
Distributional Successor Features Enable
Zero-Shot Policy Optimization

Chuning Zhu
University of Washington

zchuning@cs.washington.edu

Xinqi Wang
University of Washington

wxqkaxdd@cs.washington.edu

Tyler Han
University of Washington

than123@cs.washington.edu

Simon Shaolei Du
University of Washington

ssdu@cs.washington.edu

Abhishek Gupta
University of Washington

abhgupta@cs.washington.edu

Abstract

Intelligent agents must be generalists, capable of quickly adapting to various tasks.
In reinforcement learning (RL), model-based RL learns a dynamics model of the
world, in principle enabling transfer to arbitrary reward functions through planning.
However, autoregressive model rollouts suffer from compounding error, making
model-based RL ineffective for long-horizon problems. Successor features offer
an alternative by modeling a policy’s long-term state occupancy, reducing policy
evaluation under new rewards to linear regression. Yet, policy optimization with
successor features can be challenging. This work proposes a novel class of models,
i.e., Distributional Successor Features for Zero-Shot Policy Optimization (DiSPOs),
that learn a distribution of successor features of a stationary dataset’s behavior
policy, along with a policy that acts to realize different successor features within
the dataset. By directly modeling long-term outcomes in the dataset, DiSPOs avoid
compounding error while enabling a simple scheme for zero-shot policy optimiza-
tion across reward functions. We present a practical instantiation of DiSPOs using
diffusion models and show their efficacy as a new class of transferable models, both
theoretically and empirically across various simulated robotics problems. Videos
and code are available at https://weirdlabuw.github.io/dispo/.

1 Introduction

Reinforcement learning (RL) agents are ubiquitous in a wide array of applications, from language
modeling [8] to robotics [22, 28]. Traditionally, RL has focused on the single-task setting, learning
behaviors that maximize a specific reward function. However, for practical deployment, RL agents
must be able to generalize across different reward functions within an environment. For example, a
robot deployed in a household setting should not be confined to a single task such as object relocation
but should handle various tasks, objects, initial and target locations, and path preferences.

This work addresses the challenge of developing RL agents that can broadly generalize to any task in
an environment specified by a reward function. To achieve this type of generalization, we consider
the paradigm of pretraining on an offline dataset of transitions and inferring optimal policies for
downstream tasks from observing task-specific rewards. Since the target task is not revealed during

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://weirdlabuw.github.io/dispo/

Offline Unlabeled Dataset

DiSPOs

What are the possible
long-term outcomes in

this environment?

How do I act to
accomplish a particular

outcome 𝜓?

Offline Training of Distribution Successor Features Adaptation to Downstream Tasks

Downstream Task 1

Downstream Task 2

Figure 1: The transfer setting for DiSPOs. Given an unlabeled offline dataset, DiSPOs model both “what can
happen?" p(ψ|s) and “how can we achieve a particular outcome?" p(a|s, ψ). This is used for quick adaptation
to new downstream tasks without test-time policy optimization.

pretraining, the model must encode information about the environment dynamics without committing
to a particular policy or reward. Moreover, once the task reward is observed, the model must provide a
way to quickly evaluate and improve the policy since different tasks require different optimal policies.

A natural approach to this problem is model-based reinforcement learning [61, 21, 62], which learns
an approximate dynamics model of the environment. Given a downstream reward function, task-
optimal behavior can be obtained by “planning” via model rollouts [50, 58, 39, 45]. Typically, model
rollouts are generated autoregressively, conditioning each step on generation from the previous step.
In practice, however, autoregressive generation suffers from compounding error [31, 1, 26], which
arises when small, one-step approximation errors accumulate over long horizons. This leads to
rollout trajectories that diverge from real trajectories, limiting many model-based RL methods to
short-horizon, low-dimensional problems.

An alternative class of algorithms based on successor features (SFs) has emerged as a potential
approach to transferable decision-making [3, 2]. Successor features represent the discounted sum of
features for a given policy. Assuming a linear correspondence between features and rewards, policy
evaluation under new rewards reduces to a simple linear regression problem. Notably, by directly
predicting long-term outcomes, SFs avoid autoregressive rollouts and hence compounding error.
However, the notion of successor features is deeply tied to the choice of a particular policy. This
policy dependence hinders the recovery of optimal policies for various downstream tasks. Current
approaches to circumvent policy dependence either maintain a set of policies and select the best one
during inference [3] or randomly sample reward vectors and make conditional policy improvements
[5, 54, 55]. Nevertheless, a turnkey solution to transfer remains a desirable goal.

In this work, we propose a new class of models—Distributional Successor Features for Zero-Shot
Policy Optimization (DiSPOs)—that are rapidly transferable across reward functions while avoiding
compounding errors. Rather than modeling the successor features under a particular policy, DiSPOs
model the distribution of successor features under the behavior policy, effectively encoding all
possible outcomes that appear in the dataset at each state. Crucially, by representing outcomes as
successor features, we enjoy the benefit of zero-shot outcome evaluation after solving a linear reward
regression problem, without the pitfall of compounding error. In addition to the outcome model,
DiSPOs jointly learn a readout policy that generates an action to accomplish a particular outcome.
Together, these models enable zero-shot policy optimization [55] for arbitrary rewards without further
training: at test time, we simply perform a linear regression, select the best in-distribution outcome,
and query the readout policy for an action to realize it. DiSPOs are a new class of world models as
they essentially capture the dynamics of the world and can be used to plan for optimal actions under
arbitrary rewards, without facing the pitfalls of compounding error.

Since multiple outcomes can follow from a particular state, and multiple actions can be taken to
achieve a particular outcome, both the outcome distribution and the policy require expressive model

2

classes to represent. We provide a practical instantiation of DiSPOs using diffusion models [23, 47]
and show that under this parameterization, policy optimization can be cast as a variant of guided
diffusion sampling [13]. We validate the transferability of DiSPOs across a suite of long-horizion
simulated robotics domains and further show that DiSPOs provably converge to “best-in-data” policies.
With DiSPOs, we hope to introduce a new way for the research community to envision transfer in
reinforcement learning, and to think of alternative ways to address the challenges of world modeling.

2 Related Work

Our work has connections to numerous prior work on model-based RL and successor features.

Model-Based RL To enable transfer across rewards, model-based RL learns one-step (or multi-
step) dynamics models via supervised learning and use them for planning [11, 38, 39, 58] or
policy optimization [12, 50, 26, 64, 20]. These methods typically suffer from compounding error,
where autoregressive model rollouts lead to large prediction errors over time [1, 31]. Despite
improvements to model architectures [20, 25, 1, 32, 65] and learning objectives [27], modeling
over long horizons without compounding error remains an open problem. DiSPOs instead directly
model cumulative long-term outcomes in an environment, avoiding autoregressive generation while
remaining transferable.

Successor Features Successor features achieve generalization across rewards by modeling the
accumulation of features (as opposed to rewards in model-free RL) [3, 2]. With the assumption that
rewards are linear in features, policy evaluation under new rewards reduces to a linear regression
problem. A key limitation of successor features is their inherent policy dependence, as they are defined
as the accumulated features when acting according to a particular policy. This makes extracting
optimal policies for new tasks challenging.

To circumvent this policy dependence, generalized policy improvement [3, 2] maintains a discrete set
of policies and selects the highest valued one to execute at test time, limiting the space of available
policies for new tasks. Universal SF [6] and Forward-Backward Representations [54, 55] randomly
sample reward weights z and jointly learn successor features and policies conditioned on z. The
challenge lies in achieving coverage over the space of all possible policies through sampling of
z, resulting in potential distribution shifts for new problems. RaMP [9] learns a successor feature
predictor conditioned on an initial state and a sequence of actions. Transfer requires planning by
sampling actions sequences, which becomes quickly intractable over horizon. In contrast, DiSPOs
avoid conditioning on any explicit policy representation by modeling the distribution of all possible
outcomes represented in a dataset, and then selecting actions corresponding to the most desirable
long-term outcome.

Distributional Successor Measure (DSM) [59] is a concurrent work that learns a distribution over
successor representations using tools from distributional RL [4]. Importantly, DSM models the
distributional successor measure of a particular policy, where the stochasticity stems from the policy
and the dynamics. This makes it suitable for robust policy evaluation but not for transferring to
arbitrary downstream tasks. In contrast, DiSPOs model the distribution of successor feature outcomes
in the dataset (i.e., the behavior policy), where the distribution stems from the range of meaningfully
distinct long-term outcomes. This type of modeling allows DiSPOs to extract optimal behavior
for arbitrary downstream tasks, while DSMs suffer from the same policy dependence that standard
successor feature-based methods do.

