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Abstract

Semantic parsing is a predominant approach001
to solve the Knowledge Graph Question An-002
swering (KGQA) task where, natural language003
question is translated into a logic form such004
as SPARQL. Semantic parsing based solutions005
are mostly modular/pipelined where, noise006
introduced by the upstream modules for en-007
tity/relation linking makes it hard to solve008
the complex questions. Recently, Neural Ma-009
chine Translation (NMT) based approaches010
have emerged that are capable of handling011
complex questions. However, NMT-based ap-012
proaches struggle with handling the large num-013
ber of test entities and relations that are un-014
seen during training. In this work,we propose015
a modular two-stage neural approach which016
combines best of both the worlds - NMT and017
semantic parsing pipeline. Stage-I of our ap-018
proach comprises an NMT-based seq2seq mod-019
ule that translates a question into a sketch of020
the desired SPARQL, called as SPARQL sil-021
houette. This stage also contains a noise sim-022
ulator which combines the masking scheme023
with an entity/relation linker in a novel manner024
so as to take care of unseen entities/relation025
without blowing up the vocabulary of seq2seq026
module. Stage-II of our approach comprises027
a Neural Graph Search (NGS) module which028
aims to distil the SPARQL silhouette in order029
to reduce the entity/relation linking noise. Ex-030
perimental results show that, the quality of gen-031
erated SPARQL silhouette is impressive for an032
ideal scenario where entity/relation linker is033
noise-free. For the realistic scenario (i.e. noisy034
linker), the quality of the SPARQL silhouette035
drops but our NGS module recovers it consider-036
ably. We show that, our proposed approach im-037
proves state-of-the-art on LC-QuAD-1 dataset038
by an absolute margin of 3.72% F1.039

1 Introduction040

Knowledge Graph (KG) is a large collection of real041

world facts that are stored in the form of triples such042

as ⟨Joe Biden, president,United States⟩, where,043

“Joe Biden” and “United States” are entities and 044

“president” is a relation between them. The task of 045

Knowledge Graph Question Answering (KGQA) is 046

an important application where a system is required 047

to answer a natural language question by leveraging 048

the facts present in the given KG. A KGQA system 049

permits users retrieving the information from KG 050

without any prior knowledge about KG schema 051

or query languages such as SPARQL, SQL, etc. 052

The availability of large-scale KGs, such as Free- 053

base (Bollacker et al., 2008), DBpedia (Lehmann 054

et al., 2015), YAGO (Pellissier Tanon et al., 2020), 055

NELL (Mitchell et al., 2015), Google’s Knowledge 056

Graph (Steiner et al., 2012), and their applicabil- 057

ity in various business applications have made the 058

KGQA an important research area within NLP. 059

There are several approaches proposed to solve 060

the KGQA task and can be grouped into two broad 061

categories: 062

1. Semantic parsing-based: In these ap- 063

proaches (Berant and Liang, 2014; Reddy 064

et al., 2014; Dong and Lapata, 2016), a natural 065

language question is first transformed into 066

a structured query language or logic form 067

such as SPARQL, SQL, λ-DCS (Liang, 2013), 068

CCG (Zettlemoyer and Collins, 2005). Gener- 069

ated query is then executed against the given 070

KG to get the answer of the given question. 071

2. Information extraction-based: These ap- 072

proaches (Yao and Van Durme, 2014; Dong 073

et al., 2015; Bordes et al., 2015) extract a sub- 074

graph from the underlying KG which depends 075

on the entities/relations present in the question. 076

Next, they perform graph-based reasoning on 077

the subgraph to reach the final answer directly 078

without generating any intermediate logic form. 079

The popular semantic parsing-based approaches 080

for KGQA (Singh et al., 2018; Kapanipathi et al., 081

2020; Liang et al., 2021) are inherently modular 082

and pipelined in nature because they decompose 083

1



Seq2Seq 
Model

Who all are known 
to play the Gibson 

Guitar Corporation? 

SELECT DISTINCT ?x WHERE
{

?x dbo:starring
dbr:Gibson_Guitar_corporation

}

Neural Graph 
Search 
Module

SPARQL Silhouette 
Corrected SPARQL

SELECT DISTINCT ?x WHERE
{

?x dbp:notableInstruments
dbr:Gibson_Guitar_corporation

}Question

Figure 1: A high level view of our proposed two stage neural architecture for KGQA.

