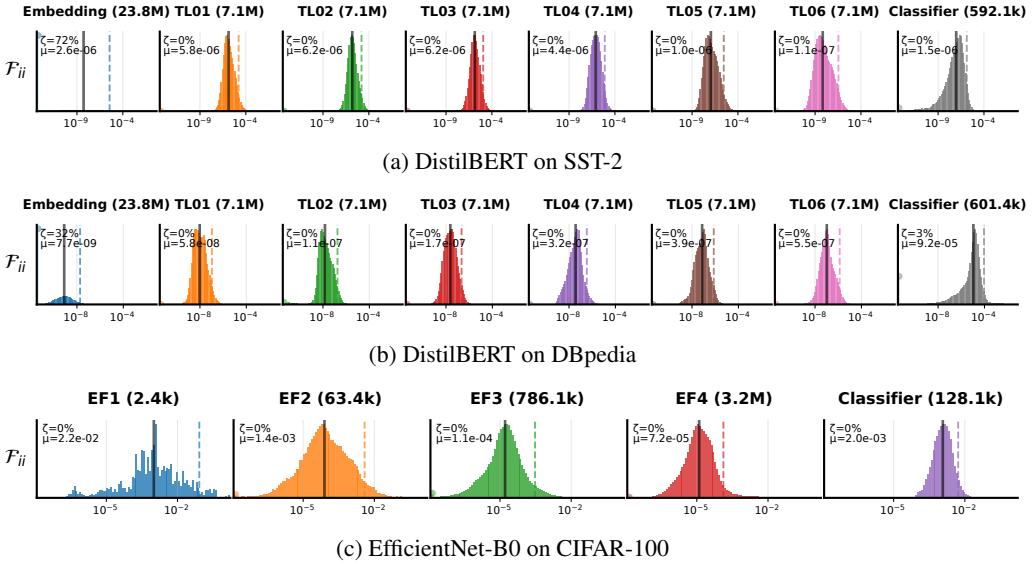


Figure 2: Histograms of the ground-truth diagonal FIM entries \mathcal{F}_{ii} on a logarithmic x-axis. The zero atom is displayed as a vertical bar at the left edge of each plot. From left to right, successive components from input to output and their parameters counts are displayed. ζ denotes the zero probability. μ denotes the average value of \mathcal{F}_{ii} in the component. The solid and dashed vertical lines indicate the median and the p_{95} quantile of strictly positive values, respectively.

Proposition 14. $\mathbb{F}^{\text{LR}}(\theta)$ is an unbiased estimate of $\mathcal{F}^{\text{LR}}(\theta)$; the variance of its diagonal elements is

$$\text{Var}(\mathbb{F}_{ii}^{\text{LR}}(\theta)) = 2(\mathcal{F}_{ii}^{\text{LR}}(\theta))^2 - 2 \sum_{x \in \mathcal{D}_x} \lambda_C^2(x, \theta) \left(v_C^\top(x, \theta) \frac{\partial z}{\partial \theta_i} \right)^4.$$

We have $\text{Std}(\mathbb{F}_{ii}^{\text{DG}}(\theta)) / \mathcal{F}_{ii}^{\text{DG}}(\theta) \leq \sqrt{2}$ by Proposition 13, and at the same time, we have $\text{Std}(\mathbb{F}_{ii}^{\text{LR}}(\theta)) / \mathcal{F}_{ii}^{\text{LR}}(\theta) \leq \sqrt{2}$ by Proposition 14. Their estimation quality is guaranteed.

E PROOF OF THEOREM 1

Proof. We already know the closed form FIM

$$\mathcal{I}^\Delta(z) = \text{diag}(p) - pp^\top.$$

Therefore

$$\mathcal{I}^\Delta(z)e = (\text{diag}(p) - pp^\top)e = p - \left(\sum_{i=1}^C p_i \right) p = p - p = 0.$$

Therefore te , $t \in \mathfrak{R}$ is a one-dimensional kernel of $\mathcal{I}^\Delta(z)$. Since $\mathcal{I}^\Delta(z) \succeq 0$, we must have $\lambda_1 = 0$, and $v_1 = e / \|e\|$.

To show the sum of the eigenvalues of $\mathcal{I}^\Delta(z)$, we have

$$\sum_{i=1}^C \lambda_i = \text{tr}(\mathcal{I}^\Delta(z)) = \text{tr}(\text{diag}(p)) - \text{tr}(pp^\top) = 1 - \text{tr}(p^\top p) = 1 - p^\top p = 1 - \|p\|^2.$$

In below, we consider the maximum eigenvalue λ_C . We know that

$$\lambda_C = \sup_{\|u\|=1} u^\top \mathcal{I}^\Delta(z) u.$$

Therefore

$$\forall i, \quad \lambda_C \geq e_i \mathcal{I}^\Delta(z) e_i = \mathcal{I}_{ii}^\Delta(z) = p_i(1 - p_i).$$

864 Therefore $\lambda_C \geq \max_i p_i(1 - p_i)$. At the same time, because $\lambda_1 = 0$, we have
 865

$$866 \quad \sum_{i=1}^C \lambda_i = \lambda_2 + \lambda_3 + \cdots + \lambda_C \leq (C-1)\lambda_C.$$

869 Therefore

$$870 \quad \lambda_C \geq \frac{\sum_{i=1}^C \lambda_i}{C-1} = \frac{1 - \|p\|^2}{C-1}.$$

872 Because

$$873 \quad \text{diag}(p) = \mathcal{I}^\Delta(z) + pp^\top.$$

874 By the Cauchy's interlacing theorem, we have

$$875 \quad \lambda_{C-1} \leq p_{(C-1)} \leq \lambda_C \leq p_{(C)}.$$

876 It remains to prove the upper bounds of λ_C . First, we have
 877

$$878 \quad \lambda_C = \sup_{\|u\|=1} u^\top \mathcal{I}^\Delta(z) u. = \sup_{\|u\|=1} \left(\sum_{i=1}^C p_i u_i^2 - (p^\top u)^2 \right)$$

$$879 \quad \leq \sup_{\|u\|=1} \sum_{i=1}^C p_i u_i^2 = \max_i p_i = p_{(C)},$$

880 which has just been proved using Cauchy's interlacing theorem.