3 Preliminaries

We adopt the standard Markov Decision Process (MDP) notation and formalism [24] for an MDP
M = (S,A, r, γ, T , ρ0), but restrict our consideration to the class of deterministic MDPs. While
this does not encompass every environment, it does capture a significant set of problems of practical
interest. Hereafter, we refer to a deterministic MDP and a task interchangeably. In our setting, we
consider transfer across different tasks that always share the same action space A, state space S , and
transition dynamics T : S × A → S1 The difference between tasks only lies in having different
state-dependent Markovian reward functions r : S → [0, 1].

1For simplicity, we also use T (s, a) to denote the next state.

3

Value Functions and Successor Features Let R =
∑∞
t=1 γ

t−1r(st) denote the cumulative reward
for a trajectory {si, ai}∞i=1. One can then define the state value function under policy π as V π(s) :=
Eπ,T [R | s1 = s], and the state-action value function asQπ(s, a) := Eπ,T [R | s1 = s, a1 = a]. The
value function admits a temporal structure that allows it to be estimated using dynamic programming,
which iteratively applies the Bellman operator until a fixed point is reached V π(s) := r(s) +
γ Eπ [V π(s2) | s1 = s]. While these Bellman updates are in the tabular setting, equivalent function
approximator variants (e.g., with neural networks) can be instantiated to minimize a Bellman “error"
with stochastic optimization techniques [37, 19, 36].

Successor features [2] generalize the notion of a value function from task-specific rewards to task-
agnostic features. Given a state feature function ϕ : S → Rd, the successor feature of a policy is
defined as ψπ(s) = Eπ,T

[∑∞
t=1 γ

t−1ϕ(si) | s1 = s
]
. Suppose rewards can be linearly expressed

by the features, i.e. there exists w ∈ Rn such that R(s) = w⊤ϕ(s), then the value function for the
particular reward can be linearly expressed by the successor feature V π(s) = w⊤ψπ(s). Hence,
given the successor feature ψπ of a policy π, we can immediately compute its value under any reward
once the reward weights w are known. Analogous to value functions, successor features also admit
a recursive Bellman identity ψπ(s) := ϕ(s) + γEπ [ψπ(s′)] , allowing them to be estimated using
dynamic programming [3]. In this paper, we also refer to the discounted sum of features along a
trajectory as a successor feature. In this sense, a successor feature represents an outcome that is
feasible under the dynamics and can be achieved by some policy.

Diffusion Models DiSPOs rely on expressive generative models to represent the distribution of
successor features. Diffusion models [23, 47] are a class of generative models where data generation
is formulated as an iterative denoising process. Specifically, DDPM [23] consists of a forward process
that iteratively adds Gaussian noise to the data, and a corresponding reverse process that iteratively
denoises a unit Gaussian to generate samples from the data distribution. The reverse process leverages
a neural network estimating the score function of each noised distribution, trained with a denoising
score matching objective [49]. In addition, one can sample from the conditional distribution p(x|y)
by adding a guidance ∇x log p(y|x) to the score function in each sampling step [13]. As we show in
Sec. 4.3, guided diffusion enables quick selection of optimal outcomes from DiSPOs.

Problem setting We consider a transfer learning scenario with access to an offline dataset D =
{(si, ai, s′i)}Ni=0 of transition tuples collected with some behavior policy πβ under dynamics T . The
goal is to quickly obtain the optimal policy π∗ for some downstream task, specified in the form of
a reward function or a number of (s, r) samples. While we cannot hope to extrapolate beyond the
dataset (as is common across problems in offline RL [34]), we will aim to find the best policy within
dataset coverage for the downstream task. This is defined more precisely in Section 4.2.

4 Distributional Successor Features for Zero-Shot Policy Optimization

We introduce the framework of DiSPOs as a scalable approach to the transfer problem described in
Section 3, with the goal of learning from an unlabeled dataset to quickly adapt to any downstream
task specified by a reward function. We start by relating the technical details behind learning DiSPOs
in Section 4.1, followed by explaining how DiSPOs can be used for efficient multi-task transfer in
Section 4.2. Finally, we describe a practical instantiation of DiSPOs in Section 4.3.

4.1 Learning Distributional Successor Features of the Behavior Policy

To transfer and obtain optimal policies across different reward functions, generalist decision-making
agents must model the future in a way that permits the evaluation of new rewards and new policies.
To this end, DiSPOs adopt a technique based on off-policy dynamic programming to directly model
the distribution of cumulative future outcomes, without committing to a particular reward function
r(·) or policy π. Fig. 2 illustrates the two components in DiSPOs, and we describe each below.

(1) Outcome model: for a particular a state feature function ϕ(s), DiSPOs model the distribution of
successor features p(ψ|s) over all paths that have coverage in the dataset. In deterministic MDPs,
each successor feature ψ (discounted sum of features ψ =

∑
t γ

t−1ϕ(st)) can be regarded as an
“outcome". When the state features are chosen such that reward for the desired downstream task is a
linear function of features, i.e., there exists w ∈ Rn such that r(s) = w⊤ψ(s) [42, 43, 66, 56, 9, 3],
the value of each outcome can be evaluated as w⊤ψ. That is, knowing w effectively transforms the

4

distribution of outcomes p(ψ|s) into a distribution of task-specific values (sum of rewards) p(R|s).
Notably, since w can be estimated by regressing rewards from features, distributional evaluation on a
new reward function boils down to a simple linear regression.

As in off-policy RL, the outcome distribution p(ψ|s) in DiSPOs can be learned via an approximate
dynamic programming update, which is similar to a distributional Bellman update [4]:

max
θ

E(s,a,s′)∼D [log pθ(ϕ(s) + γψs′ |s)]

s.t ψs′ ∼ pθ(·|s′)
(1)

Intuitively, this update suggests that the distribution of successor features pθ(ψ|s) at state smaximizes
likelihood over current state feature ϕ(s) added to sampled future outcomes ψs′ . This instantiates
a fixed-point procedure, much like a distributional Bellman update. An additional benefit of the
dynamic programming procedure is trajectory stitching, where combinations of subtrajectories in the
dataset will be represented in the outcome distribution.

(2) Readout policy: Modeling the distribution of future outcomes in an environment is useful only
when it can be realized in terms of actions that accomplish particular outcomes. To do so, DiSPOs
pair the outcome model with a readout policy π(a|s, ψ) that actualizes a desired long-term outcome
ψ into the action a to be taken at state s. Along with the outcome model pθ(ψ|s), the readout policy
πρ(a|s, ψ) can be optimized via maximum-likelihood estimation:

max
ρ

E(s,a,s′)∼D [log πρ(a|s, ψ = ϕ(s) + γψs′)]

s.t ψs′ ∼ pθ(.|s′)
(2)

𝑠!

𝑠" 𝑠#
𝑠$

𝑠%

𝑠&

𝑎"

𝑎!

𝑎#

1 	𝑝(𝜓|𝑠") 2 	𝜋(𝑎|𝑠",)

𝑎! 𝑎"

𝑎#

𝑠$ State

Feature (𝜙)

Successor
Feature (𝜓)

𝑎% Action

Distributional Successor Features for
Zero-Shot Policy Optimization

Figure 2: DiSPOs for a simple environment. Given
a state feature function ϕ, DiSPOs learn a distribution
of all possible long-term outcomes (successor features
ψ) in the dataset p(ψ|s), along with a readout policy
π(a|s, ψ) that takes an action a to realise ψ starting at
state s.

This update states that if an action a at a state s
leads to a next state s′, then a should be taken
with high likelihood for outcomes ψ, which are
a combination of the current state feature ϕ(s)
and future outcomes ψs′ ∼ pθ(·|s′).
The outcome distribution p(ψ|s) can be under-
stood as a natural analogue to a value function,
but with two crucial differences: (1) it represents
the accumulation of not just a single reward func-
tion but an arbitrary feature (with rewards being
linear in this feature space), and (2) it is not
specific to any particular policy but represents
the distribution over all cumulative outcomes
covered in the dataset. The first point enables
transfer across rewards, while the second en-
ables the selection of optimal actions for new
rewards rather than being restricted to a partic-
ular (potentially suboptimal) policy. Together
with the readout policy π(a|s, ψ), these models
satisfy our desiderata for transfer, i.e., that the
value for new tasks can be estimated by simple
linear regression without requiring autoregres-
sive generation, and that optimal actions can be
obtained without additional policy optimization.

4.2 Zero-Shot Policy Optimization with Distributional Successor Features

To synthesize optimal policies for novel downstream reward functions using DiSPOs, two sub-
problems must be solved: (1) inferring the suitable linear reward weights wr for a particular reward
function from a set of (s, r) tuples and (2) using the inferred wr to select an optimal action a∗ at a
state s. We discuss each below.