the problem of logic form generation into several084

subtasks: (i) question understanding, (ii) linking085

mentions in the question text to the entities and086

relations in the KG, (iii) generating the final logic087

form with various constraints required to get the088

answer. Some of these modules, for example, en-089

tity/relation linking, are generally far from being090

perfect and hence induce a noticeable amount of091

noise in the pipeline. Because of this, such ap-092

proaches (Petrochuk and Zettlemoyer, 2018) end093

up handling simple questions well where just a sin-094

gle KG fact is needed to answer the question. These095

approaches, however, struggle while handling com-096

plex questions (Li et al., 2016; Usbeck et al., 2017;097

Trivedi et al., 2017) that require multiple facts. For098

complex questions, one of the key challenge lies099

in the large sized search space when linking enti-100

ties and relations. Other drawback of the pipeline-101

based approaches involves propagation of the noise102

from upstream modules into downstream modules103

where, usually there is no explicit provision to cor-104

rect the noise.105

Given the recent advancements in Neural Ma-106

chine Translation (NMT) (Bahdanau et al., 2015)107

technologies, it is emerging as an alternative ap-108

proach (Yin et al., 2021; Cai et al., 2017) for se-109

mantic parsing with a hope of alleviating the lim-110

itations of pipelined approaches. Like language111

translation, NMT-based approaches translate nat-112

ural language questions to the logic form directly.113

NMT-based approaches are good at syntactic and114

semantic understanding of the complex questions.115

However, NMT approaches have their own limita-116

tions - (i) they require large amount of training data,117

(ii) they cannot handle unseen entities/relations at118

test-time due to their fixed vocabulary. Motivated119

by these limitations, we propose a novel two-stage120

neural approach for KGQA (see Figure 1). This121

approach embraces the best of both the worlds – (i)122

using NMT for handling complex questions, (ii) us-123

ing masking technique with entity/relation linking 124

module to handle unseen entities/relations. 125

The Main contributions of this work are as fol- 126

lows: 127

1. In Stage-I of our approach, a NMT-based mod- 128

ule generates the sketch of the target SPARQL 129

for the given natural language question. We call 130

this sketch as SPARQL silhouette. In this stage, 131

we exploit the idea of masking to mask all the en- 132

tities and relations present in the input question 133

and thereby, freeing up the NMT module from 134

the task of entity/relation linking. We, however, 135

handle the entity/relation linking separately via 136

an off-the-shelf entity/relation linker. We fur- 137

ther leverage the masking scheme to simulate 138

the noise level in entity/relation linking process 139

for the purpose of ablation studies. 140

2. Stage-II comprises a Neural Graph Search 141

(NGS) module. This module takes the SPARQL 142

silhouette as inputs and reduces noise intro- 143

duced by the entity/relation linker in Stage-I. 144

3. To demonstrate the effectiveness of our ap- 145

proach, we first simulate a scenario where en- 146

tity/relation linker is noise-free (i.e. 100% F1 147

score). Then we show that, the quality of the re- 148

sulting SPARQL silhouette in Satge-I is impres- 149

sive – 83.08% F1 for LC-QuAD-1 and 55.3% 150

Macro F1 QALD for QALD-9 dataset. 151

4. Next, we simulate a real entity/relation linker 152

and show that as F1 of this linker goes down, 153

the quality of the resulting SPARQL silhouette 154

drops. Finally, integrating Stage-II module with 155

Stage-I boosts the performance significantly and 156

improves the SOTA by an absolute margin of 157

3.72% F1 for LC-QuAD-1 dataset. 158

2 Related Work 159

There is a vast body of literature on the KGQA 160

task and its nearly impossible to cover all of them 161
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here. One can refer to survey papers (Chakraborty162