881 By the Gershgorin circle theorem, λ_C must lie in one of the Gershgorin discs, given by the closed
 882 intervals

$$883 \quad \left[p_i(1 - p_i) - \sum_{j \neq i} p_i p_j, p_i(1 - p_i) + \sum_{j \neq i} p_i p_j \right], \quad i = 1, \dots, C.$$

884 Therefore

$$885 \quad \lambda_C \leq \max_i \left(p_i(1 - p_i) + \sum_{j \neq i} p_i p_j \right)$$

$$886 \quad = \max_i (p_i(1 - p_i) + p_i(1 - p_i)) = 2 \max_i p_i(1 - p_i).$$

887 Because $\mathcal{I}^\Delta(z) \succeq 0$,

$$888 \quad \lambda_C \leq \sum_{i=1}^C \lambda_i = 1 - \|p\|^2.$$

889 The statement follows immediately by combining the above lower and upper bounds of λ_C . \square

900 F PROOF OF LEMMA 2

901 *Proof.* Because $\mathcal{I}^\Delta(z) \succeq 0$. All its eigenvalues are greater or equal to 0. We have

$$902 \quad \mathcal{I}^\Delta(z) - \lambda_C v_C v_C^\top = \sum_{i=1}^{C-1} \lambda_i v_i v_i^\top \succeq 0.$$

903 To show that $\lambda_C v_C v_C^\top$ is the best rank-1 representation. Assume that $\exists u \neq 0$, such that $\mathcal{I}^\Delta(z) \succeq$
 904 $uu^\top \succeq \lambda_C v_C v_C^\top$. Then

$$905 \quad v_C^\top \mathcal{I}^\Delta(z) v_C = \lambda_C \geq (v_C^\top u)^2 \geq \lambda_C.$$

906 Therefore

$$907 \quad v_C^\top u = \pm \sqrt{\lambda_C}.$$

918 Assume that $u = \sum_{i=1}^C \alpha_i v_i$, then $\alpha_C = v_C^\top u = \pm \sqrt{\lambda_C}$. Moreover, we have
919

$$920 \quad \lambda_C \geq \frac{u^\top \mathcal{I}^\Delta(z) u}{\|u\|} \geq \frac{u^\top}{\|u\|} u u^\top \frac{u}{\|u\|} = \|u\|^2 = \sum_{i=1}^C \alpha_i^2.$$

923 Therefore $\forall i \neq C, \alpha_i = 0$. In summary, $u = \pm \sqrt{\lambda_C} v_C$. Hence, $u u^\top = \lambda_C v_C v_C^\top$.
924

925 We have

$$926 \quad \text{diag}(p) - \mathcal{I}^\Delta(z) = \text{diag}(p) - (\text{diag}(p) - pp^\top) = pp^\top \succeq 0.$$

927 Therefore $\text{diag}(p) \succeq \mathcal{I}^\Delta(z)$. Assume that $\text{diag}(q)$ satisfies

$$928 \quad \mathcal{I}^\Delta(z) \preceq \text{diag}(q) \preceq \text{diag}(p).$$

930 Then

$$931 \quad \text{diag}(p) - \mathcal{I}^\Delta(z) = pp^\top \succeq \text{diag}(q) - \mathcal{I}^\Delta(z) \succeq 0.$$

932 Therefore

$$933 \quad \text{diag}(q) - \mathcal{I}^\Delta(z) = \beta pp^\top (\beta \leq 1).$$

934 Consequently,

$$936 \quad \text{diag}(q) = \mathcal{I}^\Delta(z) + \beta pp^\top = \text{diag}(p) - pp^\top + \beta pp^\top = \text{diag}(p) + (\beta - 1)pp^\top.$$

937 Therefore all off-diagonal entries of $(\beta - 1)pp^\top$ are zero. We must have $\beta = 1$ and thus $\text{diag}(q) = \text{diag}(p)$.
938 \square
939

940 G PROOF OF LEMMA 3

941 *Proof.*

$$944 \quad \|\lambda_C v_C v_C^\top - \mathcal{I}^\Delta(z)\| = \left\| \sum_{i=1}^{C-1} \lambda_i v_i v_i^\top \right\| = \sqrt{\sum_{i=1}^{C-1} \lambda_i^2} \leq \sqrt{\left(\sum_{i=1}^{C-1} \lambda_i \right)^2}$$

$$948 \quad = \sum_{i=1}^{C-1} \lambda_i = \text{tr}(\mathcal{I}^\Delta(z)) - \lambda_C = 1 - \|p\|^2 - \lambda_C.$$

950 By Theorem 1, we have $\lambda_C \geq p_{(C-1)}$. Therefore

$$952 \quad \|\lambda_C v_C v_C^\top - \mathcal{I}^\Delta(z)\| \leq 1 - \|p\|^2 - p_{(C-1)}.$$

954 By Cauchy's interlacing theorem (see our proof of Theorem 1), we have

$$956 \quad \forall i \in \{1, \dots, C-1\}, \quad \lambda_i \leq p_{(i)}.$$

958 Hence

$$959 \quad \|\lambda_C v_C v_C^\top - \mathcal{I}^\Delta(z)\| = \sqrt{\sum_{i=1}^{C-1} \lambda_i^2} = \sqrt{\sum_{i=2}^{C-1} \lambda_i^2} \leq \sqrt{\sum_{i=2}^{C-1} p_{(i)}^2}.$$

962 The statement follows immediately by combining the above upper bounds. \square
963

964 H PROOF OF LEMMA 4

967 *Proof.* The spectrum of $R(y)$ is

$$968 \quad 0 \leq \dots \leq 0 \leq \|e_y - p\|^2.$$

970 The spectrum of $\mathcal{I}^\Delta(z)$, by our assumption, is
971

$$\lambda_1 \leq \dots \leq \lambda_{C-1} \leq \lambda_C.$$

972 By Hoffman-Wielandt inequality, we have $\forall z \in \Delta^{C-1}, y \in \{1, \dots, C\}$
973

$$\begin{aligned}
974 \quad \|R(y) - \mathcal{I}^\Delta(z)\| &\geq \sqrt{\sum_{i=1}^{C-1} \lambda_i^2 + (\lambda_C - \|e_y - p\|^2)^2} \\
975 \quad &\geq |\lambda_C - \|e_y - p\|^2| \\
976 \quad &= |\lambda_C - e_y^\top e_y - p^\top p + 2e_y^\top p| \\
977 \quad &= |\lambda_C - 1 - \|p\|^2 + 2p_y| \\
978 \quad &= \max\{\lambda_C - 1 - \|p\|^2 + 2p_y, 1 + \|p\|^2 - \lambda_C - 2p_y\}.
\end{aligned}$$

983 By Theorem 1, we have $\lambda_C \leq 1 - \|p\|^2$. One can choose y so that $p_y = p_{(1)}$, then
984

$$\begin{aligned}
985 \quad \|R(y) - \mathcal{I}^\Delta(z)\| &\geq 1 + \|p\|^2 - \lambda_C - 2p_{(1)} \\
986 \quad &\geq 1 + \|p\|^2 - (1 - \|p\|^2) - 2p_{(1)} \\
987 \quad &= 2\|p\|^2 - 2p_{(1)}.
\end{aligned}$$

