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ABSTRACT

The high dimensional parameter space of modern deep neural networks — the
neuromanifold — is endowed with a unique metric tensor defined by the Fisher
information, estimating which is crucial for both theory and practical methods
in deep learning. To analyze this tensor for classification networks, we return
to a low dimensional space of probability distributions — the core space — and
carefully analyze the spectrum of its Riemannian metric. We extend our discoveries
there into deterministic bounds of the metric tensor on the neuromanifold. We
introduce an unbiased random estimate of the metric tensor and its bounds based
on Hutchinson’s trace estimator. It can be evaluated efficiently through a single
backward pass, with a standard deviation bounded by the true value up to scaling.

1 INTRODUCTION

Deep learning can be considered as a trajectory through the space of neural networks (neuromani-
fold; Amari 2016), where each point is a neural network instance with a prescribed architecture but
different parameters. This work investigates classifier models in the form p(y | z, §), where z is the
input features, y € {1,---,C} is the class labels (C' > 2), and § € O is the network weights and
biases. Given an unlabeled dataset D,, = {x1, z2, - - - }, the intrinsic structure of © is specified by the
Fisher Information Matrix (FIM), defined as:

{mogp(y | z,6) 0log p(y | %9)]
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where (,, () := logp(y |z, ) denotes the log-likelihood. This is based on a supervised model
x — y. For unsupervised models, one can treat x as constant and apply the same formula. Under
regularity conditions, F () is a dim(6) x dim(#) positive semi-definite (psd) matrix varying smoothly
with 6§ € O. Following Hotelling (1929), and independently Rao (1945), F(6) is used as a metric
tensor on O, representing a local degenerate inner product'. For example, one can measure the
intrinsic squared distance between 6 and 6 + d6, where d# is a small dynamic on ©, as d§ T F(6)d6.
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The FIM is the unique metric tensor (Cencov, 1982) which underpins the information geometry
of the neuromanifold © (Amari, 2016). The most widely used application of the FIM is perhaps
geometry-inspired optimizers such as natural gradient (Amari, 1998), Adam (Kingma & Ba, 2015),
and their variants (Martens & Grosse, 2015; Pascanu & Bengio, 2014; Yao et al., 2021; Lin et al.,
2021). F is also applied to regularized fine-tuning (Lodha et al., 2023), pruning (Heskes, 2000; Tu
et al., 2016) transfer learning (Chen et al., 2018), and overcoming catastrophic forgetting (Kirkpatrick
et al., 2017). Theoretically, the FIM provides insights due to its connection with the Hessian of the
loss landscape and generalization (Hochreiter & Schmidhuber, 1997), and that any f-divergence is
locally characterized by the FIM (Blyth, 1994).

Given its deep and broad background, estimating F () with guaranteed quality is important even in
the absence of a specific application pipeline. Inaccurate estimates can lead to overly aggressive or
overly conservative learning steps (Amari, 1998), or miscalculated saliency scores and suboptimal
pruning decisions (Tu et al., 2016). In learning theory, a loosely estimated FIM undermines the validity

'In the machine learning literature, F(6) is sometimes referred to as a curvature matrix (Martens, 2020) but
actually defines a singular semi-Riemannian metric (Sun & Nielsen, 2025) in rigorous terms.



of geodesic distances and the applicability of Cramér—Rao lower bounds, and may distort curvature-
based sharpness, which is closely linked to generalization (Hochreiter & Schmidhuber, 1997). As a
widely used deterministic approximation, the empirical FIM (eFIM, a.k.a. empirical Fisher, see e.g. Le
Roux et al. 2007) is given by F(6) :== 2 (z.y)eD [85%%] ,where D = {(x1,y1), (x2,y2), - } is
a labeled dataset. As another example, the Monte Carlo (MC) estimator F (9) = % 29 3;2@ %‘;”'”19 ,
where &, § are a set of m random samples drawn from D, and p(y | &), respectively, gives an unbiased
estimate of F () up to scaling.

We advance the state of the art in both deterministic and stochastic approaches to computing the FIM,
improving accuracy in terms of bound gap and variance. We made the following contributions: @
Envelopes of the FIM in the statistical simplex (space of output probabilities); @ Deterministic bounds
of the FIM for classifier networks and their tightness analysis; ® A novel family of random FIM
estimates based on Hutchinson’s trick (Hutchinson, 1990; Skorski, 2021), which can be computed
efficiently with bounded variance; @ An empirical study to estimate the FIM of DistilBert (Sanh
et al., 2019) to showcase the advantages of Hutchinson’s estimate in production settings.

In the rest of this section, we introduce our notations. Section 2 develops fundamental bounds and
estimates in low dimensional spaces of probability distributions. Section 3 extends the deterministic
bounds into the high dimensional neuromanifold. Section 4 introduces Hutchinson’s FIM estimator
and discusses its theoretical properties with numerical simulation on DistilBERT (Sanh et al., 2019).
Section 5 positions our work into the literature. Section 6 concludes.

NOTATIONS AND CONVENTIONS

We use lowercase letters such as A or a for both vectors and scalars, which should be distinguished
based on context, and capital letters such as A for matrices. All vectors are column vectors. A
scalar-vector or vector-scalar derivative such as 9¢/96 yields a gradient vector of the same shape as
the vector. A vector-vector derivative such as 9z/96 denotes the dim(z) x dim(é) Jacobian matrix
of the mapping § — z. || - || denote the Euclidean norm for vectors or Frobenius norm for matrices.
|| - || denotes the spectral norm (maximum singular value) of matrices. The metric tensors (variants
of FIM) are listed in table 1.

Table 1: Metric tensors. We use Z /Z / Z /I for simple low-dimensional statistical manifolds and use
F | F | F T for neuromanifolds. We optionally use superscripts to indicate the associated parameter
space. For example, Z® and F2 denote the metric tensor of the statistical simplex and the space of
neural networks with simplex-valued outputs, respectively.

FIM empirical FIM (eFIM) Monte Carlo FIM (MC FIM)  Hutchinson FIM
I(2) 1 F(6) T(2) 1 F(6) 7(2) 1 F(6) I(z) / F(0)

2 GEOMETRY OF LOW-DIMENSIONAL CORE SPACES

Consider a classifier network p(y | z,0) = p(y | z(x,0)), where z(x, 0) is last layer’s linear output.

Due to the chain rule, we plug agzy = (%;) T 8;2’9 into Eq. (1). Then, we can easily arrive at
Fo)- Y (Z) 20 & @
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which is in the form of a Gauss-Newton matrix (Martens et al., 2010), or a pullback metric tensor (Sun,
2020) from a low dimensional statistical manifold with metric Z(z2), to the much higher dimensional
neuromanifold with metric F(6). In this section, we rediscover the geometrical structure of the low
dimensional statistical manifold, which we refer to as the core space, or simply the core.

In multi-class classification, y (given a feature vector x) follows a category distribution p(y =
i|x,0) = pi(x,0),i=1,--- ,C. All possible category distributions over {1, -- ,C} form a closed

2Strictly speaking, the pullback tensor requires the Jacobian of # — z have full column rank everywhere,
which is not satisfied in typical settings of deep neural networks. This leads to singular metric tensors.



statistical simplex A1 := {(pl, <o pe) Zchl pi=1; Yi,p; > 0}. The superscript C' — 1

denotes the dimensionality of A and can be omitted. If p € int(A“~1) (interior of A“~1), we can
reparameterize p = SoftMax(z), where z € R is the logits. The core A®~! is a curved space,
where p or z serves as a coordinate system in the sense that different choices of p or z yield different
distributions. By Eq. (1), the FIM is:

I%(z) = E[(ey — p)(ey —p) "] = diag (p) —pp', )

where diag (-) means the diagonal matrix constructed with a given diagonal vector. In below,
depending on context, diag (-) also denotes a diagonal vector extracted from a square matrix. e
(without subscripts) denotes a vector of all ones, e, denotes the one-hot vector with only the 3’th bit
activated, and e;; denotes the binary matrix with only the ¢j’th entry set to 1. Note z is a redundant
coordinate system as dim(z) = C > C — 1. If z € int(A“~1), Z?(2) has a one-dimensional kernel:
one can easily verify Z2(2)(te) = 0 for all t € R.