Inferring task-specific weights with linear regression. As noted, for any reward function r(s),
once the linear reward weights wr are known (i.e., r(s) = wTr ϕ(s)), the distribution of returns in
the dataset p(R|s) is known through linearity. However, in most cases, rewards are not provided in

5

functional form, making wr unknown a priori. Instead, given a dataset ofD = {(s, r)} tuples, wr can
be obtained by solving a simple linear regression problem argminwr

1
|D|

∑
(s,r)∈D ∥wTr ψ(s)− r∥22.

Generating task-specific policies via distributional evaluation. Given the inferred wr and the
corresponding future return distribution p(R|s) obtained through linear scaling of p(ψ|s), the optimal
action can be obtained by finding the ψ with the highest possible future return that has sufficient
data-support:

ψ∗ ← argmax
ψ

wTr ψ, s.t p(ψ|s) ≥ ϵ, (3)

where ϵ > 0 is a hyperparameter to ensure sufficient coverage for ψ. This suggests that the optimal
outcome ψ∗ is the one that provides the highest future sum of rewards wTr ψ

∗ while being valid under
the environment dynamics and dataset coverage.

Step 1: Linear Regression

𝑤 = 𝑎𝑟𝑔𝑚𝑖𝑛! 𝑤"𝜙 𝑠 − 𝑟 𝑠 #

𝜙

𝑟

Step 2: Planning

𝜓∗ = 𝑎𝑟𝑔𝑚𝑎𝑥%	𝑤"𝜓		𝑠. 𝑡		𝑝 𝜓 𝑠 > 𝜖
𝑎∗ ∼ 𝜋(𝑎|𝑠, 𝜓∗)

𝑎∗

𝜓∗
𝑠

Figure 3: Zero-shot policy optimization with DiSPOs.
Once a DiSPO is learned, the optimal action can be
obtained by performing reward regression and searching
for the optimal outcome under the dynamics to decode
via the policy.

This optimization problem can be solved in a
number of ways. The most straightforward is via
random shooting [53], which samples a set of ψ
from p(ψ|s) and chooses the one with the high-
est wTr ψ. Sec. 5 bases our theoretical analysis
on this technique. Sec. 4.3 shows that for out-
come models instantiated with diffusion models,
the optimization problem can be simplified to
guided diffusion sampling.

Once ψ∗ has been obtained, the action to exe-
cute in the environment can be acquired via the
readout policy πρ(a|s, ψ∗). Fig. 3 shows the
full policy optimization procedure, and we refer
the reader to Appendix. F for the pseudocode.
As described previously, DiSPOs enable zero-shot transfer to arbitrary new rewards in an environment
without accumulating compounding error or requiring expensive test-time policy optimization. In
this way, they can be considered a new class of models of transition dynamics that avoids the typical
challenges in model-based RL and successor features.

4.3 Practical Instantiation

In this section, we provide a practical instantiation of DiSPOs that is used throughout our experimental
evaluation. The first step to instantiate DiSPOs is to choose an expressive state feature that linearly
expresses a broad class of rewards. We choose the state feature ϕ to be d-dimensional random
Fourier features [52]. Next, the model class must account for the multimodal nature of outcomes
and actions since multiple outcomes can follow from a state, and multiple actions can be taken to
realize an outcome. To this end, we parametrize both the outcome model p(ψ|s) and the readout
policy π(a|s, ψ) using a conditional diffusion model [23, 47]. We then train these models (optimize
Equation 1, 2) by denoising score matching, a surrogate of maximum likelihood training [48].

Remarkably, when p(ψ|s) is parameterized by a diffusion model, the special structure of the opti-
mization problem in Eq. 3 allows a simple variant of guided diffusion [14, 25] to be used for policy
optimization. In particular, taking the log of both sides of the constraint and recasting the constrained
optimization via the penalty method, we get a penalized objective L = wTr ψ+α(log p(ψ|s)− log ϵ).
Taking the gradient yields

∇ψL(ψ, α) = wr + α∇ψ log p(ψ|s). (4)

The expression for ∇ψL(ψ, α) is simply the score function ∇ψ log p(ψ|s) in standard diffusion
training (Section 3), with the linear weights wr added as a guidance term. Planning then becomes
doing stochastic gradient Langevin dynamics [57] to obtain an optimal ψ∗ sample, using∇ψL(ψ, α)
as the gradient. Guided diffusion removes the need for sampling a set of particles. As shown in
Appendix E, it matches the performance of random shooting while taking significantly less inference
time. In Appendix B, we show that the guided diffusion procedure can alternatively be viewed as
taking actions conditioned on a soft optimality variable.

6

5 Theoretical Analysis of Distributional Successor Features for Zero-Shot
Policy Optimization

To provide a theoretical understanding of DiSPOs, we conduct an error analysis to connect the error
in estimating the ground truth p0(ψ | s) to the suboptimality of the DiSPO policy, and then study
when the DiSPO policy becomes optimal. We start our analysis conditioning on ϵ > 0 estimation
error in the ground truth outcome distribution p0(ψ | s).
Condition 5.1. We say the learnt outcome distribution p̂ is an ϵ-good approximation if ∀ s ∈ S,
∥p̂(ψ | s)− p0(ψ | s)∥∞ ≤ ϵ.

Since DiSPOs capture the outcome distribution of the behavior policy πβ , we need a definition to
evaluate a policy π with respect to πβ .
Definition 5.2. We say a state-action pair (s, a) is (δ, πβ)-good if over the randomness of πβ ,
Pπβ

[Qπβ (s, a) <
∑∞
t=1 γ

t−1r(st) | s1 = s] ≤ δ. Furthermore, if for all state s, (s, π(s)) is (δ, πβ)-
good, then we call π a (δ, πβ)-good policy.

We proceed to use Definition 5.2 to characterize the suboptimality of the DiSPO policy. Let τ denote
the sampling optimality of the random shooting planner in Sec. 4.2. Specifically, we expect to sample
a top τ outcome ψ from the behavior policy inO(1τ) samples, where Pπβ

[wTr ψ ≤
∑
t γ

t−1r(st)] ≤ τ .
The following result characterizes the suboptimality of the DiSPO policy. The proof is deferred to
Appendix. A.
Theorem 5.3 (main theorem). For any MDPM and ϵ-good outcome distribution p̂, the policy π̂
given by the random shooting planner with sampling optimality τ is a (ϵ+ τ, πβ)-good policy.

From Theorem 5.3, we can obtain the following suboptimality guarantee in terms of the value function
under the Lipschitzness condition. The corollary shows the estimation error in p0(ψ | s) will be
amplified by an O

(
1

1−γ

)
multiplicative factor.

Corollary 5.4. If we have λ-Lipschitzness near the optimal policy, i.e., Q∗(s, a∗)−Q∗(s, a) ≤ λδ
when (s, a) is (δ, β)-good, the suboptimality of output policy π̂ is V ∗

0 (s0)− V π̂0 (s0) ≤ λ
1−γ (τ + ϵ).

Lastly, we extend our main theoretical result to the standard full data coverage condition in the offline
RL literature, where the dataset contains all transitions [51, 60, 44]. The following theorem states
that DiSPOs can output the optimal policy in this case. The proof is deferred to Appendix A.
Theorem 5.5. In deterministic MDPs, when |A×S| <∞, and ∀(s, a) ∈ S×A, N(s, a, T (s, a)) ≥
1, DiSPOs are guaranteed to identify an optimal policy.

6 Experimental Evaluation

In our experimental evaluation, we aim to answer the following research questions. (1) Can DiSPOs
transfer across tasks without expensive test-time policy optimization? (2) Can DiSPOs avoid the
challenge of compounding error present in model-based RL? (3) Can DiSPOs solve tasks with
arbitrary rewards beyond goal-reaching problems? (4) Can DiSPOs go beyond the offline dataset,
and accomplish “trajectory-stitching" to actualize outcomes that combine different subtrajectories?

We answer these questions through a number of experimental results in simulated robotics problems.
We defer detailed descriptions of domains and baselines to Appendix D and C, as well as detailed
ablative analysis to Appendix E.

6.1 Problem Domains and Datasets

Antmaze [15] is a navigation domain that involves controlling a quadruped to reach some designated
goal location. Each task corresponds to reaching a different goal location. We use the D4RL dataset
for pretraining and dense rewards described in Appendix D for adaptation.

Franka Kitchen [15] is a manipulation domain where the goal is to control a Franka arm to interact
with appliances in the kitchen. Each task corresponds to interacting with a set of items. We use the
D4RL dataset for pretraining and standard sparse rewards for adaptation.