989 \square
990

991 I PROOF OF LEMMA 12

992 *Proof.* We first look at the diagonal entries of R . We have
993

$$995 \quad R_{ii} = (\llbracket y = i \rrbracket - p_i)^2 = \begin{cases} (1 - p_i)^2 & \text{if } y = i; \\ p_i^2 & \text{otherwise.} \end{cases}$$

996 Therefore
997

$$998 \quad \mathbb{E}(R_{ii}) = p_i(1 - p_i)^2 + (1 - p_i)p_i^2 = p_i(1 - p_i) = \mathcal{I}_{ii}^\Delta(z).$$

999 This shows that R_{ii} is an unbiased estimator of the diagonal entries of $\mathcal{I}^\Delta(z)$. We have
1000

$$\begin{aligned}
1001 \quad \mathbb{E}(R_{ii}^2) &= p_i(1 - p_i)^4 + (1 - p_i)p_i^4 = p_i(1 - p_i) [(1 - p_i)^3 + p_i^3] \\
1002 \quad &= p_i(1 - p_i) [(1 - p_i)^2 - p_i(1 - p_i) + p_i^2].
\end{aligned}$$

1003 Therefore
1004

$$\begin{aligned}
1005 \quad \text{Var}(R_{ii}) &= \mathbb{E}(R_{ii}^2) - (\mathbb{E}(R_{ii}))^2 \\
1006 \quad &= p_i(1 - p_i) [(1 - p_i)^2 - p_i(1 - p_i) + p_i^2] - p_i^2(1 - p_i)^2 \\
1007 \quad &= p_i(1 - p_i) [(1 - p_i)^2 - 2p_i(1 - p_i) + p_i^2] \\
1008 \quad &= p_i(1 - p_i)(1 - 4p_i(1 - p_i)) \\
1009 \quad &= \mathcal{I}_{ii}^\Delta(z)(1 - 4\mathcal{I}_{ii}^\Delta(z)) \\
1010 \quad &= -4 \left(\mathcal{I}_{ii}^\Delta(z) - \frac{1}{8} \right)^2 + \frac{1}{16} \leq \frac{1}{16}.
\end{aligned}$$

1011 The coefficient of variation (CV)
1012

$$1013 \quad \frac{\sqrt{\text{Var}(R_{ii})}}{\mathcal{I}_{ii}^\Delta(z)} = \sqrt{\frac{\mathcal{I}_{ii}^\Delta(z)(1 - 4\mathcal{I}_{ii}^\Delta(z))}{\mathcal{I}_{ii}^\Delta(z)^2}} = \sqrt{\frac{1}{\mathcal{I}_{ii}^\Delta(z)} - 4}$$

1014 is unbounded. As $\mathcal{I}_{ii}^\Delta(z) \rightarrow 0$, the CV can take arbitrarily large value.
1015

1016 Next, we consider the off-diagonal entries of R . For $i \neq j$, we have
1017

$$\begin{aligned}
1018 \quad R_{ij} &= (\llbracket y = i \rrbracket - p_i)(\llbracket y = j \rrbracket - p_j) \\
1019 \quad &= p_i p_j - \llbracket y = i \rrbracket p_j - \llbracket y = j \rrbracket p_i.
\end{aligned}$$

1020 Hence,
1021

$$1022 \quad \mathbb{E}(R_{ij}) = p_i p_j - p_j p_j - p_j p_i = -p_i p_j = \mathcal{I}_{ij}^\Delta(z).$$

1026 At the same time,

$$\begin{aligned}
1028 \quad \mathbb{E}(R_{ij}^2) &= \mathbb{E}(p_i p_j - \mathbb{I}[y=i]p_j - \mathbb{I}[y=j]p_i)^2 \\
1029 &= p_i^2 p_j^2 + \mathbb{E}(\mathbb{I}[y=i]p_j^2 + \mathbb{I}[y=j]p_i^2 - 2\mathbb{I}[y=i]p_i p_j^2 - 2\mathbb{I}[y=j]p_i^2 p_j) \\
1030 &= p_i^2 p_j^2 + p_i p_j^2 + p_j p_i^2 - 2p_i^2 p_j^2 - 2p_i^2 p_j^2 \\
1031 &= p_i p_j^2 + p_i^2 p_j - 3p_i^2 p_j^2 \\
1032 &= p_i p_j(p_i + p_j - 3p_i p_j). \\
1033 \\
1034
\end{aligned}$$

1035 Therefore

$$\begin{aligned}
1037 \quad \text{Var}(R_{ij}) &= \mathbb{E}(R_{ij}^2) - (\mathbb{E}(R_{ij}))^2 \\
1038 &= p_i p_j(p_i + p_j - 3p_i p_j) - p_i^2 p_j^2 \\
1039 &= p_i p_j(p_i + p_j - 4p_i p_j) \\
1040 &\leq p_i p_j(1 - 4p_i p_j) \\
1041 &= -4 \left(p_i p_j - \frac{1}{8} \right)^2 + \frac{1}{16} \leq \frac{1}{16}. \\
1042 \\
1043 \\
1044
\end{aligned}$$

1045 The coefficient of variation

$$\begin{aligned}
1047 \quad \frac{\sqrt{\text{Var}(R_{ij})}}{|\mathcal{I}_{ij}^\Delta(z)|} &= \sqrt{\frac{p_i p_j(p_i + p_j - 4p_i p_j)}{p_i^2 p_j^2}} = \sqrt{\frac{1}{p_i} + \frac{1}{p_j} - 4} \\
1048 \\
1049
\end{aligned}$$

1050 is unbounded. As either $p_i \rightarrow 0$, or $p_j \rightarrow 0$, the CV can take arbitrarily large value. \square

1053 J PROOF OF PROPOSITION 5

1055 *Proof.* Similar to Lemma 2, we have

$$\sum_{i=C-k+1}^C \lambda_i v_i v_i^\top \preceq \mathcal{I}^\Delta(z) \preceq \text{diag}(p).$$

1060 Therefore

$$\forall x, \theta \quad \sum_{i=C-k+1}^C \left(\frac{\partial z}{\partial \theta} \right)^\top \lambda_i v_i v_i^\top \frac{\partial z}{\partial \theta} \preceq \left(\frac{\partial z}{\partial \theta} \right)^\top \mathcal{I}^\Delta(z(x, \theta)) \frac{\partial z}{\partial \theta} \preceq \left(\frac{\partial z}{\partial \theta} \right)^\top \text{diag}(p) \frac{\partial z}{\partial \theta}.$$

