

ELICITING NUMERICAL PREDICTIVE DISTRIBUTIONS OF LLMs WITHOUT AUTO-REGRESSION

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Large Language Models (LLMs) have recently been successfully applied to regression tasks—such as time series forecasting and tabular prediction—by leveraging their in-context learning abilities. However, their autoregressive decoding process may be ill-suited to continuous-valued outputs, where obtaining predictive distributions over numerical targets requires repeated sampling, leading to high computational cost and inference time. In this work, we investigate whether distributional properties of LLM predictions can be recovered *without* explicit autoregressive generation. To this end, we study a set of regression probes trained to predict statistical functionals (e.g., mean, median, quantiles) of the LLM’s numerical output distribution directly from its internal representations. Our results suggest that LLM embeddings carry informative signals about summary statistics of their predictive distributions, including the numerical uncertainty. This investigation opens up new questions about how LLMs internally encode uncertainty in numerical tasks, and about the feasibility of lightweight alternatives to sampling-based approaches for uncertainty-aware numerical predictions. Code to reproduce our experiments can be found at https://anonymous.4open.science/r/guess_llm-811B/.

1 INTRODUCTION

With the increasing capabilities of LLMs, a growing body of work has explored their use for structured data prediction—most notably for tabular data regression (e.g. Requeima et al., 2024; Hegselmann et al., 2023; Shysheya et al., 2025; Vacareanu et al., 2024) and time series forecasting (e.g. Gruver et al., 2024; Xue & Salim, 2023). These studies demonstrate that LLMs can act as competitive regressors, even without task-specific fine-tuning. This advantage is especially pronounced in low-data regimes, where LLMs can leverage their pre-training, prior knowledge, and capacity to condition on auxiliary textual context to match or outperform specialised models. We provide a more detailed overview of related works in Appendix A.

However, issuing numerical predictions with LLMs requires sequential autoregressive generation—real-valued numbers typically span multiple tokens requiring multiple forward passes of the input through the LLM to generate a single prediction. This makes inference costly and time-consuming, especially when many samples are needed—for example, to quantify the uncertainty (Gruver et al., 2024; Requeima et al., 2024) or improve prediction accuracy (Requeima et al., 2024).

This raises a natural question: is there a way of eliciting the LLM’s predictive distribution without performing costly autoregressive number generation? This question is non-trivial: generating a real number requires determining its order of magnitude, including decisions about decimal placement and termination—choices that are made only after several tokens have already been generated. Our work therefore contributes to exploring the broader question of how LLMs ‘plan’ their outputs before generation begins (Lindsey et al., 2025).

In this work, focusing on the problem of time series forecasting specifically, we explore to what extent the LLM’s internal representation of the input sequence can be used to reconstruct its numerical predictive distribution of the next number, requiring just a single pass through the LLM. Concretely, we explore the following three questions:

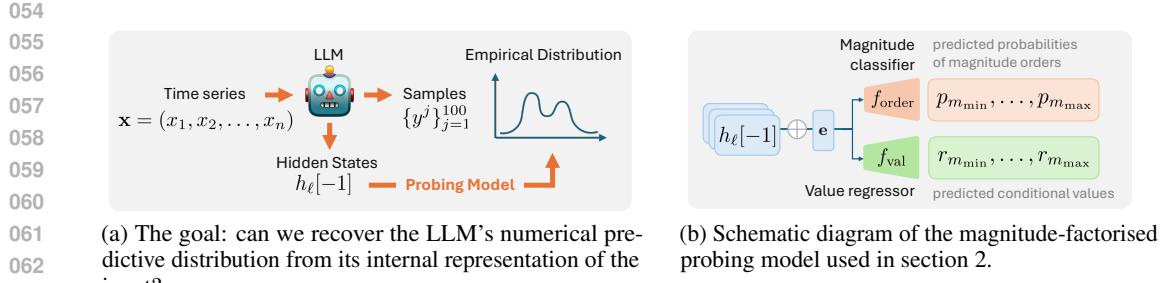


Figure 1: Illustration of this paper’s goals and methodology.

