A Neural Approach to KGQA via SPARQL Silhouette Generation

Anonymous ACL submission

Abstract

Semantic parsing is a predominant approach
to solve the Knowledge Graph Question An-
swering (KGQA) task where, natural language
question is translated into a logic form such
as SPARQL. Semantic parsing based solutions
are mostly modular/pipelined where, noise
introduced by the upstream modules for en-
tity/relation linking makes it hard to solve
the complex questions. Recently, Neural Ma-
chine Translation (NMT) based approaches
have emerged that are capable of handling
complex questions. However, NMT-based ap-
proaches struggle with handling the large num-
ber of test entities and relations that are un-
seen during training. In this work,we propose
a modular two-stage neural approach which
combines best of both the worlds - NMT and
semantic parsing pipeline. Stage-I of our ap-
proach comprises an NMT-based seq2seq mod-
ule that translates a question into a sketch of
the desired SPARQL, called as SPARQL sil-
houette. This stage also contains a noise sim-
ulator which combines the masking scheme
with an entity/relation linker in a novel manner
so as to take care of unseen entities/relation
without blowing up the vocabulary of seq2seq
module. Stage-II of our approach comprises
a Neural Graph Search (NGS) module which
aims to distil the SPARQL silhouette in order
to reduce the entity/relation linking noise. Ex-
perimental results show that, the quality of gen-
erated SPARQL silhouette is impressive for an
ideal scenario where entity/relation linker is
noise-free. For the realistic scenario (i.e. noisy
linker), the quality of the SPARQL silhouette
drops but our NGS module recovers it consider-
ably. We show that, our proposed approach im-
proves state-of-the-art on LC-QuAD-1 dataset
by an absolute margin of 3.72% F1.

1 Introduction

Knowledge Graph (KG) is a large collection of real
world facts that are stored in the form of triples such
as (Joe Biden, president, United States), where,

“Joe Biden” and “United States” are entities and
“president” is a relation between them. The task of
Knowledge Graph Question Answering (KGQA) is
an important application where a system is required
to answer a natural language question by leveraging
the facts present in the given KG. A KGQA system
permits users retrieving the information from KG
without any prior knowledge about KG schema
or query languages such as SPARQL, SQL, etc.
The availability of large-scale KGs, such as Free-
base (Bollacker et al., 2008), DBpedia (Lehmann
et al., 2015), YAGO (Pellissier Tanon et al., 2020),
NELL (Mitchell et al., 2015), Google’s Knowledge
Graph (Steiner et al., 2012), and their applicabil-
ity in various business applications have made the
KGQA an important research area within NLP.

There are several approaches proposed to solve
the KGQA task and can be grouped into two broad
categories:

1. Semantic parsing-based: In these ap-
proaches (Berant and Liang, 2014; Reddy
et al., 2014; Dong and Lapata, 2016), a natural
language question is first transformed into
a structured query language or logic form
such as SPARQL, SQL, A-DCS (Liang, 2013),
CCG (Zettlemoyer and Collins, 2005). Gener-
ated query is then executed against the given
KG to get the answer of the given question.

2. Information extraction-based: These ap-
proaches (Yao and Van Durme, 2014; Dong
et al., 2015; Bordes et al., 2015) extract a sub-
graph from the underlying KG which depends
on the entities/relations present in the question.
Next, they perform graph-based reasoning on
the subgraph to reach the final answer directly
without generating any intermediate logic form.

The popular semantic parsing-based approaches
for KGQA (Singh et al., 2018; Kapanipathi et al.,
2020; Liang et al., 2021) are inherently modular
and pipelined in nature because they decompose

Who all are known
to play the Gibson
Guitar Corporation?

Question

SPARQL Silhouette

SELECT DISTINCT ?x WHERE
Neural Graph {
Search ?x dbp:notableInstruments

dbr:Gibson_Guitar_ corporation

Module

}

SELECT DISTINCT ?x WHERE

?x dbo:starring

}

Corrected SPARQL

dbr:Gibson_Guitar_corporation

Figure 1: A high level view of our proposed two stage neural architecture for KGQA.

the problem of logic form generation into several
subtasks: (i) question understanding, (ii) linking
mentions in the question text to the entities and
relations in the KG, (iii) generating the final logic
form with various constraints required to get the
answer. Some of these modules, for example, en-
tity/relation linking, are generally far from being
perfect and hence induce a noticeable amount of
noise in the pipeline. Because of this, such ap-
proaches (Petrochuk and Zettlemoyer, 2018) end
up handling simple questions well where just a sin-
gle KG fact is needed to answer the question. These
approaches, however, struggle while handling com-
plex questions (Li et al., 2016; Usbeck et al., 2017,
Trivedi et al., 2017) that require multiple facts. For
complex questions, one of the key challenge lies
in the large sized search space when linking enti-
ties and relations. Other drawback of the pipeline-
based approaches involves propagation of the noise
from upstream modules into downstream modules
where, usually there is no explicit provision to cor-
rect the noise.

Given the recent advancements in Neural Ma-
chine Translation (NMT) (Bahdanau et al., 2015)
technologies, it is emerging as an alternative ap-
proach (Yin et al., 2021; Cai et al., 2017) for se-
mantic parsing with a hope of alleviating the lim-
itations of pipelined approaches. Like language
translation, NMT-based approaches translate nat-
ural language questions to the logic form directly.
NMT-based approaches are good at syntactic and
semantic understanding of the complex questions.
However, NMT approaches have their own limita-
tions - (i) they require large amount of training data,
(ii) they cannot handle unseen entities/relations at
test-time due to their fixed vocabulary. Motivated
by these limitations, we propose a novel two-stage
neural approach for KGQA (see Figure 1). This
approach embraces the best of both the worlds — (i)
using NMT for handling complex questions, (ii) us-

ing masking technique with entity/relation linking
module to handle unseen entities/relations.

The Main contributions of this work are as fol-
lows:

1. In Stage-I of our approach, a NMT-based mod-
ule generates the sketch of the target SPARQL
for the given natural language question. We call
this sketch as SPARQL silhouette. In this stage,
we exploit the idea of masking to mask all the en-
tities and relations present in the input question
and thereby, freeing up the NMT module from
the task of entity/relation linking. We, however,
handle the entity/relation linking separately via
an off-the-shelf entity/relation linker. We fur-
ther leverage the masking scheme to simulate
the noise level in entity/relation linking process
for the purpose of ablation studies.

