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ABSTRACT

The high dimensional parameter space of modern deep neural networks — the
neuromanifold — is endowed with a unique metric tensor defined by the Fisher
information, estimating which is crucial for both theory and practical methods
in deep learning. To analyze this tensor for classification networks, we return
to a low dimensional space of probability distributions — the core space — and
carefully analyze the spectrum of its Riemannian metric. We extend our discoveries
there into deterministic bounds of the metric tensor on the neuromanifold. We
introduce an unbiased random estimate of the metric tensor and its bounds based
on Hutchinson’s trace estimator. It can be evaluated efficiently through a single
backward pass, with a standard deviation bounded by the true value up to scaling.

1 INTRODUCTION

Deep learning can be considered as a trajectory through the space of neural networks (neuromani-
fold; Amari 2016), where each point is a neural network instance with a prescribed architecture but
different parameters. This work investigates classifier models in the form p(y | x, ), where x is the
input features, y € {1,---,C} is the class labels (C > 2), and 6 € O is the network weights and
biases. Given an unlabeled dataset D, = {1, 2, - - - }, the intrinsic structure of © is specified by the
Fisher Information Matrix (FIM), defined as:

dlogp(y|z,0) dlogp(y | x,@)] [aemy aﬁw}
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where £,,(6) := logp(y|z,0) denotes the log-likelihood. This is based on a supervised model
x — y. For unsupervised models, one can treat « as constant and apply the same formula. Under
regularity conditions, 7 (#) is a dim(6) x dim(6) positive semi-definite (psd) matrix varying smoothly
with 6 € ©. Following Hotelling (1929), and independently Rao (1945), F(6) is used as a metric
tensor on ©, representing a local degenerate inner product'. For example, one can measure the
intrinsic squared distance between 6 and 6 + df, where d is a small dynamic on O, as d6TF (0)do.

The FIM is the unique metric tensor (Cencov, 1982) which underpins the information geometry of the
neuromanifold © (Amari, 2016). The most widely used application of the FIM is perhaps geometry-
inspired optimizers such as natural gradient (Amari, 1998), Adam (Kingma & Ba, 2015), and their
variants (Martens & Grosse, 2015; Pascanu & Bengio, 2014; Yao et al., 2021; Lin et al., 2021). F
is also applied to regularized fine-tuning (Lodha et al., 2023), transfer learning (Chen et al., 2018),
and overcoming catastrophic forgetting (Kirkpatrick et al., 2017). Theoretically, the FIM provides
insights due to its connection with the Hessian of the loss landscape and generalization (Hochreiter &
Schmidhuber, 1997), and that any f-divergence is locally characterized by the FIM (Blyth, 1994).

Given its deep and broad background, estimating F () with some guaranteed quality, even without a
specific application pipeline, is an important topic. As a widely used deterministic approximation,
the empirical FIM (eFIM, a.k.a. empirical Fisher, see e.g. Le Roux et al. 2007) is given by F () =

> (z.y)eD {M” 0Ly } , where D = {(x1,y1), (x2,y2), - - } is a labeled dataset. As another example,
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the Monte Carlo (MC) estimator F () = Ly, o 8:;“;@ 86?? , where Z, ¢ are a set of m random

'In the machine learning literature, F(6) is sometimes referred to as a curvature matrix (Martens, 2020) but
actually defines a singular semi-Riemannian metric (Sun & Nielsen, 2025) in rigorous terms.



samples drawn from D, and p(y | ), respectively, and the symbol F(6) is abused for simplicity,
gives an unbiased estimate of F () up to scaling.

We advance the state of the art in both deterministic and stochastic approaches to computing the FIM,
improving accuracy in terms of bound gap and variance. We made the following contributions: @
Envelopes of the FIM in the statistical simplex (space of output probabilities); @ Deterministic bounds
of the FIM for classifier networks and their tightness analysis; ® A novel family of random FIM
estimates based on Hutchinson’s trick (Hutchinson, 1990; Skorski, 2021), which can be computed
efficiently with bounded variance; @ An empirical study to estimate the FIM of DistilBert (Sanh
et al., 2019) to showcase the advantages of Hutchinson’s estimate in production settings.

In the rest of this section, we introduce our notations. Section 2 develops fundamental bounds and
estimates in low dimensional spaces of probability distributions. Section 3 extends the deterministic
bounds into the high dimensional neuromanifold. Section 4 introduces Hutchinson’s FIM estimator
and discusses its theoretical properties with numerical simulation on DistilBERT (Sanh et al., 2019).
Section 5 positions our work into the literature. Section 6 concludes.

NOTATIONS AND CONVENTIONS

We use lowercase letters such as A or a for both vectors and scalars, which should be distinguished
based on context, and capital letters such as A for matrices. All vectors are column vectors. A
scalar-vector or vector-scalar derivative such as 9¢/96 yields a gradient vector of the same shape as
the vector. A vector-vector derivative such as 0z/06 denotes the dim(z) x dim(#) Jacobian matrix
of the mapping § — z. || - || denote the Euclidean norm for vectors or Frobenius norm for matrices.
|| - lo denotes the spectral norm (maximum singular value) of matrices. The metric tensors (variants
of FIM) are listed in table 1.

Table 1: Metric tensors. Both empirical FIM (2nd column) and Monte Carlo FIM (3rd column)
are denoted as Z / F for reducing notation overload. We use Z /Z / I for simple low-dimensional

statistical manifolds and use F / F / F for neuromanifolds. We optionally use superscripts to indicate
the associated parameter space. For example, 72 and F2 denote the metric tensor of the statistical
simplex and the space of neural networks with simplex-valued outputs, respectively.

FIM empirical FIM  Monte Carlo FIM  Hutchinson FIM
Z(z) I F(O) Z(z)!F() Z(z)/ F(0) I(z) /F(0)

2  GEOMETRY OF LOW-DIMENSIONAL CORE SPACES

Consider a classifier network p(y | z,0) = p(y | z(z,0)), where z(x, 0) is last layer’s linear output.

Due to the chain rule, we plug aézy = (%) T af;lz'y into Eq. (1). Then, we can easily arrive at
92\ " 0z
F(0) = — | I 0)) — 2
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which is in the form of a Gauss-Newton matrix (Martens et al., 2010), or a pullback metric tensor (Sun,
2020)” from a low dimensional statistical manifold with metric Z(z), to the much higher dimensional
neuromanifold with metric F (). In this section, we rediscover the geometrical structure of the low
dimensional statistical manifold, which we refer to as the core space, or simply the core.

