
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

DETERMINISTIC BOUNDS AND RANDOM ESTIMATES
OF METRIC TENSORS ON NEUROMANIFOLDS

Anonymous authors
Paper under double-blind review

ABSTRACT

The high dimensional parameter space of modern deep neural networks — the
neuromanifold — is endowed with a unique metric tensor defined by the Fisher
information, estimating which is crucial for both theory and practical methods
in deep learning. To analyze this tensor for classification networks, we return
to a low dimensional space of probability distributions — the core space — and
carefully analyze the spectrum of its Riemannian metric. We extend our discoveries
there into deterministic bounds of the metric tensor on the neuromanifold. We
introduce an unbiased random estimate of the metric tensor and its bounds based
on Hutchinson’s trace estimator. It can be evaluated efficiently through a single
backward pass, with a standard deviation bounded by the true value up to scaling.

1 INTRODUCTION

Deep learning can be considered as a trajectory through the space of neural networks (neuromani-
fold; Amari 2016), where each point is a neural network instance with a prescribed architecture but
different parameters. This work investigates classifier models in the form p(y |x, θ), where x is the
input features, y ∈ {1, · · · , C} is the class labels (C ≥ 2), and θ ∈ Θ is the network weights and
biases. Given an unlabeled dataset Dx = {x1, x2, · · · }, the intrinsic structure of Θ is specified by the
Fisher Information Matrix (FIM), defined as:

F(θ) :=
∑
x∈Dx

E
p(y | x)

[
∂ log p(y |x, θ)

∂θ

∂ log p(y |x, θ)
∂θ⊤

]
=
∑
x∈Dx

E
p(y | x)

[
∂ℓxy
∂θ

∂ℓxy
∂θ⊤

]
, (1)

where ℓxy(θ) := log p(y |x, θ) denotes the log-likelihood. This is based on a supervised model
x → y. For unsupervised models, one can treat x as constant and apply the same formula. Under
regularity conditions, F(θ) is a dim(θ)×dim(θ) positive semi-definite (psd) matrix varying smoothly
with θ ∈ Θ. Following Hotelling (1929), and independently Rao (1945), F(θ) is used as a metric
tensor on Θ, representing a local degenerate inner product1. For example, one can measure the
intrinsic squared distance between θ and θ + dθ, where dθ is a small dynamic on Θ, as dθ⊤F(θ)dθ.

The FIM is the unique metric tensor (Čencov, 1982) which underpins the information geometry
of the neuromanifold Θ (Amari, 2016). The most widely used application of the FIM is perhaps
geometry-inspired optimizers such as natural gradient (Amari, 1998), Adam (Kingma & Ba, 2015),
and their variants (Martens & Grosse, 2015; Pascanu & Bengio, 2014; Yao et al., 2021; Lin et al.,
2021). F is also applied to regularized fine-tuning (Lodha et al., 2023), pruning (Heskes, 2000; Tu
et al., 2016) transfer learning (Chen et al., 2018), and overcoming catastrophic forgetting (Kirkpatrick
et al., 2017). Theoretically, the FIM provides insights due to its connection with the Hessian of the
loss landscape and generalization (Hochreiter & Schmidhuber, 1997), and that any f -divergence is
locally characterized by the FIM (Blyth, 1994).

Given its deep and broad background, estimating F(θ) with guaranteed quality is important even in
the absence of a specific application pipeline. Inaccurate estimates can lead to overly aggressive or
overly conservative learning steps (Amari, 1998), or miscalculated saliency scores and suboptimal
pruning decisions (Tu et al., 2016). In learning theory, a loosely estimated FIM undermines the validity

1In the machine learning literature, F(θ) is sometimes referred to as a curvature matrix (Martens, 2020) but
actually defines a singular semi-Riemannian metric (Sun & Nielsen, 2025) in rigorous terms.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

of geodesic distances and the applicability of Cramér–Rao lower bounds, and may distort curvature-
based sharpness, which is closely linked to generalization (Hochreiter & Schmidhuber, 1997). As a
widely used deterministic approximation, the empirical FIM (eFIM, a.k.a. empirical Fisher, see e.g. Le
Roux et al. 2007) is given by F(θ) :=

∑
(x,y)∈D

[
∂ℓxy

∂θ
∂ℓxy

∂θ⊤

]
, where D = {(x1, y1), (x2, y2), · · · } is

a labeled dataset. As another example, the Monte Carlo (MC) estimator F̂(θ) = 1
m

∑
x̂,ŷ

∂ℓx̂ŷ

∂θ
∂ℓx̂ŷ

∂θ⊤ ,
where x̂, ŷ are a set of m random samples drawn from Dx and p(y | x̂), respectively, gives an unbiased
estimate of F(θ) up to scaling.

We advance the state of the art in both deterministic and stochastic approaches to computing the FIM,
improving accuracy in terms of bound gap and variance. We made the following contributions: ①
Envelopes of the FIM in the statistical simplex (space of output probabilities); ② Deterministic bounds
of the FIM for classifier networks and their tightness analysis; ③ A novel family of random FIM
estimates based on Hutchinson’s trick (Hutchinson, 1990; Skorski, 2021), which can be computed
efficiently with bounded variance; ④ An empirical study to estimate the FIM of DistilBert (Sanh
et al., 2019) to showcase the advantages of Hutchinson’s estimate in production settings.

In the rest of this section, we introduce our notations. Section 2 develops fundamental bounds and
estimates in low dimensional spaces of probability distributions. Section 3 extends the deterministic
bounds into the high dimensional neuromanifold. Section 4 introduces Hutchinson’s FIM estimator
and discusses its theoretical properties with numerical simulation on DistilBERT (Sanh et al., 2019).
Section 5 positions our work into the literature. Section 6 concludes.

NOTATIONS AND CONVENTIONS

We use lowercase letters such as λ or a for both vectors and scalars, which should be distinguished
based on context, and capital letters such as A for matrices. All vectors are column vectors. A
scalar-vector or vector-scalar derivative such as ∂ℓ/∂θ yields a gradient vector of the same shape as
the vector. A vector-vector derivative such as ∂z/∂θ denotes the dim(z)× dim(θ) Jacobian matrix
of the mapping θ → z. ∥ · ∥ denote the Euclidean norm for vectors or Frobenius norm for matrices.
∥ · ∥σ denotes the spectral norm (maximum singular value) of matrices. The metric tensors (variants
of FIM) are listed in table 1.

Table 1: Metric tensors. We use I / I / Î / I for simple low-dimensional statistical manifolds and use
F / F / F̂ / F for neuromanifolds. We optionally use superscripts to indicate the associated parameter
space. For example, I∆ and F∆ denote the metric tensor of the statistical simplex and the space of
neural networks with simplex-valued outputs, respectively.

FIM empirical FIM (eFIM) Monte Carlo FIM (MC FIM) Hutchinson FIM
I(z) / F(θ) I(z) / F(θ) Î(z) / F̂(θ) I(z) / F(θ)

2 GEOMETRY OF LOW-DIMENSIONAL CORE SPACES

Consider a classifier network p(y |x, θ) := p(y | z(x, θ)), where z(x, θ) is last layer’s linear output.
Due to the chain rule, we plug ∂ℓxy

∂θ =
(
∂z
∂θ

)⊤ ∂ℓxy

∂z into Eq. (1). Then, we can easily arrive at

F(θ) =
∑
x∈Dx

(
∂z

∂θ

)⊤

· I(z(x, θ)) · ∂z
∂θ

, (2)

which is in the form of a Gauss-Newton matrix (Martens et al., 2010), or a pullback metric tensor (Sun,
2020)2 from a low dimensional statistical manifold with metric I(z), to the much higher dimensional
neuromanifold with metric F(θ). In this section, we rediscover the geometrical structure of the low
dimensional statistical manifold, which we refer to as the core space, or simply the core.

In multi-class classification, y (given a feature vector x) follows a category distribution p(y =
i |x, θ) = pi(x, θ), i = 1, · · · , C. All possible category distributions over {1, · · · , C} form a closed

2Strictly speaking, the pullback tensor requires the Jacobian of θ → z have full column rank everywhere,
which is not satisfied in typical settings of deep neural networks. This leads to singular metric tensors.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

statistical simplex ∆C−1 :=
{
(p1, · · · , pC) :

∑C
i=1 pi = 1; ∀i, pi ≥ 0

}
. The superscript C − 1

denotes the dimensionality of ∆ and can be omitted. If p ∈ int(∆C−1) (interior of ∆C−1), we can
reparameterize p = SoftMax(z), where z ∈ ℜC is the logits. The core ∆C−1 is a curved space,
where p or z serves as a coordinate system in the sense that different choices of p or z yield different
distributions. By Eq. (1), the FIM is:

I∆(z) = E
[
(ey − p)(ey − p)⊤

]
= diag (p)− pp⊤, (3)

where diag (·) means the diagonal matrix constructed with a given diagonal vector. In below,
depending on context, diag (·) also denotes a diagonal vector extracted from a square matrix. e
(without subscripts) denotes a vector of all ones, ey denotes the one-hot vector with only the y’th bit
activated, and eij denotes the binary matrix with only the ij’th entry set to 1. Note z is a redundant
coordinate system as dim(z) = C > C − 1. If z ∈ int(∆C−1), I∆(z) has a one-dimensional kernel:
one can easily verify I∆(z)(te) = 0 for all t ∈ ℜ.

By noting that I∆(z) is a rank-1 perturbation of the diagonal matrix diag (p), we can apply Cauchy’s
interlacing theorem and study the spectral properties of I∆(z).

Theorem 1 (Spectrum of Simplex FIM). Assume the spectral decomposition I∆(z) =
∑C

i=1 λiviv
⊤
i ,

where λ1 ≤ · · · ≤ λC . Then λ1 = 0; v1 = e/∥e∥;
∑C

i=1 λi = 1− ∥p∥2; and

max {pi(1− pi)} ∪
{
p(C−1),

1− ∥p∥2

C − 1

}
≤ λC ≤ min

{
p(C), 2max

i
(pi(1− pi)), 1− ∥p∥2

}
,

where p(C−1) and p(C) denote the second-largest and the largest elements of p, respectively.

The largest eigenvalue of I∆(z), denoted as λC , and its associated eigenvector correspond to the
“most informative” direction at any z ∈ ∆C−1. By Theorem 1, λC can be bounded from above and
below. The bound gap is at most min{p(C) − p(C−1),maxi(pi(1− pi))}. We have found through
numerical simulations that, in practice, the bounds in Theorem 1 are quite tight and can provide an
estimate of λC within a narrow range. The lemma below gives lower and upper bounds of I∆(z),
both with a simpler structure than I∆(z), in the space of psd matrices based on Löwner partial order.

Lemma 2. ∀z ∈ int(∆C−1), assume the spectral decomposition I∆(z) =
∑C

i=1 λiviv
⊤
i , where

λ1 ≤ · · · ≤ λC−1 < λC . Then, λCvCv
⊤
C ⪯ I∆(z) ⪯ diag (p). Moreover, λCvCv

⊤
C is the

best rank-1 representation of I∆(z) in the sense that no rank-1 matrix B ̸= λCvCv
⊤
C satisfies

λCvCv
⊤
C ⪯ B ⪯ I∆(z). Meanwhile, diag (p) is the best diagonal representation of I∆(z) in the

sense that no diagonal matrix D ̸= diag (p) satisfies I∆(z) ⪯ D ⪯ diag (p).