By noting that Z(2) is a rank-1 perturbation of the diagonal matrix diag (p), we can apply Cauchy’s
interlacing theorem and study the spectral properties of 7 (z).
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Theorem 1 (Spectrum of Simplex FIM). Assume the spectral decomposition T®(z) =
where Ay < -+ < A¢. Then Ay = 0; v1 = ¢/ |le]|; 220:1 Xi =1 —||p||?; and

1— |pll?
Cc-1

where p(c—1) and p(cy denote the second-largest and the largest elements of p, respectively.

max {p;(1 —p;)} U {p(C—l); } < Ac < min {P(c)72m§%x(pi(1 —pi))1— Hp||2} ;

The largest eigenvalue of 7 (z), denoted as \c, and its associated eigenvector correspond to the
“most informative” direction at any z € A“~!. By Theorem I, A¢ can be bounded from above and
below. The bound gap is at most min{pcy — p(c—1), max;(p;(1 — p;))}. We have found through
numerical simulations that, in practice, the bounds in Theorem | are quite tight and can provide an
estimate of A¢ within a narrow range. The lemma below gives lower and upper bounds of Z2(z),
both with a simpler structure than Z2(z), in the space of psd matrices based on Lowner partial order.

Lemma 2. Vz € int(A“~1), assume the spectral decomposition T°(z) = chﬂ \iviv,|, where
A < oo < Aot < Ao. Then, Acvevl = I2(z) = diag(p). Moreover, A\cvcv/. is the
best rank-1 representation of T* (%) in the sense that no rank-1 matrix B # /\cvcvg satisfies
Acvevl = B = I?(z). Meanwhile, diag (p) is the best diagonal representation of T®(z) in the
sense that no diagonal matrix D # diag (p) satisfies T*(z) = D =< diag (p).

The simplex FIM is upper-bounded by a diagonal matrix and lower bounded by a rank-1 matrix. By
Lemma 2, )\Cvcvg is the lower-envelope (greatest lower bound) of IA(z) in rank-1 matrices, and
diag (p) is the upper-envelope (least upper bound) of 72 (z) in diagonal matrices. If the bounds in
Lemma 2 are used as a deterministic estimate of Z2 (z), the error can be controlled, as shown below.

Lemma 3. We haveVz € A, ||T%(z) —diag (p) || = ||p||* > &; meanwhile, | T (z) — Acvevl || <
min {1 —Ipll = pec—1) 4 /Zf:_zl p%i) } where p(;y denote the entries of p sorted in ascending order.

Note 220;21 p%i) is the Euclidean norm of trimmed p, i.e. the vector obtained by removing p’s

smallest and largest elements. By Lemma 3, the upper bound diag (p) always incurs an error of at
least 1/C. Depending on p, the lower bound Acvcv/, can more accurately estimate Z2 () as the
error can go to zero.

Alternatively, one can use random matrices to estimate Z2(z). By Eq. (3), the rank-1 matrix
R(y) = (e, — p)(ey — p) " is an unbiased estimator of Z*(z). The MC FIM of A is 7°(z) =
# it R(9;), where g; are random samples from the distribution specified by z. The associated
eFIM is TA(Z) = R(y), where y is a given empirical sample. The lemma below shows the worst
case error of 7 (z).

Lemmad. Vz € A“"! 3y e {1,---,C}, such that |R(y) — I°(2)|| = 1 + []p]|* — Ac — 2p)
> 2[|pll* — 2pq)-



The first “>" is tighter but the second > is easier to interpret. The term ||pH can be as large as 1
(when p is close to one-hot). In such cases, using R(y) to estimate Z° () may incur significant error
if y is adversarially chosen.

In classification tasks with multiple binary labels, we assume p(y; = 1|z) =p; i = 1,---,C)
and that all dimensions of y are conditional independent given x. All such distributions form a
C-dimensional hypercube CY(p) = {(p1,--- ,pc) : Vi,0 < p; < 1}, which is the product space of

1-dimensional simplices. Consider p; = o(2;) := 1/(1 4+ exp(—z;)) fori = 1,--- , C. In this case,
the FIM is a diagonal matrix, given by
I(z) = diag ((p1(1 = p1),- -, po(l = po))) = diag (o' (i), - , 0" (2¢)) - “

In what follows, unless stated otherwise, our results pertain to the core A as it is more commonly
used and has a more complex FIM as compared to C.

3 FIM FOR CLASSIFIER NETWORKS — DETERMINISTIC ANALYSIS

We give a lower and upper bound of F2(6) (Proposition 5) and analyze each bound gap (Proposi-
tions 7 and 8). Our bounds result from simple matrix analysis and are more operational than related
theoretical bounds such as monotonicity of the FIM under marginalization or coarse-graining (Amari,
2016). Our bounds are novel in that @ they are built on envelopes (tightest bound) in the core, and @
they depend on the order statistics of the output probability vector.

3.1 DETERMINISTIC LOWER AND UPPER BOUNDS

By Eq. (2), the neuromanifold FIM F(6) is determined by both the core space and the parameter-

output Jacobian g—z. Similar to Lemma 2, we can have lower and upper bounds of 7 (6) in the space
of psd matrices (although these bounds are not envelopes as in Lemma 2).

Proposition 5. If p(y | z,0) € A~ is categorical, then V6 € @ we have

c T
0z 0z 0z, [0z
S Y (%) iz T Sk (%)
z€D, i=C—k+1 90 90 x€D, y=1 90
forallk € {1,--- ,C — 1}, where \; .= \;(x,0) and v; = v;(x,0) denote the i’th eigenvalue and
eigenvector of Z(z(x,0)), ordered such that \y < Ao < -+ < Ac.

Remark. The LHS is a sum of | D | (number of samples in D,.) matrices, each of rank k. Its rank is
at most k|D,|. The RHS is a sum of C|D,,| matrices of rank-1 and potentially has a larger rank.

Remark. By Theorem I, \y = 0. Therefore, the first “=<"” turns to “=" when k = C — 1.

If p(y|x) is in C, then Z€(z(x,0)) is diagonal as in Eq. (4). By Eq. (2), we have F¢(§) =
T

Y weD, Zgzl py(1l — py) aazey (%) which is similar to the upper bound in Proposition 5. In

summary, F () can be bounded or computed using the J acobian 2 55 as well as the output probabilities

(y|z,0). The following analysis depends on the spectral properties of . Across our formal
statements we denote the singular values of g;, sorted in ascending order as o1(x,0) < -+ <
oc(z,0). In Proposition 5, by taking the trace on all sides, the trace of the FIM can be bounded from

above and below.
Corollary 6. If p(y | x,0) € A1 is categorical, then it holds for all § € © that

Z)\Cxﬁalxe ZZ/\ (,0)0841—i(x,0) < tr(F ZZpy\x@H

zED, €D, 1=2 z€D; y=1

These bounds are useful to get the overall scale of 7 (f) without computing its exact value. The
proposition below gives the error of the upper bound in Proposition 5 in terms of Frobenius norm.