In multi-class classification, y (given a feature vector x) follows a category distribution p(y =
i|z,0) =pi(x,0),i=1,---,C. All possible category distributions over {1, --- ,C} form a closed
statistical simplex A€~1 = {(pl, cupe) ZiC:ﬂ’i =1; Vi,p; > 0}. The superscript C' — 1
denotes the dimensionality of A and can be omitted. If p € int(A“~!) (interior of A®~!), we can
reparameterize p = SoftMax(z), where z € R is the logits. The core A“~! is a curved space,

2Strictly speaking, the pullback tensor requires the Jacobian of # — z have full column rank everywhere,
which is not satisfied in typical settings of deep neural networks. This leads to singular metric tensors.



where p or z serves as a coordinate system in the sense that different choices of p or z yield different
distributions. By Eq. (1), the FIM is:

I%(2) =E[(ey —p)(ey —p) "] = diag (p) —pp ", 3)

where diag (-) means the diagonal matrix constructed with a given diagonal vector. In below,
depending on context, diag (-) also denotes a diagonal vector extracted from a square matrix. e
(without subscripts) denotes a vector of all ones, e, denotes the one-hot vector with only the y’th bit
activated, and e;; denotes the binary matrix with only the ¢j’th entry set to 1. Note z is a redundant

coordinate system as dim(z) = C > C — 1. If z € int(A“~!), T2 (2) has a one-dimensional kernel:
one can easily verify Z(z)(te) = 0 forall t € R.

By noting that Z°(z) is a rank-1 perturbation of the diagonal matrix diag (p), we can apply Cauchy’s
interlacing theorem and study the spectral properties of Z2(z).

Theorem 1 (Spectrum of Simplex FIM). Assume the spectral decomposition T (z) = Y- ;v
where Ay < -+ < Ac. Then Ay = 0; vy = ¢/ ||e]|; chzl Xi =1 —||p||?; and

1— |pll?
C-1

max {p;(1 —p;)} U {p(cn, } < A¢ < min {p<C)72mlaX(pz‘(1 —pi)),1— Hp||2} ,

where p(c_1) and p(cy denote the second-largest and the largest elements of p, respectively.

The largest eigenvalue of Z2 (), denoted as \¢, and its associated eigenvector correspond to the
“most informative” direction at any z € AC-1L, By Theorem 1, A\¢ can be bounded from above and
below. The bound gap is at most min{pcy — p(c—1), max;(p;(1 — p;)) }. We have found through
numerical simulations that, in practice, the bounds in Theorem 1| are quite tight and can provide an
estimate of A¢ within a narrow range. The lemma below gives lower and upper bounds of Z2(z),
both with a simpler structure than Z2(z), in the space of psd matrices based on Lowner partial order.

Lemma 2. Vz € int(AC™1), assume the spectral decomposition T°(z) = ZLC:1 \ivgv;', where
A < oo < Aot < Ag. Then, )\cvcvg < IA(Z) =< diag (p). Moreover, )\cvcvg is the
best rank-1 representation of T®(z) in the sense that no rank-1 matrix B # )\Cvcvg satisfies
Acvevl = B = I2(2). Meanwhile, diag (p) is the best diagonal representation of T (z) in the

sense that no diagonal matrix D # diag (p) satisfies T (z) < D =< diag (p).

The simplex FIM is upper-bounded by a diagonal matrix and lower bounded by a rank-1 matrix. By
Lemma 2, )\Cvcvg is the lower-envelope (greatest lower bound) of IA(Z) in rank-1 matrices, and

diag (p) is the upper-envelope (least upper bound) of Z2(z) in diagonal matrices. If the bounds in
Lemma 2 are used as a deterministic estimate of Z°(z), the error can be controlled, as shown below.

Lemma 3. We have Vz € A, T2(2) — /\Cvcvg | <
min {1 —|Ipll = pec—1) 4 /Eic:_zl p%i) } where p(;y denote the entries of p sorted in ascending order.

I%(z) —diag (p) || = |Ip||> = &: meanwhile,

Note 226:21 p%i) is the Euclidean norm of trimmed p, i.e. the vector obtained by removing p’s

smallest and largest elements. By Lemma 3, the upper bound diag (p) always incurs an error of at
least 1/C. Depending on p, the lower bound Acvcv/, can more accurately estimate Z2(z) as the
error can go to zero.

Alternatively, one can use random matrices to estimate 72 &z) By Eq. (3), the rank-1 matrix
R(y) = (ey — p)(ey — p)" is an unbiased estimator of Z=(z). The eFIM of A is given by
T2(z) = R(y), where y is a given empirical sample of the distribution specified by z. The lemma
below shows the worst case error of using eFIM to estimate 72 (2).

Lemmad. Vz € A°7! 3y e {1,---,C}, such that |R(y) — I°(2)|| > 1 + []p]|*> — Ac — 2p)
> 2|lpl1* - 2pq).-

The first “>” is tighter but the second > is easier to interpret. The term ||p|| can be as large as 1

(when p is close to one-hot). In such cases, using R(y) to estimate Z*(z) may incur significant error
if y is adversarially chosen.



In classification tasks with multiple binary labels, we assume p(y; = 1|z) = p; i = 1,---,C)
and that all dimensions of y are conditional independent given x. All such distributions form a
C-dimensional hypercube C% (p) = {(p1,--- ,pc) : Vi,0 < p; < 1}, which is the product space of

1-dimensional simplices. Consider p; = o(z;) := 1/(1 + exp(—z;)) fori = 1,--- , C. In this case,
the FIM is a diagonal matrix, given by
I(z) = diag ((p1(1 = p1), -+~ ,pc(1 = pe))) = diag (o' (z), -+ .0’ (2c)) - Q)

In what follows, unless stated otherwise, our results pertain to the core A as it is more commonly
used and has a more complex FIM as compared to C.

3  FIM FOR CLASSIFIER NETWORKS — DETERMINISTIC ANALYSIS

We give a lower and upper bound of 72 (6) (Proposition 5) and analyze each bound gap (Proposi-
tions 7 and 8). Our bounds result from simple matrix analysis and are more operational than related
theoretical bounds such as monotonicity of the FIM under marginalization or coarse-graining (Amari,
2016). Our bounds are novel as they are built on envelopes (tightest bound) in the core and that they
depend on the order statistics of the output probability vector.

3.1 DETERMINISTIC LOWER AND UPPER BOUNDS

By Eq. (2), the neuromanifold FIM F(6) is determined by both the core space and the parameter-
output Jacobian 2 55 - Similar to Lemma 2, we can have lower and upper bounds of F A () in the space
of psd matrices (although these bounds are not envelopes as in Lemma 2).

Proposition 5. If p(y | z,0) € A~ is categorical, then V0 € ©, we have

) ) 0z, (0z,\ "
ZAC(@Z) Ucvgag<}"A ZZpy|x9 %y (;ﬁy) ,

€D, z€D, y=1

where Ao = A¢(x,0) and ve = vo(x, ) denote the largest eigenvalue and its associated eigenvec-

tor of I(z(x, 0)).

Remark. The LHS is a sum of |D,| (number of samples in D,) matrices of rank-1. Its rank is at
most |D,|. The RHS is a sum of C|D,| matrices of rank-1 and potentially has a larger rank.

If p(y|z) is in C, then Z€(z(x,#)) is diagonal as in Eq. (4). By Eq. (2), we have F€() =
T

erDm 25:1 py(1 —py) aazey (%) which is similar to the upper bound in Proposition 5. In

summary, F () can be bounded or computed using the J acobian 2 95 as well as the output probabilities

p(y|z,0). The following analysis depends on the spectral properties of 82 Across our formal

statements, we denote the singular values of gz, sorted in ascending order as oq(z,0) < --- <
oc(z,0). In Proposition 5, by taking the trace on all sides, the trace of the FIM can be bounded from
above and below.