1066 Therefore

$$\forall \theta \quad \sum_{x \in \mathcal{D}_x} \sum_{i=C-k+1}^C \lambda_i \left(\frac{\partial z}{\partial \theta} \right)^\top v_i v_i^\top \frac{\partial z}{\partial \theta} \preceq \sum_{x \in \mathcal{D}_x} \left(\frac{\partial z}{\partial \theta} \right)^\top \mathcal{I}^\Delta(z(x, \theta)) \frac{\partial z}{\partial \theta} \preceq \sum_{x \in \mathcal{D}_x} \sum_{i=1}^C p_i \frac{\partial z_i}{\partial \theta} \frac{\partial z_i}{\partial \theta}^\top.$$

1071 \square

1074 K PROOF OF COROLLARY 6

1076 *Proof.* We first prove the upper bound. By Proposition 5, we have

$$\mathcal{F}^\Delta(\theta) \preceq \sum_{x \in \mathcal{D}_x} \sum_{i=1}^C p_i \frac{\partial z_i}{\partial \theta} \frac{\partial z_i}{\partial \theta}^\top.$$

1080 Taking trace on both sides, we get
 1081

$$\begin{aligned}
 \text{tr}(\mathcal{F}^\Delta(\theta)) &\leq \sum_{x \in \mathcal{D}_x} \sum_{i=1}^C p_i \text{tr} \left(\frac{\partial z_i}{\partial \theta} \frac{\partial z_i}{\partial \theta^\top} \right) \\
 &= \sum_{x \in \mathcal{D}_x} \sum_{i=1}^C p_i \text{tr} \left(\frac{\partial z_i}{\partial \theta^\top} \frac{\partial z_i}{\partial \theta} \right) \\
 &= \sum_{x \in \mathcal{D}_x} \sum_{i=1}^C p_i \frac{\partial z_i}{\partial \theta^\top} \frac{\partial z_i}{\partial \theta} \\
 &= \sum_{x \in \mathcal{D}_x} \sum_{i=1}^C p_i \left\| \frac{\partial z_i}{\partial \theta} \right\|^2.
 \end{aligned}$$

1100 The lower bound is not straightforward from Proposition 5. By Eq. (2), we have
 1101

$$\text{tr}(\mathcal{F}^\Delta(\theta)) = \sum_{x \in \mathcal{D}_x} \text{tr} \left[\left(\frac{\partial z}{\partial \theta} \right)^\top \mathcal{I}^\Delta(z) \frac{\partial z}{\partial \theta} \right] = \sum_{x \in \mathcal{D}_x} \text{tr} \left[\frac{\partial z}{\partial \theta} \left(\frac{\partial z}{\partial \theta} \right)^\top \mathcal{I}^\Delta(z) \right].$$

1110 Note that $\frac{\partial z}{\partial \theta} \left(\frac{\partial z}{\partial \theta} \right)^\top$ is a $C \times C$ matrix with sorted eigenvalues $\sigma_1^2(x, \theta) \leq \dots \leq \sigma_C^2(x, \theta)$. By
 1111 Theorem 1, $\mathcal{I}^\Delta(z)$ is another $C \times C$ matrix with sorted eigenvalues $0 = \lambda_1(x, \theta) \leq \dots \leq \lambda_C(x, \theta)$.
 1112 Applying the Von Neumann trace inequality, we get

$$\text{tr}(\mathcal{F}^\Delta(\theta)) \geq \sum_{x \in \mathcal{D}_x} \sum_{i=2}^C \lambda_i(x, \theta) \sigma_{C-i+1}^2(x, \theta) \geq \sum_{x \in \mathcal{D}_x} \lambda_C(x, \theta) \sigma_1^2(x, \theta).$$

1123 The last “ \geq ” is because all terms $\lambda_i(x, \theta) \sigma_{C-i+1}^2(x, \theta)$ are non-negative. □
 1124

1128 L PROOF OF PROPOSITION 7

1132 *Proof.* Denote the singular values of $\frac{\partial z}{\partial \theta}$ as $0 \leq \sigma_1 \leq \dots \leq \sigma_C$. Then the eigenvalues of the $C \times C$
 1133 Hermitian matrix $\frac{\partial z}{\partial \theta} \left(\frac{\partial z}{\partial \theta} \right)^\top$ is $\sigma_1^2 \leq \dots \leq \sigma_C^2$.

To prove the upper bound, we have

$$\begin{aligned}
& \left\| \sum_{x \in \mathcal{D}_x} \sum_{i=1}^C p_i \left(\frac{\partial z_i}{\partial \theta} \right)^\top \frac{\partial z_i}{\partial \theta} - \mathcal{F}^\Delta(\theta) \right\| \\
&= \left\| \sum_{x \in \mathcal{D}_x} \left(\frac{\partial z}{\partial \theta} \right)^\top (\text{diag}(p) - \text{diag}(p) + pp^\top) \frac{\partial z}{\partial \theta} \right\| \\
&= \left\| \sum_{x \in \mathcal{D}_x} \left(\frac{\partial z}{\partial \theta} \right)^\top pp^\top \frac{\partial z}{\partial \theta} \right\| \\
&\leq \sum_{x \in \mathcal{D}_x} \sqrt{\text{tr} \left[\left(\frac{\partial z}{\partial \theta} \right)^\top pp^\top \frac{\partial z}{\partial \theta} \left(\frac{\partial z}{\partial \theta} \right)^\top pp^\top \frac{\partial z}{\partial \theta} \right]} \\
&= \sum_{x \in \mathcal{D}_x} \sqrt{\text{tr} \left[p^\top \frac{\partial z}{\partial \theta} \left(\frac{\partial z}{\partial \theta} \right)^\top pp^\top \frac{\partial z}{\partial \theta} \left(\frac{\partial z}{\partial \theta} \right)^\top p \right]} \\
&\leq \sum_{x \in \mathcal{D}_x} \sqrt{\left[p^\top \frac{\partial z}{\partial \theta} \left(\frac{\partial z}{\partial \theta} \right)^\top p \right]^2} \\
&= \sum_{x \in \mathcal{D}_x} p^\top \frac{\partial z}{\partial \theta} \left(\frac{\partial z}{\partial \theta} \right)^\top p \\
&= \sum_{x \in \mathcal{D}_x} \|p\|^2 \cdot \frac{p^\top \partial z}{\|p\|} \left(\frac{\partial z}{\partial \theta} \right)^\top \frac{p}{\|p\|} \\
&\leq \sum_{x \in \mathcal{D}_x} \|p\|^2 \sigma_C^2.
\end{aligned}$$

Now we are ready to prove the lower bound. From the above, we have

$$\left\| \sum_{x \in \mathcal{D}_x} \sum_{i=1}^C p_i \left(\frac{\partial z_i}{\partial \theta} \right)^\top \frac{\partial z_i}{\partial \theta} - \mathcal{F}^\Delta(\theta) \right\| = \left\| \sum_{x \in \mathcal{D}_x} \left(\frac{\partial z}{\partial \theta} \right)^\top p p^\top \frac{\partial z}{\partial \theta} \right\|.$$