Do LLMs encode the next number they intend to generate? (Section 2) We begin by examining whether LLM’s internal representations of the input series encode sufficient information to recover point predictions—specifically, the greedy output, mean, and median of the predictive distribution. To test this, we develop a magnitude-factorised regression probe that separates prediction into two components: a coarse magnitude classification and a scale-invariant value regression, such that our model can effectively learn to predict numbers of varying orders of magnitude. Trained on LLM embeddings from synthetic time series data, *our probe accurately predicts numerical targets across data with varying orders of magnitude..*

Can we elicit the uncertainty of the LLM’s predictive distribution? (Section 3) We then ask whether uncertainty information is also captured in LLM’s hidden states. Using a magnitude-factorised quantile regression model, we train probes to predict the quantiles of the LLM’s output distribution, approximated via sampling. *The resulting models accurately recover the interquartile range and produce well-calibrated confidence intervals.*

What is the practical value of our findings? (Sections 4 and 5) The ability to recover numerical predictions directly from LLM embeddings holds the potential to bypass auto-regressive sampling—offering savings in inference time and computational costs, which we demonstrate empirically. However, for such probes to be practically useful, they must generalise beyond the specific conditions under which they were trained. We therefore evaluate whether a single probing model can be deployed across varied settings without retraining. First, we test generalisation to unseen time series lengths. Second, we assess generalisability of our previous results to real-world data. We investigate whether probes trained on real-world data generalise across different sub-domains and whether probes trained on synthetic data generalise to real-world data. *We demonstrate that, while some drop in calibration occurs on out-of-distribution datasets, our probes demonstrate encouraging generalisation abilities, showing the universality of LLM’s representations of numerical quantities.*

Our findings provide new insights into the numerical capabilities of LLMs: much of the “reasoning” underlying numerical predictions appears to be encoded in the model’s internal representations of the input, prior to token-level decoding. This raises questions whether auto-regressive sampling is necessary to extract real-valued outputs from LLMs, and opens the door to developing more efficient, single-pass approaches. By showing that both point estimates and uncertainty can be reliably extracted from hidden states, our work suggests a lightweight, general-purpose strategy for deploying LLMs in regression tasks—particularly in settings where computational efficiency and uncertainty estimation are essential. We hope these results motivate further study of how LLMs internally represent numerical quantities, and how this information can be surfaced for practical downstream use.

2 DO LLMs ENCODE THE NEXT NUMBER THEY INTEND TO GENERATE?

LLMs are trained for next-token-predictions. Thus, as a single number typically spans multiple tokens, obtaining a complete numerical prediction from the LLM requires repeated auto-regressive sampling. This can be computationally expensive in number-heavy tasks, particularly when one would like to obtain repeated samples for the purpose of uncertainty estimation. To mitigate this overhead, we ask: *to what extent is the full predicted number—beyond just its leading digit—already encoded in the LLM’s internal representation, prior to any token-by-token generation?* If such information can be reliably extracted, one could sidestep autoregressive generation altogether. However, this possibility

108 is not trivial: critical aspects of number generation, such as the placement of the decimal point or
 109 number termination, which determine the order of magnitude of the number, often occur late in the
 110 decoding process, particularly for large magnitudes.
 111

112 **2.1 METHOD**
 113

114 **Objective.** Let $\mathbf{x} = [x_1, \dots, x_n]$ be a sequence of numbers (e.g., an equally-spaced time series).
 115 Given \mathbf{x} , a language model induces a predictive distribution $p_{\text{LLM}}(\cdot | \mathbf{x})$ over the next value x_{n+1} .
 116 In this section, we investigate whether the internal representations of the LLM encode sufficient
 117 information to predict this distribution’s key statistics. Specifically, we aim to train independent
 118 probing models to recover: (a) the LLM’s greedy prediction, (b) the mean, and (c) the median of
 119 p_{LLM} . The empirically estimated scalar statistics of the LLM’s predictive distribution are our targets
 120 for prediction based on the LLM’s hidden representation of the input series \mathbf{x} .
 121