Corollary 6. Ifp(y|z,0) € A€~ is categorical, then it holds for all § € © that

Z)\cxﬁalme ZZA (z,0)0841—i(x,0) < tr(F ZZpy\wGH

€D, €D, 1=2 €D, y=1

These bounds are useful to get the overall scale of 7 (6) without computing its exact value. The
proposition below gives the error of the upper bound in Proposition 5 in terms of Frobenius norm.

Proposition 7. We have V0 € © that

J;'(%)T Zip(ylx,a)(%?f%?_

€D, y=1
where p(x,0) = SoftMax(z(x, 8)) denotes the output probability vector.

< Y lp(e, 0)|*oe (. 6),

zEDy




We use Frobenius norm for matrices but it is not difficult to bound the spectral norm using similar
techniques. By Proposition 7, the error of the upper bound scales with the 2-norm (maximum singular
value) of the parameter-output Jacobian %. Similar to what happens in the core space, using the
upper bound of the FIM always incurs an error. For example, let p tend to be one-hot, the LHS in
Proposition 7 does not vanish but scales with certain rows of % corresponding to the predicted y.

Naturally, we also want to examine the error of the lower bound in Proposition 5, as detailed below.
Proposition 8. We have V0 € O that

9z\ | 9
Z )\c (a;) vcvga—Z—}‘A(G)

x€D,

c—1
< Z Z Ufﬂ(ﬂc,ﬁ)pé)(:v,ﬁ).

€D, 1=2

Clearly, as p approaches a one-hot vector, all elements in the trimmed vector D) fori=2,---,C—1,
tend to zero, and the error approaches zero since its upper bound on the RHS goes to zero. From this
view, the lower bound in Proposition 5 is a better estimate as compared to the upper bound.

Remark. By noting that 0 < o;(x,0) < oc(z,0), we can relax the bound in Proposition 8 to be com-

parable to Proposition 7: HzxeDz Ac (%)T vcvg% - fA(G)" <> vep, ZZC:_; p?i)(x, 0) -

. . 92\ .
02(z,0). The estimation error of Y wep, AC (%) vevl % is controlled by the norms of the Jaco-

bian and the trimmed probabilities (p(2y, - - - , p(c—1)). The latter is upper bounded by pc—1)(x, ),
the second largest probability of each sample x. By comparing with Proposition 7, one can easily
observe that Proposition 8 is tighter in general.

3.2 EMmPIRICAL FIM (EFIM)

Recall from the introduction, the eFIM F (6) gives a biased, deterministic estimate of (6). Intuitively,
when the network is trained, computations based on the given labels are close to the expectation

w.rt. p(y | ), and the eFIM is expected to approximate F (6) well. However, the bias of F(6) can be

enlarged if y is set adversarially. By simple derivations, F(6) = Y weD, (%)T -R(y) - %. Observe
that it is similar to Eq. (2), except Z(z(z, #)) is replaced by its empirical counterpart R(y). If the
neural network output is in the simplex, the error of eFIM can be bounded, as stated below.

Proposition 9. V0 € ©, Wy, we have || F2(0) — FA(0)|lo <X ,ep, (14 ||p(x,0)[?)02(x,0).

Here we need to switch to the spectral norm || - ||, to get a simple expression of the upper bound.
The approximation error in terms of the spectral norm is controlled by the spectral norm of the
parameter-output Jacobian. The error by Frobenius norm is even larger. The bound is loose as
compared to Propositions 7 and 8.

We have found in Lemma 4 that using R(y) to approximate Z*(z) suffers from a large error if y is
chosen in a tricky way. The same principle applies to using F(#) to approximate F(6).
Proposition 10. V0 € ©, Vx, 3y, such that

l (%)TIA(Z(:LG))ZZ B (gz)r R(y)%

In the above inequality, the LHS is the error of F (9) for one single z € D,. Therefore, when
y is set unfavorably, the eFIM suffers from an approximation error that scales with the smallest
singular value of %. Among all the investigated deterministic approximations, the lower bound in
Proposition 5 provides the smallest guaranteed error but is relatively expensive to compute. We solve

the computational issues in the next section.

> 07 (x,0) [L+ |lp(z, 0)|* — Ac(x,0) — 2p(1) (2, 6)|.

o

4 HUTCHINSON’S ESTIMATE OF THE FIM

4.1 LIMITATIONS OF MONTE CARLO ESTIMATES

We show that the quality of the MC estimate F (9) can be arbitrarily bad. Consider the single
neuron model z = fx for binary classification, where z, 6, x are all scalars, and 6 is close to zero.



Then p ~ 3 is a fair Bernoulli distribution. I( ) = p(1 — p) & 1. The Jacobian is simply

% = z. and .7-'(9) = Epw) [£Z(2)%] ~ 1 Eyw)lz?]. A basic MC estimator takes the form

F(0) = & S, 22, where ;s are independently and identically distributed according to p(z).

4m

Its variance is Var(]—' ) = & [Ep) (@) — Ep(m)( 2)]. We let p(x) be a heavy tailed distribution,
e.g. Student’s t-distribution with v > 4 degrees of freedom, so that Var(F) is large while F(6) is

small. Then Ep(x)(xQ) = %5 and Ep(m)(x‘l) = %. The ratio (IFE‘J(‘)(;)L = 38’:42) can

be arbitrarily large when v — 4%, Therefore the coefficient of variation (CV) Std(F)/F(0) is
unbounded. Throughout our analysis, the CV is a key indicator of the quality of a FIM estimator, as a
bounded CV for a random variable X ensures the random estimator’s probability mass within [0, au],
where o > 1 and ¢ > 0 is the mean of X. If CV = % < K, then by Cantelli inequality, we

—1
have P (X > ap) = P(X > p+ (o — 1)) < P(X > p+ 25286dX) < (1+ (22)°) . The
general case is more complicated, but follows a similar idea. The variance of MC estimators depends
on the 4th moment of the Jacobian % w.r.t. p(z) while the mean value F(¢) only depends on the 2nd
moment of %. The ratio of the variance and F2(6), or the CV Std(F)/F(6), is unbounded without

further assumption on p(x). One can increase the number of samples m to reduce variance. However,
this is computationally expensive especially in online settings.

4.2 HUTCHINSON’S ESTIMATE

In light of the challenges of MC estimates, we introduce a new way to get an unbiased estimate of the
FIM. First, compute the scalar-valued function

H(Dy,0) = » Z\/ Y 12,000y (0)Exy, )

€D, y=1

where &,,, is a standard multivariate Gaussian vector of size C|D| or a Rademacher vector,

and p(y|z,0) has the same value as p(y|x,0) but is non-differentiable, meaning its gradi-
ent is always zero, preventing error from back-propagating through p(y|x,#). This p can
be implemented by Tensor.detach () in PyTorch (Paszke et al., 2019) or similar func-

tions in other auto-differentiation (AD) frameworks. Second, the gradient vector o —

o0
C o
ZzE’Dm Zy:l p(y | xz, 9) agy
9h 0

() in Pytorch.
Third, the random psd matrix F(6) := 56 5 oT , which we refer to as the “Hutchinson’s estimate” (of
the FIM), can be used to estimate F(6). By straightforward derivations,

Oy Oty
CY Y Y S Vim0 J oS L B [nbary] = F (). (©)

TED, y=12/€Dy y' =1 P&

p(&)

The last “=" is because E ¢y (§xylaryy) = Lif o = 2" and y = 3/, and Ey(¢) (a1 ary) = O otherwise.
Considering % as an implicit representation of the FIM, its computational cost is @ evaluating
the b function, @ the backward pass to compute the gradient of ). The cost is same as evaluating
the gradient of the loss — > 23:1 l4,(0), noting that b is the log-likelihood randomly flipped
by a Gaussian/Rademacher vector. Moreover, ) can reuse the logits already computed during the

forward pass. Therefore 2 80 requires merely one additional backward pass, making it practical for
large scale networks. In summary, F(0) is a universal estimator of F () for general statistical model,
which is independent of neural network architectures and applicable to non-neural network models.
Hutchinson’s estimate has guaranteed quality, as formally established below.