7

Figure 4: Evaluation domains: (1) D4RL Antmaze [15] (2) Franka Kitchen [15] (3) Hopper [9] (4) Preference-
Based Antmaze with the goal of taking a particular path (5) Roboverse [46] robotic manipulation.

Table 1: Offline multitask RL on AntMaze and Kitchen. DiSPOs show superior transfer performance (in
average episodic return) than successor features, model-based RL, and misspecified goal-conditioned baselines.

DiSPO (Ours) USFA FB RaMP MOPO COMBO GC-IQL

umaze 593 ± 16 462 ± 4 469 ± 12 459 ± 3 451 ± 2 574 ± 10 571 ± 15

umaze-diverse 568 ± 12 447 ± 3 474 ± 2 460 ± 7 467 ± 5 547 ± 11 577 ± 7

medium-diverse 631 ± 67 394 ± 52 294 ± 61 266 ± 2 236 ± 4 418 ± 16 403 ± 10

medium-play 624 ± 58 370 ± 31 264 ± 29 271 ± 5 232 ± 4 397 ± 12 390 ± 33

large-diverse 359 ± 59 215 ± 20 181 ± 46 132 ± 1 128 ± 1 244 ± 19 226 ± 9

large-play 306 ± 18 250 ± 41 165 ± 12 134 ± 3 128 ± 2 248 ± 4 229 ± 5

kitchen-partial 43 ± 6 0 ± 0 4 ± 4 0 ± 0 8 ± 7 11 ± 9 -
kitchen-mixed 46 ± 5 10 ± 10 5 ± 5 0 ± 0 0 ± 0 0 ± 0 -

hopper-forward 566 ± 63 487 ±110 452 ± 59 470 ± 16 493 ±114 982 ±157 -
hopper-backward 367 ± 15 261 ± 68 269 ± 77 220 ± 15 596 ±211 194 ± 74 -
hopper-stand 800 ± 0 685 ±130 670 ±120 255 ± 15 800 ± 0 600 ±111 -
hopper-jump 832 ± 22 746 ±112 726 ± 35 652 ± 28 753 ± 51 670 ±109 -

Hopper [7, 9] is a locomotion domain that involves controlling a hopper to perform various tasks,
including hopping forward, hopping backward, standing, and jumping. We use the offline dataset
from [9] for pretraining and shaped rewards for adaptation.

Preference Antmaze is a variant of D4RL Antmaze [15] where the goal is to reach the top right
corner starting from the bottom left corner. The two tasks in this environment correspond to the two
paths to reach the goal, simulating human preferences. We collect a custom dataset and design reward
functions for each preference.

Roboverse [46] is a tabletop manipulation environment with a robotic arm completing multi-step
problems. Each task consists of two phases, and the offline dataset contains separate trajectories
of each phase but not full task completion. A sparse reward is assigned to each time step of task
completion.

6.2 Baseline Comparisons

Successor Features We compare with three methods from the successor feature line of work. USFA
[6] overcomes the policy dependence of SF by randomly sampling reward weights z and jointly
learning a successor feature predictor ψz and a policy πz conditioned on z. ψz captures the successor
feature of πz , while πz is trained to maximize the reward described by z. FB [54, 55] follows the
same paradigm but jointly learns a feature network by parameterizing the successor measure as an
inner product between a forward and a backward representation. RaMP [9] removes the policy
dependence of SF by predicting cumulative features from an initial state and an open-loop sequence
of actions, which can be used for planning.

Model-Based RL We compare with two variants of model-based reinforcement learning. MOPO
[64] is a model-based offline RL method that learns an ensemble of dynamics models and performs
actor-critic learning. COMBO [63] introduces pessimism into MOPO by training the policy using a
conservative objective [30].

8

Table 2: Evaluation on non-goal-conditioned tasks.
DiSPOs are able to solve non-goal-conditioned tasks,
taking different paths in preference antmaze (Fig 4),
while goal-conditioned RL cannot optimize for arbi-
trary rewards.

DiSPO (Ours) COMBO GC-IQL

Up 139 ± 1 143 ± 9 72 ± 19

Right 142 ± 2 136 ± 4 83 ± 25

Table 3: Evaluation of trajectory stitching ability of
DiSPOs. DiSPOs outperform non-stitching baselines,
demonstrating their abilities to recombine outcomes
across trajectory segments

DiSPO (Ours) RaMP DT

PickPlace 49 ± 8 0 ± 0 0 ± 0

ClosedDrawer 40 ± 5 0 ± 0 0 ± 0

BlockedDrawer 66 ± 7 0 ± 0 0 ± 0

Goal-Conditioned RL Goal-conditioned RL enables adaptation to multiple downstream goals g.
However, it is solving a more restricted class of problems than RL as goals are less expressive than
rewards in the same state space. Moreover, standard GCRL is typically trained on the same set of
goals as in evaluation, granting them privileged information. To account for this, we consider a
goal-conditioned RL baseline GC-IQL [40, 29] and only train on goals from half the state space to
show its fragility to goal distributions. We include the original method trained on test-time goals in
Appendix E.

6.3 Do DiSPOs enable zero-shot policy optimization across tasks?

COMBODiSPOs

Figure 5: Transfer across tasks with DiSPOs and
COMBO [63] in medium antmaze. Each tile corre-
sponds to a different task, with color of the tile indicat-
ing the normalized return. DiSPOs successfully transfer
across a majority of tasks, while MBRL [63] struggles
on tasks that are further away from the initial location.

We evaluate DiSPOs on transfer problems,
where the dynamics are shared, but the reward
functions vary. We train DiSPOs on the data
distributions provided with the D4RL [15] and
Hopper datasets. We identify the test-time re-
ward by subsampling a small number of transi-
tions from the offline dataset, relabeling them
with the test-time rewards, and performing lin-
ear least squares regression. While DiSPOs in
principle can identify the task reward from on-
line experience, we evaluate in the offline setting
to remove the confounding factor of exploration.

Table 1 reports the episodic return on D4RL and
Hopper tasks. DiSPOs are able to transfer to
new tasks with no additional training, showing
significantly higher performance than successor features (mismatch between training and evaluation
policy sets), model-based RL (compounding error) and goal-conditioned RL (goal distribution
misspecification). Notably, we show in Appendix E that DiSPOs are even competitive with goal-
conditioned RL methods trained on test-time goals. The transferability of DiSPOs can also be seen in
Fig 5, where we plot the performance of DiSPOs across various tasks (corresponding to different
tiles in the maze). We see that DiSPOs have less degradation across tasks than model-based RL [63].

Although the DiSPO framework and theoretical results are derived under deterministic MDPs, we
emphasize that the D4RL antmaze datasets are collected with action noise, emulating stochastic
transitions. These results indicate that DiSPOs are practically applicable to some range of stochastic
settings, although we expect it to perform better in purely deterministic settings.

6.4 Can DiSPOs solve tasks with arbitrary rewards?

While methods like goal-conditioned RL [40, 17] are restricted to shortest path goal-reaching
problems, DiSPOs are able to solve problems with arbitrary reward functions. This is crucial
when the reward is not easily reduced to a particular “goal". To validate this, we evaluate DiSPOs
on tasks that encode nontrivial human preferences in a reward function, such as particular path
preferences in antmaze. In this case, we have different rewards that guide the agent specifically down
the path to the left and the right, as shown in Fig 4. As we see in Table 2, DiSPOs and model-based
RL obtain policies that respect human preferences and are performant for various rewards. Goal-
conditioned algorithms are unable to disambiguate preferences and end up with some probability of
taking each path.

9

6.5 Do DiSPOs perform trajectory stitching?

The ability to recover optimal behavior by combining suboptimal trajectories, or “trajectory stitching,"
is crucial to off-policy RL methods as it ensures data efficiency and avoids requirements for exponen-
tial data coverage. DiSPOs naturally enables this type of trajectory stitching via the distributional
Bellman backup, recovering “best-in-data” policies for downstream tasks. To evaluate the ability of
DiSPOs to perform trajectory stitching, we consider the environments introduced in [46]. Here, the
data only consists of trajectories that complete individual subtasks (e.g. grasping or placing), while
the task of interest rewards the completion of both subtasks. Since the goal of this experiment is
to evaluate stitching, not transfer, we choose the features as the task rewards ϕ(s) = r(s). We find
that DiSPOs are able to show non-trivial success rates by stitching together subtrajectories. Since
RaMP [9] predicts the summed features from a sequence of actions, and the optimal action sequence
is not present in the dataset, it fails to solve any task. Likewise, return-conditioned supervised
learning methods like Decision Transformer [10] do not stitch together trajectories and fails to learn
meaningful behaviors.