Proposition 7. We have V6 € © that
0z T C 8zy - azy A
\LEZI;T (%) > plyla,0) (%> S

€D, y=1
where p(x,0) = SoftMax(z(x, 0)) denotes the output probability vector.
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We use Frobenius norm for matrices but it is not difficult to bound the spectral norm using similar
techniques. By Proposition 7, the error of the upper bound scales with the 2-norm (maximum singular
value) of the parameter-output Jacobian %. As in the core space, the FIM upper bound remains
loose. For example, let p tend to be one-hot, the LHS in Proposition 7 does not vanish but scales with
certain rows of 5% corresponding to the predicted y. Naturally, we also want to examine the error of

the lower bound in Proposition 5, as detailed below.

Proposition 8. We have that for all 0 € © and all k € {1,--- ,C — 1},

C—k

x€D, 1=2

< 02\  +0=
N tid moy I 25 TA
Z Z Ai (0(9) Viv; g F2(0)

€D, i=C—k+1

Clearly, as p approaches a one-hot vector, all elements in the trimmed vector p(;), fori = 2,--- ,C'—1,
tend to zero, and the error approaches zero since its upper bound on the RHS goes to zero. From this
view, the lower bound in Proposition 5 is a better estimate as compared to the upper bound.

Remark. By noting that 0 < o;(x,0) < oc(x,0), we relax the bound in Proposition 8 and get

—FHO)| <
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The estimation error of the low-rank lower bound in Proposition 5 is controlled by the norms of
the Jacobian and the trimmed probabilities (p(2),- - ,p(c—k))- The latter is upper bounded by
p(c—k)(x,0), the (k + 1) th largest probability of each sample x. By comparing with the second “<”
in Proposition 7, one can easily observe that Proposition 8 is tighter in general.

3.2 EMmPIRICAL FIM (EFIM)

Recall from the introduction, the eFIM F (6) gives a biased, deterministic estimate of F(6). Intuitively,
when the network is trained, computations based on the given labels are close to the expectation
w.r.t. p(y | x), and the eFIM is expected to approximate F(#) well. However, the bias of F(6) can be

enlarged if y is set adversarially. By simple derivations, F(6) = > 2€D, (%)T ‘R(y) - %. Observe

that it is similar to Eq. (2), except Z(z(z, #)) is replaced by its empirical counterpart R(y). If the
neural network output is in A, the error of eFIM can be bounded, as stated below.

Proposition 9. V0 € ©, Vy, we have || F>(6) — fA(H)HU <Y en, 1+ Ip(z,0)[?)02 (2, 6).

Here we need to switch to the spectral norm || - ||, to get a simple expression of the upper bound.
The approximation error in terms of the spectral norm is controlled by the spectral norm of the
parameter-output Jacobian. The error by Frobenius norm is even larger. The bound is loose as
compared to Propositions 7 and 8.

We have found in Lemma 4 that using R(y) to approximate ZA (z) suffers from a large error if y is
chosen in a tricky way. The same principle applies to using F () to approximate F(8).

Proposition 10. V0 € ©, Yz, Jy, such that
az\ " A 0z a2\ " 0z
H<39> w0 g - (5) G

In the above inequality, the LHS is the error of F(6) for one single x € D,. Therefore, when y is
set unfavorably, the eFIM suffers from an approximation error that scales with the smallest singular
value of %. Among all the investigated deterministic approximations of 72, the lower bound in
Proposition 5 provides the smallest guaranteed error but is relatively expensive to compute. We solve
the computational issues in the next section.

> U%('Tae) }1 + Hp(:m 9)||2 - )\c(x,e) - 2p(1)($€,6)| .
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4 HUTCHINSON’S ESTIMATE OF THE FIM

4.1 LIMITATIONS OF MONTE CARLO ESTIMATES

The quality of the MC estimate F (0) can be arbitrarily bad. Consider the single neuron model
z = Oz for binary classification, where z, 0, x are all scalars, and 6 is close to zero. Then p ~ % is
a fair Bernoulli distribution. Z(z) = p(1 — p) ~ 1. The Jacobian is simply 95 = z. and F(0) =
Ep(e) [£Z(2)%] ~ L Epw[2?]. A basic MC estimator takes the form F(6) = ;& 7" 1 z2,
where x;’s are independently and identically distributed according to p(x). Its variance is Var(]-' ) =

= [Ep) (zt) — Ei(x) (2?)]. We let p(x) be a heavy tailed distribution, e.g. Student’s t-distribution
with v > 4 degrees of freedom, so that Var(F) is large while F(6) is small. Then Ep() (2%) = 75

v—2
4
(]]i”i”i(;))z = 3(::42) can be arbitrarily large when v — 4%,
p(x

and By, (2*) = % The ratio

Therefore the coefficient of variation (CV) Std(F)/F (f) is unbounded. Throughout our analysis,
the CV is a key indicator of the quality of a FIM estimator, as a bounded CV for a random variable X
ensures the random estimator’s probability mass within [0, ape], where > 1 and p > 0 is the mean
of X. If CV = 819X < [, then by Cantelli inequality, we have

P(Xz‘“‘)WXZH(Q1>u>SP(qu+°§18th> < <1+<af_(1>2>_

The general case is more complicated, but follows a similar idea. The variance of MC estimators
depends on the 4th moment of the Jacobian 2 %5 w.rt. p(z) while the mean value () only depends

on the 2nd moment of 2. The ratio of the variance to F2 (), or the CV Std(F)/F (), is unbounded
without further assumption on p(x). One can increase the number of samples m to reduce variance.
However, this is computationally expensive especially in online settings.

4.2 HUTCHINSON’S ESTIMATE

In light of the challenges of MC estimates, we introduce a new way to get an unbiased estimate of the
FIM. First, compute the scalar-valued function

h(D,,0) = ZZ\/ (y]2,0)l0y (0)Eny, )

€D, y=1

where &, is a standard multivariate Gaussian vector of size C|D| or a Rademacher vector,
and p(y|z,0) has the same value as p(y|z,0) but is non-differentiable, meaning its gradi-
ent is always zero, preventing error from back-propagating through p(y|z,6). This p can
be implemented by Tensor.detach () in PyTorch (Paszke et al., 2019) or similar func-
tions in other auto-differentiation (AD) frameworks. Second, the gradient vector % =

> weD, Zy L Vpy|z,0) (M” 7~ &y can be evaluated via AD, e.g. by h.backward () in Pytorch.

Third, the random psd matrix ]F(G) = gz a%T , which we refer to as the “Hutchinson’s estimate” (of

the FIM), can be used to estimate F(6). By straightforward derivations,

8&0 Oyt
=3 Z S Z Vol T2, 0)V/ply [27,0) 552 S [eayary] = F(0). ©)

2€Dy y=1 2/ €Dy y' =1 (&)

p(&)

The last “=" is because E ¢y (§xylery) = 1if 2 = 2’ and y = 3/, and Ey(¢) (§xy&ary) = O otherwise.
Considering % as an implicit representation of the FIM, its computational cost is @ evaluating the
b function, @ the backward pass to compute the gradient of . The cost is the same as evaluating
the gradient of the loss — > 25:1 4,(6), noting that b is the log-likelihood randomly flipped
by a Gaussian/Rademacher vector. Moreover, b can reuse the logits already computed during the
forward pass. Therefore 2 ae requires merely one additional backward pass, making it practical for
large scale networks. In summary, F(6) is a universal estimator of F () for general statistical model,
which is independent of neural network architectures and applicable to non-neural network models as
well. Hutchinson’s estimate has guaranteed quality, as formally established below.



Proposition 11. E,) (F(0)) = F(0). If p(§) is standard multivariate Gaussian, then
Var(F;;(0)) = 2F;;(0)?; if p(€) is standard multivariate Rademacher, Var(F;;(0)) = 2F;;(0)? —
C Mgy
2 Zmer Zy:]_ p2 (y | x)( 80; )4~
It is known that Rademacher distribution yields smaller variance for Hutchinson’s estimator compared
to the Gaussian distribution. In what follows, p(¢) is Rademacher by default. By Proposition 11,
Std(Fi;(0)) < V2F;i(0). Thus the CV Std(F,;(6))/F::(6) is bounded by +/2. We only investigate
the diagonal of Hutchinson’s estimate because the diagonal FIM is widely used, but our results can
be readily extended to off-diagonal entries.