Proposition 11. Ep(g) (F(0) = FO). If p(&) is standard multivariate Gaussian, then
Var(F;;(0)) = 2F;;(0)?; if p(€) is standard multivariate Rademacher, Var(F;;(0)) = 2F;;(0)? —

2 en, Yyt PP 2)(52)"

It is known that Rademacher distribution yields smaller variance for Hutchinson’s estimator compared
to the Gaussian distribution. In what follows, p(£) is Rademacher by default. By Proposition 11,

Std(F;(0)) < v/2F;:(#). Thus the CV Std(F;(0))/Fis (6) is bounded by v/2. We only investigate



the diagonal of Hutchinson’s estimate because the diagonal FIM is widely used, but our results can
be readily extended to off-diagonal entries.

Remark. Taking trace on both sides of Ey¢) (F(0)) = F(0), we get Ep¢) (|| dh |1?) = tr(F(0)). The

squared Euclidean-norm of % is an unbiased estimate of the trace of the FIM. This is useful for
computing related regularizers (Peebles et al., 2020).

Note that a sample of the random matrix F(6) is always rank-1: rankF(d) = 1 < rank F(6),
but the expectation of F(#) has the same rank as F(6). Ideally, one can compute the numerical
average of more than one F(6) samples to reduce variance and recover the rank, each requiring a
separate backward pass. Due to computational constraints in deep learning practice, much fewer
(e.g., 1) samples are used. Instead, accumulated statistics along the learning path §; — 65 — - - -
can be used to maintain a (exponential) moving average of F(6;). The underlying assumption is
that 61,05, - - - connected by small learning steps lie close to one another in the parameter space.
Therefore, averaging F(6;) provides a reasonable approximation of the local FIM with sufficient
rank.

4.3 DIAGONAL CORE

For multi-label classification, and for computing the upper bound in Proposition 5, the core matrix
is diagonal, in the form ZP%(z(z,0)) = diag (¢i(z,0),--- ,{c(x,0)), and the associated FIM
is FP9(0) = X cp. (gg)T PG (2 (x 0)) - 2. In the former case, (,(z,0) = p(y|z,0)(1 —
p(y|x,0)); in the latter case, ¢, (z,0) = p(y |, 9) Here, the tensor superscript — e.g., “DG” for

diagonal or “LR” for low-rank — 1ndlcates the parametric form of the core FIM, in contrast to
denoting the core space as in Z. We define the scalar valued function

IEOESY Z\/cy 2,0)2y(2,0)Eay, (7

€D, y=1
where &, are standard Rademacher samples that are independent across all z and y. Similar to
G
the derivation steps in section I, we first compute the random vector 8%0 through AD, and then

compute FP%(0) := 8?;;(} 8;9DTG (or its diagonal blocks) to estimate 7P ().

For computing the upper bound in Proposition 5, ¢, (z, ) = p,(z, 6), then we find that Eq. (5) and
Eq (7) are similar. The only difference is that, the “raw” logits z, in Eq. (7) is replaced by £, (0) =

—log )=, exp(z,) in Eq. (5). Compared to 59, the gradient = ‘%” = az,, - >, p(y|z,0)%; 92y g
centered Due to their computational similarity, in practice, one should use Eq 5) 1nstead of Eq (7)
and get an unbiased estimate of 2 (). Eq. (7) is useful when the dimensions of y are conditional
independent given , e.g. for computing F< ().

4.4 Low RANK CORE

By Lemma 2, the FIM of the core space A has a rank-1 lower bound Z2 (z) = ZVR(2) :== Acvevd:.
By Proposition 5, F2 () = FLR(9) == > wep, Ao(T,0) (@)T ve(z, 0)vl (2, 0)%. We define

hER(6) Z /A (z,0) vC z,0)z(x,0)&,, )

€D,

where &, are independent standard Rademacher samples. For computing h%(6), we only need | D, |
Rademacher samples, as compared to C|D,,| samples for computing h(#) and hP%(¢). Correspond-

ingly, FLR(9) == agZR %‘);TR is used to estimate 7% (). Note that h, ) and h™F can be computed

solely based on the neural network output logits z(x, #) for each x € D,.

We remain to solve A¢(z, 8) and ve(x, 0) for each « € D,. They can be conveniently computed
based on the power iteration. By Eq. (3), starting from a random unit vector v, we compute
t+1 _ ° (Z)Utc po Utc — pTUtcp

“IZAGRell  llpove —pTvepl




fort = 1,2,---, until convergence or until a fixed number of iterations is reached. Then, A\¢ =
p' (vcove)—(pTve)?. The overall computational complexity to compute A and ve for all z € D,
is O(MC|D,|), where M (e.g. M = 10) is the maximum number of iteration steps.

4.5 NUMERICAL SIMULATIONS

To provide intuition, we compute the diagonal FIM of DistilBERT (Sanh et al., 2019), pretrained by
Hugging Face (Wolf et al., 2020) * combined with a randomly initialized classification head (two
dense layers) for AG News (Zhang et al., 2015) topic classification (C' = 4 classes). More detailed
quantitative results and another representative case is provided in section B, where DistilBERT is fine-
tuned on the Stanford Sentiment Treebank v2 (SST-2) (Socher et al., 2013), and the FIM is computed
in regions of © corresponding to a more confident model. Figure 1 shows the normalized density plots
of F2%(#) (Hutchinson’s estimate of the upper bound in Proposition 5), F;; (#) (Hutchinson’s unbiased
estimate), FER(G) (Hutchinson’s estiamte of the lower bound in Proposition 5), and the empirical FIM
.7%(9) All estimators use the first 128 data samples to compute the FIM. All Hutchinson estimators
use 10 samples for variance reduction. Due to the pathological structure (Karakida et al., 2021) of the
FIM, all densities exhibit a spike near zero and become sparse on large Fisher information values.
For example, all layers have more than 20% of their parameters with IF;; < 1075, The visualization
is smoothed out on a logarithmic y-axis. The mean values of these densities are reflected on the
low-right corner of the subplots (up to a scaling factor). Across the layers, the classification head has
the largest scale of Fisher information and the embedding layer has the lowest scale. In general, the
deeper layers (close to the input) have smaller values of IF;;. The scale of FBG appears larger than IF;;,
which in turn is larger than F:R. This makes sense as the expected values of F2¢ and FL are upper
and lower bounds of the expected values of F;;, respectively. The scale of ]:'ii is not informative as
the others regarding F;; because it is biased. The classification head is not trained and hence has

large gradient values, leading to large values of F;.
Embedding Layer TL2 TL4 TL6
Transformer Layer 1 (TL1) TL3 TL5 Classification Head