2. Stage-1I comprises a Neural Graph Search
(NGS) module. This module takes the SPARQL
silhouette as inputs and reduces noise intro-
duced by the entity/relation linker in Stage-I.

3. To demonstrate the effectiveness of our ap-
proach, we first simulate a scenario where en-
tity/relation linker is noise-free (i.e. 100% F}
score). Then we show that, the quality of the re-
sulting SPARQL silhouette in Satge-I is impres-
sive — 83.08% F; for LC-QuAD-1 and 55.3%
Macro F; QALD for QALD-9 dataset.

4. Next, we simulate a real entity/relation linker
and show that as I} of this linker goes down,
the quality of the resulting SPARQL silhouette
drops. Finally, integrating Stage-II module with
Stage-I boosts the performance significantly and
improves the SOTA by an absolute margin of
3.72% F1 for LC-QuAD-1 dataset.

2 Related Work

There is a vast body of literature on the KGQA
task and its nearly impossible to cover all of them

here. One can refer to survey papers (Chakraborty
et al., 2019; Lan et al., 2021) for an in-depth ac-
count of KGQA literature. By and large, semantic
parsing is a predominant paradigm in the KGQA
literature. Semantic parsing-based approaches can
be classified into two categories: (i) neural, and (ii)
non-neural. Non-neural approaches (Zettlemoyer
and Collins, 2007; Berant et al., 2013; Diefen-
bach et al., 2017) are somewhat dated now and
use handcrafted features and rules. As far as neural
semantic parsing approaches are concerned, they
can be further divided into two subcategories: (i))
NMT-based, (ii)) Non-NMT-based. NMT-based ap-
proaches are the most recent ones and are inspired
by the phenomenal success of neural machine trans-
lation techniques. On the other hand, majority of
the non-NMT-based approaches are based on the
modular pipeline architecture. Each variant has its
own pros and cons as discussed in Section 1. Given
our proposed approach is inspired by both NMT
and pipeline-based approaches, in what follows,
we give a brief account of the most relevant prior
art for both.

2.1 Non-NMT-based Approaches

Pipeline-based approaches (Singh et al., 2018; Ka-
panipathi et al., 2020; Liang et al., 2021) break
the problem of semantic parsing a complex ques-
tion (Bao et al., 2016; Su et al., 2016; Trivedi
et al., 2017; Dubey et al., 2019) into more man-
ageable subtasks such as question understanding,
entity/relation linking, logic form generation and
use reusable modules for solving the subtasks. In
these approaches, all intermediate modules need
not be neural-based. Each of these submodules
introduces its own errors, which propagate to the
downstream pipeline. Another line of works (Yih
et al., 2015; Maheshwari et al., 2019; Ding et al.,
2019; Lan and Jiang, 2020; Chen et al., 2020) maps
the problem of semantic parsing on KG to a query
graph (a subgraph of KG) generation, which can
be easily translated into the SPARQL.

2.2 NMT-based Approaches

In the last few years, NMT-based approaches are
being used to translate natural language questions
into SQL (Zhong et al., 2017; Yu et al., 2018; Cai
et al., 2018). Recently, Yin et al. (2021) pro-
posed a CNN-based seq2seq models to generate
SPARQL queries from natural language questions.
One limitation of their approach is that output vo-
cabulary for SPARQL generation is limited to the

entities/relations seen during training. As a result,
their performance reduces drastically if the overlap
of entities and relations in the training and test sets
differ. Our proposed method can efficiently han-
dle unseen entities/relations during test time. To
the best of our knowledge, our work is the first of
its kind of solving KGQA task which considers
multiple relations and used NMT based approach
that can handle unseen entities/relations and reduce
vocabulary size by designing noise simulator with
masking strategy.

3 The KGQA Task

In KGQA, we are given a Knowledge Graph G
comprising of an entity set £, a relation set R,
and a set of knowledge facts F. The knowl-
edge facts are expressed in the form of triples;
F ={{es,m, €00} CTEXR xE, where es € € is
known as subject or head entity, e, € £ is known
as object or tail entity, and r is a relation which con-
nects these two entities. These entities (relations)
form the nodes (edges) of the KG. The task now is
to identify the subset of entities from & that consti-
tute the answer of a given question () in the natural
language form. The most common family of ap-
proaches for the KGQA task is semantic parsing
where, the given question () is first translated into
an SPARQL query S which is then executed over
the KG so as to get the answer set. For developing a
system to convert a question into the corresponding
SPARQL query, we are given a set of training data
{Qi, Si, A;}I_,, where @); is a question (in natural
language text), .S; is the SPARQL query, and A; is
the answer set obtained by executing S; on G.

In this paper, we propose a two-stage system
for KGQA. In Stage-I, seq2seq module generates
a SPARQL silhouette with specific entities. Rela-
tions predicted in this module are corrected by the
neural graph search module in Stage-11.

4 Stage-I: Seq2Seq Model

Figure 2 shows the architecture of Stage-I of our ap-
proach. The input question is first given to an exter-
nal entity/relation linker where it detects the surface
form mentions of the entities/relations in the ques-
tion text and links the same to the entities/relations
in the underlying KG (DBpedia herein). The out-
put of linker, along with the question, is passed
to a noise simulator module which masks men-
tions of all the entities/relations in the question
text and corresponding gold SPARQL for the train-

ing data. This module employs different masking
schemes depending on the desired level of noise
that we wish to simulate. The masked question is
then passed to a CNN-based sequence-to-sequence
(seq2seq) module which converts it into a SPARQL
silhouette.

Note, seq2seq models have achieved state-of-the-
art performance in machine translation task (Yin
and Neubig, 2017) and they can be based on RNN,
CNN, or Transformer architectures. The prior re-
search has shown (Yin et al., 2021) that CNN-
based seq2seq model performs best for translating
natural language to SPARQL query. In our pre-
liminary experiments also CNN-based model per-
formed better than the transformer based model
(Table 6 of appendix). Hence, we opted CNN-
based seq2seq model as our base model for Stage 1.