et al., 2019; Lan et al., 2021) for an in-depth ac-163

count of KGQA literature. By and large, semantic164

parsing is a predominant paradigm in the KGQA165

literature. Semantic parsing-based approaches can166

be classified into two categories: (i) neural, and (ii)167

non-neural. Non-neural approaches (Zettlemoyer168

and Collins, 2007; Berant et al., 2013; Diefen-169

bach et al., 2017) are somewhat dated now and170

use handcrafted features and rules. As far as neural171

semantic parsing approaches are concerned, they172

can be further divided into two subcategories: (i) )173

NMT-based, (ii) ) Non-NMT-based. NMT-based ap-174

proaches are the most recent ones and are inspired175

by the phenomenal success of neural machine trans-176

lation techniques. On the other hand, majority of177

the non-NMT-based approaches are based on the178

modular pipeline architecture. Each variant has its179

own pros and cons as discussed in Section 1. Given180

our proposed approach is inspired by both NMT181

and pipeline-based approaches, in what follows,182

we give a brief account of the most relevant prior183

art for both.184

2.1 Non-NMT-based Approaches185

Pipeline-based approaches (Singh et al., 2018; Ka-186

panipathi et al., 2020; Liang et al., 2021) break187

the problem of semantic parsing a complex ques-188

tion (Bao et al., 2016; Su et al., 2016; Trivedi189

et al., 2017; Dubey et al., 2019) into more man-190

ageable subtasks such as question understanding,191

entity/relation linking, logic form generation and192

use reusable modules for solving the subtasks. In193

these approaches, all intermediate modules need194

not be neural-based. Each of these submodules195

introduces its own errors, which propagate to the196

downstream pipeline. Another line of works (Yih197

et al., 2015; Maheshwari et al., 2019; Ding et al.,198

2019; Lan and Jiang, 2020; Chen et al., 2020) maps199

the problem of semantic parsing on KG to a query200

graph (a subgraph of KG) generation, which can201

be easily translated into the SPARQL.202

2.2 NMT-based Approaches203

In the last few years, NMT-based approaches are204

being used to translate natural language questions205

into SQL (Zhong et al., 2017; Yu et al., 2018; Cai206

et al., 2018). Recently, Yin et al. (2021) pro-207

posed a CNN-based seq2seq models to generate208

SPARQL queries from natural language questions.209

One limitation of their approach is that output vo-210

cabulary for SPARQL generation is limited to the211

entities/relations seen during training. As a result, 212

their performance reduces drastically if the overlap 213

of entities and relations in the training and test sets 214

differ. Our proposed method can efficiently han- 215

dle unseen entities/relations during test time. To 216

the best of our knowledge, our work is the first of 217

its kind of solving KGQA task which considers 218

multiple relations and used NMT based approach 219

that can handle unseen entities/relations and reduce 220

vocabulary size by designing noise simulator with 221

masking strategy. 222

3 The KGQA Task 223

In KGQA, we are given a Knowledge Graph G 224

comprising of an entity set E , a relation set R, 225

and a set of knowledge facts F . The knowl- 226

edge facts are expressed in the form of triples; 227

F = {⟨es, r, eo⟩} ⊆ E × R × E , where es ∈ E is 228

known as subject or head entity, eo ∈ E is known 229

as object or tail entity, and r is a relation which con- 230

nects these two entities. These entities (relations) 231

form the nodes (edges) of the KG. The task now is 232

to identify the subset of entities from E that consti- 233

tute the answer of a given question Q in the natural 234

language form. The most common family of ap- 235

proaches for the KGQA task is semantic parsing 236

where, the given question Q is first translated into 237

an SPARQL query S which is then executed over 238

the KG so as to get the answer set. For developing a 239

system to convert a question into the corresponding 240

SPARQL query, we are given a set of training data 241

{Qi, Si, Ai}ni=1, where Qi is a question (in natural 242

language text), Si is the SPARQL query, and Ai is 243

the answer set obtained by executing Si on G. 244

In this paper, we propose a two-stage system 245

for KGQA. In Stage-I, seq2seq module generates 246

a SPARQL silhouette with specific entities. Rela- 247

tions predicted in this module are corrected by the 248

neural graph search module in Stage-II. 249

4 Stage-I: Seq2Seq Model 250

Figure 2 shows the architecture of Stage-I of our ap- 251

proach. The input question is first given to an exter- 252

nal entity/relation linker where it detects the surface 253

form mentions of the entities/relations in the ques- 254

tion text and links the same to the entities/relations 255

in the underlying KG (DBpedia herein). The out- 256

put of linker, along with the question, is passed 257

to a noise simulator module which masks men- 258

tions of all the entities/relations in the question 259

text and corresponding gold SPARQL for the train- 260
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ing data. This module employs different masking261

schemes depending on the desired level of noise262

that we wish to simulate. The masked question is263

then passed to a CNN-based sequence-to-sequence264

(seq2seq) module which converts it into a SPARQL265

silhouette.266

Note, seq2seq models have achieved state-of-the-267

art performance in machine translation task (Yin268

and Neubig, 2017) and they can be based on RNN,269

CNN, or Transformer architectures. The prior re-270

search has shown (Yin et al., 2021) that CNN-271

based seq2seq model performs best for translating272

natural language to SPARQL query. In our pre-273

liminary experiments also CNN-based model per-274

formed better than the transformer based model275

(Table 6 of appendix). Hence, we opted CNN-276

based seq2seq model as our base model for Stage I.277

278

4.1 Noise Simulator and Masking279

The purpose of designing noise simulator mod-280

ule is two-fold: (i) To mask mentions and en-281

tities/relations in the question text as well as282

SPARQL, (ii) To simulate varying levels of noise in283

the entity/relation linking process. Masking helps284

us in two ways: (i) handling test entities/relations285

that are unseen during training, (ii) reducing vocab-286

ulary size as KGs contain a large number of enti-287

ties and relations. A simple neural seq2seq model288

which translates natural language question into a289

SPARQL query will struggle to output some of the290

entities/relations during test time that are unseen291

during training time and hence will not be available292

in the output vocabulary. In the absence of linking293

and masking, our elementary experiment shows the294

performance of seq2seq model to be quite low (F1295

score 16%). Table 1 further corroborates this be-

Dataset Statistics Val Test

LC-QuAD-1
Entities (dbr) 52.3 46.8
Properties (dbp) 97.2 98.3
Ontologies (dbo) 96.5 94.6

QALD-9
Entities (dbr) 27.1 25.9
Properties (dbp) 0.0 16.9
Ontologies (dbo) 47.8 38.3

Table 1: % of the entities and relations in val and test
sets that are available within train set’s gold SPARQLs.