FRG
1
0 0.003 0 0.016 0 0.045 0 0.063 0 0.105 0 0.092 0 0.124 0 22.410
Fz’i
0 0.002 0 0.011 0 0.025 0 0.040 0 0.069 0 0.060 0 0.080 0 12.165
FLE

0 7.64e-04 0 0.005 0 0.013 0 0.017 0 0.031 0 0.027 0 0.038 0 6.171

Fii
0 0.008 0 0.123 0 0.211 0 0.673 0 1.355 0 1.209 0 1.660 0 503.080

Figure 1: Density plots (based on kernel density estimation with a small bandwidth) of diagonal FIM
elements based on different approximations (rows) across different layers (columns) of DistilBERT
on the AG News dataset. The four rows, from top to bottom, represent Hutchinson’s estimates
FPG (), F(6), FR(6), and the eFIM F (). The columns are arranged from layers close to the input
(left) to those near the output (right). In each subplot, the maximum value of the x-axis (number on
the bottom right corner) shows the mean value of the FIM multiplied by 2,000. The y-axis means
probability density in log-scale.

3Available as distilbert-base-uncased in the Hugging Face library.



In the experiments, we find that the computational speeds of FP¢ and FF are very similar. Computing
FLR is slightly more expensive, with a computational overhead scaling with the number of classes C,
because FLF requires the power iteration to compute A¢ and ve. F is unbiased, whereas both FP
and F'R are biased. For F&E, the Hutchinson probe has a lower dimensionality, leading to a better
bias-variance trade-off than F and FPC in our experiments.

5 RELATED WORK

A prominent application of Fisher information in deep learning is the natural gradient (Amari, 1998)
and its variants. The Adam optimizer (Kingma & Ba, 2015) uses the empirical diagonal FIM.
Efforts have been made to obtain more accurate approximations of F(#) at the expense of higher
computational cost, such as modeling the diagonal blocks of F(6) with Kronecker product (Martens,
2020) of component-wise FIM (Ollivier, 2015; Sun & Nielsen, 2017), or computing F(#) through
low rank approximations (Le Roux et al., 2007; Botev et al., 2017). The FIM can be alternatively
defined on a sub-model (Sun & Nielsen, 2017) instead of the global mapping x — y or based on
a-embeddings of a parametric family (Nielsen, 2017). AdaHessian (Yao et al., 2021) uses Hutchinson
probes to approximate the diagonal Hessian.

From theoretical perspectives, the quality of Kronecker approximation is discussed (Martens &
Grosse, 2015) with its error bounded. It is well known that the eFIM differs from F(6) (Pascanu &
Bengio, 2014; Martens, 2020; Kunstner et al., 2020) and leads to distinct optimization paths. The
accuracy of two different MC approximations of F(6) is analyzed (Guo & Spall, 2019; Soen & Sun,
2021; 2024; Sun & Spall, 2021), which lie in the framework of MC information geometry (Nielsen &
Hadjeres, 2019). By our analysis, the Hutchinson’s estimate () has unique advantages over both

MC and the eFIM. Notably, the MC estimate in section 4.1 needs to compute 8:;“;@ for each x € D,,

while F(6) only needs to evaluate one gradient vector %. Our bounds improves over existing bounds,
e.g. those of F(6) (Soen & Sun, 2024), through carefully analyzing the core space.

The Hutchinson’s stochastic trace estimator is used to estimate the trace of the FIM (Jastrzebski
et al., 2021), or the FIM for Gaussian processes (Stein et al., 2013; Geoga et al., 2020) where
the FIM entries are in the form of a trace. Closely related to this is computations around the
Hessian, where Hutchinson’s trick is applied to compute the Hessian trace (Hu et al., 2024), or the
principal curvature (Bottcher & Wheeler, 2024), or related regularizers (Peebles et al., 2020). The
Hessian trace estimator is implemented in deep learning libraries (Dangel et al., 2020; Yao et al.,
2020) and usually relies on the Hessian-vector product. As a natural yet important next step, our
estimators leverage both Hutchinson’s trick and AD’s interfaces, avoid the need for expensive Hessian
computations/approximations, and are well-suited in scalable settings. In Eq. (6), we perform a
double contraction of a high dimensional tensor indexed by x, y, ', ¥/, ¢ and j (i and j are indices
of the FIM) and thereby obtain an unbiased estimator of the full metric tensor () including its
substructures and trace. Our estimator can be applied to different classification networks regardless
of the network architecture.

6 CONCLUSION

We explore the FIM F of classifier networks, focusing on the case of multi-class classification.
We provide deterministic lower and upper bounds of the FIM based on related bounds in the low
dimensional core space. We discover a new family of random estimators I based on Hutchinson’s
trace estimator. Their estimate has guaranteed quality with bounded variance and can be computed
efficiently through auto-differentiation. The proposed F is readily integrated into deep learning
libraries (Dangel et al., 2020; Yao et al., 2020) for efficiently evaluating the FIM or the Hessian. Our
analysis in the core space gives insights and useful tools for information geometry where the simplex
is widely used. As a limitation, the results here address novel computation of F but are not directly
piped into a downstream application that uses the proposed F. For example, new deep learning
optimizers based on the proposed F, are not developed here and left as future work. Advanced
variance reduction techniques (Meyer et al., 2021) that could improve our proposed random estimator
[F() remain to be investigated.
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A FURTHER ANALYSIS IN THE CORE SPACE

The lemma below gives the average error (variance) of using R(y) to estimate Z(z), where y is a
random variable distributed according to p(y | z).

Lemma 12. The element-wise variance of the random matrix R(y), denoted by Var(R;;), is given
by

pip;(pi + pj — 4pip;) otherwise.

Vi, j, Var(R;;) < 1/16. For both diagonal and off-diagonal entries, the coefficient of variation (CV)
Std(Ri;)/|Z (2)| can be arbitrarily large, where Std(-) means standard deviation.

Var(R;;) = { pi(1=p)(1 = 4pi(1 = pi))  ifi = s

By Lemma 12, when using the rank-1 matrix R(y) as an estimator of Z2(z), the absolute error
is bounded, but the relative error given by the CV is unbounded. One may alternatively use the
rank-2 random matrix R'(y) = e,, — pp' to estimate Z%(z). Obviously we have E(R'(y)) =
diag (p) — pp” = Z?(z) and thus R'(y) is unbiased. The variance appears only on the diagonal
while all off-diagonal entries are deterministic with zero-variance. This R’(y) is not used in our
developments but is of theoretical interest.