4.1 Noise Simulator and Masking

The purpose of designing noise simulator mod-
ule is two-fold: (i) To mask mentions and en-
tities/relations in the question text as well as
SPARQL, (ii) To simulate varying levels of noise in
the entity/relation linking process. Masking helps
us in two ways: (i) handling test entities/relations
that are unseen during training, (ii) reducing vocab-
ulary size as KGs contain a large number of enti-
ties and relations. A simple neural seq2seq model
which translates natural language question into a
SPARQL query will struggle to output some of the
entities/relations during test time that are unseen
during training time and hence will not be available
in the output vocabulary. In the absence of linking
and masking, our elementary experiment shows the
performance of seq2seq model to be quite low (£}
score 16%). Table 1 further corroborates this be-

Dataset Statistics Val Test
Entities (dbr) 52.3 46.8
LC-QuAD-1 Properties (dbp) 97.2 98.3
Ontologies (dbo) 96.5 94.6
Entities (dbr) 27.1 25.9
QALD-9 Properties (dbp) 0.0 16.9
Ontologies (dbo) 47.8 38.3

Table 1: % of the entities and relations in val and test
sets that are available within train set’s gold SPARQLSs.

havior where we have captured the statistics about
% of entities and relations (i.e. properties and on-
tology in DBpedia) in validation and test sets that

are seen in the training set. This suggests that en-
tity/relation linker along with masking is a must for
any seq2seq model. Even if we were to work with
perfect linker, without masking, the output vocabu-
lary of the seq2seq model would be over growing
which would become difficult to manage. To han-
dle such difficulties, we need masking. Here, we
propose three different types of masking schemes
(Scenario A, B and C) and describe these in subse-
quent subsections .

[Scenario ‘A’: Noise-Free Linking] In this sce-
nario, we simulate an entity/relation linker that has
100% F;. For this, we pick all entities/relations
from the gold SPARQL and pretend as if they were
the output of the linker (see Figure 6 in appendix).
We begin with extracting all the entities and rela-
tions from the gold SPARQL using their prefixes
(dbr for entities and dbp or dbo for relations). Next,
we pick these entities and relations, and align the
same with surface-form mention text in the given
question. We observe that entities match exactly
with substrings in the questions most of the time
(e.g. Austin College in Figure 6 of the appendix).
For relations, an exact match is not always possible,
e.g., a given relation dbo: £ilm is semantically
best aligned to word movies in the question. We use
pre-trained fastext embeddings (Bojanowski et al.,
2017) to represent words and relation and compute
cosine similarity between each word in the question
and the given relation. The highest-scoring word
is considered as the aligned word. After identify-
ing mentions of entities/relations, we mask them
in question text as well as the corresponding gold
SPARQL. This masked pair is subsequently fed to
the seq2seq module as a training example.
[Scenario ‘B’: Partly Noisy Linking] Purpose of
scenario ‘B’ is to allow partial noise in the en-
tity/relation linking process. For this, we first
feed the natural language question into an ex-
ternal entity/relation linker. The linker returns
two things: (i) A set of surface form mentions
for entities/relations in the question text, and
(i1) Linked entities/relations for these mentions.
We take linker’s output and find intersection of
these entities/relations with the entities/relations
present in the gold SPARQL. These common en-
tities/relations are masked in the SPARQL query.
Also, their corresponding surface forms are masked
in the question text. In order to mask the surface
form in the question, we use exact match and string
overlap based Jaccard similarity. Figure 7 in ap-

{SELECT DISTINCT ?x WHERE
i{ ?x dbp:notableInstruments
dbr:Gibson_Guitar_corporation} |

| Gold SPARQL

Entity Linker

!

iSELECT DISTINCT ?x WHERE

Who all are known
to play the Gibson
Guitar Corporation?

Noise
Simulator

i{
CNN-based i ?x dbo:starring
Seq2Seq Model |
g q { dbr:Gibson_Guitar_corporation
)

Question Relation Linker

SPARQL Silhouette

Figure 2: A detailed architecture of Stage-I.

[Q] Name the mascot of Austin [S] SELECT ?uri WHERE
College? { dbr:Austin_College dbp:mascot ?uri }

!

| Entity and Relation Linker |

| Entity and Relation Extraction |

dbr:Austin_College
dbp: name
dbo:mascot

dbr:Austin_College
dbp:mascot

'

Entity and Relation Masking

[Sm] SELECT var_uri WHERE brack_open
<e0> <dbp_mascot> var_uri brack_close

[[Qm] <r0> the <r1> of <e0> ?] [

Figure 3: An illustrative example for Scenario ‘C’.

pendix illustrates this scenario.

[Scenario ‘C’: Fully Noisy Linking] Goal here is
to simulate a completely realistic scenario where
we rely entirely on an external entity/relation
linker. For this, we feed input question to the en-
tity/relation linker and get the suggested surface
form mentions and linked entities/relations. We
mask these suggested mentions using exact match
and partial match. Corresponding SPARQL query’s
entities/relations are also masked based on the sug-
gestions. This scenario is depicted in Figure 3.

4.2 Convolutional Seq2Seq Model

The pair of masked question and SPARQL query
obtained from the noise simulator, under any noise
scenario, is fed to a Convolutional Neural Network
(CNN) based seq2seq model (Gehring et al., 2017).
As shown in Figure 4, this model reads the entire
masked question and then predicts the correspond-
ing masked SPARQL query token-by-token in a
left-to-right manner. This seq2seq model consists
of the following key components.

[Input Embedding Layer] Both encoder and de-
coder consist of an embedding layer that maps each
input token to a point-wise summation of its word
embedding and positional embedding. The embed-
ding of each word is initialized randomly. In order
to capture the sense of order, the model is provi-
sioned with the positional embedding.
[Convolution + Pooling Layers] The token embed-

dings obtained from the previous layer are fed to
the multiple convolution and pooling layers. Each
convolution layer consists of a 1-dimensional con-
volution followed by Gated Linear Units (GLU)
(Dauphin et al., 2017). Residual connections (He
et al., 2016) are added from input to the output of
each convolution layer.

[Multi-Step Attention] Each decoder layer com-
prises a convolution layer followed by a multi-step
attention layer. This multi-step attention is used to
find the attention scores from a particular decoder
state to the source tokens. Attention between de-
coder state d; (after i*" layer) of the last token in
generated sequence so far and state z; of the ik
source element (after last encoder layer) is com-
puted as: a§ = exp(d; - zj) /> ey exp(di - z)
where, m is the number of source elements. The
context vector, ¢;, is now computed as, ¢; =
D27 a(zj + ej)] + d; where, e; is the input
embedding for the source element j.