296
havior where we have captured the statistics about297

% of entities and relations (i.e. properties and on-298

tology in DBpedia) in validation and test sets that299

are seen in the training set. This suggests that en- 300

tity/relation linker along with masking is a must for 301

any seq2seq model. Even if we were to work with 302

perfect linker, without masking, the output vocabu- 303

lary of the seq2seq model would be over growing 304

which would become difficult to manage. To han- 305

dle such difficulties, we need masking. Here, we 306

propose three different types of masking schemes 307

(Scenario A, B and C) and describe these in subse- 308

quent subsections . 309

[Scenario ‘A’: Noise-Free Linking] In this sce- 310

nario, we simulate an entity/relation linker that has 311

100% F1. For this, we pick all entities/relations 312

from the gold SPARQL and pretend as if they were 313

the output of the linker (see Figure 6 in appendix). 314

We begin with extracting all the entities and rela- 315

tions from the gold SPARQL using their prefixes 316

(dbr for entities and dbp or dbo for relations). Next, 317

we pick these entities and relations, and align the 318

same with surface-form mention text in the given 319

question. We observe that entities match exactly 320

with substrings in the questions most of the time 321

(e.g. Austin College in Figure 6 of the appendix). 322

For relations, an exact match is not always possible, 323

e.g., a given relation dbo:film is semantically 324

best aligned to word movies in the question. We use 325

pre-trained fastext embeddings (Bojanowski et al., 326

2017) to represent words and relation and compute 327

cosine similarity between each word in the question 328

and the given relation. The highest-scoring word 329

is considered as the aligned word. After identify- 330

ing mentions of entities/relations, we mask them 331

in question text as well as the corresponding gold 332

SPARQL. This masked pair is subsequently fed to 333

the seq2seq module as a training example. 334

[Scenario ‘B’: Partly Noisy Linking] Purpose of 335

scenario ’B’ is to allow partial noise in the en- 336

tity/relation linking process. For this, we first 337

feed the natural language question into an ex- 338

ternal entity/relation linker. The linker returns 339

two things: (i) A set of surface form mentions 340

for entities/relations in the question text, and 341

(ii) Linked entities/relations for these mentions. 342

We take linker’s output and find intersection of 343

these entities/relations with the entities/relations 344

present in the gold SPARQL. These common en- 345

tities/relations are masked in the SPARQL query. 346

Also, their corresponding surface forms are masked 347

in the question text. In order to mask the surface 348

form in the question, we use exact match and string 349

overlap based Jaccard similarity. Figure 7 in ap- 350
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Figure 3: An illustrative example for Scenario ‘C’.

pendix illustrates this scenario.351

[Scenario ‘C’: Fully Noisy Linking] Goal here is352

to simulate a completely realistic scenario where353

we rely entirely on an external entity/relation354

linker. For this, we feed input question to the en-355

tity/relation linker and get the suggested surface356

form mentions and linked entities/relations. We357

mask these suggested mentions using exact match358

and partial match. Corresponding SPARQL query’s359

entities/relations are also masked based on the sug-360

gestions. This scenario is depicted in Figure 3.361

4.2 Convolutional Seq2Seq Model362

The pair of masked question and SPARQL query363

obtained from the noise simulator, under any noise364

scenario, is fed to a Convolutional Neural Network365

(CNN) based seq2seq model (Gehring et al., 2017).366

As shown in Figure 4, this model reads the entire367

masked question and then predicts the correspond-368

ing masked SPARQL query token-by-token in a369

left-to-right manner. This seq2seq model consists370

of the following key components.371

[Input Embedding Layer] Both encoder and de-372

coder consist of an embedding layer that maps each373

input token to a point-wise summation of its word374

embedding and positional embedding. The embed-375

ding of each word is initialized randomly. In order376

to capture the sense of order, the model is provi-377

sioned with the positional embedding.378

[Convolution + Pooling Layers] The token embed-379

dings obtained from the previous layer are fed to 380

the multiple convolution and pooling layers. Each 381

convolution layer consists of a 1-dimensional con- 382

volution followed by Gated Linear Units (GLU) 383

(Dauphin et al., 2017). Residual connections (He 384

et al., 2016) are added from input to the output of 385

each convolution layer. 386

[Multi-Step Attention] Each decoder layer com- 387

prises a convolution layer followed by a multi-step 388

attention layer. This multi-step attention is used to 389

find the attention scores from a particular decoder 390

state to the source tokens. Attention between de- 391

coder state di (after ith layer) of the last token in 392

generated sequence so far and state zj of the jth 393

source element (after last encoder layer) is com- 394

puted as: aij = exp(di · zj)/
∑m

t=1 exp(di · zt) 395

where, m is the number of source elements. The 396

context vector, ci, is now computed as, ci = 397

[
∑m

j=1 a
i
j(zj + ej)] + di where, ej is the input 398

embedding for the source element j. 399

[Output Layer] Finally, output at a particular time 400

step is calculated over all the Z possible tokens, 401

P (zt+1|z1, . . . , zt, X) = softmax(WdL + b) 402

where P (zt+1|·) ∈ RZ , and W , b are trainable 403

parameters. dL is the decoder state of last target el- 404

ement at the last layer L. X is the input sequence. 405

[Training Loss:] The model is trained using 406

label smoothed cross-entropy loss given by fol- 407

lowing expression (for single training example) 408

L(θ) = −(1/N) ·
∑N

n=1

∑Z
z=1 q(yn = z|yn−1) · 409

logPθ(yn = z|yn−1) where, N is the number 410

of words in output sequence and yn is the first 411

n tokens of output sequence. Pθ(yn = z|yn−1) 412

is model’s probability to output token z given 413

yn−1 sequence generated so far. The quantity 414

q(yn = z|yn−1) is equal to γ if f(yn) = z and 415

(1− γ)/(Z − 1) o/w, where γ ∈ [0, 1], γ > 1/Z. 416

5 Stage-II: Neural Graph Search Module 417

Our error analysis on output of Stage-I revealed 418

that entity linking performance is reasonably good 419

but the same is not true for relation linking. Exist- 420
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BERT

CLS Question SEP SUB SEP Stanley_
Kubrick

Linear Layer

Softmax Layer

𝑃 𝑟 , ∀𝑟 ∈ 	ℛ(𝑒𝑛𝑡𝑖𝑡𝑦, 𝑠𝑢𝑏/𝑜𝑏𝑗)

BERT

Question

Linear Layer

Softmax Layer

𝑃 𝑡 ,∀𝑡 ∈ 𝑇

(a) (b)

director

How many movies did 
Stanley Kubrick direct ?

