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ABSTRACT

We study the problem of watermarking large language models (LLMs) generated
text — one of the most promising approaches for addressing the safety challenges
of LLM usage. In this paper, we propose a rigorous theoretical framework to
quantify the effectiveness and robustness of LLM watermarks. We propose a robust
and high-quality watermark method, UNIGRAM-WATERMARK, by extending an
existing approach with a simplified fixed grouping strategy. We prove that our
watermark method enjoys guaranteed generation quality, correctness in watermark
detection, and is robust against text editing and paraphrasing. Experiments on three
varying LLMs and two datasets verify that our UNIGRAM-WATERMARK achieves
superior detection accuracy and comparable generation quality in perplexity, thus
promoting the responsible use of LLMs. Code is available at https://github.
com/XuandongZhao/Unigram-Watermark.

1 INTRODUCTION

Generative Artificial Intelligence (AI) (Brown et al., 2020; Ramesh et al., 2022; Saharia et al., 2022;
OpenAI, 2023a) has achieved significant progress in recent years, spanning from computer vision
(CV) to natural language processing (NLP). Large language models (LLMs) such as ChatGPT
(OpenAI, 2022) can generate coherent and contextually relevant long-form text in response to user-
specified prompts. However, the ease of using LLMs has raised concerns about their potential misuse
(Zellers et al., 2019; Weidinger et al., 2021; Stokel-Walker, 2022). For example, LLMs could be used
to generate fake news, contaminate web content, or assist in academic dishonesty. Additionally, the
proliferation of synthetic data from LLMs poses challenges for training new models, as synthetic data
needs to be detected and excluded before model training (Radford et al., 2022; Carlini et al., 2023).

There are two main camps of existing attempts to address these challenges. One camp, inspired by
Turing (1950), aims at generically distinguishing machine-generated text from that of the humans
(Gehrmann et al., 2019; Mitchell et al., 2023; Hovy, 2016; Zellers et al., 2019; OpenAI, 2023b).
These works primarily leverage hand-crafted or learned “statistical patterns” of generated text, thus
their performance is not robust to distribution changes (e.g., by prompting / conditioning), prone to
biases (Liang et al., 2023), and vulnerable to adversarial attacks.

The other camp advocates active intervention by injecting carefully-designed watermarks to machine-
generated text (Kirchenbauer et al., 2023; Zhao et al., 2023). The watermarking approach does not
search for statistical patterns (which could be hit-or-miss), but rather deliberately plant subtle but
distinctive patterns within the content to enable downstream detection. Compared to the passive
detection approaches, the watermarking methods aim at determining whether the text is coming from
a specific language model rather than solving the Turing test generically. As a result, watermarking
approaches are robust to distribution-shift and can essentially prove — rather than predict — the
origin of the suspect text.

The most notable challenge for the watermarking approach is that the planted patterns could be
post-processed away. As an example, Kirchenbauer et al. (2023)’s soft watermarking method divides
the vocabulary into a “green list” and a “red list” based on the prefix token, and subtly increases the
probability of choosing from the green list. If the watermarked sentence is edited by changing every
other token into its synonym, then it is no longer possible to determine the green/red lists for each
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candidate token, thus ruining the detector. One could also simply paraphrase the sentence as a whole
using another off-the-shelf LLM.

In this paper, we take a first stab at formally defining robustness in the context of watermarking
LLMs. Our contributions are fourfold.

1. We devise a rigorous theoretical framework for quantifying the performance drop, the correctness
of detection, and the security property against post-processing.

2. We propose to simplify the scheme of Kirchenbauer et al. (2023) by using a fixed Green-Red
split consistently and show that the new watermark, named UNIGRAM-WATERMARK, is twice as
robust to edits as the baseline, provably.

3. We prove that the watermarked LLM is close to the original LLM (in all Renyi divergences) and
show that the Type I/Type II errors of the detection algorithm decay exponentially as the suspect
text length gets longer and more diverse.

4. We conduct experiments utilizing various large language models on diverse datasets. The results
indicate that our method achieves superior detection accuracy and improved robustness against
different attacks, thus promoting the responsible use of LLMs.

To the best of our knowledge, we are the first to obtain provably robust guarantees for watermarks for
LLMs against arbitrary edits.

Related work. We build upon the work of Kirchenbauer et al. (2023) in which the family of K-gram
(statistical) watermark was proposed1. The main method we consider chooses K = 1, thus its name
UNIGRAM-WATERMARK. Our work provides formal theoretical guarantees to this family of K-gram
watermark. For the sake of a clean presentation, we focus on the case when K = 1 and discuss
the applicability of our results for K > 1 in the discussion section. Our work is independent of the
concurrent work of cryptographic watermarks (Aaronson, 2023; Christ et al., 2023). In particular,
Aaronson (2023)’s proprietary work can also be viewed as an alternative K-gram watermark, but uses
a cryptographic approach for measuring utility drop, which results in a different kind of tradeoff. We
defer detailed discussion to an extended discussion of the related work in Appendix A. Technically,
the main theoretical tool we used for analyzing dependent random variables and their concentration
tightly is due to Albert (2019), the instantiation to our problem is new and nontrivial.

2 PROBLEM SETUP AND METHOD

We start with an overview of the language model watermarking problem. The definitions and notations
introduced in this section will be used throughout the paper.

Language models. A language model (LM)M is a statistical model that describes the probability
of a sequence of words occurring in a sentence. Common neural language models (e.g., GPT-2/3
(Radford et al., 2019; Brown et al., 2020)) are designed for next-word prediction which typically
uses a transformer neural network (Vaswani et al., 2017). The LM has a “vocabulary” V with
N := |V| = 50, 000 tokens or more (Radford et al., 2019; Liu et al., 2019). Let x be an input prompt.
y := [y1, . . . , yn] are n tokens generated byM. During inference,M receives the input prompt x
as the prefix of generation. It iteratively computes logit scores ℓt for every next token. The logits
transform into a probability distribution via soft-(arg)max function pt[v] =

exp(ℓt[v])∑
i∈V exp(ℓt[i])

for all v ∈
V . The LM then samples the next token from this distribution: yt ∼ pt.

2.1 DEFINITION OF LANGUAGE MODEL WATERMARKING

In the language model watermarking problem, the objective for the model owner is to embed a secret
message known as “watermark” within the generated sequence y for a given prompt x. There are
two desired requirements for watermarking. First, the quality of the watermarked model should be
comparable to the quality of the original, un-watermarked model. Second, an adversary needs to
modify sufficiently many AI-generated text in order to evade detection.

1Note the changed name. Kirchenbauer et al. (2023) referred to its (unnamed) soft-watermark that determines
the green/red list using a prefix of length (K − 1). We think K-gram watermark is the most concise and
informative name for this family.
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Definition 2.1 (Edit distance). The edit distance, denoted as ED(y, z), quantifies the number of basic
operations required to transform a sequence y into another sequence z. These operations include
“insertion”, “deletion”, and “replacement” of tokens.
Definition 2.2 (Language model watermarking). A language model watermarking scheme consists
of two probabilistic polynomial-time algorithms (Watermark,Detect):

• Watermark(M): LetM be a language model and let pt := PM(x)[yt = ·|y1:t−1] be the condi-
tional probability distribution of t-th token on V generated byM. This algorithm produces a new
model M̂ with a new conditional distribution p̂t := PM̂(x)[yt = ·|y1:t−1] on V . Additionally, it

outputs a detection key k associated with M̂. The watermark could contain certain randomness.

• Detect(k,y): This algorithm takes input detection key k and sequence y, then outputs 1 (indicating
it was generated by M̂) or 0 (indicating it was not generated by M̂).

We require the following three correctness properties to hold:

• ω-Quality of watermarked output, for ω ∈ R: Assume the original language modelM generates a
probability vector pt for the token at position t. The watermarked model M̂ predicts the token at
position t using the modified probability vector p̂t. It is required that the distance between the two
probability distributions satisfies: D (p̂t∥pt) ≤ ω for any fixed prompts and prefixes.

• αy-Type I error (“No false positives”): for any fixed y (i.e., independent to k), it holds that
P
[
Detect(k,y) = 1 ; (M̂, k) ∼ Watermark(M)

]
≤ αy.

• β(x,M)-Type II error (“No false negatives”): P
[
Detect(k,y) = 0 ; (M̂,k)∼Watermark(M)

y∼M̂(x)

]
≤ β(x,M).

We also require the following security property (parameterized by ϵ ≥ 0 and η(y, k, ϵ)):

• For any adversary A that postprocesses y with auxiliary information aux and any prompt x ∈ V∗

P
[
Detect(k,yA) = 1 or ED(y,yA) ≥ η(k,y, ϵ)

∣∣∣∣ y,k,
Detect(k,y)=1 ;

(M̂,k)∼Watermark(M)

y∼M̂(x)
yA∼A(y,aux)

]
≥ 1− ϵ.

Remark 2.3 (Discussion on Definition 2.2). Informally, our definition allows us to formally quantify
the essential properties of a language model watermarking scheme including its generation quality
relative to the input LM, the accuracy of detection in terms of both false positives and false negatives,
as well as the robustness to attacks.

The security property, in particular, states the following: suppose a malicious adversary intends to
evade the detection algorithm, then the adversarial answer, to some input prompt x, should be far
away (in edit distance) from any AI-generated answer. In other words, the optimal strategy to evade
the detection algorithm would necessitate executing a minimum number of insert/delete/replacement
operations, captured by the function η(·) in Definition 2.2. This conceptually suggests that the
adversary must exert considerable effort to successfully elude detection.

Admittedly, there are other attacks where edit distance does not capture either the effort or the utility
loss. For example, if one prompts an unwatermarked LLM to paraphrase y then the number of edits
can be large but the semantic meaning is retained. However, edit distance is a natural metric that
smoothly interpolates the gray zone between the world where yA = y in which it should clearly be
caught and the other world where yA is independently created without using M̂ in which it would
be a false positive if Detect returns 1.

2.2 THREAT MODELS

Adversary’s objective. The primary objective of the adversary is to render the watermark detection
algorithm ineffective. Specifically, the adversary aims to produce a yA such that Detect(k,yA) = 0
while at the same time, yA is a minor modification of an AI-generated text y.

Adversary’s capabilities. We consider an adversary with black-box input-output access to the
language model. This adversary has the capacity to modify the sequence within a bounded edit
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distance. Given an input prompt x, the watermarked language model generates a text output
y ← M̂(x). The adversary, equipped with arbitrary side-information and computational resources,
can then produce a modified output yA such that the edit distance between the original and modified
output, ED(y,yA), is bounded, i.e. ED(y,yA) < η.

2.3 METHOD

Algorithm 1 UNIGRAM-WATERMARK: Watermark

1: Input: random number generator F , green list size γ ∈ (0, 1), watermark strength δ.
2: Randomly generate a watermark key k using F .
3: Use watermark key to partition the vocabulary ofM into a “green list” G ⊂ V of size γ|V|, and

a “red list” R = Gc.
4: Define a new language model M̂ where for t and any prefix [x,y1:t−1], the resulting logits

satisfy
ℓ̂t[v] := ℓt[v] + δ1(v ∈ G), (1)

where 1(·) is the indicator function and the logit vector ℓt ∈ R|V| is obtained by the passing the
same prefix toM.

5: Output: watermark key k, watermarked language model M̂.

Algorithm 2 UNIGRAM-WATERMARK: Detect

1: Input: suspect text y, watermark detection key k, threshold τ .
2: Output: 1 or 0 (whether the text is watermarked).
3: Use the watermark detection key k to find the “green list” G.
4: Calculate the number of green list tokens |y|G =

∑n
t=1 1(yt ∈ G) in [y1, . . . , yn].

5: Compute the z-statistic:
zy = (|y|G − γn) /

√
nγ(1− γ). (2)

6: if zy > τ then return 1, i.e., “The suspect text is watermarked.”
7: else return 0, i.e., “The suspect text is not watermarked.”