The simplex FIM is upper-bounded by a diagonal matrix and lower bounded by a rank-1 matrix. By
Lemma 2, λCvCv

⊤
C is the lower-envelope (greatest lower bound) of I∆(z) in rank-1 matrices, and

diag (p) is the upper-envelope (least upper bound) of I∆(z) in diagonal matrices. If the bounds in
Lemma 2 are used as a deterministic estimate of I∆(z), the error can be controlled, as shown below.
Lemma 3. We have ∀z ∈ ∆, ∥I∆(z)−diag (p) ∥ = ∥p∥2 ≥ 1

C ; meanwhile, ∥I∆(z)−λCvCv
⊤
C∥ ≤

min
{
1− ∥p∥ − p(C−1),

√∑C−1
i=2 p2(i)

}
, where p(i) denote the entries of p sorted in ascending order.

Note
√∑C−1

i=2 p2(i) is the Euclidean norm of trimmed p, i.e. the vector obtained by removing p’s
smallest and largest elements. By Lemma 3, the upper bound diag (p) always incurs an error of at
least 1/C. Depending on p, the lower bound λCvCv

⊤
C can more accurately estimate I∆(z) as the

error can go to zero.

Alternatively, one can use random matrices to estimate I∆(z). By Eq. (3), the rank-1 matrix
R(y) = (ey − p)(ey − p)⊤ is an unbiased estimator of I∆(z). The MC FIM of ∆ is Î∆(z) =
1
m

∑m
i=1 R(ŷi), where ŷi are random samples from the distribution specified by z. The associated

eFIM is I∆
(z) = R(y), where y is a given empirical sample. The lemma below shows the worst

case error of I∆
(z).

Lemma 4. ∀z ∈ ∆C−1, ∃y ∈ {1, · · · , C}, such that ∥R(y)− I∆(z)∥ ≥ 1 + ∥p∥2 − λC − 2p(1)
≥ 2∥p∥2 − 2p(1).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

The first “≥” is tighter but the second ”≥ is easier to interpret. The term ∥p∥ can be as large as 1
(when p is close to one-hot). In such cases, using R(y) to estimate I∆(z) may incur significant error
if y is adversarially chosen.

In classification tasks with multiple binary labels, we assume p(yi = 1 |x) = pi (i = 1, · · · , C)
and that all dimensions of y are conditional independent given x. All such distributions form a
C-dimensional hypercube CC(p) = {(p1, · · · , pC) : ∀i, 0 ≤ pi ≤ 1}, which is the product space of
1-dimensional simplices. Consider pi = σ(zi) := 1/(1 + exp(−zi)) for i = 1, · · · , C. In this case,
the FIM is a diagonal matrix, given by

IC(z) = diag ((p1(1− p1), · · · , pC(1− pC))) = diag (σ′(zi), · · · , σ′(zC)) . (4)
In what follows, unless stated otherwise, our results pertain to the core ∆ as it is more commonly
used and has a more complex FIM as compared to C.

3 FIM FOR CLASSIFIER NETWORKS — DETERMINISTIC ANALYSIS

We give a lower and upper bound of F∆(θ) (Proposition 5) and analyze each bound gap (Proposi-
tions 7 and 8). Our bounds result from simple matrix analysis and are more operational than related
theoretical bounds such as monotonicity of the FIM under marginalization or coarse-graining (Amari,
2016). Our bounds are novel in that ➀ they are built on envelopes (tightest bound) in the core, and ➁
they depend on the order statistics of the output probability vector.

3.1 DETERMINISTIC LOWER AND UPPER BOUNDS

By Eq. (2), the neuromanifold FIM F(θ) is determined by both the core space and the parameter-
output Jacobian ∂z

∂θ . Similar to Lemma 2, we can have lower and upper bounds of F∆(θ) in the space
of psd matrices (although these bounds are not envelopes as in Lemma 2).
Proposition 5. If p(y |x, θ) ∈ ∆C−1 is categorical, then ∀θ ∈ Θ, we have∑

x∈Dx

C∑
i=C−k+1

λi

(
∂z

∂θ

)⊤

viv
⊤
i

∂z

∂θ
⪯ F∆(θ) ⪯

∑
x∈Dx

C∑
y=1

p(y |x, θ)∂zy
∂θ

(
∂zy
∂θ

)⊤

for all k ∈ {1, · · · , C − 1}, where λi := λi(x, θ) and vi := vi(x, θ) denote the i’th eigenvalue and
eigenvector of I(z(x, θ)), ordered such that λ1 ≤ λ2 ≤ · · · ≤ λC .
Remark. The LHS is a sum of |Dx| (number of samples in Dx) matrices, each of rank k. Its rank is
at most k|Dx|. The RHS is a sum of C|Dx| matrices of rank-1 and potentially has a larger rank.
Remark. By Theorem 1, λ1 = 0. Therefore, the first “⪯” turns to “=” when k = C − 1.

If p(y |x) is in C, then IC(z(x, θ)) is diagonal as in Eq. (4). By Eq. (2), we have FC(θ) =∑
x∈Dx

∑C
y=1 py(1 − py)

∂zy
∂θ

(
∂zy
∂θ

)⊤
, which is similar to the upper bound in Proposition 5. In

summary, F(θ) can be bounded or computed using the Jacobian ∂z
∂θ as well as the output probabilities

p(y |x, θ). The following analysis depends on the spectral properties of ∂z
∂θ . Across our formal

statements, we denote the singular values of ∂z
∂θ , sorted in ascending order, as σ1(x, θ) ≤ · · · ≤

σC(x, θ). In Proposition 5, by taking the trace on all sides, the trace of the FIM can be bounded from
above and below.
Corollary 6. If p(y |x, θ) ∈ ∆C−1 is categorical, then it holds for all θ ∈ Θ that∑
x∈Dx

λC(x, θ)σ
2
1(x, θ) ≤

∑
x∈Dx

C∑
i=2

λi(x, θ)σ
2
C+1−i(x, θ) ≤ tr(F∆(θ)) ≤

∑
x∈Dx

C∑
y=1

p(y |x, θ)
∥∥∥∥∂zy∂θ

∥∥∥∥2

.

These bounds are useful to get the overall scale of F∆(θ) without computing its exact value. The
proposition below gives the error of the upper bound in Proposition 5 in terms of Frobenius norm.
Proposition 7. We have ∀θ ∈ Θ that√√√√ ∑

x∈Dx

∥∥∥∥∥
(
∂z

∂θ

)⊤

p(x, θ)

∥∥∥∥∥
4

≤

∥∥∥∥∥ ∑
x∈Dx

C∑
y=1

p(y |x, θ)
(
∂zy
∂θ

)⊤
∂zy
∂θ

−F∆(θ)

∥∥∥∥∥ ≤
∑

x∈Dx

∥p(x, θ)∥2σ2
C(x, θ),

where p(x, θ) = SoftMax(z(x, θ)) denotes the output probability vector.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

We use Frobenius norm for matrices but it is not difficult to bound the spectral norm using similar
techniques. By Proposition 7, the error of the upper bound scales with the 2-norm (maximum singular
value) of the parameter-output Jacobian ∂z

∂θ . As in the core space, the FIM upper bound remains
loose. For example, let p tend to be one-hot, the LHS in Proposition 7 does not vanish but scales with
certain rows of ∂z

∂θ corresponding to the predicted y. Naturally, we also want to examine the error of
the lower bound in Proposition 5, as detailed below.

Proposition 8. We have that for all θ ∈ Θ and all k ∈ {1, · · · , C − 1},∥∥∥∥∥ ∑
x∈Dx

C∑
i=C−k+1

λi

(
∂z

∂θ

)⊤

viv
⊤
i

∂z

∂θ
−F∆(θ)

∥∥∥∥∥ ≤
∑
x∈Dx

√√√√C−k∑
i=2

σ4
i+k(x, θ)p

2
(i)(x, θ).

Clearly, as p approaches a one-hot vector, all elements in the trimmed vector p(i), for i = 2, · · · , C−1,
tend to zero, and the error approaches zero since its upper bound on the RHS goes to zero. From this
view, the lower bound in Proposition 5 is a better estimate as compared to the upper bound.

Remark. By noting that 0 ≤ σi(x, θ) ≤ σC(x, θ), we relax the bound in Proposition 8 and get∥∥∥∥∥ ∑
x∈Dx

C∑
i=C−k+1

λi

(
∂z

∂θ

)⊤

viv
⊤
i

∂z

∂θ
−F∆(θ)

∥∥∥∥∥ ≤
∑
x∈Dx

√√√√C−k∑
i=2

p2(i)(x, θ) · σ
2
C(x, θ).

The estimation error of the low-rank lower bound in Proposition 5 is controlled by the norms of
the Jacobian and the trimmed probabilities (p(2), · · · , p(C−k)). The latter is upper bounded by
p(C−k)(x, θ), the (k+1)’th largest probability of each sample x. By comparing with the second “≤”
in Proposition 7, one can easily observe that Proposition 8 is tighter in general.

3.2 EMPIRICAL FIM (EFIM)

Recall from the introduction, the eFIM F(θ) gives a biased, deterministic estimate of F(θ). Intuitively,
when the network is trained, computations based on the given labels are close to the expectation
w.r.t. p(y |x), and the eFIM is expected to approximate F(θ) well. However, the bias of F(θ) can be
enlarged if y is set adversarially. By simple derivations, F(θ) =

∑
x∈Dx

(
∂z
∂θ

)⊤ ·R(y) · ∂z
∂θ . Observe

that it is similar to Eq. (2), except I(z(x, θ)) is replaced by its empirical counterpart R(y). If the
neural network output is in ∆, the error of eFIM can be bounded, as stated below.

Proposition 9. ∀θ ∈ Θ, ∀y, we have ∥F∆(θ)−F∆
(θ)∥σ ≤

∑
x∈Dx

(1 + ∥p(x, θ)∥2)σ2
C(x, θ).

Here we need to switch to the spectral norm ∥ · ∥σ to get a simple expression of the upper bound.
The approximation error in terms of the spectral norm is controlled by the spectral norm of the
parameter-output Jacobian. The error by Frobenius norm is even larger. The bound is loose as
compared to Propositions 7 and 8.

We have found in Lemma 4 that using R(y) to approximate I∆(z) suffers from a large error if y is
chosen in a tricky way. The same principle applies to using F(θ) to approximate F(θ).

Proposition 10. ∀θ ∈ Θ, ∀x, ∃y, such that∥∥∥∥∥
(
∂z

∂θ

)⊤

I∆(z(x, θ))
∂z

∂θ
−

(
∂z

∂θ

)⊤

R(y)
∂z

∂θ

∥∥∥∥∥
σ

≥ σ2
1(x, θ)

∣∣1 + ∥p(x, θ)∥2 − λC(x, θ)− 2p(1)(x, θ)
∣∣ .

In the above inequality, the LHS is the error of F(θ) for one single x ∈ Dx. Therefore, when y is
set unfavorably, the eFIM suffers from an approximation error that scales with the smallest singular
value of ∂z

∂θ . Among all the investigated deterministic approximations of F∆, the lower bound in
Proposition 5 provides the smallest guaranteed error but is relatively expensive to compute. We solve
the computational issues in the next section.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

4 HUTCHINSON’S ESTIMATE OF THE FIM

4.1 LIMITATIONS OF MONTE CARLO ESTIMATES

The quality of the MC estimate F̂(θ) can be arbitrarily bad. Consider the single neuron model
z = θx for binary classification, where z, θ, x are all scalars, and θ is close to zero. Then p ≈ 1

2 is
a fair Bernoulli distribution. I(z) = p(1 − p) ≈ 1

4 . The Jacobian is simply ∂z
∂θ = x. and F(θ) =

Ep(x)

[
∂z
∂θI(z)

∂z
∂θ

]
≈ 1

4 Ep(x)[x
2]. A basic MC estimator takes the form F̂(θ) = 1

4m

∑m
i=1 x

2
i ,

where xi’s are independently and identically distributed according to p(x). Its variance is Var(F̂) =
1

4m [Ep(x)(x
4)− E2

p(x)(x
2)]. We let p(x) be a heavy tailed distribution, e.g. Student’s t-distribution

with ν > 4 degrees of freedom, so that Var(F̂) is large while F(θ) is small. Then Ep(x)(x
2) = ν

ν−2

and Ep(x)(x
4) = 3ν2

(ν−2)(ν−4) . The ratio Ep(x)(x
4)

(Ep(x) x2)2 = 3(ν−2)
ν−4 can be arbitrarily large when ν → 4+.