Name the country 
with currency as 

Aureus.

dbo:Country

Figure 5: Architecture of neural graph
search module. (a) Relation Classifier.
This module predicts relation for a given
entity (b) Ontology Type Classifier. This
module predicts rdf:type ontology class.

ing literature (Wu et al., 2020; Li et al., 2020) also421

show enough evidences of achieving high perfor-422

mance on the entity linking task, whereas relation423

linking turns out to be harder due to complexity of424

natural language. Because of this, we have most of425

the entities within a SPARQL silhouette generated426

by Stage-I as correct but the relations are incorrect.427

Graph search module in Stage-II takes a SPARQL428

silhouette as input and produces an improved ver-429

sion of the same by replacing incorrect relations430

(see Figure 8 in appendix for an example).1 This is431

a BERT-based module and its architecture is shown432

in Figure 5. This module works as follows.433

1. We consider each triple ⟨es, r, eo⟩ in the434

SPARQL silhouette in which at least one of the435

entity is an existential variable unless the silhou-436

ette is with rdf:type relation which we handle437

separately. We prepare input in the following438

format: [CLS] Q [SEP] [SUB (or OBJ)] [SEP]439

es (or eo). Here, Q is token sequence of input440

question text and [SUB (or OBJ)] is special to-441

ken depending on whether the grounded entity442

is in subject (or object) position (refer Figure443

5a). We also pass grounded entity (es or eo) as444

1It is easy to extend this idea and perform an iterative graph
searching when entity linker performance is also low.

the last element of this input. [CLS] and [SEP] 445

are special tokens from BERT vocabulary. 446

2. We feed above input sequence of tokens into 447

the BERT layer of graph search module. The 448

output is passed through a linear layer followed 449

by a softmax layer. This softmax layer induces 450

a probability score pr for each relation r ∈ R 451

in the given KG. While training, we use the fol- 452

lowing loss function (given for single example): 453

ℓ = (1−α)∗(ℓc)+(α)∗(ℓgs). Here, ℓc denotes 454

standard cross entropy loss between predicted 455

probabilities {pr}r∈R and the gold relation. The 456

graph search loss term ℓgs forces the predicted 457

probabilities to be low for all those relations 458

which are invalid relations (in the given KG) for 459

corresponding input entity es (or eo) in the input 460

position (subject or object). For this, we assume 461

a uniform probability distribution over all such 462

valid relations and compute its cross entropy 463

loss with {pr}r∈R. α is a hyperparameter. 464

3. During inference, at softmax layer, we restrict 465

the outputs only to those relations r ∈ R which 466

are valid relation for the input entity as be- 467

ing subject or object. For example, if input 468

grounded entity is es then we restrict prediction 469

to only those relations r for which ⟨es, r, ?x⟩ 470
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is a valid triple for some grounding of ?x. In471