122 **LLM Representation.** Following Gruver et al. (2024), we serialise an input series \mathbf{x} to text as
 123 “ $x_1, x_2, x_3, \dots, x_n$ ”. We *do not* apply any scaling to the time series before serializing the inputs.
 124 This is important, as LLMs often contain contextual prior knowledge and scaling of the original time
 125 series may prohibit the LLM from using this prior knowledge effectively. From a pre-selected set
 126 of N transformer layers denoted by \mathcal{H} , we extract the final token’s hidden state from each layer,
 127 obtaining a set of embeddings $\{\mathbf{h}_\ell[-1] \in \mathbb{R}^{d_{\text{model}}} : \ell \in \mathcal{H}\}$. We concatenate these embedding vectors
 128 to form a single input for the probe:
 129

$$\mathbf{e} := \text{concat}(\mathbf{h}_\ell[-1])_{\ell \in \mathcal{H}} \in \mathbb{R}^{d_{\text{input}}}, \quad (1)$$

130 where $d_{\text{input}} = d_{\text{model}} \times |\mathcal{H}|$. The choice of the hidden layers \mathcal{H} is a hyperparameter of our model.
 131 Throughout the main body of this paper we use the Llama-2-7B model, for which $d_{\text{model}} = 4096$, and
 132 we set \mathcal{H} as the last 8 layers. Experiments with other LLMs can be found in Appendix C, alongside
 133 an ablation study on the choice of layers.
 134

135 **Datasets.** We use synthetically generated datasets to evaluate probing performance. Each sequence
 136 \mathbf{x} is sampled from a set of functions exhibiting varied dynamics, including sinusoidal patterns,
 137 Gaussians, beat functions, and random noise (see Appendix B.3 for details). The generated time
 138 series also vary in the length, n , and the level of noise, to ensure diversity of the input embed-
 139 dings and target distributions. We generate variants of the dataset by scaling the value range from
 140 $[-1, 1]$ to $[-10, 10]$, $[-1000, 1000]$, and $[-10000, 10000]$. We also combine the datasets of differ-
 141 ent scales to obtain a larger dataset of approximately 70k unique sequences, balanced across the
 142 different orders of magnitude. In this section, our training datasets take the following structure:
 143

144 $\left\{ \left(\mathbf{x}_i, \mathbf{e}_i, y_i^{\text{greedy}}, y_i^{\text{mean}}, y_i^{\text{median}} \right) \right\}_{i=1}^N$, where N is the total number of examples in a dataset, y_i^{greedy}
 145 the LLM’s greedy prediction given \mathbf{x}_i , and $y_i^{\text{mean}}, y_i^{\text{median}}$ the empirical mean and median, respectively,
 146 estimated based on N_{sa} samples from the LLM’s predictive distribution, $\{y_i^j\}_{j=1}^{N_{\text{sa}}} \sim p_{\text{LLM}}(\cdot | \mathbf{x}_i)$. In
 147 our experiments we set $N_{\text{sa}} = 100$.
 148

149 **Probing Model.** A significant challenge in training regression probes for LLM numerical predictions
 150 is the wide spread of target magnitudes. Standard regression losses such as the MSE or transformation
 151 techniques like log-scaling fail to provide stable gradients, prioritising optimisation of the largest
 152 values only. To address this, we introduce a *magnitude-factorised regression model* that consists of
 153 two components (both initialised as MLPs, see Appendix B.4 for hyperparameter details):
 154

- $f_{\text{order}} : \mathbb{R}^{d_{\text{input}}} \rightarrow \mathbb{R}^M$: a classifier predicting the order of magnitude of the target number.
- $f_{\text{val}} : \mathbb{R}^{d_{\text{input}}+1} \rightarrow \mathbb{R}$: a regressor predicting the target value scaled by the predicted order.

155 The magnitude classification component predicts the order of magnitude of a target value y^* , where
 156 $* \in \{\text{greedy, mean, median}\}$. Formally, we define the order of magnitude of a scalar y as: $m(y) =$
 157 $\lfloor \log_{10}(|y|) \rfloor$. For a given input \mathbf{x} and its corresponding representation \mathbf{e} , $f_{\text{order}}(\mathbf{e})$ outputs a vector of
 158 logits of a set of pre-defined magnitude classes $m_k \in \{m_{\text{min}}, \dots, m_{\text{max}}\}$. In our experiments, we
 159 let m_{min} and m_{max} be the minimum and maximum orders of magnitude in the training data. The
 160 predicted vector of magnitude class probabilities (after softmax) is denoted as $\text{softmax}(f_{\text{val}}(\mathbf{e})) =$
 161 $\mathbf{p}(\mathbf{x}) = [p_{m_{\text{min}}}, \dots, p_{m_{\text{max}}}]$.
 162