Remark. For a dataset with J minibatches, each with a diagonal FIM FE{ >(9) computed with
Z'j]:l }FE,”(G) By Proposition 11, Var(F;;(0)) =

Z‘Tj]:] Var( ( ) < 22 (]—"(7 (0 )> < 2(]:i,,¢(9))2. Moreover, we roughly approximate

an independent probe, we have F;;(0)

no

. v 2 . .
Fii(0) ~ ]IFE,”(H) Then, Var(F;;(0)) < 22‘;11 (]:,;,](9)> =2 (Fii(0))? . At the dataset level,
the variance is inversely proportional to J, while the computation cost grows linearly with J,
presenting a typical accuracy—computation trade-off-

Remark. Taking trace on both sides of Ey¢) (F(0)) = F(0), we get Ep¢) (|| ah |1?) = tr(F(0)). The

squared Euclidean-norm of % is an unbiased estimate of the trace of the FIM. This is useful for
computing related regularizers (Peebles et al., 2020).

An alternative Hutchinson’s estimate based on the equivalent FIM expression F(0) =

r ol ov/ply|,0) 9/p(y | .0 . . .
4 Zmepr Zf/':l - \/pg?)\ =6 ¢ \/%(57‘ 2,0 (see e.g. the first unnumbered equation in Sun & Nielsen

2017) is detailed in section B. We find that in practice its performance is similar to the above F.

Note that a sample of the random matrix F(0) is always rank-1: rankF(0) = 1 < rank F(6),
but the expectation of F(6) has the same rank as F(6). Ideally, one can compute the numerical
average of more than one F(6) samples to reduce variance and recover the rank, each requiring a
separate backward pass. Due to computational constraints in deep learning practice, much fewer
(e.g., 1) samples are used. Instead, accumulated statistics along the learning path 6; — o — - --
can be used to maintain a (exponential) moving average of F(6;). The underlying assumption is
that 01, 65, - - - connected by small learning steps lie close to one another in the parameter space.
Therefore, averaging F(0;) provides a reasonable approximation of the local FIM with sufficient
rank.

4.3 DIAGONAL CORE

For multi-label classification, and for computing the upper bound in Proposition 5, the core matrix
is diagonal, in the form ZP%(z(z,0)) = diag (¢i(z,0),--- ,{c(x,0)), and the associated FIM

is FP9(0) = ¥ ep. (gg)T - IPG(2(,0)) - Z5. In the former case, (,(z,0) = p(y|z,0)(1 —
p(y | z,0)); in the latter case, (,(x,6) = p(y |z, 8). Here, the tensor superscript — e.g., “DG” for
diagonal; “LR(k)” and “LR” for low-rank — indicates the parametric form of the core FIM, in
contrast to denoting the core space as in Z2. We define the scalar valued function

C
)= D) V(@ 0)zy(x,0)Eny, )

€D, y=1
where £, are standard Rademacher samples that are independent across all = and y. Similar to
G
the derivation steps in section |, we first compute the random vector 6%9 through AD, and then

compute FP4(0) := m’azc G;GDTG (or its diagonal blocks) to estimate FP% ().

For computing the upper bound in Proposition 5, (Ny(x, 9) = py(z, 9), then we find that Eq. (5) and
Eq. (7) are similar. The only difference is that, the ‘raw” logits z, in Eq. (7) is replaced by £, (6) =
zy —log >, exp(zy) in Eq. (5). Compared to a; , the gradient = aé“’ = 8zy =2, |z,0)%; ]
centered. Due to their computational similarity, in practice, one should use Eq ) 1nstead of Eq (7)




and get an unbiased estimate of 72 (). Eq. (7) is useful when the dimensions of y are conditional
independent given z, e.g. for computing F¢ ().

4.4 Low-RANK CORE

By Proposition 5, 72 (0) = FLRK) () = Y weD, EZ-C:C,,CH Ai(z,0) (%)T vi(z, 0)v] (z, 9)%-

We define
c
BLEE@O) = Y > VXl 05/ (2,0)2(x,0)&, ®)
€D, i=C—k+1

where £, are independent standard Rademacher samples, and k € {1,--- ,C — 1}. For computing
HERI)(9), we only need k|D, | Rademacher samples, as compared to C|D, | samples for computing
h(0) and hPG(0). Correspondingly, FFRI)(9) = ah;};(k) B%L;(k) is used to estimate FLR()(9).
When k = 1, we simply denote FR := FLR() pLR — pLR() gpd LR .= FLRA)

It remains to compute A, (x, #) and v;(z, 0), which requires spectral decomposition of a C' x C' matrix
for each € D,. The cost is only acceptable when C' is small to moderate. In our CIFAR-100
experiments (C' = 100), the computational speed of F*R() drops to roughly half that of F. If k = 1,
however, A¢c(z,0) and ve(z, 0) can be computed more efficiently using the power iteration. By
Eq. (3), starting from a random unit vector v, we compute

Vit — IA(Z)”E‘ _ po UE‘ - pT’Utcp
o= =
IZ2(=)vell  llpove —pTvepl’
fort = 1,2,---, until convergence or until a fixed number of iterations is reached. Then, A\¢ =
T o T 2 . - ¥ . .
p' (vcowve) — (p ve)?. For computing A and ve for all z € D,, the per-iteration computational

costis O(C|D,|). The number of iterations required increases as the spectral gap v := Ao — Ao—1
decreases. Convergence can be slow when + is small (e.g., for near-uniform output distributions).
In our implementation, we simply use a fixed iteration budget of 7" = 30. All our estimators: b,
HPE and HRX) can be computed solely based on the neural network output logits z(z, #) for each
z €D,.

4.5 NUMERICAL SIMULATIONS

We compute the diagonal FIM of the following models: @ DistilBERT (Sanh et al., 2019; Wolf
et al., 2020) fine-tuned on the Stanford Sentiment Treebank v2 (SST-2) (Socher et al., 2013) (with
C = 2 classes); @ DistilBERT (pretrained) with a randomly initialized classification head for
DBpedia ontology classification (Lehmann et al., 2015) (C' = 14); ® RoBERTa-base (Liu et al.,
2019) fine-tuned on Multi-Genre Natural Language Inference (MNLI) corpus (Williams et al., 2018)
(C' = 3); @ ImageNet-pretrained ResNet-50 (He et al., 2016) with a random classification head for
CIFAR-100 image classification (Krizhevsky, 2009) (C' = 100); ® Same as (4) but with an ImageNet-
pretrained EfficientNet-BO (Tan & Le, 2019) backbone; ® Wav2Vec2-base (Baevski et al., 2020)
(pretrained) with a random classification head on SpeechCommands audio classification (Warden,
2018) (C' = 12).

For all datasets, the FIM is computed on a fixed random subset of 128 batches with a batch size of
B = 64. We evaluate the ground-truth diagonal FIM F;; using its closed-form expression in Eq. (1),
which requires 8192C' backward passes and is impractical to use on the full dataset. Figure 1 shows
the FIM histograms of RoBERTa-base, ResNet-50, and Wav2Vec2-base, including the zero atom
(probability mass at zero). Other datasets and models are omitted due to space constraints. The
distribution of JF; differs substantially across tasks. For example, in RoOBERTa-base, the embedding
layers exhibit a large atom at zero corresponding to unobserved vocabulary, whereas intermediate
transformer layers show the largest Fisher information. Similar patterns are observed in other NLP
tasks.