B EXPERIMENTS ON SST-2

We compute the diagonal FIM of DistilBERT (Sanh et al., 2019), which is fine-tuned on the Stanford
Sentiment Treebank v2 (SST-2) (Socher et al., 2013) for binary sentiment classification. The model is
available as distilbert-base-uncased-finetuned-sst-2-english in the Hugging
Face library (Wolf et al., 2020). The density of diagonal FIM entries are shown in fig. 2. There
are two differences with the AG News experiment in the main text: (1) The number of classes has
reduced to C' = 2; (2) The model is already fine-tuned and the Fisher information is evaluated on a
different region in the parameter space compared to the AG News case. Note FL! is very close to
and sometimes larger than the value of F;;. This is because when C' = 2, the core matrix is already
rank-1. And IF and F'® are essentially different (unbiased) estimators of F. The scale of the upper
bound FBG is much larger than F;; showing that the bound is loose. All numerical results presented
here are performed on a MacBook Pro with Apple M1 CPU and 16GB RAM.

Estimating the underlying true (diagonal) FIM for real DNNSs is a challenging problem by itself
due to the pathological spectra (Karakida et al., 2021) of F and that many of its diagonal entries
are close to zero and may require higher precision. We simulate the ground truth F(6) given by
Hutchinson’s estimate using the numerical average of 32 different F(#), each independently computed
via a Rademacher vector and an associated backward pass. Because F(6) is unbiased, the empirical
average would uncover the true F(6) by the law of large numbers. The Monte Carlo FIM estimator is
computationally infeasible in this realistic DNN case and less helpful to compute F(6) — it requires
a separate backward pass for each sample in a mini-batch.

Tables 2 and 3 report the mean absolute error (MAE) of the investigated estimators as compared to
the “ground truth” for DistiIBERT on AG News and SST-2. One can easily observe that F is more

accurate than the empirical FIM F. Among the estimators, FLR gives more accurate estimates than
FPG | which is consistent with our theoretical analysis.
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Figure 2: Density plots of diagonal FIM elements based on different approximations (rows) across
different layers (columns) on DistilBERT fine-tuned on the SST-2 dataset. The maximum value of
the x-axis (number on the bottom right corner) shows the mean value of the FIM multiplied by 2,000.
The y-axis means probability density in log-scale.

Table 2: Estimation error of the diagonal FIM for DistilBERT on AG News with two significant
figures. The unit of the error in MAE is 1075,

Embedding TL1 TL2 TL3 TL4 TL5 TL6 Classification Head
F 0.11 073 14 22 39 49 6.5 910
F 0.34 6.1 13 24 55 77 120 25,000
FPG 0.13 081 14 20 32 38 5.1 660
FLR 0.083 061 11 17 31 38 52 820

Table 3: Estimation error of the diagonal FIM for DistilBERT (fine-tuned) on SST-2 with two

significant figures. The unit of the error in MAE is 107°.

Embedding TL1 TL2 TL3 TL4 TL5 TL6 Classification Head
F 2.5 84 15 15 92 16 024 9.4
F 19 51 88 110 110 17 25 62
FPG 110 290 440 490 360 74 22 3,300
FLR 1.2 72 11 12 94 15 022 9.8

C ACCURACY OF HUTCHINSON’S ESTIMATE ON DIAGONAL AND LOW RANK
CORES

In this section, we show that Hutchinson’s estimates F°S(#) and F“?(6) are both unbiased with
bounded variances.

Proposition 13. The random matrix FPS (0) is an unbiased estimator of FP%(0). The variance of
its diagonal elements is Var (FS(0)) = 2(FR9(0))* =23 cp. 25:1 o, 9)(3—29?:)4.
Proposition 14. FYR(0) is an unbiased estimate of F“(0); the variance of its diagonal elements is

Var (FIF(0)) = 2(F5R0))” — 25, ep, Vel 0) (o5 (20035 )
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We have Std(FR¢(6))/FPS(#) < /2 by Proposition 13, and at the same time, we have
Std(FER(6))/FER(9) < /2 by Proposition 14. Their estimation quality is guaranteed.

D PROOF OF THEOREM |

Proof. We already know the closed form FIM

I%(z) = diag (p) —pp -
Therefore
C
I%(2)e = (diag (p) —pp')e = p — (Zm) p=p-p=0.
=1

Therefore te, t € R is a one-dimensional kernel of Z2(z). Since Z2(z) = 0, we must have \; = 0,
and v; =

To show the sum of the eigenvalues of Z2(z), we have
oi
> A = te(T7(2)) = tr(diag (p)) — tr(pp") =1 —tr(p'p) =1—p p=1—p|*.

In below, we consider the maximum eigenvalue Ac. We know that

Ao = sup u' Z?(2)u.
llull=1

Therefore
Vi, Ao > eI%(2)e; =I5 (2) = pi(1 — pi).

Therefore A¢ > max; p;(1 — p;). At the same time, because \; = 0, we have

Mo

Ai=Xd+ A3+ + A < (C—1)Ac.
=1

Therefore .
) _ 2
Ao > Zi:l Ai _ 1 Hp” .
-1 Cc-1

Because
diag (p) =Z%(z) +pp'.

By the Cauchy’s interlacing theorem, we have
Ac-1 < pc-1) < Ac < poy-

It remains to prove the upper bounds of A¢. First, we have

Ao = sup uTIA(z Ju. = sup (szu - p U )

[lufl=1 IuH 1
c

< s > _piuf =maxp; = p(c),
lull=1%25

which has just been proved using Cauchy’s interlacing theorem.

By the Gershgorin circle theorem, A- must lie in one of the Gershgorin discs, given by the closed
intervals

pi(1—pi) szpj,pzl—pl +szpj , i=1,---,C.
el J#
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Therefore
Ac < max | pi(1 —pi) + > v
JFi
= max (pi(1 = pi) + pi(1 = pi)) = 2maxpi(1 - pi).

Because Z2(2) = 0,
c
Ao <Y Ai=1—pl
i=1

The statement follows immediately by combining the above lower and upper bounds of A\¢. O

E PROOF OF LEMMA 2

Proof. Because Z°(z) = 0. All its eigenvalues are greater or equal to 0. We have
c-1
T2(2) — Aovovl = Z v = 0.
i=1
To show that Acvcv/; is the best rank-1 representation. Assume that Ju # 0, such that Z2(z) =
uu! = Acvcvg. Then
VL TR (2)ve = Ao > (vhu)? > Ac.

vhu = £/ Ac.

c
Assume that u = 22:1 o;v;, then g = vgu = ++/A¢. Moreover, we have

Therefore

uT u ’U,—r u c
Ao > T8 (2) > —un = [l =) af.
[l [l = Jlull ull P

Therefore Vi # C, a; = 0. In summary, u = ++v/Acve. Hence, uu' = )\Cvcvg.

We have
diag (p) — (=) = diag (p) — (diag (p) —pp") = pp" = 0.
Therefore diag (p) = Z(z). Assume that diag (q) satisfies

I%(z) = diag (q) = diag (p) .

Then
diag (p) —Z%(z) = pp" = diag (q) — I%(2) = 0.
Therefore
diag (q) — I%(2) = Bpp" (B < 1).
Consequently,

diag (q) = Z%(2) + Bpp" = diag (p) —pp" + fpp" = diag (p) + (8 — L)pp .
Therefore all off-diagonal entries of (3 — 1)pp ' are zero. We must have 3 = 1 and thus diag (¢) =
diag (p). O

F PROOF OF LEMMA 3

Proof.