Denote $\omega(x) := \left(\frac{\partial z}{\partial \theta}\right)^\top p$. Then

$$\begin{aligned}
\left\| \sum_{x \in \mathcal{D}_x} \sum_{i=1}^C p_i \left(\frac{\partial z_i}{\partial \theta} \right)^\top \frac{\partial z_i}{\partial \theta} - \mathcal{F}^\Delta(\theta) \right\| &= \left\| \sum_{x \in \mathcal{D}_x} \omega(x) \omega(x)^\top \right\| \\
&= \sqrt{\text{tr} \left(\left(\sum_{x \in \mathcal{D}_x} \omega(x) \omega(x)^\top \right)^2 \right)} \\
&\geq \sqrt{\sum_{x \in \mathcal{D}_x} (\omega(x)^\top \omega(x))^2} \\
&= \sqrt{\sum_{x \in \mathcal{D}_x} \|\omega(x)\|^4}.
\end{aligned}$$

The last “>” is due to

$$\text{tr}(\omega(x)\omega(x)^\top\omega(x')\omega(x')^\top) \equiv \text{tr}(\omega(x')^\top\omega(x)\omega(x)^\top\omega(x')) \equiv (\omega(x')^\top\omega(x))^2 \geq 0.$$

1

1188 M PROOF OF PROPOSITION 8

1191 *Proof.* We can first have a loose bound:

$$\begin{aligned}
& \left\| \sum_{x \in \mathcal{D}_x} \sum_{i=C-k+1}^C \lambda_i \left(\frac{\partial z}{\partial \theta} \right)^\top v_i v_i^\top \frac{\partial z}{\partial \theta} - \mathcal{F}^\Delta(\theta) \right\| \\
&= \left\| \sum_{x \in \mathcal{D}_x} \sum_{i=C-k+1}^C \lambda_i \left(\frac{\partial z}{\partial \theta} \right)^\top v_i v_i^\top \frac{\partial z}{\partial \theta} - \sum_{x \in \mathcal{D}_x} \left(\frac{\partial z}{\partial \theta} \right)^\top \mathcal{I}^\Delta(z) \frac{\partial z}{\partial \theta} \right\| \\
&= \left\| \sum_{x \in \mathcal{D}_x} \left(\frac{\partial z}{\partial \theta} \right)^\top \left(\sum_{i=1}^{C-k} \lambda_i v_i v_i^\top \right) \frac{\partial z}{\partial \theta} \right\| \\
&\leq \left\| \sum_{x \in \mathcal{D}_x} p_{(C-k)} \left(\frac{\partial z}{\partial \theta} \right)^\top \frac{\partial z}{\partial \theta} \right\| \quad (\text{Due to that } \sum_{i=1}^{C-k} \lambda_i v_i v_i^\top \preceq p_{(C-k)} I) \\
&\leq \sum_{x \in \mathcal{D}_x} p_{(C-k)} \left\| \frac{\partial z}{\partial \theta} \left(\frac{\partial z}{\partial \theta} \right)^\top \right\|.
\end{aligned}$$

1213 The eigenvalues of $\left(\frac{\partial z}{\partial \theta} \left(\frac{\partial z}{\partial \theta} \right)^\top \right)^2$ are $\sigma_1^4 \leq \dots \leq \sigma_C^4$. We have

$$\begin{aligned}
& \left\| \left(\frac{\partial z}{\partial \theta} \right)^\top \left(\sum_{i=1}^{C-k} \lambda_i v_i v_i^\top \right) \frac{\partial z}{\partial \theta} \right\|^2 \\
&= \text{tr} \left[\left(\frac{\partial z}{\partial \theta} \right)^\top \left(\sum_{i=1}^{C-k} \lambda_i v_i v_i^\top \right) \frac{\partial z}{\partial \theta} \left(\frac{\partial z}{\partial \theta} \right)^\top \left(\sum_{i=1}^{C-k} \lambda_i v_i v_i^\top \right) \frac{\partial z}{\partial \theta} \right] \\
&= \text{tr} \left[\left(\frac{\partial z}{\partial \theta} \left(\frac{\partial z}{\partial \theta} \right)^\top \left(\sum_{i=1}^{C-k} \lambda_i v_i v_i^\top \right) \right)^2 \right] \\
&\leq \text{tr} \left[\left(\frac{\partial z}{\partial \theta} \left(\frac{\partial z}{\partial \theta} \right)^\top \right)^2 \left(\sum_{i=1}^{C-k} \lambda_i^2 v_i v_i^\top \right) \right] \quad (\text{Due to } \text{tr}(AB)^2 \leq \text{tr}(A^2 B^2)) \\
&= \text{tr} \left[\left(\frac{\partial z}{\partial \theta} \left(\frac{\partial z}{\partial \theta} \right)^\top \right)^2 \left(\sum_{i=2}^{C-k} \lambda_i^2 v_i v_i^\top \right) \right] \quad (\text{Note } \lambda_1 = 0) \\
&\leq \sum_{i=2}^{C-k} \sigma_{i+k}^4 \lambda_i^2.
\end{aligned}$$

1238 The last “ \leq ” is due to Von Neumann’s trace inequality. We also have the Cauchy interlacing

$$\lambda_2 \leq p_{(2)} \leq \lambda_3 \leq p_{(3)} \leq \dots \leq \lambda_{C-1} \leq p_{(C-1)}.$$

1242 To sum up,

$$\begin{aligned}
& \left\| \sum_{x \in \mathcal{D}_x} \sum_{i=C-k+1}^C \lambda_i \left(\frac{\partial z}{\partial \theta} \right)^\top v_i v_i^\top \frac{\partial z}{\partial \theta} - \mathcal{F}^\Delta(\theta) \right\| \\
& \leq \sum_{x \in \mathcal{D}_x} \left\| \left(\frac{\partial z}{\partial \theta} \right)^\top \left(\sum_{i=1}^{C-k} \lambda_i v_i v_i^\top \right) \frac{\partial z}{\partial \theta} \right\| \\
& \leq \sum_{x \in \mathcal{D}_x} \sqrt{\sum_{i=2}^{C-k} \sigma_{i+k}^4 \lambda_i^2} \\
& \leq \sum_{x \in \mathcal{D}_x} \sqrt{\sum_{i=2}^{C-k} \sigma_{i+k}^4 p_{(i)}^2}.
\end{aligned}$$

1246 If one relax $\forall i \in \{2, \dots, C-k\}$, $p_{(i)} \leq p_{(C-k)}$, then we get the loose bound proved earlier.