We only compare FIM estimators that can be computed using a single backward pass per batch,
including the empirical FIM F;;(6), F;;(#) (Hutchinson’s unbiased estimate), F2 () (upper-biased

estimate of F;;), FLE(6), and IFL-R'(z)(H) (lower-biased estimate of F;;). The MC estimate F is

i

excluded, because it requires B backward passes per batch (B: batch size) and is less applicable to



production settings. Table 2 shows the relative mean absolute error (ReIMAE), defined as the average
ratio of the absolute error to the ground-truth value, with e = 10~'? added for numerical stability.

For example, the ReIMAE of empirical FIM is dnﬁ(e) Z?:l‘w) % Because F;; is typically
small in magnitude, ReIMAE offers a more interpretable error metric than the mean absolute error
(MAE). In general, [;; is the most accurate, with a ReIMAE of approximately 0.2, corresponding
to + 20% relative deviation from the ground truth. This improvement arises because F is unbiased,
whereas other baselines are biased. Nevertheless, }'Z-IgR and }'Z-I;R@) are the most accurate on SST-2
and MNLI. This is because, on these two tasks, the model is fine-tuned and the core FIM exhibits an

approximately low-rank structure. The empirical FIM and F2¢ are the least accurate.

The computational speeds of all methods are broadly similar. Hutchinson’s estimate is as fast as
the empirical FIM. In contrast, F;* and fg;R'@) are more expensive because they rely on power
iterations or spectral decompositions of the core FIM. The bottom line is: to compute the diagonal
FIM, one should choose Hutchinson’s unbiased estimate [F over the empirical FIM F. For fine-tuned
models, one may alternatively use F*® or FLR() to achieve higher accuracy.
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(c) Wav2Vec2-base on SpeechCommands

Figure 1: Histograms of the ground-truth diagonal FIM entries F;; on a logarithmic x-axis. The zero
atom is displayed as a vertical bar at the left edge of each plot. From top to bottom, NLP, vision,
and audio tasks are shown. From left to right, successive components from input to output and their
parameters counts are displayed. ¢ denotes the zero probability. i denotes the average value of F;
in the component. The solid and dashed vertical lines indicate the median and the pgs quantile of
strictly positive values, respectively.

Table 2: ReIMAE w.r.t. the ground-truth diagonal FIM entries J;; for different FIM estimators
(columns) across tasks (rows). Numbers in parentheses mean speedup factors relative to the empirical
FIM (larger is faster). CIFAR-100 is used for both ResNet-50 (R) and EfficientNet-BO (E).

F F e FLR FRG)

k23 17 17 1 7
SST2 [15(x1) 0.8(x1.07) 341(x1.07) 0.05(x0.96) 0.05(x1.00)
DBpedia 0.59(x1) 0.22(x1.00) 025(x1.00)  0.8(x0.93) 0.72(x0.93)
MNLI 53.9(x1) 0.16(x1.00) 8.36(x0.97) 0.11(x0.96) 0.12(x0.95)

CIFAR-100 (R) 0.17(x1) 0.11(x0.99) 0.11(x1.01) 0.97(x0.97) 0.95(x0.46)
CIFAR-100 (E) 0.17(x1) 0.11(x1.00) 0.12(x1.00) 0.98(x0.98) 0.96 (x0.50)
SpeechCommands | 56.8(x1) 0.17(x0.97) 7.4(x0.97) 0.39(x0.89) 0.22(x0.91)




5 RELATED WORK

A prominent application of Fisher information in deep learning is the natural gradient (Amari, 1998)
and its variants. The Adam optimizer (Kingma & Ba, 2015) uses the empirical diagonal FIM.
Efforts have been made to obtain more accurate approximations of F(6) at the expense of higher
computational cost, such as modeling the diagonal blocks of () with Kronecker product (Martens,
2020) of component-wise FIM (Ollivier, 2015; Sun & Nielsen, 2017), or computing F(#) through
low rank approximations (Le Roux et al., 2007; Botev et al., 2017). The FIM can be alternatively
defined on a sub-model (Sun & Nielsen, 2017) instead of the global mapping x — y or based on
a-embeddings of a parametric family (Nielsen, 2017). AdaHessian (Yao et al., 2021) uses Hutchinson
probes to approximate the diagonal Hessian.

From theoretical perspectives, the quality of Kronecker approximation is discussed (Martens &
Grosse, 2015) with its error bounded. It is well known that the eFIM differs from F () (Pascanu &
Bengio, 2014; Martens, 2020; Kunstner et al., 2020) and leads to distinct optimization paths. The
accuracy of two different MC approximations of F(#) is analyzed (Guo & Spall, 2019; Soen & Sun,
2021; 2024; Sun & Spall, 2021), which lie in the framework of MC information geometry (Nielsen &
Hadjeres, 2019). By our analysis, the Hutchinson’s estimate IF() has unique advantages over both

MC and the eFIM. Notably, the MC estimate in section 4.1 needs to compute 8:;’;@ for each x € D,,

while IF(6) only needs to evaluate one gradient vector %. Our bounds improves over existing bounds,
e.g. those of F(6) (Soen & Sun, 2024), through carefully analyzing the core space.

The Hutchinson’s stochastic trace estimator is used to estimate the trace of the FIM (Jastrzebski
et al., 2021), or the FIM for Gaussian processes (Stein et al., 2013; Geoga et al., 2020) where
the FIM entries are in the form of a trace. Closely related to this is computations around the
Hessian, where Hutchinson’s trick is applied to compute the Hessian trace (Hu et al., 2024), or the
principal curvature (Bottcher & Wheeler, 2024), or related regularizers (Peebles et al., 2020). The
Hessian trace estimator is implemented in deep learning libraries (Dangel et al., 2020; Yao et al.,
2020) and usually relies on the Hessian-vector product. As a natural yet important next step, our
estimators leverage both Hutchinson’s trick and AD’s interfaces, avoid the need for expensive Hessian
computations/approximations, and are well-suited in scalable settings. In Eq. (6), we perform a
double contraction of a high dimensional tensor indexed by x, y, ', ¥/, ¢ and j (i and j are indices
of the FIM) and thereby obtain an unbiased estimator of the full metric tensor F () including its
substructures and trace. Our estimator can be applied to different classification networks regardless
of the network architecture.

6 CONCLUSION

We explore the FIM F of classifier networks, focusing on the case of multi-class classification.
We provide deterministic lower and upper bounds of the FIM based on related bounds in the low
dimensional core space. We discover a new family of random estimators I based on Hutchinson’s
trace estimator. Their estimate has guaranteed quality with bounded variance and can be computed
efficiently through auto-differentiation. The proposed F is readily integrated into deep learning
libraries (Dangel et al., 2020; Yao et al., 2020) for efficiently evaluating the FIM or the Hessian. Our
analysis in the core space gives insights and useful tools for information geometry where the simplex
is widely used. As a limitation, the results here address novel computation of F but are not directly
piped into a downstream application that uses the proposed F. For example, new deep learning
optimizers based on the proposed [, are not developed here and left as future work. Advanced
variance reduction techniques (Meyer et al., 2021) that could improve our proposed random estimator
F(#) remain to be investigated.
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A  FURTHER ANALYSIS IN THE CORE SPACE

The lemma below gives the average error (variance) of using R(y) to estimate Z(z), where y is a
random variable distributed according to p(y | z).

Lemma 12. The element-wise variance of the random matrix R(y), denoted by Var(R;;), is given
by
v pi(=p) (X =4pi(1 —py)) ifi=3;
Var(R”) - { DiD; (pi +pj — 4pipj) otherwise.
Vi, j, Var(R;;) < 1/16. For both diagonal and off-diagonal entries, the coefficient of variation (CV)
Std(R;j)/ |IZ% (2)| can be arbitrarily large, where Std(-) means standard deviation.