[Output Layer] Finally, output at a particular time
step is calculated over all the Z possible tokens,
P(zi41l215- 2526, X) = softmax(Wdp + b)
where P(z11]-) € R?, and W, b are trainable
parameters. dy, is the decoder state of last target el-
ement at the last layer L. X is the input sequence.
[Training Loss:] The model is trained using
label smoothed cross-entropy loss given by fol-
lowing expression (for single training example)
L(O) = —(1/N) - 30 271 alyn = 2lyn—) -
log Py(yn, = z|yn—1) where, N is the number
of words in output sequence and y,, is the first
n tokens of output sequence. Py(yn, = 2z|yn—1)
is model’s probability to output token z given
Yn—1 sequence generated so far. The quantity
q(yn = z|yn—1) is equal to ~ if f(y,) = z and
(1 -=7)/(Z —1) olw, where y € [0,1], v > 1/Z.

5 Stage-II: Neural Graph Search Module

Our error analysis on output of Stage-I revealed
that entity linking performance is reasonably good
but the same is not true for relation linking. Exist-

SELECT DISTINCT var_uri

context vector . . .

encoder states decoder states

©) I=Il H HEEEE

Output vocabulary

(s)

(ro) (e0)

Name ._>.<_.... SELECT GLU
.. B PR ostinet
Attention —>>
(/5) BERN e e (P(r), Vr € R(entity, sub/obj)) [Po.veer)
d, = 768
: : (Convolution + pooling) : [Softmax Layer] [Softmax Layer]
layer #15
T T [Linear Layer] [Linear Layer]
L3
[BERT BERT
(Convolution + pooling)

} !
/" 1'
7 7
(s)
Name S Initial (token + positlon)
embeddings

- ~. 7
- . /
- . /
- . /
~. /

v ’_,/’ b 8
.

\\\‘ ‘I_I_I‘ (s) (a) (b)
N SELECT

| . /oy =512\
e / \

Name the country
with currency as
Aureus.

How many movies did
Stanley Kubrick direct ?

DISTINCT

Figure 5: Architecture of neural graph
\ search module. (a) Relation Classifier.
This module predicts relation for a given

ﬂs) [ame [e [ro) [o [ey [2 \(/s;\mpmmnseq

‘(s) ‘SELECT‘ DISTINGT | var_uri i

Output sequence
generatedso far

Linker Noise Simulator

of

Natural Language
Question

the

Name mascot Austin

College | 2

entity (b) Ontology Type Classifier. This
preded module predicts rdf:type ontology class.
token

Figure 4: A CNN-based Seq2Seq model for KGQA. We have assumed

noise-free linking scenario here.

ing literature (Wu et al., 2020; Li et al., 2020) also
show enough evidences of achieving high perfor-
mance on the entity linking task, whereas relation
linking turns out to be harder due to complexity of
natural language. Because of this, we have most of
the entities within a SPARQL silhouette generated
by Stage-I as correct but the relations are incorrect.
Graph search module in Stage-II takes a SPARQL
silhouette as input and produces an improved ver-
sion of the same by replacing incorrect relations
(see Figure 8 in appendix for an example).! This is
a BERT-based module and its architecture is shown
in Figure 5. This module works as follows.

1. We consider each triple (es,7,€,) in the
SPARQL silhouette in which at least one of the
entity is an existential variable unless the silhou-
ette is with rdf:type relation which we handle
separately. We prepare input in the following
format: [CLS] @ [SEP] [SUB (or OBJ)] [SEP]
es (or e,). Here, () is token sequence of input
question text and [SUB (or OBJ)] is special to-
ken depending on whether the grounded entity
is in subject (or object) position (refer Figure
5a). We also pass grounded entity (e or €,) as

'Tt is easy to extend this idea and perform an iterative graph
searching when entity linker performance is also low.

the last element of this input. [CLS] and [SEP]
are special tokens from BERT vocabulary.

. We feed above input sequence of tokens into

the BERT layer of graph search module. The
output is passed through a linear layer followed
by a softmax layer. This softmax layer induces
a probability score p, for each relation r € R
in the given KG. While training, we use the fol-
lowing loss function (given for single example):
0= (1—a)*(l:)+(a)*(ys). Here, £, denotes
standard cross entropy loss between predicted
probabilities {p; } e and the gold relation. The
graph search loss term /,, forces the predicted
probabilities to be low for all those relations
which are invalid relations (in the given KG) for
corresponding input entity e (or e,) in the input
position (subject or object). For this, we assume
a uniform probability distribution over all such
valid relations and compute its cross entropy
loss with {p; },er. « is a hyperparameter.

. During inference, at softmax layer, we restrict

the outputs only to those relations 7 € 'R which
are valid relation for the input entity as be-
ing subject or object. For example, if input
grounded entity is e, then we restrict prediction
to only those relations r for which (e, 7, 7x)

is a valid triple for some grounding of 7z. In
DBpedia same relation can exist in the form of
‘dbo’ and ‘dbp’ for a specific entity. In such
cases, we pick the ‘dbo’ version. Prediction is
made based out of 61623 relations available in
DBpedia.

4. We have a separate version of the NGS mod-
ule (refer Figure 5b) if the relation r in a
given triple is rdf:type. Note, in DBpedia, a
triple containing rdf:type relation looks like this
(?x, rdf:type, dbo:type) where, 7z is a variable
and dbo:type is the DBpedia ontology class of
the entity 7z. For such triples, input to NGS
module is [CLS] Q. We need to predict the
corresponding ontology class dbo:type. DB-
pedia ontology contains 761 classes and hence,
in this model, prediction is one of these 761
classes. This module is trained with standard
cross-entropy loss. An example of the rdf:type
classification would be to predict dbo:Country
for the question ‘Name the country with cur-
rency as Aureus?’.

6 Experiments and Results

Datasets: We work with two different KGQA
datasets based on DBpedia: LC-QuAD-1 (Trivedi
et al., 2017) and QALD-9 (Ngomo, 2018). LC-
QuAD-1 contains 5000 examples and is based on
the 04-2016 version of the DBpedia. We split this
dataset into 70% training, 10% validation, and 20%
test sets (same as the leaderboard). QALD-9 is a
multilingual dataset and is based on the 10-2016
version of the DBpedia. Questions in this dataset
vary in terms of reasoning nature (e.g. counting,
temporal, superlative, comparative, etc.) and there-
fore, in terms of the SPARQL aggregation func-
tions as well. This dataset contains 408 training
and 150 test examples. We split the training set
into 90% training and 10% validation sets.