7 Discussion

This work introduced Distributional Successor Features for Zero-Shot Policy Optimization (DiSPOs),
a method for transferable reinforcement learning that does not incur compounding error or test-time
policy optimization. By modeling the distribution of all possible future outcomes along with policies
to reach them, DiSPOs can quickly provide optimal policies for any reward in a zero-shot manner.
We presented an efficient algorithm to learn DiSPOs and demonstrated the benefits of DiSPOs over
standard successor features and model-based RL techniques. The limitations of our work open future
research opportunities. First, DiSPOs require a choice of features ϕ(s) that linearly express the
rewards; this assumption may fail, necessitating more expressive feature learning methods. Second,
DiSPOs model the behavior distribution of the dataset; hence, policy optimality can be affected by
dataset skewness, which motivates the use of more efficient exploration methods for data collection.
Finally, the current version of DiSPOs infer the reward from offline state-reward pairs; a potential
future direction could apply this paradigm to online adaptation, where the reward is inferred from
online interactions.

Acknowledgment

CZ is supported by the UW-Amazon fellowship. TH is supported by the NSF GRFP under Grant No.
DGE 2140004. SSD acknowledges the support of NSF IIS 2110170, NSF DMS 2134106, NSF CCF
2212261, NSF IIS 2143493, NSF CCF 2019844, and NSF IIS 2229881.

References
[1] K. Asadi, D. Misra, and M. L. Littman. Lipschitz continuity in model-based reinforcement

learning. In J. G. Dy and A. Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pages 264–273. PMLR, 2018.

[2] A. Barreto, D. Borsa, J. Quan, T. Schaul, D. Silver, M. Hessel, D. Mankowitz, A. Zidek, and
R. Munos. Transfer in deep reinforcement learning using successor features and generalised
policy improvement. In International Conference on Machine Learning, pages 501–510. PMLR,
2018.

[3] A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, H. P. van Hasselt, and D. Silver.
Successor features for transfer in reinforcement learning. Advances in Neural Information
Processing Systems, 30, 2017.

[4] M. G. Bellemare, W. Dabney, and R. Munos. A distributional perspective on reinforcement
learning. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages 449–458. PMLR, 2017.

10

[5] D. Borsa, A. Barreto, J. Quan, D. J. Mankowitz, H. van Hasselt, R. Munos, D. Silver, and
T. Schaul. Universal successor features approximators. In International Conference on Learning
Representations, 2019.

[6] D. Borsa, A. Barreto, J. Quan, D. J. Mankowitz, H. van Hasselt, R. Munos, D. Silver, and
T. Schaul. Universal successor features approximators. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019.

[7] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. CoRR, abs/1606.01540, 2016.

[8] S. Casper, X. Davies, C. Shi, T. K. Gilbert, J. Scheurer, J. Rando, R. Freedman, T. Korbak,
D. Lindner, P. Freire, T. Wang, S. Marks, C. Ségerie, M. Carroll, A. Peng, P. J. K. Christof-
fersen, M. Damani, S. Slocum, U. Anwar, A. Siththaranjan, M. Nadeau, E. J. Michaud, J. Pfau,
D. Krasheninnikov, X. Chen, L. Langosco, P. Hase, E. Biyik, A. D. Dragan, D. Krueger,
D. Sadigh, and D. Hadfield-Menell. Open problems and fundamental limitations of reinforce-
ment learning from human feedback. CoRR, abs/2307.15217, 2023.

[9] B. Chen, C. Zhu, P. Agrawal, K. Zhang, and A. Gupta. Self-supervised reinforcement learning
that transfers using random features. CoRR, abs/2305.17250, 2023.

[10] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. In M. Ran-
zato, A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 15084–15097, 2021.

[11] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful
of trials using probabilistic dynamics models. CoRR, abs/1805.12114, 2018.

[12] M. P. Deisenroth and C. E. Rasmussen. PILCO: A model-based and data-efficient approach
to policy search. In L. Getoor and T. Scheffer, editors, Proceedings of the 28th International
Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 - July 2,
2011, pages 465–472. Omnipress, 2011.

[13] P. Dhariwal and A. Q. Nichol. Diffusion models beat GANs on image synthesis. In A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural Information
Processing Systems, 2021.

[14] P. Dhariwal and A. Q. Nichol. Diffusion models beat gans on image synthesis. In M. Ranzato,
A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 8780–8794, 2021.

[15] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4RL: Datasets for deep data-driven
reinforcement learning. https://arxiv.org/abs/2004.07219, 2020.

[16] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4RL: datasets for deep data-driven
reinforcement learning. CoRR, abs/2004.07219, 2020.

[17] D. Ghosh, A. Gupta, A. Reddy, J. Fu, C. M. Devin, B. Eysenbach, and S. Levine. Learning
to reach goals via iterated supervised learning. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[18] A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky, K. Xu, T. Devlin, and S. Levine. Reset-free
reinforcement learning via multi-task learning: Learning dexterous manipulation behaviors
without human intervention. arXiv preprint arXiv:2104.11203, 2021.

[19] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

11

[20] D. Hafner, T. P. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by
latent imagination. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[21] D. Hafner, T. P. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models. In
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021.

[22] D. Han, B. Mulyana, V. Stankovic, and S. Cheng. A survey on deep reinforcement learning
algorithms for robotic manipulation. Sensors, 23(7):3762, 2023.

[23] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models, 2020.

[24] R. A. Howard. Dynamic programming and markov processes. John Wiley, 1960.

[25] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine. Planning with diffusion for flexible behavior
synthesis. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári, G. Niu, and S. Sabato, editors,
International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore,
Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pages 9902–9915.
PMLR, 2022.

[26] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based policy
optimization. In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 12498–12509, 2019.

[27] M. Janner, I. Mordatch, and S. Levine. Gamma-models: Generative temporal difference learning
for infinite-horizon prediction. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[28] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. Int. J.
Robotics Res., 32(11):1238–1274, 2013.

[29] I. Kostrikov, A. Nair, and S. Levine. Offline reinforcement learning with implicit q-learning. In
International Conference on Learning Representations, 2022.

[30] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning for offline reinforcement
learning. CoRR, abs/2006.04779, 2020.

[31] N. O. Lambert, K. S. J. Pister, and R. Calandra. Investigating compounding prediction errors in
learned dynamics models. CoRR, abs/2203.09637, 2022.

[32] N. O. Lambert, A. Wilcox, H. Zhang, K. S. J. Pister, and R. Calandra. Learning accurate
long-term dynamics for model-based reinforcement learning. In 2021 60th IEEE Conference
on Decision and Control (CDC), Austin, TX, USA, December 14-17, 2021, pages 2880–2887.
IEEE, 2021.

[33] S. Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
CoRR, abs/1805.00909, 2018.

[34] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. CoRR, abs/2005.01643, 2020.

[35] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference
on Learning Representations, 2019.

[36] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In M. Balcan
and K. Q. Weinberger, editors, Proceedings of the 33nd International Conference on Ma-
chine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR
Workshop and Conference Proceedings, pages 1928–1937. JMLR.org, 2016.

12

[37] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A. Ried-
miller. Playing atari with deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[38] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine. Neural network dynamics for model-
based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE International
Conference on Robotics and Automation, ICRA 2018, Brisbane, Australia, May 21-25, 2018,
pages 7559–7566. IEEE, 2018.

[39] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar. Deep dynamics models for learning
dexterous manipulation. In L. P. Kaelbling, D. Kragic, and K. Sugiura, editors, 3rd Annual
Conference on Robot Learning, CoRL 2019, Osaka, Japan, October 30 - November 1, 2019,
Proceedings, volume 100 of Proceedings of Machine Learning Research, pages 1101–1112.
PMLR, 2019.

[40] S. Park, D. Ghosh, B. Eysenbach, and S. Levine. Hiql: Offline goal-conditioned rl with latent
states as actions. Advances in Neural Information Processing Systems, 2023.

[41] E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. C. Courville. Film: Visual reasoning with
a general conditioning layer. In AAAI, 2018.

[42] A. Rahimi and B. Recht. Random features for large-scale kernel machines. Advances in Neural
Information Processing Systems, 20, 2007.

[43] A. Rahimi and B. Recht. Weighted sums of random kitchen sinks: Replacing minimization with
randomization in learning. Advances in Neural Information Processing Systems, 21, 2008.

[44] T. Ren, J. Li, B. Dai, S. S. Du, and S. Sanghavi. Nearly horizon-free offline reinforcement
learning. Advances in neural information processing systems, 34:15621–15634, 2021.