Now let us instantiate Definition 2.2 with concrete algorithms. We will focus on UNIGRAM-
WATERMARK — a variant of the K-gram watermark proposed by Kirchenbauer et al. (2023) but with
a choice of K = 1. Pseudocodes of our approach Watermark and Detect are provided in Algorithm 1
and 2. In Algorithm 1, we randomly partition the vocabulary into two distinct sets: the green list with
γN tokens and the red list with the remaining tokens. In M̂, the logits of the language model for the
green list tokens are increased by δ while the logits for tokens in the red list remain unchanged. Then
at detection time (Algorithm 2), we count the number of green tokens in the suspect text, normalize
the test-statistic, then make a calibrated decision on whether we think the suspect text is generated
from M̂ or not. We show the examples of real prompts and watermarked outputs in Table 1.

The watermarking procedure is parameterized by two watermark strength parameters γ, δ. γ deter-
mines the fraction of the vocabulary included in the green list. We typically set γ to be a constant,
e.g., 1/3 or 0.5. δ specifies the increase in the logits associated with the green list tokens. The larger
δ is, the lower the quality of the watermarked LM, but the easier it is to detect.

Our UNIGRAM-WATERMARK enjoys all good properties of the general K-gram watermark from
Kirchenbauer et al. (2023). It runs in linear time and does not require access to the language model or
the prompt used for generation. It is also intuitively robust to cropping and minor edits.

Overall, the proposed watermarking scheme requires almost no overhead in its implementation,
is extremely simple, and is easy to maintain. The big question is: How well does this
watermark scheme work?

The remainder of this paper provides answers to this question with provable guarantees (Section 3)
on the properties from Definition 2.2 and extensive experiments (Section 4).

Before that, let us address two burning questions that a knowledgeable reader may have.
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Prompt Is it possible to fail several times and succeed once?

LLaMA-13B
(un-watermarked)

PPL: 12.19
z-score: -2.425

Of course it is, and that is how we improve.\nSaying "I can’t do that" is never a good
thing.\nSometimes we think we’ve tried all we can and that "isn’t enough". That is the time
when we ask for help.\nThe root of all evils is to be a secret. Honesty and self-criticism is nec-
essary for improvement. \nThe measure of intelligence is the ability to change. [continues...]

LLaMA-13B
(watermarked)

PPL: 12.47
z-score: 11.085

When most people are confronted with failure, they cannot imagine such a thing happening.
When one faces business reverses and bankruptcy, it seems impossible. When we are rejected
it looks as if we are going to be rejected forever. However, it does not need to be this way. The
human spirit simply will not give up. When we face failure and it looks like we [continues...]

Table 1: Comparison of un-watermarked and watermarked text using the LLaMA-13B model. Green
and red tokens are color-coded respectively. UNIGRAM-WATERMARK produces watermarked text
of similar quality without noticeable degradation, yet with significant differences in z-scores for
watermark detection.

Why choosing K = 1? Recall that the general K-gram watermark works in the same way as ours,
but randomly generates a different Green list for each prefix of length K − 1. In contrast, choosing
K = 1 means we have a consistent green list for every new token the language model generates. The
main advantage of choosing K = 1 is that it is the most robust choice within this family — and we
believe robustness is the single most important feature of a watermarking scheme in practice.

Robustness to other attacks. Besides the robustness to edits, which we will prove in Section 3
and compare to that of K ≥ 2. UNIGRAM-WATERMARK is also resilient to many other kinds of
generation time attacks that people can apply such as reversing, shuffling, as well as the “Emoji
insertion attack” that will completely break the watermark for K ≥ 2 but not for K = 1. We provide
a detailed discussion of this in Appendix E.1.

The price for robustness? Kirchenbauer et al. (2023) did not consider the choice of K = 1 for an
obvious reason. The watermark is now so simple that an attacker who observes the generated text
may learn to guess the consistent green list. This is an issue for K ≥ 2 too but certainly more so for
K = 1. There is a robustness-learnability tradeoff as we adjust K which deserves a more rigorous
treatment in future work. That said, we are ready to argue for biasing towards robustness. Why? We
argue that in practice, it could be surprisingly difficult for an attacker to construct a meaningful attack
when they do not have access to the original LM. We provide a more detailed experimental study
with a faithful practical attack in Appendix B.4. Moreover, there are alternative ways to get around
this issue by refreshing the green list once in a while.

3 MAIN THEORETICAL RESULTS

In this section, we present the quality, correctness, and security properties of UNIGRAM-WATERMARK
as described in Definition 2.2.

3.1 QUALITY GUARANTEE OF UNIGRAM-WATERMARK

We first show that the distance between the original probability vector pt and the watermarked
probability vector p̂t are very close to each other in any Renyi-divergence.
Theorem 3.1. Consider h as the input to the language model at step t, denoted as h = [x,y1:t−1].
Fix green list G. Let δ represent the watermark strength. For any h, the α-th order Renyi-divergence
between the watermarked probability distribution p̂t = p̂t(·|h) at time step t and the original
probability distribution pt = pt(·|h) satisfies:

∀h,max
(
Dα

(
p̂t∥pt

)
, Dα

(
pt∥p̂t

))
≤ min{δ, αδ2/8}.

The proof, deferred to the appendix, leverages a surprising connection to modern techniques in the
differential privacy literature (Dwork et al., 2006; Dong et al., 2020).
Remark 3.2 (KL-divergence and other probability distance metrics). Renyi-divergence is very gen-
eral. Kullback-Leibler-divergence and chi-square divergence are directly implied by the α-Renyi
divergence bound of min{δ, αδ2/8} by choosing α = 1 and α = 2 respectively and swap p̂ and p.
Hellinger distance can be obtained by choosing α = 0.5. By Pinsker’s inequality, we get a Total
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Variation distance bound of min{
√
δ/2, δ/4}. Moreover, by choosing α→∞, we obtain an upper

bound of δ for a very strong multiplicative guarantee known as max-divergence. The resulting two
distributions p̂ and p are referred to by cryptographers as (δ, 0)-indistinguishable, which says that
for any measurable event S, the log-odds ratio satisfies −δ ≤ log p̂t(yt∈S|h)

pt(yt∈S|h) ≤ δ.

To summarize, our result shows that Algorithm 1 produces M̂ that satisfies ω-quality of watermarked
output with ω (as a function of δ) for almost all commonly used probability distance D.

3.2 TYPE I ERROR OF UNIGRAM-WATERMARK

Theorem 3.3 (No false positives (short version of Theorem C.4)). Consider y = y1:n as any fixed
text. Define Cmax(y) := maxi∈[N ]

∑n
j=1 1(yj = i) and V (y) := 1

n

∑N
i=1(

∑n
j=1 1(yj = i))2.

With probability 1− α (over only the randomness of G):

zy ≤

√
64V (y) log(9/α)

1− γ
+

16Cmax(y) log(9/α)√
nγ(1− γ)

.

The theorem says that the z-score for any sufficiently diverse text is Õ(1) and it is applicable to any
text not generated by the watermarked LM M̂.
Remark 3.4 (Controlling false positive rate). The theorem implies that if we choose τ >√

64V log(9/α)
1−γ + 16Cmax log(9/α)√

nγ(1−γ)
, then the false-positive rate is smaller than α. Note that V and

Cmax can be computed directly from y, allowing us to choose an input-dependent τ as a function of
V,Cmax that achieves a α-Type I error guarantee with a fixed α for all inputs. In particular, the Type
I error α decreases exponentially as we increase the threshold τ .

3.3 TYPE II ERROR OF UNIGRAM-WATERMARK

To bound the Type II error, i.e., false negative rates, we need to make certain assumptions about p
of the language model and the prompt x. These assumptions include a “on-average high entropy”
assumption and a “homophily” condition. We will provide a detailed definition and discussion of
these assumptions in Appendix C.4.1 and Appendix C.4.2.

The “on-average high entropy” assumption requires the probability of the roll-out text to be “suffi-
ciently diverse” on average. It is related but different from the “spike entropy” assumption used by
Kirchenbauer et al. (2023). The “homophily” assumption is new to this paper. It is an assumption
about the distribution induced by the state-transitions of the language modelM, which says that
increasing the probability of a green-list token at time t does not decrease the probability of seeing
that token in the future. This may seem counter-intuitive, but we will give concrete examples in
Appendix C.4.2 to show why this is fundamental for any statistical watermark to work effectively.
Theorem 3.5 (Only true positive (informal version of Theorem C.13)). Assume “average-high entropy”
and “homophilly” to be valid with appropriate parameters, and in addition n ≥ Ω̃(log(1/β)/δ2),
then with probability 1− β,

zy ≥ Ω
(
(eδ − 1)

√
nγ(1− γ)

)
.

Remark 3.6. The bounds on Type I/II error together say that zy ≍ δ
√
n if y is from M̂ while

zy ≍ O(1) otherwise, i.e., there is a large margin between them so we can choose τ in between.
Also, the α and β parameters decay exponentially as the n gets larger.

3.4 SECURITY PROPERTY OF UNIGRAM-WATERMARK

We demonstrate the robustness of our watermarking scheme against editing attempts through Theorem
3.7. As a baseline of comparison, we also obtain new robustness guarantees for the soft watermarking
method proposed in Kirchenbauer et al. (2023). The detailed proof is deferred to the Appendix C.
Theorem 3.7 (Robustness to editing). Let y = [y1, . . . , yn] represent the watermarked sequence.
Suppose the adversary A follows Definition 2.2 and outputs a modified text u = [u1, . . . , um].
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Figure 1: z-score comparison and text perplexity comparison.

Following Equation 2, we calculate z-score zy and zu. Assume edit distance between y and u
(denoted as η) satisfies η < n. Then we have

zu ≥ zy −max

{
(1 + γ/2)η√

n
,
(1− γ/2)η√

n− η

}
.

In particular, when η ≤ 2γn
(1+γ/2)2 , we can drop the second term in the max.

This theorem bounds the changes to our test z-score when η edits are performed. As we established
for a high-entropy sequence, zy typically grows in O((eδ − 1)

√
n), which means that when δ is a

constant, with an appropriate choice of τ , the watermark is robust up to O(n) arbitrary edits! Finally,
compared to Kirchenbauer et al. (2023)’s watermark, ours is twice as robust (see Appendix D).

4 EXPERIMENT

In this section, we aim to conduct experiments to evaluate watermark detection performance, water-
marked text quality, and robustness against attacks compared to the baseline. Additional experiment
results including different parameters, white-box attacks, scaled language models, etc. are deferred to
Appendix B.

4.1 EXPERIMENT SETTING

Datasets and prompts. We utilize two long-form text datasets: OpenGen and LFQA. OpenGen,
collected by Krishna et al. (2023), consists of 3K two-sentence chunks sampled from the validation
split of WikiText-103 (Merity et al., 2017). The subsequent 300 tokens serve as the human-written
continuation. LFQA is a long-form question-answering dataset created by Krishna et al. (2023)
by scraping questions from Reddit, posted between July and December 2021, across six domains.
Krishna et al. (2023) randomly select 500 questions from each domain and pair them with their
corresponding longest human-written answers, resulting in 3K QA pairs. In our experiments, we use
the questions as prompts and the corresponding answers as human-written text.

Language models. We conduct experiments using three state-of-the-art public language models
of varying sizes from different model families: GPT2-XL with 1.5B parameters (Radford et al.,
2019), OPT-1.3B (Zhang et al., 2022), and LLaMA-7B (Touvron et al., 2023). Nucleus Sampling
(Holtzman et al., 2020) is employed as the default decoding algorithm to introduce randomness while
maintaining human-like text output. The models are loaded from the Huggingface library (Wolf
et al., 2019), and the generate API function is used to adjust the logits distribution of the language
model.