1258 \square

1260 N PROOF OF PROPOSITION 9

1262 *Proof.*

$$\begin{aligned}
\|\mathcal{F}(\theta) - \bar{\mathcal{F}}^\Delta(\theta)\|_\sigma &= \left\| \sum_{x \in \mathcal{D}_x} \left(\frac{\partial z}{\partial \theta} \right)^\top \cdot \mathcal{I}(z(x, \theta)) \cdot \frac{\partial z}{\partial \theta} - \sum_{x \in \mathcal{D}_x} \left(\frac{\partial z}{\partial \theta} \right)^\top (e_y - p)(e_y - p)^\top \frac{\partial z}{\partial \theta} \right\|_\sigma \\
&= \left\| \sum_{x \in \mathcal{D}_x} \left(\frac{\partial z}{\partial \theta} \right)^\top [\text{diag}(p) - pp^\top - (e_y - p)(e_y - p)^\top] \frac{\partial z}{\partial \theta} \right\|_\sigma \\
&\leq \sum_{x \in \mathcal{D}_x} \left\| \left(\frac{\partial z}{\partial \theta} \right)^\top [\text{diag}(p) - pp^\top - (e_y - p)(e_y - p)^\top] \frac{\partial z}{\partial \theta} \right\|_\sigma \\
&\leq \sum_{x \in \mathcal{D}_x} \left\| \frac{\partial z}{\partial \theta} \right\|_\sigma \left\| \text{diag}(p) - pp^\top - (e_y - p)(e_y - p)^\top \right\|_\sigma \left\| \frac{\partial z}{\partial \theta} \right\|_\sigma \\
&= \sum_{x \in \mathcal{D}_x} \sigma_C^2 \left\| \text{diag}(p) - pp^\top - (e_y - p)(e_y - p)^\top \right\|_\sigma.
\end{aligned}$$

1278 Now we examine the matrix $\text{diag}(p) - pp^\top - (e_y - p)(e_y - p)^\top$. By Theorem 1, the spectrum of
1279 $\text{diag}(p) - pp^\top$ is

$$1280 \quad \lambda_1 = 0 \leq \lambda_2 \leq \dots \leq \lambda_C.$$

1281 By Cauchy interlacing theorem, the spectrum of $\text{diag}(p) - pp^\top - (e_y - p)(e_y - p)^\top$, given by
1282 $\lambda'_1, \dots, \lambda'_C$, must satisfy

$$1284 \quad \lambda'_1 \leq \lambda_1 = 0 \leq \lambda'_2 \leq \lambda_2 \leq \dots \leq \lambda'_C \leq \lambda_C.$$

1285 with at least one eigenvalue that is not positive: $\lambda'_1 \leq 0$. Therefore

$$1286 \quad \left\| \text{diag}(p) - pp^\top - (e_y - p)(e_y - p)^\top \right\|_\sigma \leq \max\{-\lambda'_1, \lambda_C\}.$$

1288 We also have

$$\begin{aligned}
\lambda'_1 &= \inf_{u: \|u\|=1} u^\top [\text{diag}(p) - pp^\top - (e_y - p)(e_y - p)^\top] u \\
&\geq \inf_{u: \|u\|=1} -u^\top [(e_y - p)(e_y - p)^\top] u \\
&= -(e_y - p)^\top (e_y - p) \\
&= -(1 + p^\top p - 2p_y) \\
&= 2p_y - 1 - \|p\|^2.
\end{aligned}$$

1296 Therefore

$$\begin{aligned}
 1298 \quad \|\text{diag}(p) - pp^\top - (e_y - p)(e_y - p)^\top\|_\sigma &\leq \max\{1 + \|p\|^2 - 2p_y, \lambda_C\} \\
 1299 \quad &\leq \max\{1 + \|p\|^2 - 2p_y, 1 - \|p\|^2\} \\
 1300 \quad &\leq 1 + \|p\|^2.
 1301
 \end{aligned}$$

1302 In summary,

$$\begin{aligned}
 1303 \quad \|\mathcal{F}(\theta) - \bar{\mathcal{F}}^\Delta(\theta)\|_\sigma &\leq \sum_{x \in \mathcal{D}_x} \sigma_C^2(1 + \|p\|^2).
 1304 \\
 1305
 \end{aligned}$$

1306 \square

1307 O PROOF OF PROPOSITION 10

1309 *Proof.*

$$\begin{aligned}
 1312 \quad &\left\| \left(\frac{\partial z}{\partial \theta} \right)^\top \cdot \mathcal{I}^\Delta(z(x, \theta)) \cdot \frac{\partial z}{\partial \theta} - \left(\frac{\partial z}{\partial \theta} \right)^\top \cdot \bar{\mathcal{I}}^\Delta(z(x, \theta)) \cdot \frac{\partial z}{\partial \theta} \right\|_\sigma \\
 1313 \quad &\geq \left\| \left(\frac{\partial z}{\partial \theta} \right)^\top \cdot [\mathcal{I}^\Delta(z(x, \theta)) - \bar{\mathcal{I}}^\Delta(z(x, \theta))] \cdot \frac{\partial z}{\partial \theta} \right\|_\sigma \\
 1314 \quad &= \left\| \left(\frac{\partial z}{\partial \theta} \right)^\top \cdot [\text{diag}(p) - pp^\top - (e_y - p)(e_y - p)^\top] \cdot \frac{\partial z}{\partial \theta} \right\|_\sigma \\
 1315 \quad &= \sup_{u: \|u\|=1} \left| \left(\frac{\partial z}{\partial \theta} u \right)^\top \cdot [\text{diag}(p) - pp^\top - (e_y - p)(e_y - p)^\top] \cdot \left(\frac{\partial z}{\partial \theta} u \right) \right| \\
 1316 \quad &\geq \sup_{v: \|v\|=1} |\sigma_{(1)} v \cdot [\text{diag}(p) - pp^\top - (e_y - p)(e_y - p)^\top] \cdot \sigma_{(1)} v| \\
 1317 \quad &\geq \sigma_{(1)}^2 \|\text{diag}(p) - pp^\top - (e_y - p)(e_y - p)^\top\|_\sigma \\
 1318 \quad &\geq \sigma_{(1)}^2 \left| \left(\frac{e_y - p}{\|e_y - p\|} \right)^\top ((e_y - p)(e_y - p)^\top - \lambda_C) \frac{e_y - p}{\|e_y - p\|} \right| \\
 1319 \quad &= \sigma_{(1)}^2 |\|e_y - p\|^2 - \lambda_C| \\
 1320 \quad &= \sigma_{(1)}^2 |1 + \|p\|^2 - \lambda_C - 2p_y|.
 1321
 \end{aligned}$$