Evaluation Metric: Performance is evaluated
based on the standard precision, recall, F; score
for KGQA systems. For more detail please refer to
section C of appendix. We also measure a metric
called Answer Match (AM).
Answer Match (AM): For a question (), when
executing the predicted SPARQL in the underly-
ing KG, if we get 5, = S, then we say AM=1
otherwise AM=0. Here, S, and S, are gold and
predicted answer set respectively.

Baselines: We compare our approach with three
baselines: WDAqua (Diefenbach et al., 2020),

QAmp (Vakulenko et al., 2019) and gAnswer
(Zou et al., 2014). WDAQqua is a graph based ap-
proach to generate SPARQL query based on prede-
fined patterns. These SPARQL candidates are then
ranked. QAmp uses text similarity and graph struc-
ture based on an unsupervised message-passing
algorithm. gAnswer is graph data driven approach
and generate query graph to represent user inten-
tion. WDAqua and QAmp are top entries in the
LC-QuAD-1 leaderboard 2 whereas, WDAqua and
gAnswer in QALD-9 challenge (Ngomo, 2018).

Experimental Setup:

1) Stage-1: We use Falcon (Sakor et al., 2019) for
entity/relation linking and experiment with all 3
noise scenarios. We use fairseq® library for imple-
mentation of CNN-based seq2seq model (Gehring
et al., 2017) comprising of 15 layers*. and used
Nesterov Accelerated Gradient (NAG) optimizer.
We experimented with different values of hyperpa-
rameters and report results for the values yielding
the best performance on the validation set. Details
about tuning ranges and optimal values of all these
hyperparameters are given in Table 4 of appendix.
We used 2 Tesla v100 GPUs for training seq2seq
model.

2) Stage-1I: For neural graph search module, we
work with a pre-trained BERT-base uncased model.
Figure 9 of appendix captures change in validation
accuracy with hyperparameter «. It consists of 12
transformer layers, 12 self-attention heads, and 768
hidden dimension. We used 1 Tesla v100 GPU for
training.

Results and Discussions: Table 2 and 3 capture
performance of our approach compared to state-of-
the-art on the LC-QuAD-1 and QALD-9 datasets.
Our results in the last two rows of both the tables
in stage-1II are under realistic scenario or full noise
setting for entity/relation linking. Our approach
achieves state-of-the-art performance in case of LC-
QuAD-1 dataset by improving an absolute margin
of 3.72% F1. Our seq2seq model can achieve upto
83.08% Iy for LC-QuAD-1 and 55.3% Macro Fj
QALD for QALD-9 dataset if the entity/relation
linker were to be 100% correct. The gap between
the performance of No Noise linking (upper bound)
and Full Noise linking (lower bound) illustrates
how the performance of entity/relation linker im-
pacts the overall performance of KGQA. Poor per-

Zhttp://lc-quad.sda.tech/Icquad1.0.html
3https://github.com/pytorch/fairseq
*We will release our code after the review period.

Model Model AM Prec. Recall I}
Type Name
Baseline WDAqua - 22,00 38.00 28.00
QAmp - 95.00 50.00 33.33
Stace-] No Noise 82.88 83.11 83.04 83.08
Og Part Noise 41.34 42.40 42.26 42.33
(Ours) - gl Noise 24.92 25.54 25.64 25.59
Stage-Il w/o type 30.63 32.17 32.20 32.18

(Ours) w/type 34.83 37.03 37.06 37.05

Table 2: Test set performance on LC-QuAD-1 dataset.

Mac.
Model Model Mac. Mac. Mac. o
Type N AM pec Rec. Fi L
yp ame rec. Rec. '] QALD
Baseline WDAqua - 26.1 26.7 25.0 28.9
gAnswer - 29.3 32.7 29.8 43.0
Stace.] No Noise 29.9 80.4 42.1 40.9 55.3
(OI%I‘S) Part Noise 13.1 63.9 28.7 22.4 39.6
Full Noise 11.1 82.6 23.0 20.6 36.0
Stage-Il w/otype 15.3 59.4 26.1 23.3 36.2
(Ours) w/type 153 59.4 26.1 23.3 36.2

Table 3: Test set performance on QALD -9 dataset. Here
Mac. means Macro and Rec. means Recall.

formance of Falcon on relation linking (Table 5 of
appendix) also justifies this gap. Further, the perfor-
mance of Stage-II demonstrates we gain 11.46% in
F for LC-QuAD-1 and 0.2% in Macro F; QALD
for QALD-9 dataset.

By manually analysing examples, we find that
our method can learn complex patterns of queries
including imperative, interrogative, questions with
count (aggregation) and involving multiple rela-
tions. Proposed model is a simple neural approach
which does not need question interpretation step
unlike QAmp and also can learn complex templates
without requiring a large number of templates un-
like WDAqua. As our seq2seq model translates nat-
ural language query to SPARQL, it does not need
to resolve any ambiguity in the natural language
questions to reach to answer unlike approaches
(gAnswer) that generates query graph . Another ad-
vantage of our method is it is KG agnostic method.

Error Analysis: We randomly picked 50 ex-
amples where predicted answer by our model is
wrong. We see that, there are four types of sce-
narios where our model fails to generate correct
SPARQL: (i) two very similar looking relations

such as "placeOfDeath" (gold) Vs "deathPlace"
(predicted), "product” (gold) Vs "products" (pre-
dicted) (details in Table 9 of appendix) that exist
in the KG for an entity (ii) inconsistencies in KG
(iii) gold SPARQL comprises infrequent SPARQL
keywords (iv) classes of rdf:type belong to other
than DBPedia classes. The performance numbers
in the last two rows of Table 3 are same because
in the dataset there are only two such gold exam-
ples with rdf:type classes with YAGO ontology
that our model does not support. Further anal-
ysis shows that the reason for QALD-9 having
low upper bound is its training set size being too
small (408) and has large variety of SPARQL key-
words within a small training set. There are only 32
queries with FILTER and 4 queries with GROUP
BY keyword in the training set of 408 to repre-
sent comparative/superlative questions that is too
small for any neural model to learn from. Train-
ing on more data can further improve the perfor-
mance. Because of the inconsistencies in KG ,
presence of classes in YAGO ontology and infre-
quent SPARQL keywords, generated SPARQL sil-
houette in QALD-9 dataset has errors other than
incorrect entity/relation. Therefore, Stage-II offers
much smaller gain for QALD-9. Combining LC-
QuAD-1 training data with QALD-9 (Table 7 and
8 of appendix)) did not improve the performance of
QALD-9 dataset because the nature of the SPARQL
is very different in both the datasets.