Evaluation methods. Maintaining a low false positive rate is crucial to prevent misclassifying
un-watermarked text as watermarked. To ensure this, we set the false positive rates at 1% and 10% for
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OpenGen LFQA
Setting Method 1% FPR 10% FPR 1% FPR 10% FPR

TPR F1 TPR F1 TPR F1 TPR F1

No attack KGW+23 1.000 0.995 1.000 0.952 1.000 0.995 1.000 0.952
UNIGRAM-WATERMARK 1.000 0.995 1.000 0.952 1.000 0.995 1.000 0.952

ChatGPT KGW+23 0.565 0.704 0.853 0.747 0.327 0.453 0.673 0.490
UNIGRAM-WATERMARK 0.866 0.910 0.961 0.818 0.442 0.568 0.865 0.584

DIPPER-1 KGW+23 0.386 0.546 0.738 0.720 0.372 0.534 0.740 0.767
UNIGRAM-WATERMARK 0.729 0.830 0.922 0.837 0.639 0.770 0.909 0.865

DIPPER-2 KGW+23 0.490 0.646 0.810 0.769 0.432 0.595 0.845 0.839
UNIGRAM-WATERMARK 0.777 0.862 0.941 0.852 0.693 0.810 0.948 0.894

BART KGW+23 0.342 0.505 0.667 0.759 0.457 0.617 0.783 0.836
UNIGRAM-WATERMARK 0.590 0.730 0.861 0.857 0.656 0.784 0.885 0.897

Table 2: Performance comparison of our method (UNIGRAM-WATERMARK) and the soft watermark-
ing method proposed in Kirchenbauer et al. (2023) (denoted as KGW+23). Both methods employ
LLaMA-7B with nucleus sampling, utilizing δ = 2.0 and γ = 0.5. We use ChatGPT, DIPPER,
and BART for paraphrasing the watermarked text as paraphrasing attacks. True positive rate and F1
score are presented for fixing the false positive rates at 1% and 10%. When there is no attack, both
methods exhibit perfect watermark detection. Nevertheless, when subjected to paraphrasing attacks,
UNIGRAM-WATERMARK consistently outperforms KGW+23.

all detection algorithms and adjust the detection threshold accordingly. We report true positive rate
(TPR), F1 score, and ROC curves. GPT3 (text-davinci-003) (Ouyang et al., 2022), is used as
the oracle model for perplexity evaluation. The experiments are conducted on Nvidia A100 GPUs.

4.2 WATERMARKING RESULTS

We use a watermark strength of δ = 2.0 and a green list ratio of γ = 0.5. We also use different
watermark keys k for different models. Stronger watermarks can be achieved for shorter sequences
for a smaller γ and a larger δ. From the two datasets, we generate 500 watermarked sentences and
500 un-watermarked sentences using three different models (GPT2-XL, OPT-1.3B, and LLaMA-7B).
We label them as “watermarked” and “un-watermarked” respectively. We also have corresponding
human-written text for each prompt, referred to as "human". All sentences are cropped to a length
of 200 tokens. z-scores are calculated for hypothesis testing as shown in Algorithm 2 between
different sentence groups. The results (Figure 1a) indicate a clear distinction between watermarked
and non-watermarked text. A default threshold of z-score = 6.0 can be used to determine if a text is
watermarked. For a fair comparison with Kirchenbauer et al. (2023), we also set δ = 2.0 and γ = 0.5
for their method.

Figure 1b demonstrates the text perplexity of human, un-watermarked machine-
generated, and two watermarking-generated texts, evaluated on the OpenGen dataset.
The perplexity of human text is significantly lower, likely due to the expertise
contributed in the Wikipedia-based dataset used to train GPT3. We observe that

Avg Score STD

Un-watermarked 3.660 0.655

Watermarked 3.665 0.619

Table 3: Human evaluation result.

the perplexity of the watermarked text is comparable to that
of human-generated text, especially with the use of the largest
model LLaMA-7B. This finding further supports the effective-
ness of our method in preserving linguistic characteristics and
coherence, ensuring seamless integration of watermarks with-
out compromising overall text quality. One example of the
prompt questions and machine-generated answers can be found
in Table 1. We also conduct human evaluations to assess text quality. We enlist crowd workers from
Amazon Mechanical Turk (AMT) to evaluate the quality of both watermarked and unwatermarked
texts. From the LLaMA-7B model on the OpenGen dataset, we select 100 watermarked and 100
unwatermarked texts, anonymize the sentences, and ask workers to rate the quality on a scale of 1
(poor) to 5 (excellent). Each sentence undergoes two evaluations. The average score and standard
deviation are computed and presented in Table 3.
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(a) UNIGRAM-WATERMARK against paraphrasing at-
tacks on OpenGen dataset with LLaMA-7B.
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(b) UNIGRAM-WATERMARK against editing attacks on
LFQA dataset with LLaMA-7B.

Figure 2: ROC curves with corresponding AUC values for watermark detection against various attack
methods. Complete results can be found in the Appendix B.

4.3 ROBUSTNESS RESULTS

Paraphrasing attack. To demonstrate the superior robustness of our method, supported by our
theorem, we devise experiments to compare its performance against Kirchenbauer et al. (2023). We
employ different paraphrase attack techniques targeting the removal of the watermark. Firstly, we
utilized two versions of the DIPPER model (Krishna et al., 2023), we denote them as “DIPPER-1”
and “DIPPER-2”. DIPPER-2 has greater diversity than DIPPER-1. Additionally, we leverage the
ChatGPT API, generating paraphrased text by providing prompts such as “Rewrite the following
paragraph:”. Furthermore, we employ BART (Lewis et al., 2019) (bart-large-cnn, a large-
sized model fine-tuned on the CNN Daily Mail dataset (Hermann et al., 2015)) for text summarization
as another type of paraphrasing attack. The results of our experiments are shown in Figure 2 and
Table 2. The results illustrate the substantial improvement in robustness achieved by our method
compared to Kirchenbauer et al. (2023). Notably, our method achieves an accuracy rate of over 85%
with a false positive rate of 10%.

Editing attack. To further evaluate the robustness of UNIGRAM-WATERMARK against edit attacks,
we examine its performance when subjected to synonym replacement, random deletion, and random
swapping. These edit attack scenarios represent common techniques used to manipulate text and
potentially remove watermarks. We conduct these attacks for the watermarked text of UNIGRAM-
WATERMARK and KGW+23. The results are shown in Figure 2. In each scenario, our method
consistently outperforms Kirchenbauer et al. (2023) watermarking scheme, showcasing its enhanced
resilience and effectiveness in protecting the integrity of the embedded watermarks.

4.4 DISTINGUISHING HUMAN-WRITTEN TEXT
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Figure 3: Distinguishing human-written
text on TOEFL dataset.

An interesting observation emphasized by Liang et al.
(2023) is the misclassification of non-native English writ-
ing samples as AI-generated by existing AI content de-
tectors. Our method can effectively establish text origin
and maintain robustness to distribution shifts. We eval-
uate UNIGRAM-WATERMARK in distinguishing human-
written text on a dataset of human-written TOEFL essays
collected by Liang et al. (2023). Our method demon-
strates a remarkable ability to accurately classify human-
written text, as evidenced by significantly lower z-scores
compared to the empirical threshold of z = 6.0. This
outcome underscores the effectiveness of our watermark
in discerning text generated by human authors, further enhancing its practical utility and reliability.

5 CONCLUSION

In this paper, we have addressed the concerns surrounding the potential misuse of large language
models and proposed an effective watermarking approach, UNIGRAM-WATERMARK, for detecting
machine-generated text from a specific language model. Our contributions include the development
of a rigorous theoretical framework, designing a provable effective, and robust watermarking scheme
under this framework, as well as conducting extensive experiments to demonstrate the effectiveness
and robustness of our method in practice. We anticipate that our work will inspire future research to
develop more resilient watermarking methods capable of withstanding a broader range of attacks.
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6 IMPACT STATEMENTS

Applicability to general K-Gram watermark. While we focused on UNIGRAM-WATERMARK,
most of our results apply to K-Gram watermarks with K ≥ 2 too. These include the Type I error
bound, security properties (Robustness to edits), as well as the “Unique” alternative detector which
we presented in Appendix E. While our Type II error bound does not directly work for K ≥ 2, some
of our intermediate steps can be applied.

Limitations. While our watermarking method, UNIGRAM-WATERMARK, demonstrates improved
robustness against edits, its reliance on a fixed Green-Red split may not be universally optimal.
The performance and robustness of watermarking methods can vary depending on the specific
characteristics of the LLM and the generated text. Additionally, although our method enhances
detection capabilities, it is not immune to all possible attacks.

Future work. Future work includes constructing unlearnable watermarks, understanding the
robustness-learnability tradeoff as well as unifying cryptographical and statistical watermarks.
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A MORE ON RELATED WORK

Watermarking natural languages. The concept of watermarking, which involves hiding identifying
information within data, has a long history. However, watermarking digital text has been challenging
due to its discrete nature (Stefan et al., 2000). Early approaches relied on techniques such as
synonym substitution (Topkara et al., 2006), syntactic structure restructuring (Atallah et al., 2001),
or paraphrasing (Atallah et al., 2002). Later, advancements in modern neural language models led
to improved methods that move away from rule-based approaches. Different approaches have been
proposed, such as encoding messages by context-aware lexical substitution (Yang et al., 2022) or
using mask-infilling models for editing text (Ueoka et al., 2021). Recent studies (Zhao et al., 2023;
Kirchenbauer et al., 2023) explore modifying the logits of language models during token generation
and embedding invisible watermarks in the decoding process. Our objective is to develop a robust
watermarking technique for natural language models that maintain high text quality while effectively
concealing identifying information.

Post-hoc detection. Rather than watermarking, an alternative approach involves developing detection
models for post-hoc analysis of machine-generated text. Some detection methods use statistical
outlier detection techniques without requiring additional training. For example, GLTR (Gehrmann
et al., 2019) assesses the expected probability of individual tokens and applies thresholding to identify
AI-generated content. DetectGPT (Mitchell et al., 2023) suggests that AI-generated passages tend
to reside in the negative curvature of the log probability of texts. Another set of methods relies
on classifiers that are fine-tuned to distinguish between human-written and machine-generated text.
Initial efforts in this domain focus on detecting fake reviews (Hovy, 2016) and fake news (Zellers
et al., 2019). More recently, OpenAI releases a web interface that uses a finetuned GPT model for
this discrimination task (OpenAI, 2023b). However, as language models improve, AI-generated
text is becoming increasingly similar to human-generated text, making it more challenging to detect.
Gambini et al. (2022) find that existing detection strategies designed for GPT-2 struggle with GPT-3.
Moreover, known detectors are found to be fragile to adversarial attacks (Wolff, 2020) and biased
towards non-native English writers (Liang et al., 2023).

Impossibility results? Sadasivan et al. (2023) poses the question of whether detecting machine-
generated text is possible and argue that as the human distribution and LLM distribution of texts get
closer, any classifier will have to either have a large Type I error or a large Type II error. The authors
also argue that (in Corollary 2) if the watermarking scheme can be learned then paraphrasing attacks
either evade the detector or also classify humans with a similar distribution as false positives. This
does not invalidate our results as we made no theoretical claim about paraphrasing. We do claim
that in Theorem 3.1 that the watermarked LM M̂ and original LMM is statistically close — in fact,
indistinguishable in the “differential privacy” sense. But the indistinguishability is for each token.
As the number of tokens gets larger, they will eventually become distinguishable, that is why our
Theorem C.4 and Theorem C.13 are not contradicting Theorem 3.1. This argument was initially
pointed out by Chakraborty et al. (2023), showing that detection is possible.

Language model watermarks with provable guarantees. Concurrent to our work, Christ et al.
(2023) consider the problem of formally defining watermarking language models and propose a
construction with provable guarantees. The main differences between their work and ours are:

• In Christ et al. (2023), the watermarked distribution is computationally indistinguishable (i.e.,
indistinguishable against probabilistic polynomial-time algorithms) from the un-watermarked
distribution whereas in our case, we insist that the watermarked distribution is statistically close
to the un-watermarked distribution (of each token). The Type-I/Type-II error guarantees and the
security properties are qualitatively different in both works.

• We both use different approaches to achieve our definitions. The advantage of our construction is
that it satisfies robustness to edits property whereas they have no such guarantees. On the other
hand, our construction uses a very different set of assumptions (e.g., high entropy) on the language
model and prompt that appears to be incompatible with theirs.

• Finally, we implement our construction and conduct a thorough empirical evaluation to demonstrate
its practicality while they don’t provide any implementation of their construction.