162 The regression component predicts a scaled version of the target value, conditioned on all possible
 163 magnitude classes (to allow the model to adjust its prediction based on the predicted magnitude). For
 164 each magnitude class $m_k \in \{m_{\min}, \dots, m_{\max}\}$, the corresponding scale is equal $s_k = 10^{m_k}$. The
 165 regression head takes as input the concatenation of the feature representation \mathbf{e} and the scale factor s_k
 166 outputting $r_k = f_{\text{val}}([\mathbf{e}; s_k])$ for each k . This produces regression outputs $\mathbf{r} = [r_{m_{\min}}, \dots, r_{m_{\max}}]$
 167 for all magnitude classes. The conditional prediction for each magnitude order m_k is then computed
 168 as: $\hat{y}_k = r_k \cdot 10^{m_k}$.

169 **Loss Function and Training.** Our model supports a two-phase training procedure:
 170

- 171 • **Phase 1:** Train only the classification head while freezing the regression head, using the classifi-
 172 cation loss—standard cross-entropy loss for magnitude prediction:

$$174 \mathcal{L}_{\text{order}} = \frac{1}{N_b} \sum_{i=1}^{N_b} \text{CrossEntropyLoss}(\mathbf{p}(\mathbf{x}_i), m(y_i^*)), \quad (2)$$

175 where N_b is the batch size.

- 176 • **Phase 2:** Train only the regression head while freezing the classification head, using the regression
 177 loss, i.e. the mean squared error between the predicted scaled value and the scaled target value:

$$180 \mathcal{L}_{\text{val}} = \frac{1}{N_b} \sum_{i=1}^{N_b} \left(r_{\hat{m}_i} - \frac{y_i^*}{10^{m(y_i^*)}} \right)^2, \quad \text{where } \hat{m}_i = \arg \max_{m_k} p_{m_k}(\mathbf{x}_i). \quad (3)$$

183 Empirically, we find that the 2-stage training procedure performs better than joint training of the
 184 order and value heads. To further provide justification for our approach, in Appendix C.1 we compare
 185 the performance of our magnitude-factorised probe against a vanilla MLP probe, showing significant
 186 performance gains.

188 **Expected Prediction.** During evaluation of our model, we compute the *expected prediction* by
 189 marginalising over the top- K magnitude classes: $\mathbb{E}_K[\hat{y}] = \sum_{k \in \text{top-}K} p_{m_k} \hat{y}_k$, where top- K refers to
 190 the K magnitude classes with highest predicted probabilities (we set $K = 3$).

191 2.2 RESULTS

193 **Order of magnitude.** We first investigate to what extent our probing model can correctly recover
 194 the order of magnitude of the number the LLM intends to generate. We train three separate models,
 195 one for each of the mean, median and greedy targets. In this experiment, we use the combined
 196 dataset consisting of time series with varying scales. The bar chart on the right hand side of Figure 2
 197 visualises that the classifier part of our magnitude-factorised model achieves above 90% accuracy in
 198 predicting the exponent of the target values. Further, as visualised with the scatter plots on Figure 2,
 199 we find strong correlation between our probes’ final predictions and the target statistics.

200 **Precision in generated digits.** To further assess
 201 whether the LLM’s internal representations encode
 202 fine-grained information beyond the order of magni-
 203 tude, we focus on the dataset with time series values
 204 in the interval $[-1, 1]$. We report the mean squared
 205 error (MSE) of our predictions in Table 1 and com-
 206 pare them against three simple baselines, using as the
 207 prediction: a) the average value of the entire training
 208 dataset (\bar{x}), b) the average of the series \mathbf{x}_i (\bar{x}_i), or c) the last value of the series \mathbf{x}_i ($x_{i,n}$). We also
 209 provide scatter plots for this dataset in Appendix C. Interestingly, among the three targets considered
 210 (mean, median, greedy), the model performs worst when predicting the greedy output. We hypothe-
 211 sise that this is because the greedy prediction is not an explicit function of the model’s predictive
 212 distribution, but rather a by-product of the autoregressive decoding process, making it harder to
 213 recover precisely from internal states.