7 Conclusions

We proposed a simple sequential two-stage NMT-
based approach to solve the KGQA task. Stage-I
translates natural language query to SPARQL sil-
houette. To train seq2seq module, we introduced
various noise scenarios with masking schemes to
handle unseen entities/relations and reduce vo-
cabulary size. We also introduce Neural Graph
Search Module in Stage-II to improve the quality
of SPARQL silhouette generated in the realistic
scenario at Stage I. We demonstrated that, though
in ideal linking scenario, our Stage-I can generate
high quality SPARQL, in realistic scenario qual-
ity of SPARQL silhouette drops. Integrating NGS
module with Stage-1, enhances the quality of gen-
erated final SPARQL thereby improving state-of-
the-art performance for LC-QuAD-1 dataset. We
believe, this research demonstrates great potential
of NMT-based approaches to solve the KGQA task
and opens up a new research direction.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. of ICLR.

Junwei Bao, Nan Duan, Zhao Yan, Ming Zhou, and
Tiejun Zhao. 2016. Constraint-based question an-
swering with knowledge graph. In Proc. of COLING,
pages 2503-2514.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proc. of EMNLP, pages
1533-1544.

Jonathan Berant and Percy Liang. 2014. Semantic pars-
ing via paraphrasing. In Proc. of ACL, pages 1415—
1425.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135-146.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A col-
laboratively created graph database for structuring
human knowledge. In Proc. of ACM SIGMOD, pages
1247-1250.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple question
answering with memory networks. arXiv preprint
arXiv:1506.02075.

Ruichu Cai, Boyan Xu, Xiaoyan Yang, Zhenjie Zhang,
Zijian Li, and Zhihao Liang. 2017. An encoder-
decoder framework translating natural language to
database queries. arXiv preprint arXiv:1711.06061.

Ruichu Cai, Boyan Xu, Zhenjie Zhang, Xiaoyan Yang,
Zijian Li, and Zhihao Liang. 2018. An encoder-
decoder framework translating natural language to
database queries. In Proc. of IJCAI, pages 3977—
3983.

Nilesh Chakraborty, Denis Lukovnikov, Gaurav Ma-
heshwari, Priyansh Trivedi, Jens Lehmann, and Asja
Fischer. 2019. Introduction to neural network based
approaches for question answering over knowledge
graphs. arXiv preprint arXiv:1907.09361.

Yongrui Chen, Huiying Li, Yuncheng Hua, and Guilin
Qi. 2020. Formal query building with query struc-
ture prediction for complex question answering over
knowledge base. In Proc. of IJCAI, pages 3751—
3758.

Yann N Dauphin, Angela Fan, Michael Auli, and David
Grangier. 2017. Language modeling with gated con-
volutional networks. In Proc. of ICML, pages 933—
941.

Dennis Diefenbach, Andreas Both, Kamal Deep Singh,
and Pierre Maret. 2020. Towards a question answer-

ing system over the semantic web. Semantic Web,
pages 421-4309.

Dennis Diefenbach, Kamal Singh, and Pierre Maret.
2017. Wdaqua-coreO: A question answering compo-
nent for the research community. In Semantic Web
Evaluation Challenge, pages 84-89.

Jiwei Ding, Wei Hu, Qixin Xu, and Yuzhong Qu. 2019.
Leveraging frequent query substructures to generate
formal queries for complex question answering. In
Proc. of EMNLP, pages 2614-2622.

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. In Proc. of ACL, pages
33-43.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2015. Ques-
tion answering over freebase with multi-column con-
volutional neural networks. In Proc. of ACL, pages
260-269.

Mohnish Dubey, Debayan Banerjee, Abdelrahman Ab-
delkawi, and Jens Lehmann. 2019. Lc-quad 2.0: A
large dataset for complex question answering over
wikidata and dbpedia. In Proc. of ISWC, pages 69—
78.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In Proc. of ICML.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In Proc. of CVPR, pages 770-778.

Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Rav-
ishankar, Salim Roukos, Alexander Gray, Ramon
Astudillo, Maria Chang, Cristina Cornelio, Saswati
Dana, Achille Fokoue, et al. 2020. Question an-
swering over knowledge bases by leveraging seman-
tic parsing and neuro-symbolic reasoning. arXiv
preprint arXiv:2012.01707.

Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang,
Wayne Xin Zhao, and Ji-Rong Wen. 2021. A sur-
vey on complex knowledge base question answering:
Methods, challenges and solutions. In Proc. of IJCAI
pages 4483-4491. Survey Track.

Yunshi Lan and Jing Jiang. 2020. Query graph genera-
tion for answering multi-hop complex questions from
knowledge bases. In Proc. of ACL, pages 969-974.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick Van Kleef,
Soren Auer, et al. 2015. DBpedia — A large-
scale, multilingual knowledge base extracted from
wikipedia. Semantic Web, 6:167-195.

Belinda Z. Li, Sewon Min, Srini lyer, Yashar Mehdad,
and Wen tau Yih. 2020. Efficient one-pass end-to-end
entity linking for questions. In Proc. of EMNLP.

Peng Li, Wei Li, Zhengyan He, Xuguang Wang, Ying
Cao, Jie Zhou, and Wei Xu. 2016. Dataset and neural
recurrent sequence labeling model for open-domain
factoid question answering. arXiv:1607.06275.

Percy Liang. 2013. Lambda dependency-based compo-
sitional semantics. arXiv preprint arXiv:1309.4408.

Shiqi Liang, Kurt Stockinger, Tarcisio Mendes de Farias,
Maria Anisimova, and Manuel Gil. 2021. Querying
knowledge graphs in natural language. Journal of
Big Data, 8(1):1-23.