Q
L
Q
L

c—-1
Povevd =T =11 ) Al || = AP () A)?
i=1 3

«
Il
-
.
Il
-

-1

= > A =tr(T(2) = Ao = L= [|p||* = Ao

i=1
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By Theorem 1, we have A\¢ > P(Cc—1)- Therefore
[Acvevd —T2(2) < 1= [lpll* = pic—1)-

By Cauchy’s interlacing theorem (see our proof of Theorem 1), we have

Vie{l,---,C =1}, X <pu.

Hence
c-1 c—-1 c-1
Nevevd —T2(:) = | A2 = AP S| Doy
i=1 =2 1=2

The statement follows immediately by combining the above upper bounds.

G PROOF OF LEMMA 4

Proof. The spectrum of R(y) is
0<- <0< |ley—pl*
The spectrum of Z4(z), by our assumption, is

A< < Ao S e

By Hoffman-Wielandt inequality, we have Vz € A¢~1, y € {1,--- ,C}

1R(y) — 22 (2)]

Y

c-1
DN+ (Ao = ey —plI?)?
i=1

Ao — lley — pl?|

=|A\¢ — e;rey —p'p+ 26Jp|

Ao =1 = [Ipll* + 2py|

max{Ac — 1 — [l +2py, 1+ [p|* = Ac — 2p,}-

By Theorem 1, we have Ac < 1 — ||p||*. One can choose y so that p, = p(1), then
IR(y) = Z2(2) | > 1+ [Ipll* = Ac = 2pq)
> 1+ [l = (1= lIpll*) = 2pqy
= 2|pl* — 2p()-

H PROOF OF LEMMA 12

Proof. We first look at the diagonal entries of R. We have

R’LZ - ([[y - Z]] pl) - { p% otherwise.

Therefore N
E(Rii) = pi(1 —pi)* + (1 = pi)pi = pi(1 = pi) = I3 ().
This shows that R;; is an unbiased estimator of the diagonal entries of Z (). We have
E(R%) = pi(1 = pi)* + (L= pi)pi = pi(1—pi) [ = pi)* + p]]
=pi(1—p) [1—p)®> —pi(1—p;) + 7] .

17



Therefore
Var(Ri;) = E(R};) — (E(Rii))?
(1—pi) [(1=p)* = pi(1 = pi) + p}] — i (1 — pi)?
(1—pi) [(1 = pi)* = 2pi(1 = pi) + P}
pi(1 —pi)(1 —4pi(1 — p;))
I3 (2)(1 — 473 (2))

(22

2
1 1 1
=4 (Iﬁ(z)—) + <.

The coefficient of variation (CV)

\/Var Rii) \/ 4IA( D[,

73 (2)

=Di
= Di

K3

is unbounded. As 74 (z) — 0, the CV can take arbitrarily large value.
Next, we consider the off-diagonal entries of R. For i # j, we have
Rij=(ly=1i] —pi)(ly =] -
=pip; — [y =ip; — [y = jlp:.
Hence,
E(Rij) = pipj — pjp; — pjpi = —pip; = 155 (2).
At the same time,
E(R}) = E (pip; — [y = ilp; — [y = 5]p:)*
=pip; +E([y = i]]p? + [y = jlp} — 2y = ilpiv; — 2[y = jlpip;)
= p?p] + pmJ + p;p; — 2pip; — 2pip;
= pip; + pip; — ;D]
= pipj(pi +pj — 3pip;)-
Therefore
Var(R;;) = E(R;;) — (E(R;;))”
= pip; (pi + pj — 3pip;) — DiD;
= pip; (pi + pj — 4pip;)
< pip; (1 — 4pip;)

A 1 2+ 1 _1
Pibi — g 16 = 16°
The coefficient of variation

m \/plpj pz+pj 4pipj):\/1+1_4

pip; pi Dj

is unbounded. As either p; — 0, or p; — 0, the CV can take arbitrarily large value.

I PROOF OF PROPOSITION 5

Proof. By Lemma 2, we have
Aovovd = IA(2) < diag (p) .

Therefore
9z 9z (0z\' A 0z (0z\ .. 0z
el < (= = =
Yz, 0 <80> /\Cvcvcao_<80> I (2(x, 9))80_<69) dlag(p)ae

18



Therefore

W Z A o= Tv vT% = Z oz TIA(z(Jc 9))% =< Z zC: 0z 0
“\ao) "0 = 20 0 = 2 29 a7
€D, €D, zeD, i=1
O
J PROOF OF COROLLARY 6
Proof. We first prove the upper bound. By Proposition 5, we have
0z 02
A i 0%
FEO= 2 2 vy pgr
€D, i=1
Taking trace on both sides, we get
¢ 0z 0%z
A ) i
tr(FA0) < > Zpitr (aeam)
€D, i=1
B Z ip-tr(azi 82'2)
= i -
€D, =1 89 80
- Z Ec:p 621 821
= i T
€D, i=1 90" 00
-y XC: |12 i
- K]
zeD, i=1 09
The lower bound is not straightforward from Proposition 5. By Eq. (2), we have
oz\ 0z 0z (02
A _ oz NN oz [0z A
tr(F2()) = ZtrKaa) T (2)39] > ot lae (ae) T (z)].
€D, €D,
Note that %2 (%)T is a C' x C matrix with sorted eigenvalues 0%(z,0) < --- < 02 (x,0). By

Theorem 1, Z2(z) is another C' x C matrix with sorted eigenvalues 0 = 1 (z,0) < --- < A\c(z, ).
Applying the Von Neumann trace inequality, we get

C
w(F20) > 3 S N, 002 (@,0) > 3 Aele,0)07 (2, ).

rE€D, 1=2 €D,

The last “>" is because all terms \; (z,0)0¢_; ,, (2, 0) are non-negative. O

K PROOF OF PROPOSITION 7

Proof. Denote the singular values of % as 0 < o7 < --- < o¢. Then the eigenvalues of the C' x C'

.. - 0z (0z T. 2 L 2
Hermitian matrix 3 (89) 1so7 < <og.

19



To prove the upper bound, we have

(8%) 0z _FAp)
xeD =1

- < ) (diag (p) — diag (p) + pp") 8—;
€D,

.
52
-2 (% ) 5
@ B
= 2) ™ 5
9z (0z\ "
=y pT* =] p
\ 00 \ 00
xE€D.
9z (0 ’
z ya
< [p ae( ) p]
xeD.
-y e (%)Tp
ot 00 \ 00

= Z Ip|? - i% <62>T r
Ipll 060 \ 06/ |Ipll

€Dy

<> lnlPoe.

€Dy

L1Ng

Now we are ready to prove the lower bound. From the above, we have

02\ | 0z 9z\' -0
ZZPz(Jé) ;9 — F2(0) > (az> ppTaf;

€D, i=1 €D,

Denote w(zx) = (%)T p. Then

c
0z; 0z; A
> pz< ) — FA(9)
€D, 1 80 80

1=

Il
-+
=
//
8
m
g
&
oS
£
=)
_‘
N~
[\v]
~

vV
]
£

&
=
&
2
<

I
8
Elng

?