DBpedia same relation can exist in the form of472

‘dbo’ and ‘dbp’ for a specific entity. In such473

cases, we pick the ‘dbo’ version. Prediction is474

made based out of 61623 relations available in475

DBpedia.476

4. We have a separate version of the NGS mod-477

ule (refer Figure 5b) if the relation r in a478

given triple is rdf:type. Note, in DBpedia, a479

triple containing rdf:type relation looks like this480

⟨?x, rdf:type, dbo:type⟩ where, ?x is a variable481

and dbo:type is the DBpedia ontology class of482

the entity ?x. For such triples, input to NGS483

module is [CLS] Q. We need to predict the484

corresponding ontology class dbo:type. DB-485

pedia ontology contains 761 classes and hence,486

in this model, prediction is one of these 761487

classes. This module is trained with standard488

cross-entropy loss. An example of the rdf:type489

classification would be to predict dbo:Country490

for the question ‘Name the country with cur-491

rency as Aureus?’.492

6 Experiments and Results493

Datasets: We work with two different KGQA494

datasets based on DBpedia: LC-QuAD-1 (Trivedi495

et al., 2017) and QALD-9 (Ngomo, 2018). LC-496

QuAD-1 contains 5000 examples and is based on497

the 04-2016 version of the DBpedia. We split this498

dataset into 70% training, 10% validation, and 20%499

test sets (same as the leaderboard). QALD-9 is a500

multilingual dataset and is based on the 10-2016501

version of the DBpedia. Questions in this dataset502

vary in terms of reasoning nature (e.g. counting,503

temporal, superlative, comparative, etc.) and there-504

fore, in terms of the SPARQL aggregation func-505

tions as well. This dataset contains 408 training506

and 150 test examples. We split the training set507

into 90% training and 10% validation sets.508

Evaluation Metric: Performance is evaluated509

based on the standard precision, recall, F1 score510

for KGQA systems. For more detail please refer to511

section C of appendix. We also measure a metric512

called Answer Match (AM).513

Answer Match (AM): For a question Q, when514

executing the predicted SPARQL in the underly-515

ing KG, if we get Sp = Sg then we say AM=1516

otherwise AM=0. Here, Sg and Sp are gold and517

predicted answer set respectively.518

Baselines: We compare our approach with three519

baselines: WDAqua (Diefenbach et al., 2020),520

QAmp (Vakulenko et al., 2019) and gAnswer 521

(Zou et al., 2014). WDAqua is a graph based ap- 522

proach to generate SPARQL query based on prede- 523

fined patterns. These SPARQL candidates are then 524

ranked. QAmp uses text similarity and graph struc- 525

ture based on an unsupervised message-passing 526

algorithm. gAnswer is graph data driven approach 527

and generate query graph to represent user inten- 528

tion. WDAqua and QAmp are top entries in the 529

LC-QuAD-1 leaderboard 2 whereas, WDAqua and 530

gAnswer in QALD-9 challenge (Ngomo, 2018). 531

Experimental Setup: 532

1) Stage-I: We use Falcon (Sakor et al., 2019) for 533

entity/relation linking and experiment with all 3 534

noise scenarios. We use fairseq3 library for imple- 535

mentation of CNN-based seq2seq model (Gehring 536

et al., 2017) comprising of 15 layers4. and used 537

Nesterov Accelerated Gradient (NAG) optimizer. 538

We experimented with different values of hyperpa- 539

rameters and report results for the values yielding 540

the best performance on the validation set. Details 541

about tuning ranges and optimal values of all these 542

hyperparameters are given in Table 4 of appendix. 543

We used 2 Tesla v100 GPUs for training seq2seq 544

model. 545

2) Stage-II: For neural graph search module, we 546

work with a pre-trained BERT-base uncased model. 547

Figure 9 of appendix captures change in validation 548

accuracy with hyperparameter α. It consists of 12 549

transformer layers, 12 self-attention heads, and 768 550

hidden dimension. We used 1 Tesla v100 GPU for 551

training. 552

Results and Discussions: Table 2 and 3 capture 553

performance of our approach compared to state-of- 554

the-art on the LC-QuAD-1 and QALD-9 datasets. 555

Our results in the last two rows of both the tables 556

in stage-II are under realistic scenario or full noise 557

setting for entity/relation linking. Our approach 558

achieves state-of-the-art performance in case of LC- 559

QuAD-1 dataset by improving an absolute margin 560

of 3.72% F1. Our seq2seq model can achieve upto 561

83.08% F1 for LC-QuAD-1 and 55.3% Macro F1 562

QALD for QALD-9 dataset if the entity/relation 563

linker were to be 100% correct. The gap between 564

the performance of No Noise linking (upper bound) 565

and Full Noise linking (lower bound) illustrates 566

how the performance of entity/relation linker im- 567

pacts the overall performance of KGQA. Poor per- 568

2http://lc-quad.sda.tech/lcquad1.0.html
3https://github.com/pytorch/fairseq
4We will release our code after the review period.
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Model
Type

Model
Name

AM Prec. Recall F1

Baseline WDAqua - 22.00 38.00 28.00
QAmp - 25.00 50.00 33.33

Stage-I
(Ours)

No Noise 82.88 83.11 83.04 83.08
Part Noise 41.34 42.40 42.26 42.33
Full Noise 24.92 25.54 25.64 25.59

Stage-II
(Ours)

w/o type 30.63 32.17 32.20 32.18
w/ type 34.83 37.03 37.06 37.05

Table 2: Test set performance on LC-QuAD-1 dataset.

Model
Type

Model
Name

AM
Mac.
Prec.

Mac.
Rec.

Mac.
F1

Mac.
F1

QALD

Baseline
WDAqua - 26.1 26.7 25.0 28.9
gAnswer - 29.3 32.7 29.8 43.0

Stage-I
(Ours)

No Noise 29.9 80.4 42.1 40.9 55.3
Part Noise 13.1 63.9 28.7 22.4 39.6
Full Noise 11.1 82.6 23.0 20.6 36.0

Stage-II
(Ours)

w/o type 15.3 59.4 26.1 23.3 36.2
w/ type 15.3 59.4 26.1 23.3 36.2

Table 3: Test set performance on QALD-9 dataset. Here
Mac. means Macro and Rec. means Recall.