Therefore the coefficient of variation (CV) Std(F̂)/F (θ) is unbounded. Throughout our analysis,
the CV is a key indicator of the quality of a FIM estimator, as a bounded CV for a random variable X
ensures the random estimator’s probability mass within [0, αµ], where α > 1 and µ ≥ 0 is the mean
of X . If CV = StdX

µ ≤ K, then by Cantelli inequality, we have

P (X ≥ αµ) = P (X ≥ µ+ (α− 1)µ) ≤ P
(
X ≥ µ+

α− 1

K
StdX

)
≤

(
1 +

(
α− 1

K

)2
)−1

.

The general case is more complicated, but follows a similar idea. The variance of MC estimators
depends on the 4th moment of the Jacobian ∂z

∂θ w.r.t. p(x) while the mean value F(θ) only depends
on the 2nd moment of ∂z

∂θ . The ratio of the variance to F2(θ), or the CV Std(F̂)/F(θ), is unbounded
without further assumption on p(x). One can increase the number of samples m to reduce variance.
However, this is computationally expensive especially in online settings.

4.2 HUTCHINSON’S ESTIMATE

In light of the challenges of MC estimates, we introduce a new way to get an unbiased estimate of the
FIM. First, compute the scalar-valued function

h(Dx, θ) :=
∑
x∈Dx

C∑
y=1

√
p̃(y |x, θ)ℓxy(θ)ξxy, (5)

where ξxy is a standard multivariate Gaussian vector of size C|D| or a Rademacher vector,
and p̃(y |x, θ) has the same value as p(y |x, θ) but is non-differentiable, meaning its gradi-
ent is always zero, preventing error from back-propagating through p̃(y |x, θ). This p̃ can
be implemented by Tensor.detach() in PyTorch (Paszke et al., 2019) or similar func-
tions in other auto-differentiation (AD) frameworks. Second, the gradient vector ∂h

∂θ =∑
x∈Dx

∑C
y=1

√
p(y |x, θ)∂ℓxy

∂θ ξxy can be evaluated via AD, e.g. by h.backward() in Pytorch.
Third, the random psd matrix F(θ) := ∂h

∂θ
∂h
∂θ⊤ , which we refer to as the “Hutchinson’s estimate” (of

the FIM), can be used to estimate F(θ). By straightforward derivations,

E
p(ξ)

(F(θ)) =
∑

x∈Dx

C∑
y=1

∑
x′∈Dx

C∑
y′=1

√
p(y |x, θ)

√
p(y′ |x′, θ)

∂ℓxy
∂θ

∂ℓx′y′

∂θ⊤
E

p(ξ)
[ξxyξx′y′] = F(θ). (6)

The last “=” is because Ep(ξ)(ξxyξx′y′) = 1 if x = x′ and y = y′, and Ep(ξ)(ξxyξx′y′) = 0 otherwise.
Considering ∂h

∂θ as an implicit representation of the FIM, its computational cost is ① evaluating the
h function, ② the backward pass to compute the gradient of h. The cost is the same as evaluating
the gradient of the loss −

∑
x∈Dx

∑C
y=1 ℓxy(θ), noting that h is the log-likelihood randomly flipped

by a Gaussian/Rademacher vector. Moreover, h can reuse the logits already computed during the
forward pass. Therefore ∂h

∂θ requires merely one additional backward pass, making it practical for
large scale networks. In summary, F(θ) is a universal estimator of F(θ) for general statistical model,
which is independent of neural network architectures and applicable to non-neural network models as
well. Hutchinson’s estimate has guaranteed quality, as formally established below.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Proposition 11. Ep(ξ) (F(θ)) = F(θ). If p(ξ) is standard multivariate Gaussian, then
Var(Fii(θ)) = 2Fii(θ)

2; if p(ξ) is standard multivariate Rademacher, Var(Fii(θ)) = 2Fii(θ)
2 −

2
∑

x∈Dx

∑C
y=1 p

2(y |x)(∂ℓxy

∂θi
)4.

It is known that Rademacher distribution yields smaller variance for Hutchinson’s estimator compared
to the Gaussian distribution. In what follows, p(ξ) is Rademacher by default. By Proposition 11,
Std(Fii(θ)) ≤

√
2Fii(θ). Thus the CV Std(Fii(θ))/Fii(θ) is bounded by

√
2. We only investigate

the diagonal of Hutchinson’s estimate because the diagonal FIM is widely used, but our results can
be readily extended to off-diagonal entries.

Remark. For a dataset with J minibatches, each with a diagonal FIM F(j)
ii (θ) computed with

an independent probe, we have Fii(θ) =
∑J

j=1 F
(j)
ii (θ). By Proposition 11, Var(Fii(θ)) =∑J

j=1 Var(F
(j)
ii (θ)) ≤ 2

∑J
j=1

(
F (j)

ii (θ)
)2

≤ 2 (Fii(θ))
2. Moreover, we roughly approximate

Fii(θ) ≈ J F(j)
ii (θ). Then, Var(Fii(θ)) ≤ 2

∑J
j=1

(
Fii(θ)

J

)2
= 2

J (Fii(θ))
2
. At the dataset level,

the variance is inversely proportional to J , while the computation cost grows linearly with J ,
presenting a typical accuracy–computation trade-off.

Remark. Taking trace on both sides of Ep(ξ) (F(θ)) = F(θ), we get Ep(ξ)(∥∂h
∂θ ∥

2) = tr(F(θ)). The
squared Euclidean-norm of ∂h

∂θ is an unbiased estimate of the trace of the FIM. This is useful for
computing related regularizers (Peebles et al., 2020).

An alternative Hutchinson’s estimate based on the equivalent FIM expression F(θ) =

4
∑

x∈Dx

∑C
y=1

[
∂
√

p(y | x,θ)
∂θ

∂
√

p(y | x,θ)
∂θ⊤

]
(see e.g. the first unnumbered equation in Sun & Nielsen

2017) is detailed in section B. We find that in practice its performance is similar to the above F.

Note that a sample of the random matrix F(θ) is always rank-1: rankF(θ) = 1 ≤ rankF(θ),
but the expectation of F(θ) has the same rank as F(θ). Ideally, one can compute the numerical
average of more than one F(θ) samples to reduce variance and recover the rank, each requiring a
separate backward pass. Due to computational constraints in deep learning practice, much fewer
(e.g., 1) samples are used. Instead, accumulated statistics along the learning path θ1 → θ2 → · · ·
can be used to maintain a (exponential) moving average of F(θi). The underlying assumption is
that θ1, θ2, · · · connected by small learning steps lie close to one another in the parameter space.
Therefore, averaging F(θi) provides a reasonable approximation of the local FIM with sufficient
rank.

4.3 DIAGONAL CORE

For multi-label classification, and for computing the upper bound in Proposition 5, the core matrix
is diagonal, in the form IDG(z(x, θ)) = diag (ζ1(x, θ), · · · , ζC(x, θ)), and the associated FIM
is FDG(θ) =

∑
x∈Dx

(
∂z
∂θ

)⊤ · IDG(z(x, θ)) · ∂z
∂θ . In the former case, ζy(x, θ) = p(y |x, θ)(1 −

p(y |x, θ)); in the latter case, ζy(x, θ) = p(y |x, θ). Here, the tensor superscript — e.g., “DG” for
diagonal; “LR(k)” and “LR” for low-rank — indicates the parametric form of the core FIM, in
contrast to denoting the core space as in I∆. We define the scalar valued function

hDG(θ) :=
∑
x∈Dx

C∑
y=1

√
ζ̃y(x, θ)zy(x, θ)ξxy, (7)

where ξxy are standard Rademacher samples that are independent across all x and y. Similar to
the derivation steps in section 1, we first compute the random vector ∂hDG

∂θ through AD, and then

compute FDG(θ) := ∂hDG

∂θ
∂hDG

∂θ⊤ (or its diagonal blocks) to estimate FDG(θ).

For computing the upper bound in Proposition 5, ζ̃y(x, θ) = p̃y(x, θ), then we find that Eq. (5) and
Eq. (7) are similar. The only difference is that, the “raw” logits zy in Eq. (7) is replaced by ℓxy(θ) =

zy − log
∑

y exp(zy) in Eq. (5). Compared to ∂zy
∂θ , the gradient ∂ℓxy

∂θ =
∂zy
∂θ −

∑
y p(y |x, θ)

∂zy
∂θ is

centered. Due to their computational similarity, in practice, one should use Eq. (5) instead of Eq. (7)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

and get an unbiased estimate of F∆(θ). Eq. (7) is useful when the dimensions of y are conditional
independent given x, e.g. for computing FC(θ).

4.4 LOW-RANK CORE

By Proposition 5, F∆(θ) ⪰ FLR(k)(θ) :=
∑

x∈Dx

∑C
i=C−k+1 λi(x, θ)

(
∂z
∂θ

)⊤
vi(x, θ)v

⊤
i (x, θ)

∂z
∂θ .

We define

hLR(k)(θ) =
∑
x∈Dx

C∑
i=C−k+1

√
λ̃i(x, θ)ṽ

⊤
i (x, θ)z(x, θ)ξx, (8)

where ξx are independent standard Rademacher samples, and k ∈ {1, · · · , C − 1}. For computing
hLR(k)(θ), we only need k|Dx| Rademacher samples, as compared to C|Dx| samples for computing
h(θ) and hDG(θ). Correspondingly, FLR(k)(θ) := ∂hLR(k)

∂θ
∂hLR(k)

∂θ⊤ is used to estimate FLR(k)(θ).
When k = 1, we simply denote FLR := FLR(1), hLR := hLR(1), and FLR := FLR(1).

It remains to compute λi(x, θ) and vi(x, θ), which requires spectral decomposition of a C×C matrix
for each x ∈ Dx. The cost is only acceptable when C is small to moderate. In our CIFAR-100
experiments (C = 100), the computational speed of FLR(k) drops to roughly half that of F. If k = 1,
however, λC(x, θ) and vC(x, θ) can be computed more efficiently using the power iteration. By
Eq. (3), starting from a random unit vector v0C , we compute

vt+1
C =

I∆(z)vtC
∥I∆(z)vtC∥

=
p ◦ vtC − p⊤vtCp

∥p ◦ vtC − p⊤vtCp∥
,

for t = 1, 2, · · · , until convergence or until a fixed number of iterations is reached. Then, λC =
p⊤(vC ◦ vC)− (p⊤vC)

2. For computing λC and vC for all x ∈ Dx, the per-iteration computational
cost is O(C|Dx|). The number of iterations required increases as the spectral gap γ := λC − λC−1

decreases. Convergence can be slow when γ is small (e.g., for near-uniform output distributions).
In our implementation, we simply use a fixed iteration budget of T = 30. All our estimators: h,
hDG and hLR(k) can be computed solely based on the neural network output logits z(x, θ) for each
x ∈ Dx.

4.5 NUMERICAL SIMULATIONS

We compute the diagonal FIM of the following models: ① DistilBERT (Sanh et al., 2019; Wolf
et al., 2020) fine-tuned on the Stanford Sentiment Treebank v2 (SST-2) (Socher et al., 2013) (with
C = 2 classes); ② DistilBERT (pretrained) with a randomly initialized classification head for
DBpedia ontology classification (Lehmann et al., 2015) (C = 14); ③ RoBERTa-base (Liu et al.,
2019) fine-tuned on Multi-Genre Natural Language Inference (MNLI) corpus (Williams et al., 2018)
(C = 3); ④ ImageNet-pretrained ResNet-50 (He et al., 2016) with a random classification head for
CIFAR-100 image classification (Krizhevsky, 2009) (C = 100); ⑤ Same as (4) but with an ImageNet-
pretrained EfficientNet-B0 (Tan & Le, 2019) backbone; ⑥ Wav2Vec2-base (Baevski et al., 2020)
(pretrained) with a random classification head on SpeechCommands audio classification (Warden,
2018) (C = 12).