Statistical vs Cryptographic Watermarks. Christ et al. (2023) and Aaronson (2023) are examples
of cryptographic watermarks, while Kirchenbauer et al. (2023) and this paper study statistical
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watermarks. There are several prominent differences that make it a bit challenging to compare the
two kinds, but we will try. To start, we argue that both Christ et al. (2023) and Aaronson (2023)
use a similar definition of language model watermarks as Definition 2.2 and considered a similar
set of properties. Specifically, the “soundness”, “completeness” from Christ et al. (2023) directly
map to our “Type I error” and “Type II error” requirements. As we understand from the materials in
Aaronson (2023)’s talk, their “indistinguishability” is a form of performance guarantee for M̂. The
difference to ours is that they require (in our notation)

P
M̂(prompt)

[Next token] = E
k

[
P

M̂(prompt)
[Next token|k]

]
= P

M(prompt)
[Next token]

where the random key k is marginalized out. while our results require that for every k the next token

P
M̂(prompt)

[Next token|k] ≈δ P
M(prompt)

[Next token]

to be statistically close (in the same sense of δ-differential privacy). By our metric, however,
Aaronson (2023)’s watermark does not appear to satisfy any nontrivial δ guarantee, since it only
requires unbiasedness. For that reason, the detection guarantee and its tradeoff with quality that we
discussed in Remark C.15 is not applicable to the cryptographic watermarks.

B ADDITIONAL EXPERIMENT RESULTS

B.1 EMPIRICAL ERROR RATES

We perform experiments on two datasets (OpenGen and LFQA) using three different models (GPT2-
XL, OPT-1.3B, and LLaMA-7B). Table 4 presents the error rates, showcasing the sensitivity of the
resulting hypothesis test based on observed z-scores. The results demonstrate that there are no Type-I
(false positive) errors for all models, with true positive rates exceeding 0.94 for a threshold of z = 6.0.

z = 6.0 z = 7.0

Dataset Model FPR TNR TPR FNR FPR TNR TPR FNR

OpenGen
GPT2-XL 0.0 1.0 0.943 0.057 0.0 1.0 0.832 0.168
OPT-1.3B 0.0 1.0 0.998 0.002 0.0 1.0 0.996 0.004
LLaMA-7B 0.0 1.0 0.974 0.026 0.0 1.0 0.911 0.089

LFQA
GPT2-XL 0.0 1.0 0.948 0.052 0.0 1.0 0.889 0.111
OPT-1.3B 0.0 1.0 1.000 0.000 0.0 1.0 0.997 0.003
LLaMA-7B 0.0 1.0 0.976 0.024 0.0 1.0 0.942 0.058

Table 4: Empirical error rates for watermark detection using different models on two datasets. All
models employ nucleus sampling with δ = 2.0 and γ = 0.5. No Type-I (false positive) errors are
observed across all models.

B.2 DIFFERENT WATERMARK PARAMETERS

We conduct an analysis to understand the impact of changing watermark strength (δ), green list size
(γ), and sampling methods on two datasets. The results are summarized in Table 5. When using
nucleus sampling with a fixed γ = 0.5, increasing the watermark strength resulted in higher true
positive rates (TPR), but it also led to an increase in perplexity (lower quality). Furthermore, for the
same watermark strength δ, varying the green list ratio from 0.25 to 0.5 and 0.75 showed improved
detection results with smaller γ. Additionally, we explore different decoding methods, transitioning
from nucleus sampling to multinomial sampling and beam search. Remarkably, watermark detection
performed effectively with all decoding methods. It is worth noting that the perplexity score for beam
search is significantly lower than that of nucleus sampling. However, beam search tends to generate
shorter sequences with repeated words.
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z = 6.0 z = 7.0

Dataset decoding δ γ PPL FPR TNR TPR FNR FPR TNR TPR FNR

OpenGen

nucleus 1.0 0.5 18.376.45 0.0 1.0 0.576 0.424 0.0 1.0 0.310 0.690
nucleus 2.0 0.5 19.428.78 0.0 1.0 0.998 0.002 0.0 1.0 0.996 0.004
nucleus 5.0 0.5 19.4415.02 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
nucleus 10.0 0.5 19.2018.01 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
nucleus 2.0 0.25 17.969.54 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
nucleus 2.0 0.75 20.037.67 0.0 1.0 0.820 0.180 0.0 1.0 0.485 0.515
m-nom. 2.0 0.5 1.750.59 0.0 1.0 0.951 0.049 0.0 1.0 0.924 0.076
4-beams 2.0 0.5 1.830.97 0.0 1.0 0.992 0.008 0.0 1.0 0.982 0.018
6-beams 2.0 0.5 1.891.10 0.0 1.0 0.984 0.016 0.0 1.0 0.982 0.018
8-beams 2.0 0.5 1.961.23 0.0 1.0 0.986 0.014 0.0 1.0 0.984 0.016

LFQA

nucleus 1.0 0.5 18.637.19 0.0 1.0 0.455 0.545 0.0 1.0 0.199 0.801
nucleus 2.0 0.5 19.1411.11 0.0 1.0 1.000 0.000 0.0 1.0 0.997 0.003
nucleus 5.0 0.5 16.3715.39 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
nucleus 10.0 0.5 16.0714.25 0.0 1.0 0.998 0.002 0.0 1.0 0.998 0.002
nucleus 2.0 0.25 15.2710.00 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
nucleus 2.0 0.75 19.448.20 0.0 1.0 0.893 0.107 0.0 1.0 0.582 0.418
m-nom. 2.0 0.5 3.172.39 0.0 1.0 0.934 0.066 0.0 1.0 0.914 0.086
4-beams 2.0 0.5 3.242.85 0.0 1.0 0.990 0.010 0.0 1.0 0.986 0.014
6-beams 2.0 0.5 3.202.52 0.0 1.0 0.994 0.006 0.0 1.0 0.994 0.006
8-beams 2.0 0.5 3.132.37 0.0 1.0 0.994 0.006 0.0 1.0 0.992 0.008

Table 5: Comparison of empirical error rates for watermark detection using nucleus sampling,
multinomial decoding, and beam search. Each row represents the average of 500 sequences. While
sequences generated with beam search exhibit lower perplexity, they tend to favor shorter outputs,
potentially resulting in less diverse text.

B.3 ADDITIONAL ROBUSTNESS RESULTS

In addition to the previously discussed robustness evaluations, we provide further analysis of our
method’s resilience against paraphrasing attacks and editing attacks. The results are presented in
Figure 4. Notably, our proposed method (UNIGRAM-WATERMARK) consistently outperforms the
baseline approach (KGW+23) across various datasets and attack scenarios. This demonstrates the
superior robustness of our method in accurately detecting watermarked text.

B.4 WHITE-BOX ATTACK

A potential attack for UNIGRAM-WATERMARK is to estimate the fixed green and red list. Then the
adversary may attempt to bypass detection using these estimated lists. We conduct experiments on
white-box attacks and we find that it is difficult to accurately estimate the green list. Even if the green
list is known, our watermark is still somewhat effective thanks to our added robustness.

B.4.1 ESTIMATING THE GREEN LIST TOKENS

The question arises: how can the adversary estimate the green list? We simulate an adversary
attempting to learn the green list tokens by querying the model multiple times. The adversary collects
token distributions from watermarked text and compares them to natural human distributions.

In our experiment, we query the LLaMA-13B watermarked model with watermark strength δ = 2.0,
watermark ratio γ = 0.5 (same setting in the paper) 2500 times, collecting 0.7 million tokens of
watermarked text generated from the prompts in LFQA and OpenGen dataset.

Then we simulate three human data distributions:

1. The human response from the same prompt (LFQA and OpenGen dataset). The corresponding
human output is 0.4 million tokens. We denote it as the “LFQA & OpenGen dataset”

2. Most times, human responses are not known. So we collect 2000 samples from the C4 (Raffel
et al., 2020) dataset to form an approximate human dataset with 1 million tokens. We denote it as
the “C4 dataset”.
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(a) UNIGRAM-WATERMARK against paraphrasing attacks on LFQA dataset with LLaMA-
7B.
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(b) UNIGRAM-WATERMARK against editing attacks on OpenGen dataset with LLaMA-7B.
We vary the rates of synonym replacement, random deletion, and random swapping (0.1,
0.3, 0.5) to demonstrate different attack scenarios.

Figure 4: ROC curves with corresponding AUC values for watermark detection against various attack
methods.

3. To simulate the distribution from non-native speakers. We also collect a non-native speaker
(TOEFL essay) dataset from Liang et al. (2023) with 12k tokens. We denote it as the “Non-native
dataset”.

We calculate token frequencies for the three “human” datasets and the watermarked dataset. We use
the following decision rule (Algorithm 3) to decide whether a token is green or red.

Algorithm 3 Estimating the Green List tokens

1: for every token v in the vocabulary V do
2: ∆(v)← Frequency(v in watermarked text) − Frequency(v in human text)
3: if ∆(v) ≥ 0 then
4: v is in the Green List.
5: else
6: v is in the Red List.
7: end if
8: end for

The estimation results for the green list tokens are shown in the table below.

Dataset TPR FPR FNR F1

LFQA & OpenGen dataset 0.692 0.830 0.170 0.755
C4 dataset 0.591 0.806 0.194 0.609
Non-native dataset 0.323 0.923 0.077 0.463

The results suggest that while it is possible to make non-trivial inferences about which token is green,
it is hard to say for sure. Notice that we are using a rather big watermark strength. For smaller and
more esoteric contexts (prompt, e.g., Non-native TOEFL dataset), such determination is harder.
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B.4.2 EVASION ATTACK (WHITE-BOX AND ESTIMATED)

In situations where the adversary has either an estimated version or full knowledge of the green and
red lists, they can formulate an evasion strategy. We simulate this by assuming the adversary employs
WordNet from NLTK to identify token synonyms. Tokens identified as in the green list are replaced
with red list synonyms, noting that some tokens may not have synonyms or may only have green
synonyms.

Green List Detect AUC Avg PPL (eval by GPT-3)

No attack 1.000 45.413
Know all green tokens 0.8413 193.410
Estimated from LFQA & OpenGen dataset 0.9397 189.423
Estimated from C4 dataset 0.9291 189.070
Estimated from Non-native dataset 0.9998 125.380

Table 6: Evasion attack results: analysis of detection AUC and perplexity.

The results in Table 6 show it is difficult to evade detection even with known green list tokens. The
detection AUC for the watermarked text is still somewhat high. In addition, the honest attempt to
evade the attack by automatic synonym replacement has led to a significant drop in the text quality.

B.5 TESTING ON SCALED LANGUAGE MODELS

OpenGen LFQA

LLaMA-13B
No attack 1.000 1.000
ChatGPT attack 0.783 0.854

LLaMA-65B
No attack 1.000 1.000
ChatGPT attack 0.831 0.697

Table 7: Detection results (TPR at 1% FPR) for scaled models LLaMA-13B and LLaMA-65B.

We conduct supplementary experiments on the scaled models LLaMA-13B and LLaMA-65B. Using
the same experimental settings as in the main paper, our preliminary results show that our method
maintains effectiveness on these larger models. For LLaMA-13B, we are able to use the same test set
size as in the original paper. For LLaMA-65B, due to computational constraints, we test on a sample
of 100 sentences. The results (TPR at 1% FPR) are shown in Table 7.

B.6 RESULTS FOR DEDUPLICATED DETECTION

OpenGen LFQA

LLaMA-13B
No attack - Unique Detector 1.000 1.000
ChatGPT attack - Unique Detector 0.679 0.773

LLaMA-65B
No attack - Unique Detector 1.000 1.000
ChatGPT attack - Unique Detector 0.783 0.682

Table 8: Detection results (TPR at 1% FPR) with “Unique” detector.

An alternative detector, named “Unique” demonstrates improved robustness in detection and offers
advantages in controlling false positives with ease (Section E). We conduct experiments to evaluate
deduplicated detection performance, with the outcomes presented in Table 8.
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C MAIN THEORETICAL RESULTS WITH PROOFS

In this section, we state and prove the guarantees for UNIGRAM-WATERMARK which certifies the
required quality, correctness, and security properties of a language model watermarking scheme from
Definition 2.2.

Symbols and mathematical notations. We use P[·], E[·], P[·|·] and E[·|·] to denote the probability,
expectation operator, conditional probability and conditional expectation respectively. Whenever
there is ambiguity on which distribution the random variables are drawn from, we explicitly state
them, e.g., P(X,Y )∼D[X < 3|Y = y], or equivalently P[X < 3|Y = y ; (X,Y ) ∼ D]. To avoid
clutter, we do not distinguish between random variables and constants as the distinctions are clear
from the context. Boldface symbols denote a vector, e.g., a probability mass function p or a sequence
of tokens y. ∥ · ∥2, ∥ · ∥∞ denotes the standard ℓ2 and ℓ∞-norms of a vector. In addition, [n] is a
shorthand for {1, 2, ..., n}. Other symbols and their meanings will be defined as we encounter them.