[45] O. Rybkin, C. Zhu, A. Nagabandi, K. Daniilidis, I. Mordatch, and S. Levine. Model-based
reinforcement learning via latent-space collocation. In M. Meila and T. Zhang, editors, Proceed-
ings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event, volume 139 of Proceedings of Machine Learning Research, pages 9190–9201.
PMLR, 2021.

[46] A. Singh, A. Yu, J. Yang, J. Zhang, A. Kumar, and S. Levine. Cog: Connecting new skills to
past experience with offline reinforcement learning. Preprint arXiv:2010.14500, 2020.

[47] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models, 2022.

[48] Y. Song, C. Durkan, I. Murray, and S. Ermon. Maximum likelihood training of score-based
diffusion models. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances
in Neural Information Processing Systems, 2021.

[49] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based
generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2021.

[50] R. S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. SIGART
Bull., 2(4):160–163, 1991.

[51] C. Szepesvári and R. Munos. Finite time bounds for sampling based fitted value iteration. In
Proceedings of the 22nd international conference on Machine learning, pages 880–887, 2005.

[52] M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ra-
mamoorthi, J. T. Barron, and R. Ng. Fourier features let networks learn high frequency functions
in low dimensional domains. NeurIPS, 2020.

[53] R. Tedrake. Underactuated Robotics. 2023.

[54] A. Touati and Y. Ollivier. Learning one representation to optimize all rewards. Advances in
Neural Information Processing Systems, 34:13–23, 2021.

[55] A. Touati, J. Rapin, and Y. Ollivier. Does zero-shot reinforcement learning exist? In The
Eleventh International Conference on Learning Representations, 2023.

13

[56] A. Wagenmaker, G. Shi, and K. Jamieson. Optimal exploration for model-based RL in nonlinear
systems. CoRR, abs/2306.09210, 2023.

[57] M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient langevin dynamics. In
L. Getoor and T. Scheffer, editors, Proceedings of the 28th International Conference on Machine
Learning, ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, pages 681–688.
Omnipress, 2011.

[58] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A. Theodorou.
Information theoretic MPC for model-based reinforcement learning. In 2017 IEEE International
Conference on Robotics and Automation, ICRA 2017, Singapore, Singapore, May 29 - June 3,
2017, pages 1714–1721. IEEE, 2017.

[59] H. Wiltzer, J. Farebrother, A. Gretton, Y. Tang, A. Barreto, W. Dabney, M. G. Bellemare, and
M. Rowland. A distributional analogue to the successor representation, 2024.

[60] T. Xie and N. Jiang. Batch value-function approximation with only realizability. In International
Conference on Machine Learning, pages 11404–11413. PMLR, 2021.

[61] Y. Xu, J. Parker-Holder, A. Pacchiano, P. J. Ball, O. Rybkin, S. Roberts, T. Rocktäschel, and
E. Grefenstette. Learning general world models in a handful of reward-free deployments. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances
in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022.

[62] K. J. Young, A. Ramesh, L. Kirsch, and J. Schmidhuber. The benefits of model-based general-
ization in reinforcement learning. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato,
and J. Scarlett, editors, International Conference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Research,
pages 40254–40276. PMLR, 2023.

[63] T. Yu, A. Kumar, R. Rafailov, A. Rajeswaran, S. Levine, and C. Finn. Combo: Conservative
offline model-based policy optimization. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang,
and J. W. Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,
pages 28954–28967. Curran Associates, Inc., 2021.

[64] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Zou, S. Levine, C. Finn, and T. Ma. Mopo: Model-based
offline policy optimization. Preprint arXiv:2005.13239, 2020.

[65] M. R. Zhang, T. Paine, O. Nachum, C. Paduraru, G. Tucker, Z. Wang, and M. Norouzi. Autore-
gressive dynamics models for offline policy evaluation and optimization. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

[66] T. Zhang, T. Ren, M. Yang, J. Gonzalez, D. Schuurmans, and B. Dai. Making linear mdps practi-
cal via contrastive representation learning. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvári,
G. Niu, and S. Sabato, editors, International Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning
Research, pages 26447–26466. PMLR, 2022.

14

Supplementary Materials for
“Distributional Successor Features Enable Zero-Shot Policy Optimization”

A Missing Proofs

We provide the complete proofs of theorems and corollaries stated in Sec. 5. Throughout the
following sections, we use 1E to denote the indicator of event E .

A.1 Formal Statement and Proof of Theorem 5.3

To state Theorem 5.3 rigorously, we introduce the basic setting here. Without loss of generality,
let the feature at time step i, ϕ(si) ∈ [0, 1 − γ]d and the outcome ψ =

∑∞
i=0 γ

iϕ(si) ∈ [0, 1]d.
Moreover, we have a readout policy π s.t. â ∼ π̂(s, ψ) always leads to a successor state s′ s.t.
p̂(1γ (ψ − ϕ(s)) | s

′) > 0.

We simplify the policy optimization phase of DiSPOs into the following form: for a given reward
weight wr, in each time step, we have

1. Infer optimal outcome ψ∗ = A(s, p̂) through random shooting;

2. Get corresponding action from π̂, â ∼ π̂(s, ψ∗).

where the random shooting oracle A with sampling optimality τ satisfies

wTr A(s, p̂) ≥ min{R |
∫

1[wT
r ψ≥R]p̂[ψ | s]dψ ≤ τ}.

This intuitively means that there are at most probability τ ∈ [0, 1] of the behavior policy achieving
higher reward. We proceed to prove Theorem 5.3.

Proof. It suffices to prove that ∀s, (s, π̂(s)) is at least (τ + ϵ, πβ)-good. For simplicity, we denote
R̂ := min{R |

∫
1[wT

r ψ≥R]p̂[ψ | s]dψ ≤ τ}. Then

Pπβ [wTr

∞∑
t=1

γt−1ϕ(st) ≥ Qπβ (s, π̂(s))]

= Pψ∼p0(·|s)[w
T
r ψ ≥ wTr ψ∗]

=

∫
1[wT

r ψ≥wT
r ψ

∗)]p0(ψ | s)dψ

≤
∫

1[wT
r ψ≥R̂]p0(ψ | s)dψ

=

∫
1[wT

r ψ≥R̂]p̂(ψ | s)dψ

+

∫
1[wT

r ψ≥R̂] [p0(ψ | s)− p̂(ψ | s)] dψ

≤ τ +
∫

1[wT
r ψ≥R̂]ϵdψ

≤ τ + ϵ.

15

A.2 Proof of Corollary 5.4

Proof. Intuitively, policy π̂ fall behind by at most λ(τ + ϵ) at each time step: ∀s1 ∈ S,

V ∗(s1)− V π̂(s1)
= Q∗(s1, a

∗)−Qπ̂(s1, â)
= Q∗(s1, a

∗)−Q∗(s1, â)

+Q∗(s1, â)−Qπ̂(s1, â)
≤ λ(τ + ϵ) +Q∗(s1, â)−Qπ̂(s1, â)
= λ(τ + ϵ) + γEs2∼p(s1,â)[V

∗(s2)− V π̂(s2)]
≤ λ(τ + ϵ) + γλ(τ + ϵ)

+ γ2Es3 [V ∗(s3)− V π̂(s3)]
≤ · · ·

≤
∞∑
i=0

γ(τ + ϵ)

=
λ

1− γ
(τ + ϵ).

A.3 Proof of Theorem 5.5

Proof. Under the full coverage condition, the sampling optimality τ can be set to be zero for concrete
actions, and the condition p(ψ|s) > ϵ becomes p(ψ|s) > 0. Then we see that planning only focuses
on the supporting set of p̂: p̂(ψ | s) = 0 if and only (s, ψ) ∈ D for some time during execution,
which equals p0(ψ | s) = 0. This indicates that supp(p̂) = supp(p0). Therefore the conclusion
follows.

B Alternative Derivation of Guided Diffusion Sampling

In this section, we derive the guided diffusion sampling from the perspective of control as inference
[33]. To start, we define the trajectory-level optimality variable O as a Bernoulli variable taking
the value of 1 with probability exp(R(τ)) and 0 otherwise, where R(τ) =

∑T
t=0 γ

tr(st) − Rmax.
Note we subtract the max discounted return Rmax to make the density a valid probability distribution.
Planning can be cast as an inference problem where the goal is to sample ψ∗ ∼ p(ψ|O). By Bayes
rule, we have

p(ψ|O) ∝ p(O|ψ)p(ψ)
Taking the gradient of the log of both sides, we get

∇ψ log p(ψ|O) = ∇ψ log p(O|ψ) +∇ψ log p(ψ)

= ∇ψ log exp(w⊤ψ) +∇ψ log p(ψ)

= ∇ψw⊤ψ +∇ψ log p(ψ)

= w +∇ψ log p(ψ)

This implies that we can sample from p(ψ|O) by adding the regression weights w to the score at each
timestep, yielding the same guided diffusion form as in Sec. 4.2.