formance of Falcon on relation linking (Table 5 of569

appendix) also justifies this gap. Further, the perfor-570

mance of Stage-II demonstrates we gain 11.46% in571

F1 for LC-QuAD-1 and 0.2% in Macro F1 QALD572

for QALD-9 dataset.573

By manually analysing examples, we find that574

our method can learn complex patterns of queries575

including imperative, interrogative, questions with576

count (aggregation) and involving multiple rela-577

tions. Proposed model is a simple neural approach578

which does not need question interpretation step579

unlike QAmp and also can learn complex templates580

without requiring a large number of templates un-581

like WDAqua. As our seq2seq model translates nat-582

ural language query to SPARQL, it does not need583

to resolve any ambiguity in the natural language584

questions to reach to answer unlike approaches585

(gAnswer) that generates query graph . Another ad-586

vantage of our method is it is KG agnostic method.587

Error Analysis: We randomly picked 50 ex-588

amples where predicted answer by our model is589

wrong. We see that, there are four types of sce-590

narios where our model fails to generate correct591

SPARQL: (i) two very similar looking relations592

such as "placeOfDeath" (gold) Vs "deathPlace" 593

(predicted), "product" (gold) Vs "products" (pre- 594

dicted) (details in Table 9 of appendix) that exist 595

in the KG for an entity (ii) inconsistencies in KG 596

(iii) gold SPARQL comprises infrequent SPARQL 597

keywords (iv) classes of rdf:type belong to other 598

than DBPedia classes. The performance numbers 599

in the last two rows of Table 3 are same because 600

in the dataset there are only two such gold exam- 601

ples with rdf:type classes with YAGO ontology 602

that our model does not support. Further anal- 603

ysis shows that the reason for QALD-9 having 604

low upper bound is its training set size being too 605

small (408) and has large variety of SPARQL key- 606

words within a small training set. There are only 32 607

queries with FILTER and 4 queries with GROUP 608

BY keyword in the training set of 408 to repre- 609

sent comparative/superlative questions that is too 610

small for any neural model to learn from. Train- 611

ing on more data can further improve the perfor- 612

mance. Because of the inconsistencies in KG , 613

presence of classes in YAGO ontology and infre- 614

quent SPARQL keywords, generated SPARQL sil- 615

houette in QALD-9 dataset has errors other than 616

incorrect entity/relation. Therefore, Stage-II offers 617

much smaller gain for QALD-9. Combining LC- 618

QuAD-1 training data with QALD-9 (Table 7 and 619

8 of appendix)) did not improve the performance of 620

QALD-9 dataset because the nature of the SPARQL 621

is very different in both the datasets. 622

7 Conclusions 623

We proposed a simple sequential two-stage NMT- 624

based approach to solve the KGQA task. Stage-I 625

translates natural language query to SPARQL sil- 626

houette. To train seq2seq module, we introduced 627

various noise scenarios with masking schemes to 628

handle unseen entities/relations and reduce vo- 629

cabulary size. We also introduce Neural Graph 630

Search Module in Stage-II to improve the quality 631

of SPARQL silhouette generated in the realistic 632

scenario at Stage I. We demonstrated that, though 633

in ideal linking scenario, our Stage-I can generate 634

high quality SPARQL, in realistic scenario qual- 635

ity of SPARQL silhouette drops. Integrating NGS 636

module with Stage-I, enhances the quality of gen- 637

erated final SPARQL thereby improving state-of- 638

the-art performance for LC-QuAD-1 dataset. We 639

believe, this research demonstrates great potential 640

of NMT-based approaches to solve the KGQA task 641

and opens up a new research direction. 642
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A Noise Simulator and Masking 851

Details about all the masking schemes and noise 852

scenarios are given in the main paper. Here we 853

explain scenario ’A’ and scenario ’B’ with the ex- 854

amples in Figure 6 and Figure 7 respectively. 855
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[Q] Name the mascot of Austin College?
[S] SELECT ?uri WHERE

{ dbr:Austin_College dbp:mascot ?uri }
Original Input

Masked Input

Embedding Based 
Surface Alignment

[Q] Name the <r0> of <e0>
[S] SELECT ?uri WHERE

{ <e0> <r0> ?uri }

[Qm] name the <r0> of <e0> ?
[Sm ] SELECT var_uri WHERE brack_open

<e0> <r0> var_uri brack_close

Figure 6: An illustrative example for Scenario ‘A’:
Noise-Free Linking. To align the surface forms of the
entities/relations mentions in the given question text, we
used word embedding as it offers higher alignment F1.
We used Falcon as a linker.

[Q] Name the mascot of 
Austin College?

[S] SELECT ?uri WHERE 
{ dbr:Austin_College dbp:mascot ?uri }

Entity and Relation Linker Entity and Relation Extraction

dbr:Austin_College
dbp: name
dbo:mascot

dbr:Austin_College
dbp:mascot

Intersection

dbr:Austin_College

Entity and Relation Masking

[Qm] name the mascot of <e0> ? [Sm] SELECT var_uri WHERE brack_open <e0>  
<dbp_mascot> var_uri brack_close

Figure 7: An illustrative example for Scenario ‘B’:
Partly Noisy Linking. To align the surface forms of
the entities/relations mentions in the given question text,
we used exact match as well as string overlap based Jac-
card similarity with a threshold of 0.7. We used Falcon
as a linker.