Gaurav Maheshwari, Priyansh Trivedi, Denis
Lukovnikov, Nilesh Chakraborty, Asja Fischer, and
Jens Lehmann. 2019. Learning to rank query graphs
for complex question answering over knowledge
graphs. In Proc. of ISWC, pages 487-504.

T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Bet-
teridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel,
J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed,
N. Nakashole, E. Platanios, A. Ritter, M. Samadi,
B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen,
A. Saparov, M. Greaves, and J. Welling. 2015. Never-
ending learning. In Proc. of AAAL

Ngonga Ngomo. 2018. 9th challenge on question an-
swering over linked data (QALD-9). Language, 7(1).

Thomas Pellissier Tanon, Gerhard Weikum, and Fabian
Suchanek. 2020. YAGO 4: A reason-able knowledge
base. In Proc. of ESWC, pages 583-596.

Michael Petrochuk and Luke Zettlemoyer. 2018. Sim-
pleQuestions Nearly Solved: A New Upperbound
and Baseline Approach. In Proc. of EMNLP, pages
554-558.

Siva Reddy, Mirella Lapata, and Mark Steedman.
2014. Large-scale semantic parsing without question-
answer pairs. Transactions of the Association for
Computational Linguistics, 2:377-392.

Ahmad Sakor, Kuldeep Singh, and M E Vidal. 2019.
Falcon: An entity and relation linking framework
over DBpedia. In Proc. of CEUR Workshop, volume
2456, pages 265-268.

Kuldeep Singh, Andreas Both, Arun Sethupat, and
Saeedeh Shekarpour. 2018. Frankenstein: A plat-
form enabling reuse of question answering compo-
nents. In Proc. of ESWC, pages 624—638. Springer.

Thomas Steiner, Ruben Verborgh, Raphaél Troncy,
Joaquim Gabarro, and Rik Van de Walle. 2012.
Adding realtime coverage to the google knowledge
graph. In Proc. of ISWC.

Yu Su, Huan Sun, Brian Sadler, Mudhakar Srivatsa,
Izzeddin Giir, Zenghui Yan, and Xifeng Yan. 2016.
On generating characteristic-rich question sets for qa
evaluation. In Proc. of EMNLP, pages 562-572.

Priyansh Trivedi, Gaurav Maheshwari, Mohnish Dubey,
and Jens Lehmann. 2017. LC-QuAD: A corpus for
complex question answering over knowledge graphs.
In Proc. of ISWC, pages 210-218.

10

Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Bas-
tian Haarmann, Anastasia Krithara, Michael Réder,
and Giulio Napolitano. 2017. 7th open challenge on
question answering over linked data (QALD-7). In
Semantic Web Evaluation Challenge, pages 59-69.

Svitlana Vakulenko, Javier David Fernandez Garcia,
Axel Polleres, Maarten de Rijke, and Michael Cochez.
2019. Message passing for complex question answer-
ing over knowledge graphs. In Proc. of CIKM, pages
1431-1440.

Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian
Riedel, and Luke Zettlemoyer. 2020. Scalable zero-
shot entity linking with dense entity retrieval. In
Proc. of EMNLP.

Xuchen Yao and Benjamin Van Durme. 2014. Informa-
tion extraction over structured data: Question answer-
ing with freebase. In Proc. of ACL, pages 956-966.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Proc. of ACL, pages 1321-1331.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proc. of ACL, pages 440-450.

Xiaoyu Yin, Dagmar Gromann, and Sebastian Rudolph.
2021. Neural machine translating from natural lan-
guage to sparql. Future Generation Computer Sys-
tems, 117:510-519.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and
Dragomir R. Radev. 2018. Typesql: Knowledge-
based type-aware neural text-to-sql generation. In
Proc. of NAACL-HLT.

Luke Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed ccg grammars for parsing to logi-
cal form. In Proc. of EMNLP, pages 678—687.

Luke S Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: structured clas-
sification with probabilistic categorial grammars. In
Proc. of UAIL

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
arXiv:1709.00103.

Lei Zou, Ruizhe Huang, Haixun Wang, Jeffrey Xu Yu,
Wengiang He, and Dongyan Zhao. 2014. Natural
language question answering over rdf: a graph data
driven approach. In Proc. of ACM SIGMOD, pages
313-324.

A Noise Simulator and Masking

Details about all the masking schemes and noise
scenarios are given in the main paper. Here we
explain scenario *A’ and scenario 'B’ with the ex-
amples in Figure 6 and Figure 7 respectively.

[Q] Name the mascot of Austin College?
[S] SELECT Puri WHERE Original Input
{ dbr:Austin_College dbp:mascot ?uri }
Embedding Based [Q] Name the <r0> of <e0>
Ay — [S] SELECT 2uri WHERE
{ <e0> <r0> ?uri }
£ Masked Input

Figure 6: An illustrative example for Scenario ‘A’:
Noise-Free Linking. To align the surface forms of the
entities/relations mentions in the given question text, we
used word embedding as it offers higher alignment F3 .
We used Falcon as a linker.

[Qn] name the <r0> of <e0> ?
[Sm] SELECT var_uri WHERE brack_open
<e0> <r0> var_uri brack_close

{[Q] Name the mascot of

[S] SELECT Puri WHERE
Austin College?

{ dbr:Austin_College dbp:mascot ?uri }

Entity and Relation Linker

dbr:Austin_College
dbp: name
dbo:mascot

| Entity and Relation Extraction |

dbr:Austin_College
dbp:mascot

Intersection

dbr:Austin_College

44 Entity and Relation Masking |<—

[Swm] SELECT var_uri WHERE brack_open <e0>
<dbp_mascot> var_uri brack_close

[[Q,..] name the mascot of <e0> ?] [

Figure 7: An illustrative example for Scenario ‘B’:
Partly Noisy Linking. To align the surface forms of
the entities/relations mentions in the given question text,
we used exact match as well as string overlap based Jac-
card similarity with a threshold of 0.7. We used Falcon
as a linker.

B Neural Graph Search Module

Figure 8 shows an example of input to the neural
graph search module in Stage-II.

C Evaluation Metric

1) Precision, Recall, and I for Single Question:
For single question (), we compute precision P, re-
call R, and F} using the set of gold answer entities
Sy and predicted answer entities S,. While com-
puting these metrics, we handle boundary cases
as follows. If S = S, = (then we take
P =R=F =1 Ifonly S, = 0 then we
take R = F; = 0.