For all datasets, the FIM is computed on a fixed random subset of 128 batches with a batch size of
B = 64. We evaluate the ground-truth diagonal FIM Fii using its closed-form expression in Eq. (1),
which requires 8192C backward passes and is impractical to use on the full dataset. Figure 1 shows
the FIM histograms of RoBERTa-base, ResNet-50, and Wav2Vec2-base, including the zero atom
(probability mass at zero). Other datasets and models are omitted due to space constraints. The
distribution of Fii differs substantially across tasks. For example, in RoBERTa-base, the embedding
layers exhibit a large atom at zero corresponding to unobserved vocabulary, whereas intermediate
transformer layers show the largest Fisher information. Similar patterns are observed in other NLP
tasks.

We only compare FIM estimators that can be computed using a single backward pass per batch,
including the empirical FIM F ii(θ), Fii(θ) (Hutchinson’s unbiased estimate), FDG

ii (θ) (upper-biased
estimate of Fii), FLR

ii (θ), and FLR(2)
ii (θ) (lower-biased estimate of Fii). The MC estimate F̂ is

excluded, because it requires B backward passes per batch (B: batch size) and is less applicable to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

production settings. Table 2 shows the relative mean absolute error (RelMAE), defined as the average
ratio of the absolute error to the ground-truth value, with ε = 10−12 added for numerical stability.
For example, the RelMAE of empirical FIM is 1

dim(θ)

∑dim(θ)
i=1

|Fii−Fii|
Fii+ε . Because Fii is typically

small in magnitude, RelMAE offers a more interpretable error metric than the mean absolute error
(MAE). In general, Fii is the most accurate, with a RelMAE of approximately 0.2, corresponding
to ± 20% relative deviation from the ground truth. This improvement arises because F is unbiased,
whereas other baselines are biased. Nevertheless, FLR

ii and FLR(2)
ii are the most accurate on SST-2

and MNLI. This is because, on these two tasks, the model is fine-tuned and the core FIM exhibits an
approximately low-rank structure. The empirical FIM and FDG

ii are the least accurate.

The computational speeds of all methods are broadly similar. Hutchinson’s estimate is as fast as
the empirical FIM. In contrast, FLR

ii and FLR(2)
ii are more expensive because they rely on power

iterations or spectral decompositions of the core FIM. The bottom line is: to compute the diagonal
FIM, one should choose Hutchinson’s unbiased estimate F over the empirical FIM F . For fine-tuned
models, one may alternatively use FLR or FLR(k) to achieve higher accuracy.

10−9 10−4

ii

ζ=58%
μ=8.3e-07

Embedding (39.0M)

10−9 10−4

ζ=0%
μ=4.3e-05

RB1 (21.3M)

10−9 10−4

ζ=0%
μ=9.8e-05

RB2 (21.3M)

10−9 10−4

ζ=0%
μ=5.3e-05

RB3 (21.3M)

10−9 10−4

ζ=0%
μ=1.9e-06

RB4 (21.3M)

10−9 10−4

ζ=0%
μ=3.6e-05

Classifier (592.9k)

(a) RoBERTa-base on MNLI

10−6 10−3

ii

ζ=2%
μ=5.1e-03

Stem (9.5k)

10−6 10−3

ζ=8%
μ=4.6e-04

Block1 (215.8k)

10−6 10−3

ζ=3%
μ=1.2e-04

Block2 (1.2M)

10−6 10−3

ζ=1%
μ=4.6e-05

Block3 (7.1M)

10−6 10−3

ζ=0%
μ=3.1e-05

Block4 (15.0M)

10−6 10−3

ζ=0%
μ=3.9e-03

Classifier (204.9k)

(b) ResNet-50 on CIFAR-100

10−6 10−2 102

ii

ζ=0%
μ=7.2e-03

FeatureExtractor (4.2M)

10−6 10−2 102

ζ=0%
μ=3.0e-04

FeatureProjection (395.0k)

10−6 10−2 102

ζ=1%
μ=8.5e-05

Encoder (89.8M)

10−6 10−2 102

ζ=0%
μ=1.0e-04

Classifier (199.9k)

(c) Wav2Vec2-base on SpeechCommands

Figure 1: Histograms of the ground-truth diagonal FIM entries Fii on a logarithmic x-axis. The zero
atom is displayed as a vertical bar at the left edge of each plot. From top to bottom, NLP, vision,
and audio tasks are shown. From left to right, successive components from input to output and their
parameters counts are displayed. ζ denotes the zero probability. µ denotes the average value of Fii

in the component. The solid and dashed vertical lines indicate the median and the p95 quantile of
strictly positive values, respectively.

Table 2: RelMAE w.r.t. the ground-truth diagonal FIM entries Fii for different FIM estimators
(columns) across tasks (rows). Numbers in parentheses mean speedup factors relative to the empirical
FIM (larger is faster). CIFAR-100 is used for both ResNet-50 (R) and EfficientNet-B0 (E).

F ii Fii FDG
ii FLR

ii FLR(2)
ii

SST-2 1.15 (×1) 0.18 (×1.07) 341 (×1.07) 0.05 (×0.96) 0.05 (×1.00)
DBpedia 0.59 (×1) 0.22 (×1.00) 0.25 (×1.00) 0.8 (×0.93) 0.72 (×0.93)
MNLI 53.9 (×1) 0.16 (×1.00) 8.36 (×0.97) 0.11 (×0.96) 0.12 (×0.95)
CIFAR-100 (R) 0.17 (×1) 0.11 (×0.99) 0.11 (×1.01) 0.97 (×0.97) 0.95 (×0.46)
CIFAR-100 (E) 0.17 (×1) 0.11 (×1.00) 0.12 (×1.00) 0.98 (×0.98) 0.96 (×0.50)
SpeechCommands 56.8 (×1) 0.17 (×0.97) 7.4 (×0.97) 0.39 (×0.89) 0.22 (×0.91)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

5 RELATED WORK

A prominent application of Fisher information in deep learning is the natural gradient (Amari, 1998)
and its variants. The Adam optimizer (Kingma & Ba, 2015) uses the empirical diagonal FIM.
Efforts have been made to obtain more accurate approximations of F(θ) at the expense of higher
computational cost, such as modeling the diagonal blocks of F(θ) with Kronecker product (Martens,
2020) of component-wise FIM (Ollivier, 2015; Sun & Nielsen, 2017), or computing F(θ) through
low rank approximations (Le Roux et al., 2007; Botev et al., 2017). The FIM can be alternatively
defined on a sub-model (Sun & Nielsen, 2017) instead of the global mapping x → y or based on
α-embeddings of a parametric family (Nielsen, 2017). AdaHessian (Yao et al., 2021) uses Hutchinson
probes to approximate the diagonal Hessian.

From theoretical perspectives, the quality of Kronecker approximation is discussed (Martens &
Grosse, 2015) with its error bounded. It is well known that the eFIM differs from F(θ) (Pascanu &
Bengio, 2014; Martens, 2020; Kunstner et al., 2020) and leads to distinct optimization paths. The
accuracy of two different MC approximations of F(θ) is analyzed (Guo & Spall, 2019; Soen & Sun,
2021; 2024; Sun & Spall, 2021), which lie in the framework of MC information geometry (Nielsen &
Hadjeres, 2019). By our analysis, the Hutchinson’s estimate F(θ) has unique advantages over both
MC and the eFIM. Notably, the MC estimate in section 4.1 needs to compute ∂ℓx̂ŷ

∂θ for each x ∈ Dx,
while F(θ) only needs to evaluate one gradient vector ∂h

∂θ . Our bounds improves over existing bounds,
e.g. those of F(θ) (Soen & Sun, 2024), through carefully analyzing the core space.

The Hutchinson’s stochastic trace estimator is used to estimate the trace of the FIM (Jastrzebski
et al., 2021), or the FIM for Gaussian processes (Stein et al., 2013; Geoga et al., 2020) where
the FIM entries are in the form of a trace. Closely related to this is computations around the
Hessian, where Hutchinson’s trick is applied to compute the Hessian trace (Hu et al., 2024), or the
principal curvature (Böttcher & Wheeler, 2024), or related regularizers (Peebles et al., 2020). The
Hessian trace estimator is implemented in deep learning libraries (Dangel et al., 2020; Yao et al.,
2020) and usually relies on the Hessian-vector product. As a natural yet important next step, our
estimators leverage both Hutchinson’s trick and AD’s interfaces, avoid the need for expensive Hessian
computations/approximations, and are well-suited in scalable settings. In Eq. (6), we perform a
double contraction of a high dimensional tensor indexed by x, y, x′, y′, i and j (i and j are indices
of the FIM) and thereby obtain an unbiased estimator of the full metric tensor F(θ) including its
substructures and trace. Our estimator can be applied to different classification networks regardless
of the network architecture.

6 CONCLUSION

We explore the FIM F of classifier networks, focusing on the case of multi-class classification.
We provide deterministic lower and upper bounds of the FIM based on related bounds in the low
dimensional core space. We discover a new family of random estimators F based on Hutchinson’s
trace estimator. Their estimate has guaranteed quality with bounded variance and can be computed
efficiently through auto-differentiation. The proposed F is readily integrated into deep learning
libraries (Dangel et al., 2020; Yao et al., 2020) for efficiently evaluating the FIM or the Hessian. Our
analysis in the core space gives insights and useful tools for information geometry where the simplex
is widely used. As a limitation, the results here address novel computation of F but are not directly
piped into a downstream application that uses the proposed F. For example, new deep learning
optimizers based on the proposed F, are not developed here and left as future work. Advanced
variance reduction techniques (Meyer et al., 2021) that could improve our proposed random estimator
F(θ) remain to be investigated.

ETHICS STATEMENT

The authors have read the ICLR Code of Ethics the confirm that this research fully complies with the
Code of Ethics.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REPRODUCIBILITY STATEMENT

The authors confirm that all assumptions and proofs of the theoretical developments are provided
in the main text and the appendix. The code to compute the proposed Hutchinson’s estimate of the
Fisher information matrix will be released upon acceptance.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

The authors acknowledge that LLMs are used for editing purpose (grammar, wording, and translation).
LLMs are not used to develop the core results.

REFERENCES

Shun-ichi Amari. Natural gradient works efficiently in learning. Neural Comput., 10(2):251–276,
1998.

Shun-ichi Amari. Information Geometry and Its Applications, volume 194 of Applied Mathematical
Sciences. Springer-Verlag, Berlin, 2016.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. Wav2vec 2.0: A frame-
work for self-supervised learning of speech representations. In Advances in Neural Information
Processing Systems (NeurIPS), volume 33, pp. 12449–12460. Curran Associates, Inc., 2020.

Stephen Blyth. Local divergence and association. Biometrika, 81(3):579–584, 1994.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical Gauss-Newton optimisation for
deep learning. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.
557–565. PMLR, 2017.

Lucas Böttcher and Gregory Wheeler. Visualizing high-dimensional loss landscapes with Hessian
directions. Journal of Statistical Mechanics: Theory and Experiment, 2024(2):023401, 2024.

N. N. Čencov. Statistical Decision Rules and Optimal Inference. Translations of mathematical
monographs. American Mathematical Society, 1982.

Shixing Chen, Caojin Zhang, and Ming Dong. Coupled end-to-end transfer learning with generalized
Fisher information. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 4329–4338, 2018.