By Lemma 12, when using the rank-1 matrix R(y) as an estimator of Z2(z), the absolute error
is bounded, but the relative error given by the CV is unbounded. One may alternatively use the
rank-2 random matrix R'(y) = e,, — pp' to estimate Z(z). Obviously we have E(R'(y)) =
diag (p) — ppT = Z?(z) and thus R'(y) is unbiased. The variance appears only on the diagonal
while all off-diagonal entries are deterministic with zero-variance. This R’'(y) is not used in our
developments but is of theoretical interest.
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B AN ALTERNATIVE ESTIMATOR

We can re-write the FIM in Eq. (1) as

0 x,0) 0 x,0
_422 \/pyl Voy|z,0)

00T

€D, y=1
We define
c
T (Da, 0) =2 ) > V(Y| 2,0)Eny, )
€D, y=1

where &, is a standard multivariate Gaussian vector of size C'|D| or a Rademacher vector. Then, we
can use AD to compute

hsqrt ) / y | x, 9
)y Y WIOTT,
z€D, y=1

Then,

ahsqrt ahsqrt

00 90T

gives an unbiased estimate of the FIM F(#), with bounded variance (details are straightforward and

omitted for brevity).

Fsart () := (10)

This 54 differs from FF in two aspects

* It requires no detach () operation;

* The square root can be avoided by noting

Volu[,0) = exp (; (u 0) —log 3 explz (a, e»)) 7

Y

where zy(z,0) — log >, exp(zy(,0)) can be computed via PyTorch’s log_softmax()
method.

[F5a** is numerically more stable because it does not require clipping the operand inside the square
root to be above zero. In our experiments, however, we notice little difference with F. All presented
experimental results are produced using [ introduced in the main text.

C SUPPLEMENTARY EXPERIMENTS

Figure 2 shows the distribution of the ground truth diagonal FIMs of DistilBERT on SST-2, Distil-
BERT on DBpedia, and EfficientNet-BO on CIFAR-100. The classification head exhibits the largest
Fisher information among all components at random initialization, whereas its Fisher information is
comparatively small in fine-tuned models. In an early draft, we included experiments on DistilBERT
for AG News (Zhang et al., 2015) topic classification (C' = 4 classes), which has been streamlined
to allow space for other types of dataset and to present a more representative range of class counts
C. All numerical results presented in this paper are performed on Nvidia H100 SXM5 GPUs on our
compute cluster.

D ACCURACY OF HUTCHINSON’S ESTIMATE ON DIAGONAL AND LOW RANK
CORES

In this section, we show that Hutchinson’s estimates FP%(#) and F“®(6) are both unbiased with
bounded variances.

Proposition 13. The random matrix FP% (0) is an unbiased estimator of FPC(0). The variance of
its diagonal elements is Var (F5¢(6)) = 2(F29(0))* — 2 Y weD, Zy 1oz, 9)(62”) .
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(a) DistilBERT on SST-2
Embedding (23.8M) TLO1 (7.1M) TLO2 (7.1M) TLO3 (7.1M) TLO4 (7.1M) TLOS (7.1M) TLO6 (7.1M) Classifier (601.4k)

=0% 7=0%
[i=5.8e-06 1=4.4e-06

7=3b%! 7=0% 7=0% 7=0% 7=0% | ! 7=0% 7=3%
1i=7[7e09 11=5.84:08 p=1.1807 h=3.2e07 i=3.9¢.47! i=5.5e-47 11=92e-05
Fii ! 1
i 1 ‘ :
. L L
1078 1074 1078 1074 1078 1074 1078 1074 1078 1074 1078 1074 1078 1074
(b) DistilBERT on DBpedia
EF1 (2.4k) EF2 (63.4Kk) EF3 (786.1k) EF4 (3.2M) Classifier (128.1k)
f=¥e03 7=3%e.03
b
107° 1072 10-° 1072

(c) EfficientNet-BO on CIFAR-100

Figure 2: Histograms of the ground-truth diagonal FIM entries F;; on a logarithmic x-axis. The
zero atom is displayed as a vertical bar at the left edge of each plot. From left to right, successive
components from input to output and their parameters counts are displayed. { denotes the zero
probability. 1 denotes the average value of F;; in the component. The solid and dashed vertical lines
indicate the median and the pgs quantile of strictly positive values, respectively.

Proposition 14. FLR(0) is an unbiased estimate of FR(0); the variance of its diagonal elements is
4
Var (FER(6)) = 2(FER(0))2 — 25, cp. A2(x,0) (ug (z, 9)(%) .

We have Std(FPS(0))/FPS(0) < +/2 by Proposition 13, and at the same time, we have
Std(FER(6))/FER(9) < /2 by Proposition 14. Their estimation quality is guaranteed.

E PROOF OF THEOREM |

Proof. We already know the closed form FIM
I%(z) = diag (p) —pp -
Therefore
C
I%(2)e = (diag (p) —pp " Je = p — (Zm) p=p—p=0.
i=1

Therefore te, t € R is a one-dimensional kernel of Z(z). Since Z2(z) > 0, we must have \; = 0,
and v1 = ¢/|le]|.

To show the sum of the eigenvalues of Z2(z), we have
c
D A =tr(T%(2)) = tr(diag (p) — tr(pp ") =1 —tr(p'p) =1—p'p=1— |p|>
i=1

In below, we consider the maximum eigenvalue A\c. We know that

Ao = sup u' I (2)u.
flufl=1

Therefore
Vi, Ao > eI%(2)e; =I5 (2) = pi(1 — pi).

K3
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Therefore Ac > max; p;(1 — p;). At the same time, because \; = 0, we have

M a

X=X+ XA+ 4+ < (C—1)Ac.
=1

Therefore c
Zi:l Ai 1= Hp||2
Ao > = .
-1 Cc-1

Because
diag (p) = Z%(2) +pp .
By the Cauchy’s interlacing theorem, we have

Ac-1 < pic-1) £ Ac < poy-

It remains to prove the upper bounds of A¢. First, we have

Ac = sup uTIA( u. = sup (szu —(pTu )

flull=1 flull=1
C

< sup Y piug = maxp; = p(c);
lull=1 =

which has just been proved using Cauchy’s interlacing theorem.

By the Gershgorin circle theorem, Ac must lie in one of the Gershgorin discs, given by the closed
intervals

]._pz szp]apz —pi)-l-Zpipj R i:]_7...7C’.
J#i i

Therefore

Ac < max | pi(1—pi) + Zpipj
JF#i
= max (Pi(1 = pi) +pi(1 —ps)) = Qm?Xpi(l — i)

Because Z2(2) = 0,

Q

<> n=1-pl

The statement follows immediately by combining the above lower and upper bounds of A¢. O

F PROOF OF LEMMA 2

Proof. Because Z°(z) = 0. All its eigenvalues are greater or equal to 0. We have

C—-1
IA(Z) — )\cvcvg = Z )\iv,;viT = 0.

i=1

To show that Acvcv/; is the best rank-1 representation. Assume that Ju # 0, such that T2 (2) =
uu! - )\cvcvg. Then
VL IA (2)ve = Ao > (vhu)? > Ao
Therefore
vgu =+ Aco.

17



c
Assume that © = Zi:l o;v;, then g = vgu = ++/Ac. Moreover, we have

ul U T

c
u u
Ao > —T2(2)— > —uu' — = |[u> =) o
[[ull lell = Ml lull ;
Therefore Vi # C, a; = 0. In summary, u = ++/Acve. Hence, uu' = )\Cvcvg.
We have .

diag (p) — I%(2) = diag (p) — (diag (p) —pp') =pp" = 0.
Therefore diag (p) = Z?(z). Assume that diag (¢) satisfies

I%(z) = diag (q) = diag(p) .

Then
diag (p) — I%(z) = pp' = diag(q) — I%(2) = 0.
Therefore
diag (¢) —I%(2) = Bpp" (B < 1).
Consequently,

diag (q) = Z°(2) + Bpp " = diag (p) —pp" + Bpp' = diag (p) + (8 — L)pp .