B Neural Graph Search Module856

Figure 8 shows an example of input to the neural857

graph search module in Stage-II.858

C Evaluation Metric859

1) Precision, Recall, and F1 for Single Question:860

For single question Q, we compute precision P , re-861

call R, and F1 using the set of gold answer entities862

Sg and predicted answer entities Sp. While com-863

puting these metrics, we handle boundary cases864

as follows. If Sg = Sp = ∅ then we take865

P = R = F1 = 1. If only Sg = ∅ then we866

take R = F1 = 0.867

2) Macro Precision, Macro Recall, Macro F1, and868

Macro F1 QALD: These metrics are defined for869

the whole dataset. For this, we first compute P ,870

R, and F1 at individual question level and aver- 871

age of these numbers across entire dataset gives 872

us the macro version of these metrics. For F1, if 873

use the boundary condition of having P = 1 when 874

Sp = ∅, Sg ̸= ∅ then such a Macro F1 is called as 875

Macro F1 QALD as per Ngomo (2018). But if we 876

instead use P = 0 then it is called Macro F1. 877

3) Precision, Recall, and F1 for the whole set: For 878

whole set, P and R are same as macro version of 879

these metrics. F1, however, is computed by taking 880

Harmonic mean of these P and R. The reported 881

metrics for the LC-QuAD-1 dataset were computed 882

in this manner. 883

D Hyperparameters Tuning 884

Table 4 shows the range of hyperparameters used 885

for our experiments and the best value when tuned 886

on validation set. Figure 9 captures change in vali- 887

dation accuracy with hyperparameter α used in the 888

loss function in stage II. 889

E Experiments and Results 890

Apart from the experiments in the main paper, we 891

also performed experiments taking transformer as 892

the seq2seq model in the stage-I. Table 6 captures 893

performance of transformer model. From this table 894

and our performance table in main paper (Table 895

2 and Table 3 in main paper), one can notice that, 896

performance of CNN model is better than the trans- 897

former model. So, we opted CNN as our model. 898

899

Table 7 and 8 capture test performance of stage-I 900

module when we train our CNN model with com- 901

bining the training data of both the datasets for LC- 902

QuAD-1 and QALD-9 respectively. From these 903

two tables and the main performance tables (Ta- 904

ble 2 and Table 3 in main paper), we can see that, 905

performance of Stage-I is better when the model is 906

trained in same domain dataset rather than when it 907

is trained with data combining both the datasets. 908

F Anecdotal Examples 909

Table 9 shows examples from LC-QuAD-1 test set 910

where our neural graph search module is unable 911

to disambiguate between two very similar look- 912

ing (placeOfDeath Vs deathPlace, mouthPlace Vs 913

sourceRegion, product Vs products) relations that 914

exist in DBpedia for an entity. As an example for 915

the first question in Table 9, the entity Essex has 916

both the relations mouthPlace and mouthRegion 917

present in underlying KG DBpedia. So, it is very 918
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SELECT DISTINCT ?uri WHERE
{ 
dbr:Marine_Corps_Air_Station_Kaneohe_Bay
dbo:tenant ?uri . 
dbr:New_Sanno_Hotel dbo:architect ?uri

}

Which architect of 
Marine Corps Air 

Station Kaneohe Bay 
was also tenant of 
New Sanno hotel? 

Input Question

SPARQL Silhouette 

Stage-I
Seq2Seq Model

Stage-II
Neural Graph 

Search Module

Which architect of Marine Corps Air 
Station Kaneohe Bay was also tenant 
of New Sanno hotel [SEP] SUB [SEP] 
Marine_Corps_Air_Station_Kaneohe_Bay

Input for Stage-II for the first triple in SPARQL Silhouette

dbo: architect

Corrected Relation

Figure 8: An example of input to the neural graph search module.

Hyperparameter
Tuning
Range

Best
Value

η for Stage-I [1× 10−1, 2× 10−1, 2.5× 10−1, 5.0× 10−1] 0.25

η for Stage-II [10−4, 10−5, 10−6] 10−5

b for both stages 8 8

α for LC-QuAD-1 [1× 10−1, 4× 10−1, 6× 10−1, 7× 10−1] 4× 10−1

α for QALD-9 [1× 10−1, 4× 10−1, 6× 10−1, 7× 10−1] 6× 10−1

Table 4: Tuning range and the final chosen best values of various hyperparameters. η means learning rate and b
means batch size. α is hyperparameter in loss function of Graph Search Module in Stage-II.
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Figure 9: Change in validation set accuracy with hyper-
parameter α

difficult for any seq2seq model to disambiguate919

these two relations that are semantically same and920

looks very similar.921

Dataset E/R Precision (%) Recall (%)

LC-QuAD-1 E 79.19 85.60
R 43.74 44.99

QALD-9 E 78.00 98.55
R 41.05 37.17

Table 5: Falcon performance on entity (E) and relation
(R) linking on test sets.

Model
Type

Model
Name

AM Prec. Recall F1

Stage-I
(Trans-
former)

No Noise 77.58 77.82 77.78 77.79
Part Noise 34.73 35.87 35.92 35.89
Full Noise 20.72 21.49 21.43 21.46

Table 6: Test set performance on LC-QuAD-1 dataset
when Transformer is used in Stage- I.
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Model
Type

Model
Name

AM Prec. Recall F1

Stage-I
No Noise 80.78 81.03 81.09 81.06
Part Noise 39.24 40.14 40.39 40.26
Full Noise 23.92 24.70 24.91 24.80

Table 7: Test set performance on LC-QuAD-1 dataset
when CNN is trained on training set of combining LC-
QuAD-1 and QALD-9 in Stage I.

Model
Type

Model
Name

AM Prec. Recall F1

Stage-I
No Noise 30.66 79.0 42.9 39.5
Part Noise 18.24 72.6 31.8 44.3
Full Noise 07.29 72.5 18.6 29.6

Table 8: Test set performance on QALD-9 dataset when
CNN is trained on training set of combining LC-QuAD-
1 and QALD-9 in Stage I.
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Question Gold
Relation

Predicted
Relation

Name the rivers who originate from Essex? mouthPlace sourceRegion

Where was the person born who died in Bryn
Mawr Hospital? placeOfDeath deathPlace

Name the artist who made Dream Dancing and is
often associated with Joe Pass.

associatedBand associatedMusicalArtist

What is used as money for French Southern and Antarctic
Lands is also the product of the Karafarin Bank ? product products

Table 9: Anecdotal examples from LC-QuAD-1 test set where graph search module is unable to disambiguate
between two closely related relations (gold and predicted) that are available for the highlighted entities in DBpedia.
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