%

The last “>" is due to
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L  PROOF OF PROPOSITION 8§

Proof. We can first have a loose bound:

9z\ o
Z )\c <6;> vcvga—Z—}'A(@)

x€D,
92\ T 0z az\ NN
x€D, €Dy
8z)T (Cf T) 0z
= Z — )\ivivi -
€D, <89 =1 89
9z\ | 0z =
< Z Pc-1) <80) 2% (Due to that Z )\iviv: 2 pic-1)l)
€D, i=1
0z (02\ "
< Z P (|55 (89)
xED,

B c-1 T /C-1
(e o) 2 (2 ot ) 2
=tr <89> Z Ai;0; ) 70 (89) (Z A0, ) 89]
(2 (o
—1\ a0 \ 99

Due to tr(AB)? < tr(A%B?)

4 2
< Tip1 i
i=2
The last “<” is due to Von Neumann'’s trace inequality, and that the smallest two eigenvalues of the
matrix Zf:ll Mv;v,” are both zero. We also have the Cauchy interlacing

A2 <pe)y < A3 <pi) < < Ac-1 < pe-1)-

To sum up,

92\ " 0
> ae(55) el - Fo0)

€D,
02\ (& T\ 0z
< —_— SITR huiad
—%; <ae) <2 A | 5

c-1
= Z \ Z TN
=2

c—-1
<D 2 hargy
=2
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If one relax Vi € {2,--- ,C — 1}, p;y < pc—1)» then we get the loose bound proved earlier.

M PROOF OF PROPOSITION 9

Proof.
) 92\ " )
707200 =| ¥ (2) 2w 25 (Z) @-ne -0
€D, €Dy
-1z (g) [diag (5) 207 — (e — D)oy~ )] 2
0z 0
P> (2) faios) " ey~ tes 97 2
0 0
< 3 |5 Naine o) =0 = e, = p10es =, | 5
€Dy
=Zac|ldiag )—pp' —(ey —p)(ey —p) ||
€Dy

o2

Now we examine the matrix diag (p) — pp' — (e, — p)(e, — p) ". By Theorem 1, the spectrum of

diag (p) — pp"
AM=0< <<

By Cauchy interlacing theorem, the spectrum of diag (p) — pp' — (e, — p)(ey
AL, -+, Ap, must satisfy

A< =0< N, << <A< A
with at least one eigenvalue that is not positive: \] < 0. Therefore

|diag (p) — pp" — (ey —p)(ey — p) ||, < max{-\, Ac}.
‘We also have

= inf ul [diag(p) —pp" = (ey —p)ey —p) ]

= uZHiirLle:l —u’ [(ey = p)ey —p) "] u

=—(ey —p) (ey — )
=—(1+p'p—2py)

—p)", given by

=2p, — 1 —[|p]*.
Therefore
||diag (p) —pp' — (e, —p)(ey —p)THU < max{1+ [[p||* — 2py, Ac}
< max{1+ [|p[|® — 2p,, 1 — ||Ip||*}
<1+ |lp*.
In summary,

IF@O) = FAO)s < D o1+ ]lp]).

zED,
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N PROOF OF PROPOSITION 10

Proof.

0
.
() - [Peen -] G
T
= su %“T'ia —T—e—e—T.%u
_u:Hqu:l (89 > [diag (p) —pp" — (ey —p)(ey —p) "] (89 )
> sup |oayv- [diag(p) —pp" — (ey —p)(ey —p) "] - 01|

villoll=1
>of)||diag (p) — pp" — (ey —p)(ey =) |lo

<W>T ((ey = p)ey —p) T = Ao) T2

>o?
W1\ Jley — pll ey — pll

=a(y |ley = plI> = Ac|
20(21) ‘1 + ||p||2 — Ao — 2py| :

We choose p, = p(1), therefore Jy, such that

Z(7(21) |1 + HPH2 —Ac — 2P(l)| .

og

O PROOF OF PROPOSITION 11

Proof. From the derivations in the main text, we already know that E, ¢ [(6) = Z(6). To show
the estimator variance, we first consider the case when p(€) is a standard multivariate Gaussian
distribution. First we note that both h(D,, #) and 9h/00; are in the form of a sum of independent
Gaussian random variables. Hence,

o c Dy ¢ O,
= Y VBT 0t ~ 6 0.3 Yoot (5

)

€D, y=1 €D, y=1
Therefore
E = p(y|z,0) -] =TZu(0);
p() (392' mzpjm yz::l 96,
%Y )
E =3Z;(6).
p(€) (aei ©)
Therefore

e (N g g
Var(l(6)) = & (55 ) ~Zi0) = 222(0)
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We now consider that p(¢) is Rademacher.

- g (2)(s(2))

= Zp (y]z,0) (azw)

€D,
+3 >
(@) #(z,y")
Note that

- (Z fjpww)(

’I‘EDT y=1

z€D, y=1

Hence,

Var(1(0;)) = 3Z2(0) — 2 Z Zp (y|z,0) (

= 272(0

bty l.0) (G2

2
0y \ >
0;

ZZP (y|z,0) (C%”) +(

z€D, y=1

zzzp y|xa<

€D, y=1

P PROOF OF PROPOSITION 13

Proof.

DG
5 (00) = & (205
p(§) p(&)

€D, y=1a'€D,

c
> > G0

€D, y=1

=2 (2;)21»%9»

x€Dy
= FPG(0).

o DG
90 00T )

p(é)(zzvcyxeazy@y Z Z\/Cy @', 0) 8zy g7 STy
z€D, y=1

2
o Olyry
) o 1a0) (%

' €Dy y'=1

y'=1
azy Ozy
20 00T

24

0z

a0

Ozy Ozy

3 Z 3 Z Vol 0y/er @, 05t =

T

)

— 72

> atwle (%) a0

z,y)# (@' y’)

(§xy§x )

)



Therefore,

9 DG\ 2 C 9z 2
g (200) - B (%) - X Yawo(52) -0

p(§)

€D, y=1
4
abDG>4 c 9
c 4
0z 8z 0z
=2 > G (5r) +3 D @) (5 <y( 0) | =y
€D, y=1 (z,y)#(=",y")
c 92\ 4
DG \2 2 y
=300 -2 32 S o (5)

Hence,

Q PROOF OF PROPOSITION 14
Proof. The proof is similar to Proposition 13 and is also based on the Hutchinson’s trick.

E (F(0))

p(€)
abLRahLR
- 5 (%7 %)
p&) \ 00 00

P(©) (m;; m(ﬁe) (@08 Y VAo, Ouela',0)" (g;) fw)

/€D,
=3 e(z,0) (82) oz, 0)ve(z,0)7 (g;)
€D,
= 7).
Therefore

LR () — 0\ " RPN
E(F(0) = 3 Ac@0) | (55 ) vel@0)) =Fi0)

€D,

OpLR 4 4
= VA x@v (z,0)
p(ﬁ)( aei) p(f meZD C 69
92\
:Z)\Q z9)<v0($9)69>
€D,
£33 el (10602 ) rctet0) (w02
= c\T, Vo T, 801 cl\x, Vo \T, 892
92\ 4
3FF0)7 -2 > Ne(,0) (v a;e)%) :

€D,
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1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Hence,
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