Felix Dangel, Frederik Kunstner, and Philipp Hennig. BackPACK: Packing more into backprop. In
International Conference on Learning Representations (ICLR), 2020.

Christopher J. Geoga, Mihai Anitescu, and Michael L. Stein. Scalable Gaussian process computations
using hierarchical matrices. Journal of Computational and Graphical Statistics, 29(2):227–237,
2020.

Shenghan Guo and James C. Spall. Relative accuracy of two methods for approximating observed
Fisher information. In Data-Driven Modeling, Filtering and Control: Methods and applications,
pp. 189–211. IET Press, London, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), CVPR ’16, pp. 770–778. IEEE, 2016.

Tom Heskes. On “natural” learning and pruning in multilayered perceptrons. Neural Computation,
12(4):881–901, 2000.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Comput., 9(1):1–42, January 1997.

Harold Hotelling. Spaces of statistical parameters. American Mathematical Society Meeting, 1929.
(unpublished. Presented orally by O. Ore during the meeting).

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Zheyuan Hu, Zekun Shi, George Em Karniadakis, and Kenji Kawaguchi. Hutchinson trace estimation
for high-dimensional and high-order physics-informed neural networks. Computer Methods
in Applied Mechanics and Engineering, 424:116883, 2024. ISSN 0045-7825. URL https:
//www.sciencedirect.com/science/article/pii/S0045782524001397.

M.F. Hutchinson. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing
splines. Communications in Statistics - Simulation and Computation, 19(2):433–450, 1990.

Stanislaw Jastrzebski, Devansh Arpit, Oliver Astrand, Giancarlo B Kerg, Huan Wang, Caiming Xiong,
Richard Socher, Kyunghyun Cho, and Krzysztof J Geras. Catastrophic Fisher explosion: Early
phase Fisher matrix impacts generalization. In Marina Meila and Tong Zhang (eds.), Proceedings
of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 4772–4784. PMLR, 18–24 Jul 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis,
Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in
neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526, 2017.
doi: 10.1073/pnas.1611835114.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009.

Frederik Kunstner, Lukas Balles, and Philipp Hennig. Limitations of the empirical Fisher approxima-
tion for natural gradient descent. In Advances in Neural Information Processing Systems (NeurIPS),
pp. 4133–4144. Curran Associates, Inc., 2020.

Nicolas Le Roux, Pierre-Antoine Manzagol, and Yoshua Bengio. Topmoumoute online natural
gradient algorithm. In Advances in neural information processing systems, volume 20, pp. 849–
856. Curran Associates, Inc., 2007.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N. Mendes,
Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, and Christian Bizer.
DBpedia – A large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web, 6
(2):167–195, 2015.

Wu Lin, Frank Nielsen, Khan Mohammad Emtiyaz, and Mark Schmidt. Tractable structured natural-
gradient descent using local parameterizations. In Marina Meila and Tong Zhang (eds.), Proceed-
ings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pp. 6680–6691. PMLR, 18–24 Jul 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019. URL http://arxiv.org/abs/1907.11692.

Abhilasha Lodha, Gayatri Belapurkar, Saloni Chalkapurkar, Yuanming Tao, Reshmi Ghosh,
Samyadeep Basu, Dmitry Petrov, and Soundararajan Srinivasan. On surgical fine-tuning for
language encoder. In EMNLP 2023, pp. 1–9. EMNLP, 2023.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1–76, 2020.

James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approximate
curvature. In International Conference on Machine Learning (ICML), pp. 2408–2417. PMLR,
2015.

James Martens et al. Deep learning via Hessian-free optimization. In International Conference on
Machine Learning (ICML), volume 27, pp. 735–742, 2010.

12

https://www.sciencedirect.com/science/article/pii/S0045782524001397
https://www.sciencedirect.com/science/article/pii/S0045782524001397
http://arxiv.org/abs/1907.11692

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Raphael A. Meyer, Cameron Musco, Christopher Musco, and David P. Woodruff. Hutch++: Optimal
stochastic trace estimation. In Proceedings of the 4th Symposium on Simplicity in Algorithms
(SOSA), pp. 142–155, 2021.

Frank Nielsen. The α-representations of the Fisher information matrix, 2017. https://
franknielsen.github.io/blog/alpha-FIM/index.html.

Frank Nielsen and Gaëtan Hadjeres. Monte Carlo information-geometric structures. In Frank Nielsen
(ed.), Geometric Structures of Information, pp. 69–103. Springer International Publishing, Cham,
2019.

Yann Ollivier. Riemannian metrics for neural networks I: feedforward networks. Information and
Inference: A Journal of the IMA, 4(2):108–153, 2015.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. In International
Conference on Learning Representations, 2014.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, pp. 8024–8035. Curran
Associates, Inc., 2019. https://pytorch.org/.

William Peebles, John Peebles, Jun-Yan Zhu, Alexei A. Efros, and Antonio Torralba. The Hessian
penalty: A weak prior for unsupervised disentanglement. In Proceedings of (ECCV) European
Conference on Computer Vision, pp. 581 – 597, August 2020.

C. R. Rao. Information and the accuracy attainable in the estimation of statistical parameters. Bulletin
of the Calcutta Mathematical Society, 37(3):81–91, 1945.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019. URL http://arxiv.
org/abs/1910.01108. http://arxiv.org/abs/1910.01108.

Maciej Skorski. Modern analysis of Hutchinson’s trace estimator. In 2021 55th Annual Conference
on Information Sciences and Systems (CISS), pp. 1–5, 2021.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Empirical Methods in Natural Language Processing (EMNLP), pp. 1631–1642, 2013.

Alexander Soen and Ke Sun. On the variance of the Fisher information for deep learning. In
Advances in Neural Information Processing Systems (NeurIPS), volume 34, pp. 5708–5719. Curran
Associates, Inc., 2021.

Alexander Soen and Ke Sun. Trade-Offs of diagonal Fisher information matrix estimators. In
Advances in Neural Information Processing Systems (NeurIPS), volume 37, pp. 5870–5912. Curran
Associates, Inc., 2024.

Michael L. Stein, Jie Chen, and Mihai Anitescu. Stochastic approximation of score functions for
Gaussian processes. The Annals of Applied Statistics, 7(2):1162 – 1191, 2013.

Ke Sun. Information geometry for data geometry through pullbacks. In Deep Learning through
Information Geometry (Workshop at NeurIPS 2020), 2020.

Ke Sun and Frank Nielsen. Relative Fisher information and natural gradient for learning large modular
models. In International Conference on Machine Learning (ICML), volume 70 of Proceedings of
Machine Learning Research, pp. 3289–3298. PMLR, 2017.

Ke Sun and Frank Nielsen. A geometric modeling of Occam’s razor in deep learning. Information
Geometry, 2025. Special Issue: Half a Century of Information Geometry, Part 2. Formerly titled
“Lightlike neuromanifolds, Occam’s razor and deep learning”.

13

https://franknielsen.github.io/blog/alpha-FIM/index.html
https://franknielsen.github.io/blog/alpha-FIM/index.html
https://pytorch.org/
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Shiqing Sun and James C. Spall. Connection of diagonal Hessian estimates to natural gradients in
stochastic optimization. In Proceedings of the 55th Annual Conference on Information Sciences
and Systems (CISS), 2021.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural
networks. In Proceedings of the 36th International Conference on Machine Learning (ICML),
volume 97 of Proceedings of Machine Learning Research, pp. 6105–6114. PMLR, 2019.

Ming Tu, Visar Berisha, Yu Cao, and Jae sun Seo. Reducing the model order of deep neural networks
using information theory. In IEEE Computer Society Annual Symposium on VLSI, ISVLSI, pp.
93–98, 2016.

Pete Warden. Speech Commands: A dataset for limited-vocabulary speech recognition. CoRR,
abs/1804.03209, 2018. URL http://arxiv.org/abs/1804.03209.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1, pp. 1112–1122. Association for Computational Linguistics, 2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Qun Liu and David Schlangen (eds.), Empirical Methods in Natural Lan-
guage Processing (EMNLP): System Demonstrations, pp. 38–45. Association for Computational
Linguistics, 2020. https://huggingface.co.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. PyHessian: Neural networks
through the lens of the Hessian. In IEEE international conference on big data (Big Data), pp.
581–590. IEEE, IEEE Computer Society, 2020.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
AdaHessian: An adaptive second order optimizer for machine learning. In Proceedings of the
AAAI conference on artificial intelligence, volume 35, pp. 10665–10673, 2021.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. CoRR, abs/1509.01626, 2015.

A FURTHER ANALYSIS IN THE CORE SPACE

The lemma below gives the average error (variance) of using R(y) to estimate I∆(z), where y is a
random variable distributed according to p(y | z).
Lemma 12. The element-wise variance of the random matrix R(y), denoted by Var(Rij), is given
by

Var(Rij) =

{
pi(1− pi)(1− 4pi(1− pi)) if i = j;
pipj(pi + pj − 4pipj) otherwise.

∀i, j, Var(Rij) ≤ 1/16. For both diagonal and off-diagonal entries, the coefficient of variation (CV)
Std(Rij)/|I∆

ij (z)| can be arbitrarily large, where Std(·) means standard deviation.

By Lemma 12, when using the rank-1 matrix R(y) as an estimator of I∆(z), the absolute error
is bounded, but the relative error given by the CV is unbounded. One may alternatively use the
rank-2 random matrix R′(y) = eyy − pp⊤ to estimate I∆(z). Obviously we have E(R′(y)) =
diag (p) − ppT = I∆(z) and thus R′(y) is unbiased. The variance appears only on the diagonal
while all off-diagonal entries are deterministic with zero-variance. This R′(y) is not used in our
developments but is of theoretical interest.

14

http://arxiv.org/abs/1804.03209
https://huggingface.co

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

B AN ALTERNATIVE ESTIMATOR

We can re-write the FIM in Eq. (1) as

F(θ) = 4
∑
x∈Dx

C∑
y=1

[
∂
√
p(y |x, θ)
∂θ

∂
√
p(y |x, θ)
∂θ⊤

]
.

We define

hsqrt(Dx, θ) = 2
∑
x∈Dx

C∑
y=1

√
p(y |x, θ)ξxy, (9)

where ξxy is a standard multivariate Gaussian vector of size C|D| or a Rademacher vector. Then, we
can use AD to compute

∂hsqrt

∂θ
= 2

∑
x∈Dx

C∑
y=1

∂
√

p(y |x, θ)
∂θ

ξxy,

Then,

Fsqrt(θ) :=
∂hsqrt

∂θ

∂hsqrt

∂θ⊤
(10)

gives an unbiased estimate of the FIM F(θ), with bounded variance (details are straightforward and
omitted for brevity).

This Fsqrt differs from F in two aspects

• It requires no detach() operation;

• The square root can be avoided by noting

√
p(y |x, θ) = exp

(
1

2

(
zy(x, θ)− log

∑
y

exp(zy(x, θ))

))
,

where zy(x, θ) − log
∑

y exp(zy(x, θ)) can be computed via PyTorch’s log_softmax()
method.

Fsqrt is numerically more stable because it does not require clipping the operand inside the square
root to be above zero. In our experiments, however, we notice little difference with F. All presented
experimental results are produced using F introduced in the main text.

C SUPPLEMENTARY EXPERIMENTS

Figure 2 shows the distribution of the ground truth diagonal FIMs of DistilBERT on SST-2, Distil-
BERT on DBpedia, and EfficientNet-B0 on CIFAR-100. The classification head exhibits the largest
Fisher information among all components at random initialization, whereas its Fisher information is
comparatively small in fine-tuned models. In an early draft, we included experiments on DistilBERT
for AG News (Zhang et al., 2015) topic classification (C = 4 classes), which has been streamlined
to allow space for other types of dataset and to present a more representative range of class counts
C. All numerical results presented in this paper are performed on Nvidia H100 SXM5 GPUs on our
compute cluster.