Table 1: MSE obtained when predicting the statistics of the LLM’s predictive distribution.

y_i^* , target	\hat{y}_i^* (ours)	\bar{x}	\bar{x}_i	$x_{i,n}$
* = mean	0.006	0.256	0.035	0.085
* = median	0.006	0.260	0.041	0.087
* = greedy	0.015	0.273	0.065	0.109

214 These results show that the internal representations of a pre-trained LLM encode detailed
 215 information about its intended numerical output—even before any tokens are generated. Our

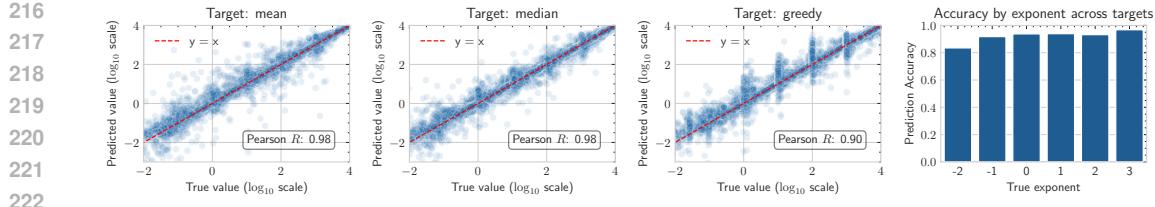


Figure 2: *Predicted vs. true values of mean, median and greedy prediction, presented on \log_{10} scale.* The probing model accurately recovers the number that the LLM intends to predict, indicating that the internal representations encode the order of magnitude of prediction.

probing model accurately recovers not only the order of magnitude, but also fine-grained point estimates of the mean, median, and the greedy output. This demonstrates that much of the numerical reasoning performed by the LLM is already present in its hidden states, and may not require the autoregressive decoding process.

3 CAN WE ELICIT THE UNCERTAINTY OF THE LLM’S PREDICTIVE DISTRIBUTION?

In the previous section, we demonstrated that point estimates—such as the greedy prediction, mean, and median—of an LLM’s predictive distribution $p_{\text{LLM}}(\cdot | \mathbf{x})$ can be recovered from its internal representations without the need for performing auto-regressive sampling. Encouraged by these findings, we now investigate whether we can go beyond point estimates to recover the *uncertainty* of p_{LLM} by approximating its distributional shape. Specifically, we attempt to recover multiple quantiles of p_{LLM} , enabling a coarse-grained reconstruction of its distribution function and providing an easy way of estimating the confidence intervals for the LLM’s predictions.

3.1 METHOD

Quantile Regression. Since the distribution p_{LLM} may be multi-modal and non-Gaussian, we rule out parametric approximations. Instead, we adopt *quantile regression*, which enables direct estimation of distributional shape without strong assumptions about its form. Let $\mathcal{Q} = [\tau^1, \dots, \tau^S]$ be a list of target quantile levels. For each $\tau^s \in [0, 1]$, we denote the predicted quantile value as \hat{q}^s . We train the quantile predictor using the *pinball loss* (Koenker & Hallock, 2001), computed with respect to LLM samples $y_i^j \sim p_{\text{LLM}}(\cdot | \mathbf{x}_i)$. For a single quantile level τ , predicted quantile value \hat{q} and a single LLM sample y_i^j , this loss function is defined as:

$$\text{PinballLoss}(\tau, \hat{q}, y_i^j) := \max \left(\tau(y_i^j - \hat{q}), (1 - \tau)(\hat{q} - y_i^j) \right). \quad (4)$$

Probing Model. As in section 2, we use a magnitude-factorised model to address the challenge of scale variance in numerical outputs. The quantile model takes an equivalent form to the one in section 2, except we introduce S classification and regression heads, one for each quantile level, denoted by f_{order}^s and f_{val}^s , respectively. As previously, each classification head outputs a vector of magnitude class probabilities $\mathbf{p}^s = [p_{\min}^s, \dots, p_{\max}^s]$. The regression heads output vectors of conditional scaled values $\mathbf{r}^s = [r_{\min}^s, \dots, r_{\max}^s]$. For an order m_k the predicted conditional quantile value is computed as $\hat{q}^s = r_k^s \cdot 10^{m_k}$.