C.1 QUALITY GUARANTEES

We start by providing a strong utility analysis of the watermarked language model than the “perplexity”
bound from (Kirchenbauer et al., 2023). Our results work for the entire family of Rényi-divergence
and imply guarantees in Kullback-Leibler (KL) divergence and Total Variation-distance.

The Renyi-divergence of two distributions P , Q is defined as

Dα

(
P∥Q

)
=

1

α− 1
log E

x∼Q

[
(
dP

dQ
)α
]

where dP
dQ is the Radon–Nikodym derivative. When α→ 1, the Renyi divergence converges to the

KL-divergence. Additionally, when α = 0.5, it serves as an upper bound for the TV-distance.

On the technical level, we leverage a surprising connection to a modern machinery developed in the
differential privacy literature known as “bounded range” analysis (Dong et al., 2020) of the classical
exponential mechanism (McSherry and Talwar, 2007).
Theorem C.1 (Restatement of Theorem 3.1). Consider h as the input to the language model at step
t, denoted as h = [x,y1:t−1]. Fix green list G. Let δ represent the watermark strength. For any h,
the α-th order Renyi-divergence between the watermarked probability distribution p̂t = p̂t(·|h) at
time step t and the original probability distribution pt = pt(·|h) satisfies:

∀h,max
(
Dα

(
p̂t∥pt

)
, Dα

(
pt∥p̂t

))
≤ min{δ, αδ2/8}.

Proof. We define δv = 0 when v ∈ R and δv = δ when v ∈ G. Using this definition, we have:

p̂(v|h) = exp(ℓv + δv)∑
w exp(ℓw + δw)

≤ exp(δ) exp(ℓv)

exp(−δ)
∑

w exp(ℓw)
= e2δp(v|h)

Similarly, p̂(v|h) ≥ e−2δp(v|h).

Consequently, p̂ and p are 2δ-close in terms of max-divergence, which can be interpreted as (ϵ, δ̃)-
indistinguishable, similar to the concept of Differential Privacy (Dwork et al., 2006) with δ̃ = 0 and
ϵ = 2δ.

Additionally, p̂(v|h) and p(v|h) satisfy δ-BoundedRange (Proposition 1 in Dong et al. (2020)) with
parameter δ, since the changes to ℓv is monotonic. Lemma 3.2 in Cesar and Rogers (2021) shows that
δ-Bounded Range implies δ2/8-concentrated differential privacy, which says that Dα(p̂∥p) ≤ δ2α

8
for all α ≥ 1 (where Dα represents Rényi Divergence of order α). Specifically, when α = 1, the
KL-divergence satisfies DKL(p̂∥p) ≤ δ2

8 .

Furthermore, δ-BoundedRange implies δ-DP (or rather (δ, 0)-indistinguishability, since we are
dealing with just two distributions rather than a family of neighbor distributions). It follows from the
that

DKL(p̂∥p) ≤ D∞(p̂∥p) ≤ δ
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Corollary C.2. For any prompt x, the KL-divergence between the probability distribution of the
watermarked sequence and the original sequence satisfies:

∀x,max{DKL

(
p̂(y1:n|x)∥p(y1:n|x)

)
, DKL

(
p(y1:n|x)∥p̂(y1:n|x)

)
} ≤ αmin{nδ, nδ2/8}

Proof. The proof follows from the adaptive composition theorem for Renyi-divergence, and max-
divergence (from the DP literature) for the autoregressive decomposition of p̂(y1:n|x) and p(y1:n|x)
and then invoke Theorem 3.1 for each factor.

C.2 ROBUSTNESS / SECURITY GUARANTEES

In this section, we provide the proof for Theorems 3.7, D.1, and 3.1 to ensure completeness and
precision. We begin by restating the theorems and providing the corresponding proofs with necessary
modifications.
Theorem C.3 (Robustness to editing (Restatement of Theorem 3.7) ). Let y = [y1, . . . , yn] represent
the watermarked sequence. Suppose the adversary A follows Definition 2.2 and outputs a modified
text u = [u1, . . . , um]. Following Equation 2, we calculate z-score zy and zu. Assume edit distance
between y and u (denoted as η) satisfies η < n. Then we have

zu ≥ zy −max{ (1 + γ/2)η√
n

,
(1− γ/2)η√

n− η
}.

In particular, when η ≤ 2γn
(1+γ/2)2 , we can drop the second term in the max.

Proof. Define bivariate function f(x, y) = x−γy√
y . By Taylor’s theorem

f(x−kx, y−ky) = f(x, y)+

[
∂xf(x− k̃xy − k̃y)

∂yf(x− k̃xy − k̃y)

]T [
−kx
−ky

]
= f(x, y)−

 kx√
y − k̃y

− γky

2
√

y − k̃y


where k̃x is between 0 and kx and k̃y is between 0 and ky . We also know that |kx| ≤ k and |ky| ≤ k.

A lower bound of the above can be obtained by finding an upper bound to

kx√
y − k̃y

− γky

2
√
y − k̃y

=
kx − γ

2ky√
y − k̃y

First observe that we can always choose kx = k. Next we discuss two possibilities of ky. If ky is
negative, then choosing ky = −k and k̃ = 0 maximizes the bound, which gives (1+γ/2)k√

y .

If ky is positive, then we should always choose k̃y = ky to maximize the expression, which gives us
an upper bound of

k − γ
2ky√

y − ky
=

k + γ
2 (y − ky)− γ

2 y√
y − ky

=
k − γ

2 y√
y − ky

+
γ
√

y − ky

2
.

We will discuss two cases again, the first case is when k − γy/2 ≤ 0. In this case, the function
g(u) = a/u+ bu with a ≤ 0 has a derivative of −a/u2 + b ≥ 0, thus g is monotonically increasing.
Thus we should choose ky = 0. The second case is when k − γy/2 > 0, in this case the a > 0 in the
above g(u) and g(u) is convex, thus maxumin≤u≤umax g(u) = max{g(umax), g(umin)}. Thus we
should just compare the two cases when ky = 0 and ky = k, i.e., max{ k√

y ,
(1−γ/2)k√

y−k
}.

Collect everything together, we get an upper bound o

max{ (1 + γ/2)k
√
y

,
k
√
y
,
(1− γ/2)k√

y − k
} = max

{
(1 + γ/2)k
√
y

,
(1− γ/2)k√

y − k

}
i.e.,

f(x− kx, y − ky)− f(x, y) ≥ −max

{
(1 + γ/2)k
√
y

,
(1− γ/2)k√

y − k

}
.
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Now notice that our z-score has the same form as the f(x, y) function. We can take y = n and
x = |y|G. Instantiate k be the maximum number of edits η. Observe that given that the adversary has
a bounded edit distance, each operation of “insertion”, “deletion”, or “edit” can, at most, alter one
token from the green list to the red list. They also can only alter the length by the number of edits.
The above result translates into

zu ≥ zy −max{ (1 + γ/2)η√
n

,
(1− γ/2)η√

n− η
},

where η denotes the edit distance between y and u.

The robustness theorem above implies the security guarantees as we discussed in Corollary C.23.

C.3 NO FALSE POSITIVE (TYPE I ERROR GUARANTEES)

Theorem C.4 (No false positives ). Consider y = y1:n as any fixed suspect text. Let N =: |V|
and G ⊂ |V| satisfying |G| = γN . G is selected through Algorithm 1, using a uniform random
choice. Let |y|G denote the number of tokens in G and zy := |y|G−γn√

nγ(1−γ)
as in Algorithm 2. Then the

following statements hold true:

1. Assume n ≥ 1, then
E[|y|G|y] = γn and E[zy|y] = 0.

2. Define Cmax(y) := maxi∈[N ]

∑n
j=1 1(yj = i) and V (y) := 1

n

∑N
i=1(

∑n
j=1 1(yj = i))2, then

with probability 1− α (over only the randomness of G),

P
[
|y|G ≥ γn+

√
64γnV log(9/α) + 16Cmax log(9/α)

∣∣∣y] ≤ α

or equivalently (when n ≥ 1)

P

[
zy ≥

√
64V log(9/α)

1− γ
+

16Cmax log(9/α)√
nγ(1− γ)

∣∣∣∣∣y
]
≤ α.

Proof. To prove the first statement, observe that any fixed token has a probability γ to be included in
the green list, thus by the linearity of the expectation and the independence of y in G.

E[|y|G|y] =
n∑

i=1

E[1(yi ∈ G)|y] =
n∑

i=1

γ = γn.

Next, we will prove the second statement by applying Lemma F.1 to obtain the result stated in the
third statement. Let ai,j = 1(j ≤ γN)

∑n
ℓ=1 1(yℓ = i). By our assumption 0 ≤ ai,j ≤ Cmax for all

i, j. Observe that
∑N

i=1 ai,ΠN (i) is identically distributed with |y|G.

By Lemma F.1 with t = 16 log(8e1/16/α), we get that with probability 1− α,

||y|G − γn| < 2

√
16 log(9/α)

N
NγnV + 16Cmax log(9/α)

where we used that 8e1/16 ≤ 9 and the fact that only γN columns of the ai,j matrix ai,j is nonzero,
and for each non-zero column L2-norm of the column is bounded by

√
nV by our definition of V .

The result for the z-score follows trivially.

Remark C.5 (Wide applicability). Note that the theorem does not impose assumptions on how y
is generated. It covers any procedure (including human generation) that produces y in a manner
independently of the secret partition G. In cases where y is generated by a language model, it could
be the output of greedy search from p(yt|x,y1:t−1), nucleus sampling, beam search, or any other
decoding methods.
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Remark C.6 (Diversity parameters). The V and Cmax parameters in Theorem C.4 measure the
diversity of the suspect text y and are necessary for the high-probability bound. As an exam-
ple, if the prompt says “Repeat “Goal” for a hundred thousand times like a
soccer commentator.” Then the resulting generated sequence will be “Goal goal goal
...”, and has either n green tokens or 0 green tokens. No meaningful Type I error bound can be
obtained.
Remark C.7 (Controlling false positive rate). The theorem implies that if we choose τ >√

64V log(9/α)
1−γ + 16Cmax log(9/α)√

nγ(1−γ)
, then the false-positive rate is smaller than α. Note that V and

Cmax can be computed directly from y, allowing us to choose an input-dependent τ as a function of
V,Cmax that achieves a α-Type I error guarantee with a fixed α for all inputs. In particular, the Type
I error α decreases exponentially as we increase the threshold τ .

C.4 ONLY TRUE DETECTION (TYPE II ERROR GUARANTEES)

For bounding the Type II error, i.e., false negative rates, we will work with our proposed method that
generates y from the language model, i.e., sampling from the watermarked distribution p̂ recursively
one token at a time.

Let’s first recall a few notations. h is the input to the language model at step t, i.e., h = [x,y1:t−1].
Let δ represent the watermark strength from Equation 1. The green list G ⊂ [N ] is a random index
set of the vocabulary of size γN . The watermarked probability distribution p̂t = p̂t(·|h) at time
step t. The process of generating the sentence y1, y2, . . . , yn involves recursively sampling from p̂t,
which we refer to as a “roll-out” procedure.

We need to make a few assumptions about the language model’s probability distribution p and the
prompt x. We will first state them and then explain why these are natural and arguably needed for the
Type II error to be small.

C.4.1 ON-AVERAGE HIGH ENTROPY ASSUMPTION

The first such assumption requires the probability of the roll-out to be “sufficiently diverse” on

average. We will introduce the notation ∥p∥2 :=
√∑N

i=1 p[i]
2.

Assumption C.8 (On-average-high-entropy). We say a language model’s probability distribution p
with a prompt x satisfies ξ-on-average-high-entropy if

1

n

n∑
t=1

E
y1:t−1∼p(·|x)

[∥pt∥2] ≤ ξ.

This assumption requires the distribution of the roll-out to be sufficiently diffuse on average (either in
expectation or with high probability).

The purpose of these assumptions is to rule out the cases when y1:n is almost deterministic under p
and perturbing the logits by δ does not change the distribution much at all.

For example, if the prompt writes

“Generate the English alphabet in capital letters for 200 times
please.”

Then the language model would generate

“ABC...XYZ, ABC...XYZ, ...”.