Therefore all off-diagonal entries of (3 — 1)pp ' are zero. We must have 3 = 1 and thus diag (¢) =
diag (p). O

G PROOF OF LEMMA 3

Proof.

Q

Cc-1 —1 Cc—-1
Mcvevs — T2 = 'S Ao/ || = A2 <[ (D )2
=1

1 i=1

—1
= Z )\i = tr(IA(z)) — )\C =1- ||p||2 - >\C'

i=1

By Theorem 1, we have Ac > p(c—1). Therefore
IAcvevs = T2 < 1= lIpll* = pie-1)-

By Cauchy’s interlacing theorem (see our proof of Theorem 1), we have

Vie{l,---,C—1}, X\ <pg).

Hence
c—1 c-1 c-1
T A
e R A O ENDIPTENDIEENDIF
i=1 i=2 i=
The statement follows immediately by combining the above upper bounds. O

H PROOF OF LEMMA 4

Proof. The spectrum of R(y) is
0<--- <0< ley —p*
The spectrum of Z*(z), by our assumption, is

M << Ao S e

18



By Hoffman-Wielandt inequality, we have Vz € A¢~1, 5y € {1,--- ,C}

1R(y) =22 (2)]

v

c-1
DN+ (Ao = ey —plI?)?
i=1

Ae = lley = pl?|

=|A¢ — eyTey —p'p+ Qe;p|

=[Ac —1—lp[* + 2p,|

= max{Ac — 1 — [|p[|* + 2py, 1+ [IplI> = Ac — 2p,}-

By Theorem 1, we have Ac < 1 — ||p||2. One can choose y so that p, = p(1), then

IR(y) = I%(2)| = 1+ [Ipll> = Ae — 2pq)
> 1+ lpl* = (1 = lIpll*) = 2pq
=2|lpll* - 2pq).

I PROOF OF LEMMA 12

Proof. We first look at the diagonal entries of 2. We have
Ri=([y=1i] - p)* = { ]()% -2’ i)ftlzfer:wi;se.
Therefore
E(Rii) = pi(1 = pi)* + (1= pi)pi = pi(1 = pi) = I3 (2).
This shows that R;; is an unbiased estimator of the diagonal entries of Z(z). We have
E(R:) =pi(1 —pi)* + (1 —pi)p; = pi(1 —pi) [(1 = pi)® + p}]
=pi(1—pi) [(1 = pi)® = pi(1 = pi) + 7] .
Therefore
Var(Rii) = E(R}) — (E(Rii))?
(1—p) [ =p)? —pi(1 —pi) +p7] — PF(1 — p;)?
(1=pi) [(1=pi)* = 2ps(1 — pi) + ]
pi(1—pi)(1 —4pi(1 — py))
T35 (2)(1 = 45 (2))

(23 (Z3

2
1 11
VY EUNSUIED R
(“<Z) 8) RETIRRT:

The coefficient of variation (CV)

W \/ 1—4z£<z>>:¢ L,

=Di
=Di

K3

is unbounded. As 75 (z) — 0, the CV can take arbitrarily large value.
Next, we consider the off-diagonal entries of R. For i # j, we have
Rij = (ly = 1] — pi)([v = j] — ps)
=pip; — ly =ilp; — [y = jlp:
Hence, A
E(Rij) = pipj — pjpj — pipi = —pipj = L;;(2).

19



At the same time,
E(RY) = E (pip; — [y = ilp; — ly = ilp:)*
=pip; +E(ly = i]]ﬁ? +[y = j1p? — 2[y = ilpiv? — 2y = jlp?p;)
= p?p? + pz-p? + pypi — 2pip; — 2pi D]
= pip; + pip; — ;D]
= PiDj (pz +p; — 3Png)-
Therefore
Var(R;;) = E(R};) — (E(Rij))?
= pip; (pi + p; — 3pip;) — PP
= pipj(pi + p;j — 4pip;)
< pip; (1 — 4pip;)

4 (pip; — - 2 + o
Pibi — g 16
The coefficient of variation

m \/w pitpi - 4pipj>:\/1+1_4
Di

pi pj Dy

IN

1
16

is unbounded. As either p; — 0, or p; — 0, the CV can take arbitrarily large value. O

J PROOF OF PROPOSITION 5

Proof. Similar to Lemma 2, we have

Y hww] TA(z2) < diag (p).

i=C—k+1
Therefore
c T T
0z 0z 0z A 0z 0z ) 0z
= < (= —Z < (= =,
o Y (2) aear B < (L) e < (L) awsn 2
i=C—k+1
Therefore

o 5 5 A W g (5) meen s D5k
i\oa) " 90 = 00 89 - 90 067"

€D, i=C—k+1 €D,

K PROOF OF COROLLARY 6

Proof. We first prove the upper bound. By Proposition 5, we have
Dyt re
"0 00T

z€D, i=1

20



Taking trace on both sides, we get

C
HESUIED DD W ==y

€D, =1
= 821 azl
- %; ;pitr (aeT 90 >
= 82’1' 6zi
- xez,; ;piﬁ a0
C 92 2
= Pi —
2 2.7

The lower bound is not straightforward from Proposition 5. By Eq. (2), we have

tr(FA0) = Y tr [(g;)TIA(z)gZ] = > tr [gg (gg)TIA(z)] .

zED, z€D,

T, o :
Note that & (25)  is a C x C matrix with sorted eigenvalues 03 (z,0) < --- < 02 (z,0). By

Theorem 1, Z2(z) is another C' x C matrix with sorted eigenvalues 0 = \; (z,0) < --- < A\c(z, 6).
Applying the Von Neumann trace inequality, we get

C
tr(FA0) > Y D> Ni(@,0)08 41 (2,0) > > Ao(z,0)07(x,0).

€D, i=2 €D,

The last “>" is because all terms \; (z,0)0¢_; ,; (x, 0) are non-negative. O

L PROOF OF PROPOSITION 7

Proof. Denote the singular values of % as 0 < o7 < --- < o¢. Then the eigenvalues of the C' x C'

.. - 0z (0z T. 2 L 2
Hermitian matrix 3 (89) 1so7 < <og.
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To prove the upper bound, we have

(8%) 0z _FAp)
xeD =1

- < ) (diag (p) — diag (p) + pp") 8—;
€D,

.
52
-2 (% ) 5
@ B
= 2) ™ 5
9z (0z\ "
=y pT* =] p
\ 00 \ 00
xE€D.
9z (0 ’
z ya
< [p ae( ) p]
xeD.
-y e (%)Tp
ot 00 \ 00

= Z Ip|? - i% <62>T r
Ipll 060 \ 06/ |Ipll

€Dy

<> lnlPoe.

€Dy

L1Ng

Now we are ready to prove the lower bound. From the above, we have

02\ | 0z 9z\' -0
ZZPz(Jé) ;9 — F2(0) > (az> ppTaf;

€D, i=1 €D,

Denote w(zx) = (%)T p. Then

c
0z; 0z; A
> pz< ) — FA(9)
€D, 1 80 80

1=

Il
-+
=
//
8
m
g
&
oS
£
=)
_‘
N~
[\v]
~

vV
]
£

&
=
&
2
<

I
8
Elng

?

%

The last “>" is due to
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M PROOF OF PROPOSITION 8

Proof. We can first have a loose bound:

C
> x(5) wig -0
€D, i=C—k+1
C T T
-1 > A () s Y (%) e
€D, 1=C—k+1 90 09 €D, 09 00
82)T (Cic T) 0z
= - )\Z‘Uﬂ)i -
meDm( 0 pr a0
9z\ | 0z = T
< D(C—k) 20 20 (Due to that Z Aiviv; = p(c,k)f)
€D, i=1
) 0: (0:\"
= Pc—k) 90 \ 90 .
€D,

. T\ 2
The eigenvalues of (% (%) > are 0’% << 040. ‘We have

i=

0\ (& T\ 0z ’
(&) ()

=tr <

<az o\ (G ’
=tr <> ( )\ﬂ)ﬂ)i >>

L 0 0 =1

| 0z (0:\T\" (& ]

< ; <89> ) (Z Angj> (Due to tr(AB)? < tr(A?B?))