C Implementation Details

C.1 Model architecture

We parameterize the random Fourier features using a randomly initialized 2-layer MLP with 2048
units in each hidden layer, followed by sine and cosine activations. For a d-dimensional feature,

16

the network’s output dimension is ⌊d/2⌋ and the final feature is a concatenation of sine and cosine
activated outputs. We set d = 128 for all of our experiments.

We implement the outcome model and policy using conditional DDIMs [47]. The noise prediction
network is implemented as a 1-D Unet with down dimensions [256, 512, 1024]. Each layer is
modulated using FiLM [41] to support conditioning.

C.2 Training details

We train our models on the offline dataset for 100,000 gradient steps using the AdamW optimizer
[35] with batch size 2048. The learning rate for the outcome model and the policy are set to 3e−4 and
adjusted according to a cosine learning rate schedule with 500 warmup steps. We train the diffusion
noise prediction network with 1000 diffusion timesteps and sample using the DDIM [47] sampler
with 50 timesteps. We sample from an exponential moving average model with decay rate 0.995. The
same set of training hyperparameters is shared across all environments.

To transfer to a downstream task, we randomly sample 10000 transitions from the dataset, relabel them
with the test time rewards, and perform linear least squares regression. We use the guided diffusion
planner for Antmaze (α = 0.5), Franka Kitchen (α = 0.01), and Roboverse (α = 0.05) experiments.
For Hopper, we use the random shooting planner with 1000 particles. We found planning with guided
diffusion to be sensitive to the guidance coefficient. Hence, for new environments, we suggest
using the random shooting planner to get a baseline performance and then tuning the guided
diffusion coefficient to acclerate inference. We run each experiment with 6 random seeds and report
the mean and standard deviation in the tables. Each experiment (pretraining + adaptation) takes 3
hours on a single Nvidia L40 GPU.

C.3 Baselines

Successor Features We use the implementation of Universal Successor Features Approximators
[5] and Forward-Backward Representation [54, 55] from the code release of [55]. We choose random
Fourier features for universal SF as it performs best across the evaluation suite. To ensure fairness of
comparison, we set the feature dimension to be 128 for both Universal SF and FB. Both methods
are pretrained for 1 million gradient steps and adapted using the same reward estimation method as
DiSPOs.

RaMP We adapt the original RaMP implementation [9] and convert it into an offline method. RaMP
originally consists of an offline training and an online adaptation stage, where online adaptation
alternates between data collection and linear regression. We instead adapt by subsampling 10000
transitions from the the offline dataset and relabeling them with the test-time reward function, thus
removing the exploration challenge. We use an MPC horizon of 15 for all experiments.

Model-based RL We use the original implementations of MOPO [64] and COMBO [63] in our
evaluations. We pretrain only the trainsition model on the offline transition datasets. To transfer to
downstream tasks, we freeze the transition model, train the reward model on state reward pairs, and
optimize the policy using model-based rollouts. We set the model rollout length for both methods to
5 and the CQL coefficient to be 0.5 for COMBO.

Goal-conditioned RL We use the GC-IQL baseline from [40]. To remove the privileged informa-
tion, we modify the sampling distribution to only sample from half of the goal space excluding the
test-time goal location.

D Environment Details

Antmaze [16] is a navigation domain that involves controlling an 8-DoF quadruped robot to reach
some designated goal location in a maze. Each task corresponds to reaching a different goal location.
We use the standard D4RL offline dataset for pretraining. For downstream task adaptation, we
replace the standard sparse reward 1(s = g) with a dense reward exp(−||s− g||22/20) to mitigate
the challenge of sparse reward in long-horizon problems.

17

Figure 6: Data distribution and reward for Antmaze Preference environments. The left figure illustrates a
preference for taking the vertical path, and the right figure illustrates the preference for taking the horizontal
path.

Franka Kitchen [18] is a manipulation domain where the goal is to control a Franka arm to interact
with appliances in the kitchen. Each task corresponds to interacting with a set of items in no particular
order. We use the standard D4RL offline dataset for pretraining. For downstream task adaptation,
we use the Markovian sparse rewards, where at each timestep the robot gets a reward equal to the
number of completed tasks. We report the number of tasks completed throughout the entire episode
in Table 1.

Hopper Hopper [7, 9] is a locomotion domain where the task is to control a hopper to perform
various tasks, including hopping forward, hopping backward, standing, and jumping. We design a
shaped reward for each task. We pretain on the offline dataset from [9], collected by taking the replay
buffers of expert SAC [19] agents trained to solve each task.

Preference Antmaze is a variant of D4RL Antmaze [15] where the goal is to reach the top right cell
from the bottom left cell in a custom maze shown in Fig. 4. The two tasks in this environment are the
two paths to reaching the goal, simulating different human preferences. To construct the dataset, we
collect 1 million transitions using the D4RL waypoint controller. For each preference, we design a
reward function that encourages the agent to take one path and not the other. Fig. 6 visualizes the
dataset and the reward function for each preference.

Roboverse [46] is a tabletop manipulation environment consisting of a WidowX arm aiming to
complete multi-step problems. Each task consists of two phases, and the offline dataset contains
separate trajectories for each phasebut not full task completion. We use the standard sparse reward,
assigning a reward of 1 for each timestep the task is completed.

E Additional Experiments

To understand the impact of various design decisions on the performance of DiSPOs, we conducted
systematic ablations on the various components, using the Antmaze medium-diverse as a test bed.

E.1 Full D4RL Results

Table. 4 displays the full D4RL results with oracle goal-conditioned baseline labeled GC-Oracle.
The baseline is trained on a goal distribution covering the testing-time goals, granting it privileged
information. Despite this, DiSPOs are competitive with the oracle in most domains.

E.2 Ablation of Planning Method

We compare the guided diffusion planner with the random shooting planner described in Sec. 4.2.
As shown in Table 5, the guided diffusion planner achieves comparable performance to random
shooting with 1000 particles while taking significantly less wall-clock time. While we can decrease
the number of samples in the random shooting planner to improve planning speed, this comes at the
cost of optimality.

18

Table 4: Full offline multitask RL on AntMaze and Kitchen. DiSPOs show superior transfer performance (in
average episodic return) than successor features, model-based RL, and misspecified goal-conditioned baselines,
while being competitive with an oracle using privileged information.

DiSPO (Ours) USFA FB RaMP MOPO COMBO GC-IQL GC-Oracle

umaze 593 ± 16 462 ± 4 469 ± 12 459 ± 3 451 ± 2 574 ± 10 571 ± 15 623 ± 7

umaze-diverse 568 ± 12 447 ± 3 474 ± 2 460 ± 7 467 ± 5 547 ± 11 577 ± 7 576 ± 43

medium-diverse 631 ± 67 394 ± 52 294 ± 61 266 ± 2 236 ± 4 418 ± 16 403 ± 10 659 ± 44

medium-play 624 ± 58 370 ± 31 264 ± 29 271 ± 5 232 ± 4 397 ± 12 390 ± 33 673 ± 45

large-diverse 359 ± 59 215 ± 20 181 ± 46 132 ± 1 128 ± 1 244 ± 19 226 ± 9 493 ± 9

large-play 306 ± 18 250 ± 41 165 ± 12 134 ± 3 128 ± 2 248 ± 4 229 ± 5 533 ± 8

kitchen-partial 43 ± 6 0 ± 0 4 ± 4 0 ± 0 8 ± 7 11 ± 9 - 33 ± 23

kitchen-mixed 46 ± 5 10 ± 10 5 ± 5 0 ± 0 0 ± 0 0 ± 0 - 43 ± 7

hopper-forward 566 ± 63 487 ±110 452 ± 59 470 ± 16 493 ±114 982 ±157 - -
hopper-backward 367 ± 15 261 ± 68 269 ± 77 220 ± 15 596 ±211 194 ± 74 - -
hopper-stand 800 ± 0 685 ±130 670 ±120 255 ± 15 800 ± 0 600 ±111 - -
hopper-jump 832 ± 22 746 ±112 726 ± 35 652 ± 28 753 ± 51 670 ±109 - -

Table 5: Ablation of planning method. Wall time is measured over 1000 planning steps.