D ACCURACY OF HUTCHINSON’S ESTIMATE ON DIAGONAL AND LOW RANK
CORES

In this section, we show that Hutchinson’s estimates FDG(θ) and FLR(θ) are both unbiased with
bounded variances.

Proposition 13. The random matrix FDG(θ) is an unbiased estimator of FDG(θ). The variance of
its diagonal elements is Var

(
FDG
ii (θ)

)
= 2(FDG

ii (θ))2 − 2
∑

x∈Dx

∑C
y=1 ζ

2
y (x, θ)(

∂zy
∂θi

)4.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

10−9 10−4

ii

ζ=72%
μ=2.6e-06

Embedding (23.8M)

10−9 10−4

ζ=0%
μ=5.8e-06

TL01 (7.1M)

10−9 10−4

ζ=0%
μ=6.2e-06

TL02 (7.1M)

10−9 10−4

ζ=0%
μ=6.2e-06

TL03 (7.1M)

10−9 10−4

ζ=0%
μ=4.4e-06

TL04 (7.1M)

10−9 10−4

ζ=0%
μ=1.0e-06

TL05 (7.1M)

10−9 10−4

ζ=0%
μ=1.1e-07

TL06 (7.1M)

10−9 10−4

ζ=0%
μ=1.5e-06

Classifier (592.1k)

(a) DistilBERT on SST-2

10−8 10−4

ii

ζ=32%
μ=7.7e-09

Embedding (23.8M)

10−8 10−4

ζ=0%
μ=5.8e-08

TL01 (7.1M)

10−8 10−4

ζ=0%
μ=1.1e-07

TL02 (7.1M)

10−8 10−4

ζ=0%
μ=1.7e-07

TL03 (7.1M)

10−8 10−4

ζ=0%
μ=3.2e-07

TL04 (7.1M)

10−8 10−4

ζ=0%
μ=3.9e-07

TL05 (7.1M)

10−8 10−4

ζ=0%
μ=5.5e-07

TL06 (7.1M)

10−8 10−4

ζ=3%
μ=9.2e-05

Classifier (601.4k)

(b) DistilBERT on DBpedia

10−5 10−2

ii

ζ=0%
μ=2.2e-02

EF1 (2.4k)

10−5 10−2

ζ=0%
μ=1.4e-03

EF2 (63.4k)

10−5 10−2

ζ=0%
μ=1.1e-04

EF3 (786.1k)

10−5 10−2

ζ=0%
μ=7.2e-05

EF4 (3.2M)

10−5 10−2

ζ=0%
μ=2.0e-03

Classifier (128.1k)

(c) EfficientNet-B0 on CIFAR-100

Figure 2: Histograms of the ground-truth diagonal FIM entries Fii on a logarithmic x-axis. The
zero atom is displayed as a vertical bar at the left edge of each plot. From left to right, successive
components from input to output and their parameters counts are displayed. ζ denotes the zero
probability. µ denotes the average value of Fii in the component. The solid and dashed vertical lines
indicate the median and the p95 quantile of strictly positive values, respectively.

Proposition 14. FLR(θ) is an unbiased estimate of FLR(θ); the variance of its diagonal elements is

Var
(
FLR
ii (θ)

)
= 2(FLR

ii (θ))2 − 2
∑

x∈Dx
λ2
C(x, θ)

(
v⊤C (x, θ)

∂z
∂θi

)4
.

We have Std(FDG
ii (θ))/FDG

ii (θ) ≤
√
2 by Proposition 13, and at the same time, we have

Std(FLR
ii (θ))/FLR

ii (θ) ≤
√
2 by Proposition 14. Their estimation quality is guaranteed.

E PROOF OF THEOREM 1

Proof. We already know the closed form FIM

I∆(z) = diag (p)− pp⊤.

Therefore

I∆(z)e = (diag (p)− pp⊤)e = p−

(
C∑
i=1

pi

)
p = p− p = 0.

Therefore te, t ∈ ℜ is a one-dimensional kernel of I∆(z). Since I∆(z) ⪰ 0, we must have λ1 = 0,
and v1 = e/∥e∥.

To show the sum of the eigenvalues of I∆(z), we have

C∑
i=1

λi = tr(I∆(z)) = tr(diag (p))− tr(pp⊤) = 1− tr(p⊤p) = 1− p⊤p = 1− ∥p∥2.

In below, we consider the maximum eigenvalue λC . We know that

λC = sup
∥u∥=1

u⊤I∆(z)u.

Therefore
∀i, λC ≥ eiI∆(z)ei = I∆

ii (z) = pi(1− pi).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Therefore λC ≥ maxi pi(1− pi). At the same time, because λ1 = 0, we have

C∑
i=1

λi = λ2 + λ3 + · · ·+ λC ≤ (C − 1)λC .

Therefore

λC ≥
∑C

i=1 λi

C − 1
=

1− ∥p∥2

C − 1
.

Because
diag (p) = I∆(z) + pp⊤.

By the Cauchy’s interlacing theorem, we have

λC−1 ≤ p(C−1) ≤ λC ≤ p(C).

It remains to prove the upper bounds of λC . First, we have

λC = sup
∥u∥=1

u⊤I∆(z)u. = sup
∥u∥=1

(
C∑
i=1

piu
2
i − (p⊤u)2

)

≤ sup
∥u∥=1

C∑
i=1

piu
2
i = max

i
pi = p(C),

which has just been proved using Cauchy’s interlacing theorem.

By the Gershgorin circle theorem, λC must lie in one of the Gershgorin discs, given by the closed
intervals pi(1− pi)−

∑
j ̸=i

pipj , pi(1− pi) +
∑
j ̸=i

pipj

 , i = 1, · · · , C.

Therefore

λC ≤ max
i

pi(1− pi) +
∑
j ̸=i

pipj


= max

i
(pi(1− pi) + pi(1− pi)) = 2max

i
pi(1− pi).

Because I∆(z) ⪰ 0,

λC ≤
C∑
i=1

λi = 1− ∥p∥2.

The statement follows immediately by combining the above lower and upper bounds of λC .

F PROOF OF LEMMA 2

Proof. Because I∆(z) ⪰ 0. All its eigenvalues are greater or equal to 0. We have

I∆(z)− λCvCv
⊤
C =

C−1∑
i=1

λiviv
⊤
i ⪰ 0.

To show that λCvCv
⊤
C is the best rank-1 representation. Assume that ∃u ̸= 0, such that I∆(z) ⪰

uu⊤ ⪰ λCvCv
⊤
C . Then

v⊤CI∆(z)vC = λC ≥ (v⊤Cu)
2 ≥ λC .

Therefore
v⊤Cu = ±

√
λC .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Assume that u =
∑C

i=1 αivi, then αC = v⊤Cu = ±
√
λC . Moreover, we have

λC ≥ u⊤

∥u∥
I∆(z)

u

∥u∥
≥ u⊤

∥u∥
uu⊤ u

∥u∥
= ∥u∥2 =

C∑
i=1

α2
i .

Therefore ∀i ̸= C, αi = 0. In summary, u = ±
√
λCvC . Hence, uu⊤ = λCvCv

⊤
C .

We have
diag (p)− I∆(z) = diag (p)− (diag (p)− pp⊤) = pp⊤ ⪰ 0.

Therefore diag (p) ⪰ I∆(z). Assume that diag (q) satisfies

I∆(z) ⪯ diag (q) ⪯ diag (p) .

Then
diag (p)− I∆(z) = pp⊤ ⪰ diag (q)− I∆(z) ⪰ 0.

Therefore
diag (q)− I∆(z) = βpp⊤(β ≤ 1).

Consequently,

diag (q) = I∆(z) + βpp⊤ = diag (p)− pp⊤ + βpp⊤ = diag (p) + (β − 1)pp⊤.

Therefore all off-diagonal entries of (β − 1)pp⊤ are zero. We must have β = 1 and thus diag (q) =
diag (p).

G PROOF OF LEMMA 3

Proof.

∥λCvCv
⊤
C − I∆(z)∥ = ∥

C−1∑
i=1

λiviv
⊤
i ∥ =

√√√√C−1∑
i=1

λ2
i ≤

√√√√(

C−1∑
i=1

λi)2

=

C−1∑
i=1

λi = tr(I∆(z))− λC = 1− ∥p∥2 − λC .

By Theorem 1, we have λC ≥ p(C−1). Therefore

∥λCvCv
⊤
C − I∆(z)∥ ≤ 1− ∥p∥2 − p(C−1).

By Cauchy’s interlacing theorem (see our proof of Theorem 1), we have

∀i ∈ {1, · · · , C − 1}, λi ≤ p(i).

Hence

∥λCvCv
⊤
C − I∆(z)∥ =

√√√√C−1∑
i=1

λ2
i =

√√√√C−1∑
i=2

λ2
i ≤

√√√√C−1∑
i=2

p2(i).

The statement follows immediately by combining the above upper bounds.

H PROOF OF LEMMA 4

Proof. The spectrum of R(y) is

0 ≤ · · · ≤ 0 ≤ ∥ey − p∥2.

The spectrum of I∆(z), by our assumption, is

λ1 ≤ · · · ≤ λC−1 ≤ λC .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

By Hoffman-Wielandt inequality, we have ∀z ∈ ∆C−1, y ∈ {1, · · · , C}

∥R(y)− I∆(z)∥ ≥

√√√√C−1∑
i=1

λ2
i + (λC − ∥ey − p∥2)2

≥ |λC − ∥ey − p∥2|
= |λC − e⊤y ey − p⊤p+ 2e⊤y p|
= |λC − 1− ∥p∥2 + 2py|
= max{λC − 1− ∥p∥2 + 2py, 1 + ∥p∥2 − λC − 2py}.

By Theorem 1, we have λC ≤ 1− ∥p∥2. One can choose y so that py = p(1), then

∥R(y)− I∆(z)∥ ≥ 1 + ∥p∥2 − λC − 2p(1)

≥ 1 + ∥p∥2 − (1− ∥p∥2)− 2p(1)

= 2∥p∥2 − 2p(1).

I PROOF OF LEMMA 12

Proof. We first look at the diagonal entries of R. We have

Rii = (Jy = iK − pi)
2 =

{
(1− pi)

2 if y = i;
p2i otherwise.

Therefore
E(Rii) = pi(1− pi)

2 + (1− pi)p
2
i = pi(1− pi) = I∆

ii (z).

This shows that Rii is an unbiased estimator of the diagonal entries of I∆(z). We have

E(R2
ii) = pi(1− pi)

4 + (1− pi)p
4
i = pi(1− pi)

[
(1− pi)

3 + p3i
]

= pi(1− pi)
[
(1− pi)

2 − pi(1− pi) + p2i
]
.

Therefore

Var(Rii) = E(R2
ii)− (E(Rii))

2

= pi(1− pi)
[
(1− pi)

2 − pi(1− pi) + p2i
]
− p2i (1− pi)

2

= pi(1− pi)
[
(1− pi)

2 − 2pi(1− pi) + p2i
]

= pi(1− pi)(1− 4pi(1− pi))

= I∆
ii (z)(1− 4I∆

ii (z))

= −4

(
I∆
ii (z)−

1

8

)2

+
1

16
≤ 1

16
.

The coefficient of variation (CV)√
Var(Rii)

I∆
ii (z)

=

√
I∆
ii (z)(1− 4I∆

ii (z))

I∆
ii (z)

2
=

√
1

I∆
ii (z)

− 4

is unbounded. As I∆
ii (z) → 0, the CV can take arbitrarily large value.

Next, we consider the off-diagonal entries of R. For i ̸= j, we have

Rij = (Jy = iK − pi)(Jy = jK − pj)

= pipj − Jy = iKpj − Jy = jKpi.