Despite that the generated sequence is very long, i.e., n is as large as 5, 200, the added watermark
does not change the distribution very much at all. To see this, if p(y3 = “C”|x,h) ≥ 1− ϵ for a tiny
ϵ, and then by our quality guarantee, p̂(y3 = “C” |x,h) ≥ 1− ϵeδ .

Quantitatively, for nearly uniform pt, ξ = O(1/N), if pt concentrates on a single token for all t, e.g.,
when a football commentator exclaims “Goal goal goal goal ....”, then we cannot obtain
a better bound than the trivial ξ ≤ 1. In the alphabet example above ξ ≤ 1/26.
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Why is it called entropy? Assumption C.8 is related to the “high-entropy” assumption in Kirchen-
bauer et al. (2023) but for a slightly different kind of entropy. In a more formal sense, the quantity
∥pt∥2 is connected to the Tsallis entropy of order 2, defined as S2(pt) = kB(1 − ∥pt∥2) where
kB is known as the Boltzmann constant. Our assumption requires the expected Tsallis entropy of
the conditional distribution pt over the roll-out of p to be larger than kB(1− ξ) on average among
t = 1, ..., n.

For a high-probability result, we also need a stronger version.
Assumption C.9 (On-average-high-entropy (high probability)). We say that a language model’s
probability distribution p with a prompt x satisfies (ξ, β)-on-average-high-entropy if with probability
at least 1− β over the generated sequence y1:n,

1

n
max

{∥∥∥∥∥
n∑

t=1

pt

∥∥∥∥∥ ,
n∑

t=1

∥pt∥2 ,

∥∥∥∥∥
n∑

t=1

pt

∥∥∥∥∥
∞

,

n∑
t=1

∥pt∥2∞

}
≤ ξ.

The behavior is similar to that of the expectation version of the assumption. When pt is nearly
uniform, pt[i] = O(1/N), then ξ = O(1/

√
N). When pt is supported only on one token, then

ξ = 1. In practice, ξ is a small constant. As we will present in the main theorem, as long as ξ ≍ δ,
the number of green list tokens is guaranteed to grow faster γn as n gets larger.

One may also ask whether it is necessary to make entropy assumptions on the conditional probabilities
instead of the marginal probabilities induced by p or p̂, but this is unfortunately not sufficient as
illustrated in the following example.
Example C.10 (Marginal high entropy is insufficient). Let the prompt x be

“Generate the first token uniformly at random, then repeat the
token you generated for the remaining n− 1 tokens”.

In this case, a good language model that follows the instruction will have Pp(yt = i) = 1/N for
all i and all t = 1, ..., n marginally, which implies that the entropy is the maximum and for any
green list G, Pp(yt ∈ G) = γ. On the other hand, with probability γ, |y|G = n and with probability
1− γ, |y|G = 0. There isn’t any concentration around γn possible. Moreover, check that if we apply
watermark, then Pp̂(yt ∈ G) = γeδ

γeδ+(1−γ)
for all t and all G. This changes the probability of seeing

|y|G = n slightly but the two world remains indistinguishable.

C.4.2 A “HOMOPHILY” ASSUMPTION

The second assumption that we need to make is called “homophily”, which says that increasing
the probability of a group of tokens by adding the watermarks will not decrease the probability of
generating the same group of tokens in the future as the language model rolls out.
Assumption C.11 (“Homophily”). We say a language model’s probability distribution p and prompt
x satisfy “homophily” if for any G, the corresponding watermarked p̂ satisfies that

E
h∼p̂(·|x)

[
P

y∼p̂(·|h,x)
(y ∈ G)

]
≥ E

h∼p(·|x)

[
P

y∼p̂(·|h,x)
(y ∈ G)

]
where h denotes the generated sequence before y.

This assumption says that by increasing the probability of tokens in G, the induced distribution of the
prefix h cannot counter-intuitively reduce the probability of tokens in G in the future on average.

The assumption is not unreasonable, because we expect a language model to be more likely to refer
to text it has generated in the prefix than those that did not appear in the prefix.

This “homophily” assumption is needed to rule out the unnatural situation where increasing the green
list tokens initially ends up reducing the number of green list tokens in the long run. To illustrate this,
consider the following example utilizing the prompt:

x = “Randomly select a color, state what it is. Then write a short
poem about it without naming this color at all.”
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The generated text from a commercial language model is

“Color choice: green. Emerald whispers in the meadow’s sway,
Life’s verdant rhythm in ceaseless play. It cradles the world in

a leafy embrace, A silent serenade to nature’s grace.”

Notice that if the token “green” ∈ G, it increases the probability of the language model generating
“green” at the beginning. However, regardless of the text’s length, the subsequent portion of the
generated text will not contain the word “green”, as instructed by the prompt. This decreases the
expected number of times the token “green” appears.

To hammer it home, consider the following more quantitative construction of that works no matter
which random green list G realizes.

x = “Choose the first k token by random sampling without
replacement. Then sample from all but the token you choose

uniformly for n-k rounds.”

It’s easy to calculate that the expected number of times any token appears in a language model that
perfectly follows the instruction will be n/N . However, the watermarked language model, let’s say
we use a very large δ such that the first k tokens are from the green list, then the expected number
of times a green-list token appears is k

γN + γN−k
γN

(n−k)(γN−k)
N−k which is bounded by 1 if k = γN

instead of growing linearly in n as in the original language model.

To obtain a concentration bound, we also need a stronger version of the homophily assumption as
follows.

Assumption C.12 (High probability on-average homophily). There exists a coupling – a joint
distribution of y1:n and ŷ1:n where marginally y1:n ∼ p(·|x), ŷ1:n ∼ p̂(·|x) – such that for any G,
with probability 1− β over the joint distribution,

1

n

n∑
t=1

p̂t(G|ŷ1:t−1)) ≥
1

n

n∑
t=1

p̂t(G|y1:t−1)).

The reason for defining the existence of a coupling is for technical reasons, but the purpose of the
assumption is identical to that of the in-expectation version.

C.5 THEOREM STATEMENT ON “ONLY TRUE DETECTION”

Now we are ready to state the main theorem.

Theorem C.13 (Only true detection). For a fixed language modelM and a prompt x. The sentence
y1:n generated from M̂(x) where M̂ is an output of our watermarking scheme Watermarkδ,γ(M)
with parameter δ, γ. Then the following statements are true.

1. Assume homophily (Assumption C.11), then

E[|y|G] ≥
nγeδ

1 + (eδ − 1)γ
− γ(1− γ)eδ

n∑
t=1

E
y1:t−1∼p(·|x)

∥pt∥2.

In particular, if Assumption C.8 condition is true with parameter ξ ≤ (1− κ) eδ−1
(1+(eδ−1)γ)eδ

for a
parameter 0 < κ < 1, then

E[|y|G] ≥ nγ

(
1 + κ

(eδ − 1)(1− γ)

1 + (eδ − 1)γ

)
or equivalently E[zy] ≥

κ(eδ − 1)
√
nγ(1− γ)

1 + (eδ − 1)γ
.

2. Assume high-probability version of homophily (Assumption C.12). There exists a parameter Cδ,γ

that depends only δ, γ such that with probability at least 1− β for any β > 0 (over both G and
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y ∼ p̂(·|x, G) ),

∥y∥G ≥
nγeδ

1 + (eδ − 1)γ
−
√

2n log(6/β)

− Cδ,γ log
2 27(n+ 1)

β

(
∥

n∑
t=1

pt∥+
n∑

t=1

∥pt∥2 + ∥
n∑

t=1

pt∥∞ +

n∑
t=1

∥pt∥2∞

)
.

In particular, if for a parameter 0 < κ < 1,

n ≥ 8 log(6/β)(1− γ + eδγ)2

(1− κ)2γ2(1− γ)2(eδ − 1)2
= Ω̃(1/δ2) (3)

and Assumption C.9 condition is true with parameter (ξ, β/3) where

ξ ≤ (1− κ)γ(1− γ)(eδ − 1)

8Cδ,γ(1− γ + eδγ) log2
(

27(n+1)
β

) = Õ(δ), (4)

then

P
[
∥y∥G < nγ(1 + κ

(eδ − 1)(1− γ)

1− γ + γeδ
)

]
= P

[
zy <

κ(eδ − 1)
√
nγ(1− γ)

1 + (eδ − 1)γ

]
≤ β.

Remark C.14 (Exponentially small Type I and Type II error guarantees). Recall that according to
Theorem C.4, in order to have a false positive rate controlled at level α, we need to set the threshold
τ ≳

√
log(1/α) for sufficiently high-entropy sequences. Theorem C.13 says that if we want the

false negative rate to be smaller than β, we only need the threshold τ ≲ κδn under similar (slightly
different) high-entropy sequences for n ≳ log(1/β)/δ2. Observe that there is a wide range of valid
choices of τ for us to have a detection algorithm that does not make Type I or Type II error with
high probability. These observations together suggest that we can afford to choose δ ≍ 1/

√
n if the

sequence is sufficiently high-entropy.
Remark C.15 (Information-theoretic optimality). The sample complexity of n ≳ 1/δ2 is information-
theoretically optimal (up to a logarithmic factor) in δ because, our accuracy guarantee (together
with the composition theorem) indicates that the KL-divergence between a sequence of length n
generated from p and that generated from p̂ is nδ2 indistinguishable, i.e., n > 1/δ2 for any classifier
— even the uniform most-powerful Neyman-Pearson likelihood-ratio test (which requires additional
information, e.g., x and p which we do not have) — to make no mistakes with a constant probability.

C.6 PROOF OF THEOREM C.13

In the false negative error cases, y is drawn from the watermarked language model M̂. To be explicit,
let us write y = [ŷ1, ..., ŷn] = ŷ1:n. Now let’s also define a hypothetical (possibly coupled) sequence
y1:n which is drawn from the original (un-watermarked) language modelM.

For convenience, we define the following shorthand p(G) := Py∼p[y ∈ G]. for a probability mass
function p defined on the vocabulary V . Specifically, p̂t(G|ŷ1:t−1) means Py∼p̂t(·|x,ŷ1:t−1)

[y ∈ G],

parameterized by a fixed green list G. Similarly, pt(G|y1:t−1) denotes Py∼pt(·|x,y1:t−1)
[y ∈ G].

The proof of Theorem C.13 considers the following decomposition

|y|G =|y|G −
∑
t

p̂t(G|ŷ1:t−1) (5)

+
∑
t

p̂t(G|ŷ1:t−1)−
∑
t

p̂t(G|y1:t−1) (6)

+
∑
t

p̂t(G|y1:t−1) (7)

steps to prove a lower bound to each of the three terms. We will start with the high probability bound
(the second statement in Theorem C.13) then deal with the expectation.
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C.6.1 MANY GREEN LIST TOKENS WITH HIGH PROBABILITY

To obtain a high-probability lower bound, it requires us to obtain concentration for each of the three
terms. Specifically,

1. To bound Term (5), we use Lemma C.16 which invokes Martingale concentration over the
randomness in y to show |y|G is close to

∑
t p̂t(G|ŷ1:t−1).

2. We will show Term (6) is non-negative with high probability by using the homophily assumption
(Assumption C.12). This allows us to study the roll-out ŷ1:t−1 under M̂(x) (or p̂) by studying a
hypothetical alternative roll-out y1:t−1 sampled underM(x) (or p).

3. Then we control Term (7) by first Taylor expanding it into quantities involving pt(G|y1:t−1)
instead of p̂(G|y1:t−1), then apply concentration inequalities for each expanded terms over the
randomness of G (while fixing y1:t−1) to obtain a high probability lower bound. Proposition C.19
gives the results.

We start by tackling (5) via Martingale concentration.

Lemma C.16. For any green list G and prompt x.

E

[
|y|G −

n∑
t=1

P
yt∼p̂(·|x,y1:t−1)

[yt ∈ G]

]
= 0.

Moreover, with probability at least 1− β over the roll-out

|y|G ≥
n∑

t=1

P
yt∼p̂(·|x,y1:t−1)

[yt ∈ G]−
√
2n log(2/β).

Proof. We fix G and construct a martingale sequence X1, X2, ..., Xn where X0 = 0 and:

Xt = Xt−1 + 1(yt ∈ G)− P
yt∼p̂(·|x,y1:t−1)

[yt ∈ G].