Return ↑ Wall time (s) ↓
DiSPO (Ours) 631 ± 67 42.9
Random shooting @ 1000 650 ± 50 94.8
Random shooting @ 100 619 ± 90 58.6
Random shooting @ 10 513 ± 52 55.5

E.3 Ablation of Feature Dimension and Type

To understand the importance of feature dimension and type, we compare variants of our method that
use lower-dimensional random Fourier features, vanilla random features, and the two top-performing
pretrained features from [55]. From Table. 6 we observe that as feature dimension decreases, their
expressivity diminishes, resulting in lower performance. We found random features to perform much
worse than random Fourier features. Interestingly, pretrained features with dynamics prediction and
graph Laplacian objectives also achieve lower returns than random Fourier features. We hypothesize
these pretrained features overfit to the training objective and are less expressive than random Fourier
features

E.4 Ablation of Dataset Coverage

We investigate the effect of dataset coverage on the performance of our method. We compare DiSPOs
trained on the full D4RL dataset against two variants, one where we randomly subsample half of the
transitions, and the other where we adversarially remove the transitions from the half of the state
space containing the test-time goal. As shown in Table 7, the performance of DiSPO drops as dataset
coverage degrades.

E.5 Ablation of Planning Horizon

In Fig. 8, we ablate the effective planning horizon of DiSPOs by controlling the discount factor γ. We
found that for shorter horizon tasks (umaze-diverse), the optimality of planned trajectories improves
as the planning horizon decreases. However, for long-horizon tasks (medium-diverse), reducing the
planning horizon too much incurs cost on global optimality.

E.6 Nonparametric Baseline

To confirm the intuition of our method, we implemented a nonparametric baseline that constructs an
empirical estimate of the outcome distribution. First, we calculate the empirical discounted sum of

19

Table 6: Ablation of feature dimension and type.

Return ↑
DiSPO (Ours) 631 ± 67

Random Fourier (64-dim) 561 ± 45

Random Fourier (32-dim) 295 ± 30

Random Fourier (16-dim) 307 ± 38

Random 382 ± 43

Forward dynamics 402 ± 36

Laplacian 376 ± 33

Table 7: Ablation of dataset coverage.

Return ↑
Full dataset 631 ± 67

Random Subsampling 459 ± 57

Adversarial Subsampling 390 ± 26

Table 8: Ablation of planning horizon.

umaze-diverse medium-diverse

γ = 0.99 587 ± 12 650 ± 50

γ = 0.95 597 ± 16 682 ± 20

γ = 0.9 601 ± 19 553 ± 36

Table 9: Comparison to a nonparametric baseline that takes the top-valued action among the k nearest
neighbors of a state.

Return ↑
DiSPO (Ours) 631 ± 67

Nonparametric k = 10 308 ± 20

Nonparametric k = 100 299 ± 21

Nonparametric k = 1000 287 ± 10

features along trajectories in the dataset. Given the set of empirical (s, a, ψ) pairs and the downstream
reward weight w, we can then select the optimal action at state s through the following steps: (1)
query the k nearest neighbors of s, (2) evaluate their corresponding values w⊤ψ, (3) take the action
of the top-valued neighbor.

We found this baseline to perform surprisingly well on antmaze-medium-diverse-v2. While it does
not achieve the performance of DiSPOs, it outperforms RaMP and MOPO. This result confirms the
intuition behind DiSPOs, which involves selecting the optimal outcome under dataset coverage and
taking an action to realize it. We attribute the performance gap between this baseline and DiSPOs to
their trajectory stitching ability (acquired via dynamic programming), infinite horizon modeling, and
neural network generalization.

E.7 Visualization of Stitching

We visualize the stitched trajectories for roboverse environments in Fig. 7. The dataset only contains
trajectories from each phase separately, but DiSPOs can generate full trajectories by stitching the
subtrajectories.

Figure 7: Visualization of stitched trajectories for roboverse PickPlace and BlockedDrawer.

20

F Algorithm Pseudocode

Algorithm 1 DiSPO Training

1: Given transition dataset D, feature function ϕ(·)
2: Initialize pθ(ψ|s), πρ(a|s, ψ).
3: while not converged do
4: Draw B transition tuples {si, ai, s′i}Bi=1 ∼ D.
5: Sample successor features for next states ψ′

i ∼ pθ(ψ|s′i), i = 1 . . . N .
6: Construct target successor feature ψtarg

i = ϕ(s) + γ ∗ ψ′
i.

7: // ψ model learning
8: Update feature distribution: θ ← argmaxθ log pθ(ψ

targ
i |si).

9: // Policy extraction
10: Update policy: ρ← argmaxρ log πρ(a|si, ψtarg

i).
11: end while

Algorithm 2 DiSPO Offline Adaptation

1: Given transition dataset D, feature function ϕ(·), reward function r(s).
2: Relabel offline dataset D with reward function.
3: Initialize regression weights w.
4: Fit w to D using linear regression w = argminw ED[∥ w⊤ϕ(s)− r(s) ∥22].

Algorithm 3 DiSPO Online Adaptation

1: Given pθ(ψ|s), πρ(a|s, ψ), feature function ϕ(·).
2: Prefill online buffer Dbuf with random exploration policy.
3: Initialize regression weights w.
4: for time steps 1 . . . T do do
5: Fit w using linear regression w = argminw EDbuf [∥ w⊤ϕ(s)− r(s) ∥22].
6: Infer optimal ψ∗ = argmaxψ w

⊤ψ s.t. pθ(ψ|s) > ϵ.
7: Sample optimal action a∗ ∼ π(a|s, ψ∗).
8: Execute action in the environment and add transition to buffer.
9: end for

Algorithm 4 DiSPO Inference (Random Shooting)

1: Given pθ(ψ|s), πρ(a|s, ψ), regression weight w, current state s.
2: Sample N outcomes {ψi}Ni=1 ∼ pθ(ψ|s).
3: Compute corresponding values {vi}Ni=1, where vi = w⊤ψi.
4: Take optimal cumulant ψ∗ = ψi, where i = argmaxi{vi}Ni=1.
5: Sample optimal action a∗ ∼ π(a|s, ψ∗).

Algorithm 5 DiSPO Inference (Guided diffusion)

1: Given diffusion model pθ(ψ|s), πρ(a|s, ψ), regression weight w, current state s, guidance
coefficient β.

2: Initialize outcome ψ1 from prior.
3: for diffusion timestep t = 1...T do
4: Compute noise at timestep ϵ = ϵθ(ψt, t, s).
5: Update noise ϵ′ = ϵ− β

√
1− ᾱtw.

6: Sample next timestep action ψt+1 using ϵ′.
7: end for
8: Sample optimal action a∗ ∼ πρ(a|s, ψT).

21

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the contributions and scope of the
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are addressed in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

22

Justification: The paper discusses the assumptions in Section 5 and provide full proofs in
Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper disclose the experiment details, including environments, datasets,
and model hyperparameters in the Appendix C. These can be used to fully reproduce the
experiments in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

23

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include the code in supplemental materials and will release the code if the
paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and test details are specified in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper includes error statistics for all reported results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper discloses information about the compute resources used for experi-
ments in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper is algorithmic in nature and involves experiments in simulated
environments. Hence it does not have an immediate societal impact in its current form.
However, it may have an impact when deployed in real-world settings where modeling
is important, such as robotics or autonomous driving. In these cases, a natural challenge
with GOMs is that the interpretability that comes with autoregressive generative models
is naturally lost, since only cumulative features are modeled. For future deployment of
this work, we must carefully consider interpretability and think about how we can train
generative heads to interpret the various outcomes that are modeled by GOMs.

25

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not involve the release of models that have a high risk for
misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper credits the owners of codebases and datasets that are used in the
experiments.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

26

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or experiments with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve human subjects and hence does not require IRB
approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

27

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Related Work
	Preliminaries
	Distributional Successor Features for Zero-Shot Policy Optimization
	Learning Distributional Successor Features of the Behavior Policy
	Zero-Shot Policy Optimization with Distributional Successor Features
	Practical Instantiation

	Theoretical Analysis of Distributional Successor Features for Zero-Shot Policy Optimization
	Experimental Evaluation
	Problem Domains and Datasets
	Baseline Comparisons
	Do DiSPOs enable zero-shot policy optimization across tasks?
	Can DiSPOs solve tasks with arbitrary rewards?
	Do DiSPOs perform trajectory stitching?

	Discussion
	Missing Proofs
	Formal Statement and Proof of Theorem 5.3
	Proof of Corollary 5.4
	Proof of Theorem 5.5

	Alternative Derivation of Guided Diffusion Sampling
	Implementation Details
	Model architecture
	Training details
	Baselines

	Environment Details
	Additional Experiments
	Full D4RL Results
	Ablation of Planning Method
	Ablation of Feature Dimension and Type
	Ablation of Dataset Coverage
	Ablation of Planning Horizon
	Nonparametric Baseline
	Visualization of Stitching

	Algorithm Pseudocode