Hence,
E(Rij) = pipj − pjpj − pjpi = −pipj = I∆

ij (z).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

At the same time,

E(R2
ij) = E (pipj − Jy = iKpj − Jy = jKpi)

2

= p2i p
2
j + E

(
Jy = iKp2j + Jy = jKp2i − 2Jy = iKpip2j − 2Jy = jKp2i pj

)
= p2i p

2
j + pip

2
j + pjp

2
i − 2p2i p

2
j − 2p2i p

2
j

= pip
2
j + p2i pj − 3p2i p

2
j

= pipj(pi + pj − 3pipj).

Therefore

Var(Rij) = E(R2
ij)− (E(Rij))

2

= pipj(pi + pj − 3pipj)− p2i p
2
j

= pipj(pi + pj − 4pipj)

≤ pipj(1− 4pipj)

= −4

(
pipj −

1

8

)2

+
1

16
≤ 1

16
.

The coefficient of variation√
Var(Rij)

|I∆
ij (z)|

=

√
pipj(pi + pj − 4pipj)

p2i p
2
j

=

√
1

pi
+

1

pj
− 4

is unbounded. As either pi → 0, or pj → 0, the CV can take arbitrarily large value.

J PROOF OF PROPOSITION 5

Proof. Similar to Lemma 2, we have

C∑
i=C−k+1

λiviv
⊤
i ⪯ I∆(z) ⪯ diag (p) .

Therefore

∀x, θ
C∑

i=C−k+1

(
∂z

∂θ

)⊤

λiviv
⊤
i

∂z

∂θ
⪯
(
∂z

∂θ

)⊤

I∆(z(x, θ))
∂z

∂θ
⪯
(
∂z

∂θ

)⊤

diag (p)
∂z

∂θ
.

Therefore

∀θ
∑
x∈Dx

C∑
i=C−k+1

λi

(
∂z

∂θ

)⊤

viv
⊤
i

∂z

∂θ
⪯
∑
x∈Dx

(
∂z

∂θ

)⊤

I∆(z(x, θ))
∂z

∂θ
⪯
∑
x∈Dx

C∑
i=1

pi
∂zi
∂θ

∂zi
∂θ⊤

.

K PROOF OF COROLLARY 6

Proof. We first prove the upper bound. By Proposition 5, we have

F∆(θ) ⪯
∑
x∈Dx

C∑
i=1

pi
∂zi
∂θ

∂zi
∂θ⊤

.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Taking trace on both sides, we get

tr(F∆(θ)) ≤
∑
x∈Dx

C∑
i=1

pitr

(
∂zi
∂θ

∂zi
∂θ⊤

)

=
∑
x∈Dx

C∑
i=1

pitr

(
∂zi
∂θ⊤

∂zi
∂θ

)

=
∑
x∈Dx

C∑
i=1

pi
∂zi
∂θ⊤

∂zi
∂θ

=
∑
x∈Dx

C∑
i=1

pi

∥∥∥∥∂zi∂θ

∥∥∥∥2 .

The lower bound is not straightforward from Proposition 5. By Eq. (2), we have

tr(F∆(θ)) =
∑
x∈Dx

tr

[(
∂z

∂θ

)⊤

I∆(z)
∂z

∂θ

]
=
∑
x∈Dx

tr

[
∂z

∂θ

(
∂z

∂θ

)⊤

I∆(z)

]
.

Note that ∂z
∂θ

(
∂z
∂θ

)⊤
is a C × C matrix with sorted eigenvalues σ2

1(x, θ) ≤ · · · ≤ σ2
C(x, θ). By

Theorem 1, I∆(z) is another C × C matrix with sorted eigenvalues 0 = λ1(x, θ) ≤ · · · ≤ λC(x, θ).
Applying the Von Neumann trace inequality, we get

tr(F∆(θ)) ≥
∑
x∈Dx

C∑
i=2

λi(x, θ)σ
2
C−i+1(x, θ) ≥

∑
x∈Dx

λC(x, θ)σ
2
1(x, θ).

The last “≥” is because all terms λi(x, θ)σ
2
C−i+1(x, θ) are non-negative.

L PROOF OF PROPOSITION 7

Proof. Denote the singular values of ∂z
∂θ as 0 ≤ σ1 ≤ · · · ≤ σC . Then the eigenvalues of the C × C

Hermitian matrix ∂z
∂θ

(
∂z
∂θ

)⊤
is σ2

1 ≤ · · · ≤ σ2
C .

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

To prove the upper bound, we have∥∥∥∥∥ ∑
x∈Dx

C∑
i=1

pi

(
∂zi
∂θ

)⊤
∂zi
∂θ

−F∆(θ)

∥∥∥∥∥
=

∥∥∥∥∥ ∑
x∈Dx

(
∂z

∂θ

)⊤ (
diag (p)− diag (p) + pp⊤

) ∂z
∂θ

∥∥∥∥∥
=

∥∥∥∥∥ ∑
x∈Dx

(
∂z

∂θ

)⊤

pp⊤
∂z

∂θ

∥∥∥∥∥
≤
∑
x∈Dx

√√√√tr

[(
∂z

∂θ

)⊤

pp⊤
∂z

∂θ

(
∂z

∂θ

)⊤

pp⊤
∂z

∂θ

]

=
∑
x∈Dx

√√√√tr

[
p⊤

∂z

∂θ

(
∂z

∂θ

)⊤

pp⊤
∂z

∂θ

(
∂z

∂θ

)⊤

p

]

≤
∑
x∈Dx

√√√√[p⊤ ∂z

∂θ

(
∂z

∂θ

)⊤

p

]2

=
∑
x∈Dx

p⊤
∂z

∂θ

(
∂z

∂θ

)⊤

p

=
∑
x∈Dx

∥p∥2 · p⊤

∥p∥
∂z

∂θ

(
∂z

∂θ

)⊤
p

∥p∥

≤
∑
x∈Dx

∥p∥2σ2
C .

Now we are ready to prove the lower bound. From the above, we have∥∥∥∥∥ ∑
x∈Dx

C∑
i=1

pi

(
∂zi
∂θ

)⊤
∂zi
∂θ

−F∆(θ)

∥∥∥∥∥ =

∥∥∥∥∥ ∑
x∈Dx

(
∂z

∂θ

)⊤

pp⊤
∂z

∂θ

∥∥∥∥∥ .
Denote ω(x) :=

(
∂z
∂θ

)⊤
p. Then∥∥∥∥∥ ∑

x∈Dx

C∑
i=1

pi

(
∂zi
∂θ

)⊤
∂zi
∂θ

−F∆(θ)

∥∥∥∥∥ =

∥∥∥∥∥ ∑
x∈Dx

ω(x)ω(x)⊤

∥∥∥∥∥
=

√√√√√tr

(∑
x∈Dx

ω(x)ω(x)⊤

)2


≥
√∑

x∈Dx

(ω(x)⊤ω(x))2

=

√∑
x∈Dx

∥ω(x)∥4.

The last “≥” is due to

tr
(
ω(x)ω(x)⊤ω(x′)ω(x′)⊤

)
= tr

(
ω(x′)⊤ω(x)ω(x)⊤ω(x′)

)
= (ω(x′)⊤ω(x))2 ≥ 0.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

M PROOF OF PROPOSITION 8

Proof. We can first have a loose bound:

∥∥∥∥∥ ∑
x∈Dx

C∑
i=C−k+1

λi

(
∂z

∂θ

)⊤

viv
⊤
i

∂z

∂θ
−F∆(θ)

∥∥∥∥∥
=

∥∥∥∥∥ ∑
x∈Dx

C∑
i=C−k+1

λi

(
∂z

∂θ

)⊤

viv
⊤
i

∂z

∂θ
−
∑
x∈Dx

(
∂z

∂θ

)⊤

I∆(z)
∂z

∂θ

∥∥∥∥∥
=

∥∥∥∥∥ ∑
x∈Dx

(
∂z

∂θ

)⊤
(

C−k∑
i=1

λiviv
⊤
i

)
∂z

∂θ

∥∥∥∥∥
≤

∥∥∥∥∥ ∑
x∈Dx

p(C−k)

(
∂z

∂θ

)⊤
∂z

∂θ

∥∥∥∥∥ (Due to that
C−k∑
i=1

λiviv
⊤
i ⪯ p(C−k)I)

≤
∑
x∈Dx

p(C−k)

∥∥∥∥∥∂z∂θ
(
∂z

∂θ

)⊤
∥∥∥∥∥ .

The eigenvalues of
(

∂z
∂θ

(
∂z
∂θ

)⊤)2
are σ4

1 ≤ · · · ≤ σ4
C . We have

∥∥∥∥∥
(
∂z

∂θ

)⊤
(

C−k∑
i=1

λiviv
⊤
i

)
∂z

∂θ

∥∥∥∥∥
2

=tr

[(
∂z

∂θ

)⊤
(

C−k∑
i=1

λiviv
⊤
i

)
∂z

∂θ

(
∂z

∂θ

)⊤
(

C−k∑
i=1

λiviv
⊤
i

)
∂z

∂θ

]

=tr

(∂z

∂θ

(
∂z

∂θ

)⊤
(

C−k∑
i=1

λiviv
⊤
i

))2


≤tr

(∂z

∂θ

(
∂z

∂θ

)⊤
)2(C−k∑

i=1

λ2
i viv

⊤
i

) (Due to tr(AB)2 ≤ tr(A2B2))

=tr

(∂z

∂θ

(
∂z

∂θ

)⊤
)2(C−k∑

i=2

λ2
i viv

⊤
i

) (Note λ1 = 0)

≤
C−k∑
i=2

σ4
i+kλ

2
i .

The last “≤” is due to Von Neumann’s trace inequality. We also have the Cauchy interlacing

λ2 ≤ p(2) ≤ λ3 ≤ p(3) ≤ · · · ≤ λC−1 ≤ p(C−1).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

To sum up, ∥∥∥∥∥ ∑
x∈Dx

C∑
i=C−k+1

λi

(
∂z

∂θ

)⊤

viv
⊤
i

∂z

∂θ
−F∆(θ)

∥∥∥∥∥
≤
∑
x∈Dx

∥∥∥∥∥
(
∂z

∂θ

)⊤
(

C−k∑
i=1

λiviv
⊤
i

)
∂z

∂θ

∥∥∥∥∥
≤
∑
x∈Dx

√√√√C−k∑
i=2

σ4
i+kλ

2
i

≤
∑
x∈Dx

√√√√C−k∑
i=2

σ4
i+kp

2
(i).

If one relax ∀i ∈ {2, · · · , C − k}, p(i) ≤ p(C−k), then we get the loose bound proved earlier.

N PROOF OF PROPOSITION 9

Proof.

∥F(θ)−F∆
(θ)∥σ =

∥∥∥∥∥ ∑
x∈Dx

(
∂z

∂θ

)⊤

· I(z(x, θ)) · ∂z
∂θ

−
∑
x∈Dx

(
∂z

∂θ

)⊤

(ey − p)(ey − p)⊤
∂z

∂θ

∥∥∥∥∥
σ

=

∥∥∥∥∥ ∑
x∈Dx

(
∂z

∂θ

)⊤ [
diag (p)− pp⊤ − (ey − p)(ey − p)⊤

] ∂z
∂θ

∥∥∥∥∥
σ

≤
∑
x∈Dx

∥∥∥∥∥
(
∂z

∂θ

)⊤ [
diag (p)− pp⊤ − (ey − p)(ey − p)⊤

] ∂z
∂θ

∥∥∥∥∥
σ

≤
∑
x∈Dx

∥∥∥∥∂z∂θ
∥∥∥∥
σ

∥∥diag (p)− pp⊤ − (ey − p)(ey − p)⊤
∥∥
σ

∥∥∥∥∂z∂θ
∥∥∥∥
σ

=
∑
x∈Dx

σ2
C

∥∥diag (p)− pp⊤ − (ey − p)(ey − p)⊤
∥∥
σ
.