Check that E[Xt|y1:t−1] = Xt−1. The underlying filtration is the sigma-field generated by y1:t.

The claim about the expectation follows from that X0 = 0 and an inductive argument following the
tower property of conditional probabilities.

By the fact that |Xt −Xt−1| ≤ 1 we can apply Azuma-Hoeffding’s inequality and get

P [|Xn − E[Xn]| ≥ u] ≤ 2e−
u2

2n .

Check that by an inductive argument E[Xn] = 0. So we get that with probability at least 1− δ

|Xn| =

∣∣∣∣∣
n∑

t=1

1(yt ∈ G)−
n∑

t=1

P
yt∼p̂(·|x,y1:t−1)

[yt ∈ G]

∣∣∣∣∣ ≤√2n log(2/δ).

To handle (6), we apply Assumption C.12 with parameter β/3, which says that with probability
1− β/3 (6)≥ 0. This converts a roll-out from ŷ ∼ p̂ to a roll-out from the original p.

Before we deal with (7), let us write a lemma that rewrites p̂t(G|y1:t−1) into a more convenient
form.

Lemma C.17. For any t, ht. Fix G. Denote short hands p̂(G) := Pyt∼p̂t(·|x,ht)[yt ∈ G] and
p(G) := Pyt∼pt(·|x,ht)[yt ∈ G].

p̂(G) =
eδp(G)

1 + (eδ − 1)p(G)
=

(
1 +

(eδ − 1)(1− p(G))

1 + (eδ − 1)p(G)

)
p(G).
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Proof. By definition,

p̂(G) =

∑
y∈G eℓy+δ∑

y∈G eℓy+δ +
∑

y/∈G eℓy

=
eδp(G)

eδp(G) + 1− p(G)
=

eδ

1 + (eδ − 1)p(G)
p(G)

=

(
1 +

(eδ − 1)(1− p(G))

1 + (eδ − 1)p(G)

)
p(G).

The lemma implies that p̂(G) ≥ p(G) and that if p(G) is bounded away from 1, p̂(G) ≥ (1 +
O(δ))p(G).
Lemma C.18. For any t, ht. Fix G.

p̂(G) ≥ eδγ

1 + (eδ − 1)γ
+

eδ

(1 + (eδ − 1)γ)2
(p(G)− γ)− eδ(p(G)− γ)2

Proof. By the second-order Taylor’s theorem

eδx

1 + (eδ − 1)x
=

eδγ

1 + (eδ − 1)γ
+

eδ

(1 + (eδ − 1)γ)2
(x− γ)− eδ

(1 + (eδ − 1)x̃)3
(x− γ)2

where x̃ ∈ [x, γ] is a function of x. By relaxing x̃ to 0 we obtain the lower bound as claimed.

Now we are ready to handle (7) with high probability in the following proposition.
Proposition C.19 (Concentration). For any fixed sequence y1:n, and the corresponding language
model’s probability distribution p that gives conditional distributions p1, ...,pn. There exists a
parameter Cδ,γ that depends only δ, γ. Then with probability at least 1− β for any β > 0 (over G),
n∑

t=1

P
yt∼p(·|x,y1:t−1)

[yt ∈ G] ≥ nγeδ

1 + (eδ − 1)γ

−Cδ,γ log
2 9(n+ 1)

β

(
∥

n∑
t=1

pt[·]∥+
n∑

t=1

∥pt[·]∥2 + ∥
n∑

t=1

pt[·]∥∞ +

n∑
t=1

∥pt[·]∥2∞

)
.

Proof. By Lemma C.17 and C.18
n∑

t=1

P
yt∼p̂(·|x,y1:t−1)

[yt ∈ G]

=
∑
t

eδpt(G)

1 + (eδ − 1)pt(G)

≥
∑
t

eδγ

1 + (eδ − 1)γ
+

eδ(pt(G)− γ)

(1 + (eδ − 1)γ)2
− eδ(pt(G)− γ)2

=
nγeδ

1 + (eδ − 1)γ
+

eδ

(1 + (eδ − 1)γ)2


∑
t

Nγ∑
i=1

pt[π[i]]− nγ︸ ︷︷ ︸
(∗)

− eδ
∑
t


Nγ∑
i=1

pt[π[i]]− γ︸ ︷︷ ︸
(∗∗)


2

where π is a random permutation of the index set {1, ..., N}.
We will now apply Lemma F.1 to lowerbound (∗) with high probability and to bound the absolute
value of (∗∗) with high probability.
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Remark C.20. The reason why we can apply these lemmas even after we condition on y1:t−1 is
due to the “high-probability homophily” assumption which allows us to use the fact that y1:t−1 is
independent to G, i.e., the distribution of the green list remains uniform at random after we condition
on each qualifying y1:t−1 separately.

Using a similar argument from the proof of Theorem C.4, we can apply Lemma F.1 and get that with
probability 1− β,

(∗) ≥ −

√√√√64γ∥
n∑

t=1

pt(·)∥2 log(9/β)− ∥
n∑

t=1

pt(·)∥∞ log(9/β).

Similarly by Lemma F.1 again to bound (∗∗) =
∑Nγ

i=1 pt[π[i]]− γ w.h.p for each t.∣∣(∗∗)∣∣ ≤√64γ∥pt(·)∥2 log(9/β) + ∥pt(·)∥∞ log(9/β).

To put things together, with probability 1− (n+ 1)β,
n∑

t=1

P
yt∼p(·|x,y1:t−1)

[yt ∈ G]

≥ nγeδ

1 + (eδ − 1)γ
− eδ

(1 + (eδ − 1)γ)2

√√√√64γ∥
n∑

t=1

pt[·]∥2 log(9/β) + ∥
n∑

t=1

pt[·]∥∞ log(9/β)


− eδγ(1− γ)

∑
t

∥pt[·]∥2 − 2eδ

(
64γ

n∑
t=1

∥pt[·]∥22 log(9/β) +
n∑

t=1

∥pt[·]∥2∞ log2(9/β)

)

≥ nγeδ

1 + (eδ − 1)γ
− Cδ,γ log(9/β)

2

(
∥

n∑
t=1

pt[·]∥+
n∑

t=1

∥pt[·]∥2 + ∥
n∑

t=1

pt[·]∥∞ +

n∑
t=1

∥pt[·]∥2∞

)
for a constant Cδ,γ that depends only in δ, γ. The proof is complete by defining β̃ = 9(n+ 1)β, and
get the same result under probability 1− β̃.

C.6.2 MANY GREEN LIST TOKENS IN EXPECTATION

To obtain the lower bound in expectation, we just need to bound the expectation of (5), (6) and (7).

1. Observe that E[Term (5)|G] = 0 (from Lemma C.16)
2. Also, observe that (6) ≥ 0 under the homophily assumption (Assumption C.11).
3. Term (7) can be further lower bounded by a second-order Taylor expansion argument

(Lemma C.18) and a variance calculation for sampling without replacement (Lemma C.21),
which ends up depending on the on-average high-entropy parameter from Definition C.8. The
formal result is stated in Proposition C.22.

Lemma C.21. Fix pt

E
G
[(pt(G)− γ)2] ≤ γ(1− γ)∥pt[·]∥2.

Proof. First observe that EG[pt(G)] = γ because every token has γ probability to be included. By
the variance formula for sampling without replacement (N choose Nγ),

VarG[pt(G)|y1:t−1] = γN
1

N

N∑
i=1

(pt[i]
2 −N−2)(1− γN − 1

N − 1
) ≤ γ(1− γ)

N∑
i=1

pt[i]
2.

Proposition C.22. Assume homophily, then

E

[
n∑

t=1

P
yt∼p̂(·|x,y1:t−1)

[yt ∈ G]

]
≥ nγ

(
eδ

1 + (eδ − 1)γ
− (1− γ)eδ

n

n∑
t=1

E
y1:t−1∼p(·|x)

N∑
i=1

pt[i]
2

)
.
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Proof. By homophily,

E

[
n∑

t=1

P
yt∼p̂(·|x,y1:t−1)

[yt ∈ G]

]

=

n∑
t=1

E
G,y1:t−1∼p̂(·|x)

[
P

yt∼p̂(·|x,y1:t−1)
[yt ∈ G]

]

≥
n∑

t=1

E
G,y1:t−1∼p(·|x)

[
P

yt∼p̂(·|x,y1:t−1)
[yt ∈ G]

]

=

n∑
t=1

E
y1:t−1∼p(·|x)

E
G

[
eδ Pyt∼pt(·|y1:t−1)

[yt ∈ G]

1 + (eδ − 1)Pyt∼pt(·|y1:t−1)
[yt ∈ G]

∣∣∣∣∣y1:t−1

]
(8)

By Lemma C.18, we can decompose (8). Also observe that EG

[
pt(G)

∣∣y1:t−1

]
= γ where pt(G) :=

Pyt∼pt(·|y1:t−1)
[yt ∈ G] is short hand for clarity. To see the second observation, notice that yt is

independent to G, thus we can apply Statement 1 of Theorem C.4).

Apply the two observations to (8), we have

(8) ≥
n∑

t=1

E
y1:t−1∼p(·|x)

E
G

[
eδγ

1 + (eδ − 1)γ
+

eδ(pt(G)− γ)

(1 + (eδ − 1)γ)2
− eδ(pt(G)− γ)2

∣∣∣∣y1:t−1

]

=
eδnγ

1 + (eδ − 1)γ
+

n∑
t=1

E
y1:t−1∼p(·|x)

[
eδ(EG[pt(G)|y1:t−1]− γ)

(1 + (eδ − 1)γ)2
− eδ E

G
[(pt(G)− γ)2|y1:t−1]

]

=
eδnγ

1 + (eδ − 1)γ
−

n∑
t=1

eδ E
y1:t−1∼p(·|x)

VarG[pt(G)|y1:t−1].

By the variance formula for sampling without replacement (N choose Nγ),

VarG[pt(G)|y1:t−1] = γN
1

N

N∑
i=1

(pt[i]
2 −N−2)(1− γN − 1

N − 1
) ≤ γ(1− γ)

N∑
i=1

pt[i]
2.

Thus it follows that

(8) ≥ eδnγ

1 + (eδ − 1)γ
−

n∑
t=1

eδ E
y1:t−1∼p(·|x)

γ(1− γ)

N∑
i=1

pt[i]
2

= nγ

(
eδ

1 + (eδ − 1)γ
− (1− γ)eδ

n

n∑
t=1

E
y1:t−1∼p(·|x)

N∑
i=1

pt[i]
2

)
.

C.7 SECURITY PROPERTY

Corollary C.23. Algorithm 2 with threshold τ satisfies the security property from Definition 2.2 with
ϵ = 0 and

η(y, k, ϵ) =

√
n(zy − τ)

1 + γ/2
1

(
zy − τ ≥ γ

√
n

1 + γ/2

)
.

In comparison, the best bound on the security property parameter one can obtain for the scheme of
Kirchenbauer et al. (2023) is (a formal statement and proof are included in Appendix D.2)

η(y, k, ϵ) =

√
n(zy − τ)

2 + γ/2
1

(
zy − τ ≥ γ

√
n

2 + γ/2

)
.

To say it differently, our method, UNIGRAM-WATERMARK, utilizing a fixed Green-Red split, achieves
twice the robustness to edits compared to Kirchenbauer et al. (2023)’s baseline approach.
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D ANALYSIS OF KIRCHENBAUER ET AL. (2023)

D.1 SOFT WATERMARKING SCHEME OF KIRCHENBAUER ET AL. (2023)

This section illustrates the soft watermarking scheme proposed by Kirchenbauer et al. (2023). This
straightforward algorithm only requires access to the language model’s logits at each time step. Let
y = [y1, . . . , yn] represent the output sentence of language model M given the prompt x. The
watermarking scheme generates y1:n by hashing yt−1 to a partition of the token space (Green List
and Red List) and amplifies the probability of tokens on the Green List. Specifically, [y1, . . . , yn] is
derived from the following Markov chain:

1. y1 ∼ Softmax
(
logitsM

(
y1 = ·|x

))
2. For t = 2 : n,

yt ∼ Softmax
(
logitsM(yt = ·|[x, y1 . . . , yt−1]) + δ1(· ∈ Green(yt−1))

)
Typically, γ|V| tokens are selected to form a Green List, where γ symbolizes the fraction of tokens
to be watermarked (by default, γ = 0.5). The logit value for each green token is augmented by a
constant δ (default value = 2), which denotes the watermark strength. This elevation enhances the
likelihood of sampling green, watermarked tokens, particularly for high-entropy distributions.