1

[ 9z (92" Lk ]
=tr <69 <89> ) (Z A%ij> (Note A\, = 0)

<tr

The last “<” is due to Von Neumann’s trace inequality. We also have the Cauchy interlacing

A2 <pey S A3 <p@)y < < Ac-1 S pe-1)-
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To sum up,

C T
0z -0z A
Z Z Az ((99> ’Uﬂ}i % — ]: (0)

€D, i=C—k+1

02\ (& T\ 0z

€Dy

C—k
DB PIL e
i=2

€D,

C—k
< DD
1=2

€Dy

If one relax Vi € {2,--- ,C — k}, ps) < p(c—r)» then we get the loose bound proved earlier.

N PROOF OF PROPOSITION 9

Proof.
A 92\ " 0z 02\ " oz
_ T = —_— . “an an - B T
I F6) —F~ O], (ae) L(2(2,0) 55— D (39) (ey =p)ley =p) 55
xED, €D, o
02\ ' ... 92
= (80) [dlag (p) —ppT — (ey —)(ey —pﬂ 90
€D, o
0z\ . 9z
< () [diag (p) —pp" = (ey = p)(ey =) "] 5
9 00
€D, 7
0z . 9z
ng’; % JHdlag(p)_ppT_(ey_p)(ey_p)THa % "
= Y ot |diag (p) —pp" — (ey = p)(ey =), -
€D,

Now we examine the matrix diag (p) — pp' — (e, — p)(e, — p) ". By Theorem 1, the spectrum of
diag (p) —pp" is
AM=0< << e

By Cauchy interlacing theorem, the spectrum of diag (p) — pp" — (e, — p)(e, — p) ', given by
Lo+, Ay, must satisfy

A <A =0<N << <Ap < A
with at least one eigenvalue that is not positive: \] < 0. Therefore
[diag (p) —pp" — (ey — p)(ey —p) ||, < max{—A},Ac}-
We also have

A= inf u' [diag(p) —pp" — (ey — p)(ey — p)

.
u
wjull=1 |
> it T [(ey ~p)(ey ~p) ]

=—(ey —p) " (ey — p)
=—(1+p'p-2p)
=2p, — 1 —|lpl*.
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Therefore

|diag (p) = pp" = (e = P)(e, —p) 7|, < max{1 + ] = 2, Ac}
< max{1 + [|p[|* — 2p,, 1 — [Ip[I*}
<1+ Il

In summary,
—=A
IF©O) = FO)lls < D o(1+]lp]*).

€D,
O
O PROOF OF PROPOSITION 10
Proof.
az\ A 0z 92\ =a 0z
(5) e 5 - (5) Tewn-5
92\ " —=A 0z
2 \(%) [P - ewo)] - 5
22\ " . 0z
= (89> - [diag (p) = pp" = (ey = P)ey —P)T] - 55
5'2 T . T T aZ
= sup (U> - [diag (p) —pp" — (ey —p)(ey — D) ](U)
wlul=1 | \ 96 v 9
> -\Slul\p—l loyv - [diag (p) —pp " — (ey — p)(ey —p) "] - o 1)
>ofy||diag (p) — pp" — (ey —p)(ey — ) |lo
T
2oty |(72L) (e = pey =) —0) 2L
0\ ey =pn) (&0 =P =Pl =20) =y
:‘7(21) llley — plI* = Ac|
=ty |1+ [pl? = Ao = 2py |-
We choose p, = p(1), therefore Jy, such that
92\ A 0z [(02\ =a 0z
(%) e G- (5) e 5
>aty |1+ [IpI? = Ao — 2@y | -
O

P PROOF OF PROPOSITION 11

Proof. From the derivations in the main text, we already know that E ) [(6) = Z(6). To show
the estimator variance, we first consider the case when p(€) is a standard multivariate Gaussian
distribution. First we note that both h(D,,, #) and 9h/00; are in the form of a sum of independent
Gaussian random variables. Hence,

h c O0lyy < Olzy
S VAT e~ (0. Y ptule0) (e

)2>
2€D, y=1 2€D, y=1 v

25



Therefore

Therefore

N M\ 2 o2
Var(1(6;)) = p](]%) (89 > Z:(0) = 27:.(6).

We now consider that p(¢) is Rademacher.

wion- g (2)' ((2))
- (8) 5o

- (Z > VT 0 e 5951,)4—23(9)

zE'DTy 1
oL,
=> Zp (ylz,0) ( y)
z€D, y=1
8€ 2 ’ ’ agm’y’ 2
vs 5 e (%) e (%) -z
(z,y)#(z",y’)

Note that

_ <T§ ilp(ylx,e)(aafgiy)2>
ZZP y|z,0) (859 >4+( 2 : p(y |z, 6)<8;0 >2p(y'x’,9)(a§z,iy,>2.

z€D, y=1 z,y)A(x’ )y’

2

Hence,

Var(I(6;)) = 3Z2(0) —2 > Zp (y|z,0) < y) —Z5(0)

a:EDJLU 1
>4

=272(0 QZZp y|x9<

€D, y=1
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Q PROOF OF PROPOSITION 13

Proof.

E (FPS(0)) = E <3hDG 8hDG>
p(€)

o) o0 00"
0 a ”
5 (T S 3 5 o)
z€D, y=1 ' €Dy y'=1

< ¢ 0zy 02y
DI DD DD DRV VIR b 50" E (Exvtar)

€D, y=1a'€D, y'=1
Z EO:Cy(x 82y Bzy
0 T
=z = )50 90
92\ _pa 0z
> (5) ooy

= FPS(0).

Therefore,

€D, y=1
opPC ¢ 9 !
z
Gy, 0 ygz
p<s>< 00 ) n(&) <I€Dm; 00 g, S
C 4 2 2
0z 0z Oz,
=3 3 (w0 a;) 300 G@0) (aj) Gy (@ ’9)(35’_)
v€D, y=1 ‘ (@ )2 ) ' ’
c PR
=3(FRO0)° -2 Y Y ¢ (.0) (8;) :
z€D, y=1 !
Hence,
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R PROOF OF PROPOSITION 14

Proof. The proof is similar to Proposition 13 and is also based on the Hutchinson’s trick.

E (F“(0))
p(€)
abLRahLR
=5 (Cor )
pe) \ 00 90

p(g(z;;\/ x@( ) c(@.0)& Y Ve, Ove(a,6)" (g;)g>

' €D,
o2\ " + [0z
= 3 acw0) (55) vetwoeto (5)
xED,
= FHR(0)
Therefore
92\ " i
z
p(g) E (FFR©0) = Y Ac(z,6) ((86%) vc(ﬂfﬂ)) = Fii(0);
xED,
optR Vo ’
E (x,0)ve(x,0)
p(&)( 90, ) p(f 1; ol 80
4
Z M (z,6) <vc(x 9)8 )
90
€D,
+3 3 Ac(,0) (vl ( 0) 2= ") @, 0) (vl )L i
P GBI\ g, ) N o0,
=3(F5M0)7 -2 > A& (w,0) (vb(= 9)@ ’
Z A “¥00,)
zE€D,
Hence,
bLR

4
Var (FER(0)) = E ( > — (Fi%(0))?

p&) \ 00;

=2(F5R0)? —2 Y Aa(a.0) (vg(x,ﬂ)g;) .

€D,
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