Now we examine the matrix diag (p)− pp⊤ − (ey − p)(ey − p)⊤. By Theorem 1, the spectrum of
diag (p)− pp⊤ is

λ1 = 0 ≤ λ2 ≤ · · · ≤ λC .

By Cauchy interlacing theorem, the spectrum of diag (p) − pp⊤ − (ey − p)(ey − p)⊤, given by
λ′
1, · · · , λ′

C , must satisfy

λ′
1 ≤ λ1 = 0 ≤ λ′

2 ≤ λ2 ≤ · · · ≤ λ′
C ≤ λC .

with at least one eigenvalue that is not positive: λ′
1 ≤ 0. Therefore∥∥diag (p)− pp⊤ − (ey − p)(ey − p)⊤

∥∥
σ
≤ max{−λ′

1, λC}.
We also have

λ′
1 = inf

u:∥u∥=1
u⊤ [diag (p)− pp⊤ − (ey − p)(ey − p)⊤

]
u

≥ inf
u:∥u∥=1

−u⊤ [(ey − p)(ey − p)⊤
]
u

= −(ey − p)⊤(ey − p)

= −(1 + p⊤p− 2py)

= 2py − 1− ∥p∥2.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Therefore ∥∥diag (p)− pp⊤ − (ey − p)(ey − p)⊤
∥∥
σ
≤ max{1 + ∥p∥2 − 2py, λC}
≤ max{1 + ∥p∥2 − 2py, 1− ∥p∥2}
≤ 1 + ∥p∥2.

In summary,

∥F(θ)−F∆
(θ)∥σ ≤

∑
x∈Dx

σ2
C(1 + ∥p∥2).

O PROOF OF PROPOSITION 10

Proof. ∥∥∥∥∥
(
∂z

∂θ

)⊤

· I∆(z(x, θ)) · ∂z
∂θ

−
(
∂z

∂θ

)⊤

· I∆
(z(x, θ)) · ∂z

∂θ

∥∥∥∥∥
σ

≥

∥∥∥∥∥
(
∂z

∂θ

)⊤

·
[
I∆(z(x, θ))− I∆

(z(x, θ))
]
· ∂z
∂θ

∥∥∥∥∥
σ

=

∥∥∥∥∥
(
∂z

∂θ

)⊤

·
[
diag (p)− pp⊤ − (ey − p)(ey − p)⊤

]
· ∂z
∂θ

∥∥∥∥∥
σ

= sup
u:∥u∥=1

∣∣∣∣∣
(
∂z

∂θ
u

)⊤

·
[
diag (p)− pp⊤ − (ey − p)(ey − p)⊤

]
·
(
∂z

∂θ
u

)∣∣∣∣∣
≥ sup

v:∥v∥=1

∣∣σ(1)v ·
[
diag (p)− pp⊤ − (ey − p)(ey − p)⊤

]
· σ(1)v

∣∣
≥σ2

(1)∥diag (p)− pp⊤ − (ey − p)(ey − p)⊤∥σ

≥σ2
(1)

∣∣∣∣∣
(

ey − p

∥ey − p∥

)⊤ (
(ey − p)(ey − p)⊤ − λC

) ey − p

∥ey − p∥

∣∣∣∣∣
=σ2

(1)

∣∣∥ey − p∥2 − λC

∣∣
=σ2

(1)

∣∣1 + ∥p∥2 − λC − 2py
∣∣ .

We choose py = p(1), therefore ∃y, such that∥∥∥∥∥
(
∂z

∂θ

)⊤

· I∆(z(x, θ)) · ∂z
∂θ

−
(
∂z

∂θ

)⊤

· I∆
(z(x, θ)) · ∂z

∂θ

∥∥∥∥∥
σ

≥σ2
(1)

∣∣1 + ∥p∥2 − λC − 2p(1)
∣∣ .

P PROOF OF PROPOSITION 11

Proof. From the derivations in the main text, we already know that Ep(ξ) I(θ) = I(θ). To show
the estimator variance, we first consider the case when p(ξ) is a standard multivariate Gaussian
distribution. First we note that both h(Dx, θ) and ∂h/∂θi are in the form of a sum of independent
Gaussian random variables. Hence,

∂h

∂θi
=
∑
x∈Dx

C∑
y=1

√
p(y |x, θ)∂ℓxy

∂θi
ξxy ∼ G

(
0,
∑
x∈Dx

C∑
y=1

p(y |x, θ)
(
∂ℓxy
∂θi

)2
)
.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Therefore

E
p(ξ)

(
∂h

∂θi

)2

=
∑
x∈Dx

C∑
y=1

p(y |x, θ)
(
∂ℓxy
∂θi

)2

= Iii(θ);

E
p(ξ)

(
∂h

∂θi

)4

= 3I2
ii(θ).

Therefore

Var(I(θi)) = E
p(ξ)

(
∂h

∂θi

)4

− I2
ii(θ) = 2I2

ii(θ).

We now consider that p(ξ) is Rademacher.

Var(I(θi)) = E
p(ξ)

(
∂h

∂θi

)4

−

(
E
(
∂h

∂θi

)2
)2

= E
p(ξ)

(
∂h

∂θi

)4

− I2
ii(θ)

= E
p(ξ)

(∑
x∈Dx

C∑
y=1

√
p(y |x, θ)∂ℓxy

∂θi
ξxy

)4

− I2
ii(θ)

=
∑
x∈Dx

C∑
y=1

p2(y |x, θ)
(
∂ℓxy
∂θi

)4

+ 3
∑

(x,y)̸=(x′,y′)

p(y |x, θ)
(
∂ℓxy
∂θi

)2

p(y′ |x′, θ)

(
∂ℓx′y′

∂θi

)2

− I2
ii(θ).

Note that

I2
ii(θ) =

(∑
x∈Dx

C∑
y=1

p(y |x, θ)
(
∂ℓxy
∂θi

)2
)2

=
∑
x∈Dx

C∑
y=1

p2(y |x, θ)
(
∂ℓxy
∂θi

)4

+
∑

(x,y)̸=(x′,y′)

p(y |x, θ)
(
∂ℓxy
∂θi

)2

p(y′ |x′, θ)

(
∂ℓx′y′

∂θi

)2

.

Hence,

Var(I(θi)) = 3I2
ii(θ)− 2

∑
x∈Dx

C∑
y=1

p2(y |x, θ)
(
∂ℓxy
∂θi

)4

− I2
ii(θ)

= 2I2
ii(θ)− 2

∑
x∈Dx

C∑
y=1

p2(y |x, θ)
(
∂ℓxy
∂θi

)4

.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Q PROOF OF PROPOSITION 13

Proof.

E
p(ξ)

(FDG(θ)) = E
p(ξ)

(
∂hDG

∂θ

∂hDG

∂θ⊤

)

= E
p(ξ)

∑
x∈Dx

C∑
y=1

√
ζy(x, θ)

∂zy
∂θ

ξxy
∑

x′∈Dx

C∑
y′=1

√
ζy′(x′, θ)

∂zy′

∂θ⊤
ξx′y′


=
∑
x∈Dx

C∑
y=1

∑
x′∈Dx

C∑
y′=1

√
ζy(x, θ)

√
ζy′(x′, θ)

∂zy
∂θ

∂zy′

∂θ⊤
E

p(ξ)
(ξxyξx′y′)

=
∑
x∈Dx

C∑
y=1

ζy(x, θ)
∂zy
∂θ

∂zy
∂θ⊤

=
∑
x∈Dx

(
∂z

∂θ

)⊤

IDG(z(x, θ))
∂z

∂θ

= FDG(θ).

Therefore,

E
p(ξ)

(
FDG
ii (θ)

)
= E

p(ξ)

(
∂hDG

∂θi

)2

=
∑
x∈Dx

C∑
y=1

ζy(x, θ)

(
∂zy
∂θi

)2

= FDG
ii (θ).

E
p(ξ)

(
∂hDG

∂θi

)4

= E
p(ξ)

(∑
x∈Dx

C∑
y=1

√
ζy(x, θ)

∂zy
∂θi

ξxy

)4

=
∑
x∈Dx

C∑
y=1

ζ2y (x, θ)

(
∂zy
∂θi

)4

+ 3
∑

(x,y)̸=(x′,y′)

ζy(x, θ)

(
∂zy
∂θi

)2

ζy′(x′, θ)

(
∂zy′

∂θi

)2

= 3(FDG
ii (θ))2 − 2

∑
x∈Dx

C∑
y=1

ζ2y (x, θ)

(
∂zy
∂θi

)4

.

Hence,

Var(FDG
ii (θ)) = E

p(ξ)

(
∂hDG

∂θi

)4

− (FDG
ii (θ))2

= 2(FDG
ii (θ))2 − 2

∑
x∈Dx

C∑
y=1

ζ2y (x, θ)

(
∂zy
∂θi

)4

.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

R PROOF OF PROPOSITION 14

Proof. The proof is similar to Proposition 13 and is also based on the Hutchinson’s trick.

E
p(ξ)

(FLR(θ))

= E
p(ξ)

(
∂hLR

∂θ

∂hLR

∂θ⊤

)
= E

p(ξ)

(∑
x∈Dx

√
λC(x, θ)

(
∂z

∂θ

)⊤

vC(x, θ)ξx
∑

x′∈Dx

√
λC(x′, θ)vC(x

′, θ)⊤
(
∂z

∂θ

)
ξx′

)

=
∑
x∈Dx

λC(x, θ)

(
∂z

∂θ

)⊤

vC(x, θ)vC(x, θ)
⊤
(
∂z

∂θ

)
= FLR(θ).

Therefore

E
p(ξ)

(FLR
ii (θ)) =

∑
x∈Dx

λC(x, θ)

((
∂z

∂θi

)⊤

vC(x, θ)

)2

= FLR
ii (θ);

E
p(ξ)

(
∂hLR

∂θi

)4

= E
p(ξ)

(∑
x∈Dx

√
λC(x, θ)v

⊤
C (x, θ)

∂z

∂θi
ξx

)4

=
∑
x∈Dx

λ2
C(x, θ)

(
v⊤C (x, θ)

∂z

∂θi

)4

+ 3
∑
x̸=x′

λC(x, θ)

(
v⊤C (x, θ)

∂z

∂θi

)2

λC(x
′, θ)

(
v⊤C (x

′, θ)
∂z

∂θi

)2

= 3(FLR
ii (θ))2 − 2

∑
x∈Dx

λ2
C(x, θ)

(
v⊤C (x, θ)

∂z

∂θi

)4

.

Hence,

Var
(
FLR
ii (θ)

)
= E

p(ξ)

(
∂hLR

∂θi

)4

− (FLR
ii (θ))2

= 2(FLR
ii (θ))2 − 2

∑
x∈Dx

λ2
C(x, θ)

(
v⊤C (x, θ)

∂z

∂θi

)4

.

28

	Introduction
	Geometry of Low-dimensional Core Spaces
	FIM for Classifier Networks — Deterministic Analysis
	Deterministic Lower and Upper Bounds
	Empirical FIM (eFIM)

	Hutchinson's Estimate of the FIM
	Limitations of Monte Carlo Estimates
	Hutchinson's Estimate
	Diagonal Core
	Low-Rank Core
	Numerical Simulations

	Related Work
	Conclusion
	Further Analysis in the Core Space
	An Alternative Estimator
	Supplementary Experiments
	Accuracy of Hutchinson's Estimate on Diagonal and Low Rank Cores
	Proof of Cref 1
	Proof of Cref 2
	Proof of Cref 3
	Proof of Cref 4
	Proof of Cref 12
	Proof of Cref 5
	Proof of Cref 6
	Proof of Cref 7
	Proof of Cref 8
	Proof of Cref 9
	Proof of Cref 10
	Proof of Cref 11
	Proof of Cref 13
	Proof of Cref 14