Validation of whether a text was generated by a watermarked language model is achievable given
knowledge of the hash function and tokenizer. The adversary constructs u = [u1, . . . , um] from
x,y1:n and any auxiliary input. The detection algorithm calculates the quantity of green tokens
|u|G =

∑m
t=2 1(ut ∈ Green(ut−1)). One can assume the null hypothesis, denoted as H0: The

text sequence is produced independently of the green list rule. Following this, a z-statistic score is
computed as z = (|u|G − γm) /

√
mγ(1− γ). If the z-score exceeds a predetermined threshold,

the algorithm declares, “This was generated from M̂!”.

D.2 SECURITY PROPERTY OF KIRCHENBAUER ET AL. (2023)

We also demonstrate the robustness property of the soft watermarking algorithm in Kirchenbauer
et al. (2023) in the following Theorem D.1

Theorem D.1 (Robustness to editing in the watermarking scheme of Kirchenbauer et al. (2023)).
Let y = [y1, . . . , yn] represent the watermarked sequence. Suppose the adversary A follows the
definition 2.2 and outputs a modified text u = [u1, . . . , um]. Following Equation 2, we calculate the
z-score of the soft watermarking Kirchenbauer et al. (2023) zy and zu. Then we have

zu ≥ zy −max{ (2 + γ/2)η√
n

,
(2− γ/2)η√

n− η
}.

Proof. The proof is similar to that of Theorem 3.7 except that the maximum perturbation to |y|G is
now 2η rather than η. We now justify that the maximum perturbation has really doubled below, but
ignore the part that is the same as in the proof of Theorem 3.7.

Let BiGrams(u) = {{u1, u2}, {u2, u3}, ..., {un−1, un}} and similarly BiGrams(y) enumerates the
set of all two grams in sequence y1:m.

We claim that each edit can modify at most two elements in the above set. To see this, consider
“insertion”, “deletion”, and “edit” separately.

• If we “insert” one token ũ at t, then {ut−1, ut} and {ut, ut+1} become {ut−1, ũ}, {ũ, ut} and
{ut, ut+1}. Only one element of BiGrams(u) is modified — {ut−1, ut}.

• For “deletion” at t, {ut−1, ut} and {ut, ut+1} become {ut−1, ut+1}. So two elements from
BiGrams(u) are gone.

• For “edit” at t, {ut−1, ut} and {ut, ut+1} become {ut−1, ũ} and {ũ, ut+1}. Thus again only two
elements from BiGrams(u) are gone.
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It follows that when y is obtained after up to η edits

|BiGrams(u) ∩ BiGrams(y)| ≥ |BiGrams(u)| − 2η

Observe that
∑n

t=2 1(ut ∈ Green(ut−1)) counts the number of qualifying elements in BiGrams(u),
which completes the proof.

For this reason, our watermark is twice as robust as that of Kirchenbauer et al. (2023). This
provides the theoretical guarantee to our empirical results presented in the experiments!
Remark D.2. We can view our watermark as a trivial Markovian watermarking scheme with k = 0,
and what Kirchenbauer et al. (2023) proposed to be k = 1. For the more general k-Markovian
watermarking scheme that depends on a prefix of length k, the robustness deteriorates by a factor
of k, as the maximum perturbation will become ((k+1)+γ/2)η√

n
. To say it differently, choosing k = 0

gives the maximum robustness and maximum simplicity at the same time, and the benefit leads to
significant gains in our experiments, especially against paraphrasing attacks.

E ALTERNATIVE DETECTOR “UNIQUE” AND ITS DESIRABLE PROPERTIES

Our theoretical analysis suggests a promising alternative Detect algorithm for UNIGRAM-
WATERMARK that simply involves calling Algorithm 2 with a deduplicated y.

Algorithm 4 UNIGRAM-WATERMARK: Detect (Alternative)

1: Input: suspect text y, watermark detection key k, threshold τ .
2: Output: 1 or 0 (whether the text is watermarked).
3: Return Algorithm 2 with suspect text Unique(y), detection key k and threshold τ .

The simple change actually results in a number of interesting new properties. For example, we can
state its Type I error bound a lot more cleanly now as a Corollary of Theorem C.4
Corollary E.1 (No false positive for Deduplicated Detection). Consider y = y1:n as any fixed
suspect text. Let m = |Unique(y)| be the number of unique tokens in y. Let G be selected through
Algorithm 1, using a uniform random choice. Then the following statements hold true:

1. Assume m ≥ 1, then

E[|Unique(y)|G|y] = γn and E[zUnique(y)|y] = 0.

2. With probability 1− α (over only the randomness of G),

P
[
|Unique(y)|G ≥ γm+

√
64γm log(9/α) + log(9/α)

∣∣∣y] ≤ α

or equivalently (when n ≥ 1)

P

[
zUnique(y) ≥

√
64 log(9/α)

(1− γ)
+

log(9/α)√
mγ(1− γ)

∣∣∣∣∣y
]
≤ α.

The above gives a clean finite-sample concentration bound of the Type I error using Algorithm 4.
Notably, while deduplicating reduces the length of the suspect text, i.e., m < n, it improves the
bound by ensuring both Cmax and V are 1.
Remark E.2 (Asymptotic choice of τ for controlling false positives). Lemma C.21 gives that

Var [|Unique(y)|G|y] = mγ(1− γ)(1− m− 1

N − 1
)

i.e., the conditional variance of zUnique(y) is (1− m−1
N−1 ). This means that if we want to control the

asymptotic false positive rate to α, all we have to do is to choose the threshold τ to be

τ =

√
1− m− 1

N − 1
Φ−1(1− α) (9)

where Φ is the standard normal CDF.
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Figure 5: Empirical vs. theoretical false positive rates across various α values, using multiple green
list initializations.

Type II error. How about Type II error? Our results in Theorem C.13 are still applicable but require
us to apply that with a special language model derived from the original that directly generates
Unique(y) (ordered in the same order they appear in y). This is still a valid autoregressive language
model but has different roll-out probabilities.

Robustness to Edits. Observe that adding/removing/replacing one token to y in the results in
adding/removing/replacing one token to Unique(y) respectively, the robustness of the z-score for
Unique(y) thus directly follows Theorem D.1.

“Unique” in K-gram watermark section with K ≥ 2. Clearly, the same idea of deduplication
works for the whole family of K-gram watermark proposed in Kirchenbauer et al. (2023). In fact, it
was briefly mentioned in a remark from their paper as a mitigation measure to reduce correlation. All
arguments we make about Type I error and Robustness to Edits above work for K ≥ 2. We defer the
Type II error bound for this family to a longer version of the paper.

Emperical analysis on controlling false positives. We conduct experiments to demonstrate the
results for the asymptotic choice of τ in controlling false positives. The negative examples are
sampled from diverse datasets, including human data in LFQA and OpenGen dataset (Krishna et al.,
2023), C4 dataset (Raffel et al., 2020), and TOEFL dataset (Liang et al., 2023). In total, we collect
6,200 unwatermarked text samples with varied lengths. We then use the dynamic threshold τ with
different choices of α as shown in Equation 9. By choosing different random seeds, we obtain
different green lists. The results in Figure 5 show the empirical false positive rate aligns well with the
theoretical α.

E.1 ALTERNATIVE DETECTION “UNIQUE” IS ROBUST TO EMOJI ATTACK AND OTHER TRICKY
ATTACKS

Kirchenbauer et al. (2023) discussed a number of interesting attacks on the K-gram watermarks. In
this section, we inspect the robustness of UNIGRAM-WATERMARK (with both Algorithm 2 and 4 as
Detect) to these attacks.

We will focus on those trickier generative attacks, as those non-generative attacks on the surface
level (e.g., synonym substitution, Unicode substitution) were rather satisfactorily addressed in
Kirchenbauer et al. (2023). The same arguments work for UNIGRAM-WATERMARK. However, there
are trickier ones that break K-gram watermarks for K ≥ 2 but not for K = 1, especially when we
use Algorithm 4 for detection.
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Emoji attack the Emoji attack, also known as the Pineapple attack, asks the language model to
inject a special symbol, e.g., an Emoji, in between the actual text that the LM is supposed to
generate in response to a prompt. For example, a user of the language model can prompt an
LM with “Write my college admission essay. Insert an emoji in
between every word.”. Then the user can simply remove the artificially injected
symbol before submitting the essay. Clearly, this attack breaks all K-gram watermarks
for K > 1 (Kirchenbauer et al., 2023) (but also (Aaronson, 2023)). Our UNIGRAM-
WATERMARK remains effective because half of the tokens in y are still watermarked. The
repeated Emoji symbol with length n/2 is a problem for both Type I and Type II error, but
after “Unique”, this corresponds to just an Edit Distance of 1 on Unique(y)!

Alphabet attack We can also make the Emoji attack stronger by injecting a known sequence
of “alphabets” instead of one single symbol. For example, “Write my college
admission essay. Insert, in the order of the vocabulary, a
token in between every word you generate.”. The alphabet attack breaks
K-gram watermarks in the same way an Emoji attack does, but since the added tokens are
different, “Unique” does not solve it right away. Interestingly, despite m/2 of the tokens
in Unique(y) are not watermarked, as long as the Alphabet being used is independent of
the secret key, it does not change the Type I error and only slightly reduces the power (i.e.,
1-Type II error) since the expected number of Green tokens in that m/2 injected tokens is
mγ/2.

Stegnography attack One may extend the attack even further by asking the language model to
encode a message, which swaps each token in the vocabulary with another token through
a secret codebook. For example, whenever you want to output Token i, output Token
mod(i+ 1, N) instead. If the “code book” is supplied in the prompt with an instruction for
the LM to follow the code book when generating the text, then it really breaks all watermarks
including ours, while allowing the user who knows the code book to easily revert it to the
original text. The issue of such an attack is that it requires significantly heavy-lifting for the
language model to predict outside the typical distribution it is trained on. There is no real
risk of such an attack being employed as it is likely to significantly reduce the quality of the
generated text.

To be clear, these attacks are, in fact, not post-processing-based evasion attacks, but rather hacks into
prompts. Nevertheless, our watermark that is robust to edits turns out to be quite resilient to them.

F TECHNICAL LEMMAS

Lemma F.1 (Bernstein-style inequality for random permutation (Albert, 2019, Proposition 2.2)). Let
{ai,j}1≤i,j≤n be a collection of non-negative numbers and Πn be a random uniform permutation.
Let Zn =

∑n
i=1 ai,Πn(i). Then, for any t > 0

P

|Zn − E[Zn]| ≥ 2

√√√√ t

n

n∑
i,j=1

a2i,j + max
1≤i,j≤n

{ai,j}t

 ≤ 8e1/16e−
t
16 .

Lemma F.2 (Variance for sampling without replacement). Let x1, ..., xN ∈ R. For any sample size
1 ≤ n ≤ N , and π be a random permutation of {1, 2, ..., N}. The variance of X = 1

n

∑n
i=1 xπ(i)

satisfies

Var(X) =
1

nN

N∑
i=1

(xi − x̄)2(1− n− 1

N − 1
).

Definition F.3 (Martingale). A sequence of random variables (Xn)n∈N is called a martingale if it
satisfies the following conditions:

1. E[|Xn|] <∞ for all n ∈ N.

2. E[Xn+1|Fn] = Xn for all n ∈ N.

where F1 ⊆ F2 ⊆ ... ⊆ Fn ⊆ Fn+1 ⊆ ... is a filtration. Specifically, Fn can be the sigma-algebra
generated by another sequence of random variable Y1, ..., Yn, i.e., Fn = σ(Y1:n) and Xn can be a
function of Y1:n.

34



Published as a conference paper at ICLR 2024

Lemma F.4 (Azuma-Hoeffding Inequality). Let (Xn)n∈N be a martingale such that |Xn+1−Xn| ≤
cn for some constants cn and all n ∈ N. Then for all t > 0 and n ∈ N, we have

P (|Xn −X0| ≥ t) ≤ 2 exp

(
− t2

2
∑n

i=1 c
2
i

)
.
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