1323 We choose $p_y = p_{(1)}$, therefore $\exists y$, such that

$$\begin{aligned}
 1324 \quad &\left\| \left(\frac{\partial z}{\partial \theta} \right)^\top \cdot \mathcal{I}^\Delta(z(x, \theta)) \cdot \frac{\partial z}{\partial \theta} - \left(\frac{\partial z}{\partial \theta} \right)^\top \cdot \bar{\mathcal{I}}^\Delta(z(x, \theta)) \cdot \frac{\partial z}{\partial \theta} \right\|_\sigma \\
 1325 \quad &\geq \sigma_{(1)}^2 |1 + \|p\|^2 - \lambda_C - 2p_{(1)}|.
 1326 \\
 1327
 \end{aligned}$$

1329 \square

1341 P PROOF OF PROPOSITION 11

1343 *Proof.* From the derivations in the main text, we already know that $\mathbb{E}_{p(\xi)} \mathbb{I}(\theta) = \mathcal{I}(\theta)$. To show 1344 the estimator variance, we first consider the case when $p(\xi)$ is a standard multivariate Gaussian 1345 distribution. First we note that both $\mathfrak{h}(\mathcal{D}_x, \theta)$ and $\partial \mathfrak{h} / \partial \theta_i$ are in the form of a sum of independent 1346 Gaussian random variables. Hence, 1347

$$\frac{\partial \mathfrak{h}}{\partial \theta_i} = \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C \sqrt{p(y | x, \theta)} \frac{\partial \ell_{xy}}{\partial \theta_i} \xi_{xy} \sim G \left(0, \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C p(y | x, \theta) \left(\frac{\partial \ell_{xy}}{\partial \theta_i} \right)^2 \right).$$

1350 Therefore

1351

1352

$$1353 \mathbb{E}_{p(\xi)} \left(\frac{\partial \mathfrak{h}}{\partial \theta_i} \right)^2 = \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C p(y | x, \theta) \left(\frac{\partial \ell_{xy}}{\partial \theta_i} \right)^2 = \mathcal{I}_{ii}(\theta);$$

1354

1355

$$1356 \mathbb{E}_{p(\xi)} \left(\frac{\partial \mathfrak{h}}{\partial \theta_i} \right)^4 = 3\mathcal{I}_{ii}^2(\theta).$$

1357

1358

1359 Therefore

1360

1361

$$1362 \text{Var}(\mathbb{I}(\theta_i)) = \mathbb{E}_{p(\xi)} \left(\frac{\partial \mathfrak{h}}{\partial \theta_i} \right)^4 - \mathcal{I}_{ii}^2(\theta) = 2\mathcal{I}_{ii}^2(\theta).$$

1363

1364

1365

1366 We now consider that $p(\xi)$ is Rademacher.

1367

1368

$$\begin{aligned} 1369 \text{Var}(\mathbb{I}(\theta_i)) &= \mathbb{E}_{p(\xi)} \left(\frac{\partial \mathfrak{h}}{\partial \theta_i} \right)^4 - \left(\mathbb{E} \left(\frac{\partial \mathfrak{h}}{\partial \theta_i} \right)^2 \right)^2 \\ 1370 &= \mathbb{E}_{p(\xi)} \left(\frac{\partial \mathfrak{h}}{\partial \theta_i} \right)^4 - \mathcal{I}_{ii}^2(\theta) \\ 1371 &= \mathbb{E}_{p(\xi)} \left(\sum_{x \in \mathcal{D}_x} \sum_{y=1}^C \sqrt{p(y | x, \theta)} \frac{\partial \ell_{xy}}{\partial \theta_i} \xi_{xy} \right)^4 - \mathcal{I}_{ii}^2(\theta) \\ 1372 &= \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C p^2(y | x, \theta) \left(\frac{\partial \ell_{xy}}{\partial \theta_i} \right)^4 \\ 1373 &\quad + 3 \sum_{(x,y) \neq (x',y')} p(y | x, \theta) \left(\frac{\partial \ell_{xy}}{\partial \theta_i} \right)^2 p(y' | x', \theta) \left(\frac{\partial \ell_{x'y'}}{\partial \theta_i} \right)^2 - \mathcal{I}_{ii}^2(\theta). \end{aligned}$$

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

Note that

1386

$$\begin{aligned} 1387 \mathcal{I}_{ii}^2(\theta) &= \left(\sum_{x \in \mathcal{D}_x} \sum_{y=1}^C p(y | x, \theta) \left(\frac{\partial \ell_{xy}}{\partial \theta_i} \right)^2 \right)^2 \\ 1388 &= \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C p^2(y | x, \theta) \left(\frac{\partial \ell_{xy}}{\partial \theta_i} \right)^4 + \sum_{(x,y) \neq (x',y')} p(y | x, \theta) \left(\frac{\partial \ell_{xy}}{\partial \theta_i} \right)^2 p(y' | x', \theta) \left(\frac{\partial \ell_{x'y'}}{\partial \theta_i} \right)^2. \end{aligned}$$

1389

1390

1391

1392

1393

Hence,

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

$$\begin{aligned} 1397 \text{Var}(\mathbb{I}(\theta_i)) &= 3\mathcal{I}_{ii}^2(\theta) - 2 \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C p^2(y | x, \theta) \left(\frac{\partial \ell_{xy}}{\partial \theta_i} \right)^4 - \mathcal{I}_{ii}^2(\theta) \\ 1398 &= 2\mathcal{I}_{ii}^2(\theta) - 2 \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C p^2(y | x, \theta) \left(\frac{\partial \ell_{xy}}{\partial \theta_i} \right)^4. \end{aligned}$$

□

Q PROOF OF PROPOSITION 13

1408 *Proof.*

$$\begin{aligned}
\mathbb{E}_{p(\xi)}(\mathbb{F}^{\text{DG}}(\theta)) &= \mathbb{E}_{p(\xi)}\left(\frac{\partial \mathfrak{h}^{\text{DG}}}{\partial \theta} \frac{\partial \mathfrak{h}^{\text{DG}}}{\partial \theta^\top}\right) \\
&= \mathbb{E}_{p(\xi)}\left(\sum_{x \in \mathcal{D}_x} \sum_{y=1}^C \sqrt{\zeta_y(x, \theta)} \frac{\partial z_y}{\partial \theta} \xi_{xy} \sum_{x' \in \mathcal{D}_x} \sum_{y'=1}^C \sqrt{\zeta_{y'}(x', \theta)} \frac{\partial z_{y'}}{\partial \theta^\top} \xi_{x'y'}\right) \\
&= \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C \sum_{x' \in \mathcal{D}_x} \sum_{y'=1}^C \sqrt{\zeta_y(x, \theta)} \sqrt{\zeta_{y'}(x', \theta)} \frac{\partial z_y}{\partial \theta} \frac{\partial z_{y'}}{\partial \theta^\top} \mathbb{E}_{p(\xi)}(\xi_{xy} \xi_{x'y'}) \\
&= \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C \zeta_y(x, \theta) \frac{\partial z_y}{\partial \theta} \frac{\partial z_y}{\partial \theta^\top} \\
&= \sum_{x \in \mathcal{D}_x} \left(\frac{\partial z}{\partial \theta}\right)^\top \mathcal{I}^{\text{DG}}(z(x, \theta)) \frac{\partial z}{\partial \theta} \\
&= \mathcal{F}^{\text{DG}}(\theta).
\end{aligned}$$