2) Macro Precision, Macro Recall, Macro Fi, and
Macro Fy QALD: These metrics are defined for
the whole dataset. For this, we first compute P,

11

R, and I at individual question level and aver-
age of these numbers across entire dataset gives
us the macro version of these metrics. For Fj, if
use the boundary condition of having P = 1 when
Sy, = 0,5, # 0 then such a Macro F} is called as
Macro Fy QALD as per Ngomo (2018). But if we
instead use P = 0 then it is called Macro F}.

3) Precision, Recall, and F} for the whole set: For
whole set, P and R are same as macro version of
these metrics. F7, however, is computed by taking
Harmonic mean of these P and R. The reported
metrics for the LC-QuAD-1 dataset were computed
in this manner.

D Hyperparameters Tuning

Table 4 shows the range of hyperparameters used
for our experiments and the best value when tuned
on validation set. Figure 9 captures change in vali-
dation accuracy with hyperparameter « used in the
loss function in stage II.

E Experiments and Results

Apart from the experiments in the main paper, we
also performed experiments taking transformer as
the seq2seq model in the stage-1. Table 6 captures
performance of transformer model. From this table
and our performance table in main paper (Table
2 and Table 3 in main paper), one can notice that,
performance of CNN model is better than the trans-
former model. So, we opted CNN as our model.

Table 7 and 8 capture test performance of stage-I
module when we train our CNN model with com-
bining the training data of both the datasets for LC-
QuAD-1 and QALD-9 respectively. From these
two tables and the main performance tables (Ta-
ble 2 and Table 3 in main paper), we can see that,
performance of Stage-I is better when the model is
trained in same domain dataset rather than when it
is trained with data combining both the datasets.

F Anecdotal Examples

Table 9 shows examples from LC-QuAD-1 test set
where our neural graph search module is unable
to disambiguate between two very similar look-
ing (placeOfDeath Vs deathPlace, mouthPlace Vs
sourceRegion, product Vs products) relations that
exist in DBpedia for an entity. As an example for
the first question in Table 9, the entity Essex has
both the relations mouthPlace and mouthRegion
present in underlying KG DBpedia. So, it is very

Which architect of
Marine Corps Air
Station Kaneohe Bay
was also tenant of
New Sanno hotel?

Input Question

Stage-|
Seq2Seq Model

dbo:

architect

Stage-ll

Neural Graph
Corrected Relation

Search Module

}

SPARQL Silhouette
SELECT DISTINCT 2uri WHERE
{

dbr:Marine Corps_Air Station Kaneohe Bay
dbo:tenant ?uri

dbr:New_Sanno_Hotel dbo:architect 2uri

Y

Station Kaneohe Bay was also tenant
of New Sanno hotel [SEP] SUB [SEP]

Marine_ Corps_Air_ Station_Kaneohe Bay

Which architect of Marine Corps Air

Input for Stage-II for the first triple in SPARQL Silhouette
Figure 8: An example of input to the neural graph search module.
Tuning Best
Hyperparameter
yperp Range Value
n for Stage-I [1x10742x107%, 2.5 x 1071, 5.0 x 1071] 0.25
n for Stage-II [1074,1075, 1079] 107°
b for both stages 8 8
a for LC-QuAD-1 [1x10754x1071,6x 107, 7x1071] 4x 107!
a for QALD-9 [1x10754x1071,6x 107, 7x 1071 6x 101
Table 4: Tuning range and the final chosen best values of various hyperparameters. 77 means learning rate and b
means batch size. « is hyperparameter in loss function of Graph Search Module in Stage-II.
LC-QUAD-1 QALD-9
>, 9 _ B
b= T \‘\ 76.4 1 ll “\ ..
© g3+ \ PR Dataset E/R Precision (%) Recall (%)
3 \ 76.2 1 A
Y g6 1) ;o E 79.19 85.60
O \ / \ - -
< S o {0 LOQUADL e 3 44.99
C % \ /
ie) \ 75.8 ,:' E 78.00 98.55
B 1 / QALD-9 R 41.05 37.17
© o0 \ 75.6 1 /,/
g ‘\\ 5.4 | /,// Table 5: Falcon performance on entity (E) and relation
[y S ; ; ; . - (R) linking on test sets.
0.2 0.4 0.6 0.2 0.4 0.6
a a
Figure 9: Change in validation set accuracy with hyper-
parameter «
Model Model
difficult for any seq2seq model to disambiguate Type Name
these two relations that are semantically same and
looks very similar.

AM Prec. Recall Fi

Stage-I No Noise 77.58 77.82 77.78 77.79
(Trans- Part Noise 34.73 35.87 35.92 35.89

former) Full Noise 20.72 21.49 21.43 21.46

Table 6: Test set performance on LC-QuAD-1 dataset
when Transformer is used in Stage- 1.

12

Model Model
Type Name
No Noise 80.78 81.03 81.09 81.06

Stage-I Part Noise 39.24 40.14 40.39 40.26
Full Noise 23.92 24.70 24.91 24.80

AM Prec. Recall Fy

Table 7: Test set performance on LC-QuAD-1 dataset
when CNN is trained on training set of combining LC-
QuAD-1 and QALD-9 in Stage 1.

Model Model
Type Name

No Noise 30.66 79.0 42.9 39.5
Stage-I Part Noise 18.24 72.6 31.8 44.3
Full Noise 07.29 72.5 18.6 29.6

AM Prec. Recall Fj

Table 8: Test set performance on QALD-9 dataset when
CNN is trained on training set of combining LC-QuAD-
1 and QALD-9 in Stage I.

13

. Gold Predicted
Question .)
Relation Relation
Name the rivers who originate from Essex? mouthPlace sourceRegion
Where was 'Ehe person born who died in Bryn placeOfDeath deathPlace
Mawr Hospital?
Name the a.rtlst wh.o made Dream Dancing and is associatedBand associatedMusical Artist
often associated with Joe Pass.
What is used as money for French Southern and Antarctic
product products

Lands is also the product of the Karafarin Bank ?

Table 9: Anecdotal examples from LC-QuAD-1 test set where graph search module is unable to disambiguate
between two closely related relations (gold and predicted) that are available for the highlighted entities in DBpedia.

14