1429 Therefore,

$$\begin{aligned}
\mathbb{E}_{p(\xi)}(\mathbb{F}_{ii}^{\text{DG}}(\theta)) &= \mathbb{E}_{p(\xi)}\left(\frac{\partial \mathfrak{h}^{\text{DG}}}{\partial \theta_i}\right)^2 = \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C \zeta_y(x, \theta) \left(\frac{\partial z_y}{\partial \theta_i}\right)^2 = \mathcal{F}_{ii}^{\text{DG}}(\theta). \\
\mathbb{E}_{p(\xi)}\left(\frac{\partial \mathfrak{h}^{\text{DG}}}{\partial \theta_i}\right)^4 &= \mathbb{E}_{p(\xi)}\left(\sum_{x \in \mathcal{D}_x} \sum_{y=1}^C \sqrt{\zeta_y(x, \theta)} \frac{\partial z_y}{\partial \theta_i} \xi_{xy}\right)^4 \\
&= \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C \zeta_y^2(x, \theta) \left(\frac{\partial z_y}{\partial \theta_i}\right)^4 + 3 \sum_{(x,y) \neq (x',y')} \zeta_y(x, \theta) \left(\frac{\partial z_y}{\partial \theta_i}\right)^2 \zeta_{y'}(x', \theta) \left(\frac{\partial z_{y'}}{\partial \theta_i}\right)^2 \\
&= 3(\mathcal{F}_{ii}^{\text{DG}}(\theta))^2 - 2 \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C \zeta_y^2(x, \theta) \left(\frac{\partial z_y}{\partial \theta_i}\right)^4.
\end{aligned}$$

1447 Hence,

$$\begin{aligned}
\text{Var}(\mathbb{F}_{ii}^{\text{DG}}(\theta)) &= \mathbb{E}_{p(\xi)}\left(\frac{\partial \mathfrak{h}^{\text{DG}}}{\partial \theta_i}\right)^4 - (\mathcal{F}_{ii}^{\text{DG}}(\theta))^2 \\
&= 2(\mathcal{F}_{ii}^{\text{DG}}(\theta))^2 - 2 \sum_{x \in \mathcal{D}_x} \sum_{y=1}^C \zeta_y^2(x, \theta) \left(\frac{\partial z_y}{\partial \theta_i}\right)^4.
\end{aligned}$$

□

1458 R PROOF OF PROPOSITION 14

1460 *Proof.* The proof is similar to Proposition 13 and is also based on the Hutchinson's trick.

$$\begin{aligned}
1461 \quad & \mathbb{E}_{p(\xi)} (\mathbb{F}^{\text{LR}}(\theta)) \\
1462 \quad &= \mathbb{E}_{p(\xi)} \left(\frac{\partial \mathfrak{h}^{\text{LR}}}{\partial \theta} \frac{\partial \mathfrak{h}^{\text{LR}}}{\partial \theta^\top} \right) \\
1463 \quad &= \mathbb{E}_{p(\xi)} \left(\sum_{x \in \mathcal{D}_x} \sqrt{\lambda_C(x, \theta)} \left(\frac{\partial z}{\partial \theta} \right)^\top v_C(x, \theta) \xi_x \sum_{x' \in \mathcal{D}_x} \sqrt{\lambda_C(x', \theta)} v_C(x', \theta)^\top \left(\frac{\partial z}{\partial \theta} \right) \xi_{x'} \right) \\
1464 \quad &= \sum_{x \in \mathcal{D}_x} \lambda_C(x, \theta) \left(\frac{\partial z}{\partial \theta} \right)^\top v_C(x, \theta) v_C(x, \theta)^\top \left(\frac{\partial z}{\partial \theta} \right) \\
1465 \quad &= \mathcal{F}^{\text{LR}}(\theta).
\end{aligned}$$

1474 Therefore

$$\begin{aligned}
1475 \quad & \mathbb{E}_{p(\xi)} (\mathbb{F}_{ii}^{\text{LR}}(\theta)) = \sum_{x \in \mathcal{D}_x} \lambda_C(x, \theta) \left(\left(\frac{\partial z}{\partial \theta_i} \right)^\top v_C(x, \theta) \right)^2 = \mathcal{F}_{ii}^{\text{LR}}(\theta); \\
1476 \quad & \mathbb{E}_{p(\xi)} \left(\frac{\partial \mathfrak{h}^{\text{LR}}}{\partial \theta_i} \right)^4 = \mathbb{E}_{p(\xi)} \left(\sum_{x \in \mathcal{D}_x} \sqrt{\lambda_C(x, \theta)} v_C^\top(x, \theta) \frac{\partial z}{\partial \theta_i} \xi_x \right)^4 \\
1477 \quad &= \sum_{x \in \mathcal{D}_x} \lambda_C^2(x, \theta) \left(v_C^\top(x, \theta) \frac{\partial z}{\partial \theta_i} \right)^4 \\
1478 \quad &+ 3 \sum_{x \neq x'} \lambda_C(x, \theta) \left(v_C^\top(x, \theta) \frac{\partial z}{\partial \theta_i} \right)^2 \lambda_C(x', \theta) \left(v_C^\top(x', \theta) \frac{\partial z}{\partial \theta_i} \right)^2 \\
1479 \quad &= 3(\mathcal{F}_{ii}^{\text{LR}}(\theta))^2 - 2 \sum_{x \in \mathcal{D}_x} \lambda_C^2(x, \theta) \left(v_C^\top(x, \theta) \frac{\partial z}{\partial \theta_i} \right)^4.
\end{aligned}$$

1480 Hence,

$$\begin{aligned}
1481 \quad & \text{Var}(\mathbb{F}_{ii}^{\text{LR}}(\theta)) = \mathbb{E}_{p(\xi)} \left(\frac{\partial \mathfrak{h}^{\text{LR}}}{\partial \theta_i} \right)^4 - (\mathcal{F}_{ii}^{\text{LR}}(\theta))^2 \\
1482 \quad &= 2(\mathcal{F}_{ii}^{\text{LR}}(\theta))^2 - 2 \sum_{x \in \mathcal{D}_x} \lambda_C^2(x, \theta) \left(v_C^\top(x, \theta) \frac{\partial z}{\partial \theta_i} \right)^4.
\end{aligned}$$

1483 \square

1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511