Datasets. We use the same datasets as in section 2, but with target values being the raw LLM samples $\{y_i^j\}_{j=1}^{N_{\text{sa}}}$, instead of the aggregate statistics.

Training. Unlike in the previous section, we use a joint training approach (2-phase training did not yield any significant improvements in performance). We construct the total loss as the sum of the cross-entropy losses for magnitude prediction and pinball losses for quantile regression:

$$\mathcal{L} = \sum_{s=1}^S (\mathcal{L}_{\text{order}}^s + \beta \cdot \mathcal{L}_{\text{val}}^s), \quad (5)$$

270
271
272

$$\mathcal{L}_{\text{order}}^s = \frac{1}{N_b} \sum_{i=1}^{N_b} \text{CrossEntropyLoss}(\mathbf{p}^s(\mathbf{x}_i), m(\tilde{q}_i^s)), \quad (6)$$

273
274
275

$$\mathcal{L}_{\text{val}}^s = \frac{1}{N_b N_{sa}} \sum_{i=1}^{N_b} \sum_{j=1}^{N_{sa}} \text{PinballLoss} \left(\tau^s, r_i^s, \frac{y_i^j}{10^{m(\tilde{q}_i^s)}} \right). \quad (7)$$

276 In the above, \tilde{q}_i^s denotes the empirical quantile value derived from the LLM samples $\{y_i^j\}_{j=1}^{N_{sa}}$. In our
277 experiments, we use a set of $S = 7$ quantile levels: $\mathcal{Q} = [0.025, 0.05, 0.25, 0.5, 0.75, 0.95, 0.975]$.
278 This choice of allows us to easily estimate: the median, the interquartile range (IQR), as well as the
279 90% and 95% confidence intervals.

280
281 3.2 RESULTS
282

283 **IQR Prediction.** To investigate whether the LLM’s internal representations encode information
284 about the spread of its predictive distribution, we estimate the interquartile range (IQR) using the
285 predicted 25th and 75th percentiles. As the IQR is sensitive to scale, we normalise it by the predicted
286 median, and similarly normalise the empirical IQR from LLM samples using the sample median.
287 If the probe captures uncertainty faithfully, we should observe a monotonic relationship between
288 the predicted and empirical (normalised) IQRs. Scatter plots in Figure 3 show a strong correlation
289 between predicted and sample-based IQRs, with points aligning well on the $x = y$. This demonstrates
290 that our probing model is able to infer distributional spread from the LLM’s hidden states.

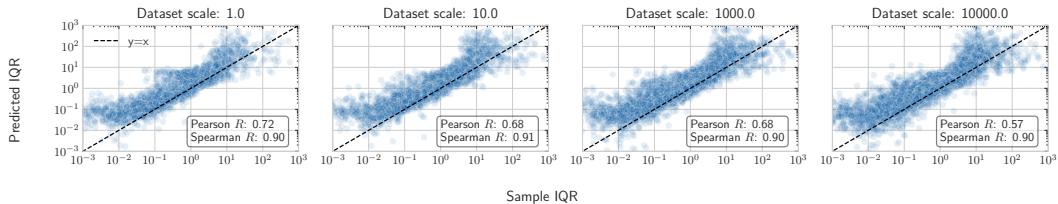


Figure 3: Predicted vs. sample-based IQR (both median-normalised). The model accurately tracks the variability of the LLM’s output distribution.

301
302 **Confidence Interval Coverage.** Next, we evaluate
303 whether the predicted quantiles yield calibrated con-
304 fidence intervals. Given a desired confidence level
305 α and its associated interval $\mathcal{C}(\alpha)$ predicted by the
306 probe, we compute the empirical coverage by check-
307 ing what fraction of LLM samples fall within the
308 predicted interval. We expect that:

309
$$\alpha = \mathbb{E}_{y \sim p(\cdot | \mathbf{x})} [\mathbb{1}\{y \in \mathcal{C}(\alpha)\}]$$

310
311
$$\approx \frac{1}{N_{sa}} \sum_{j=1}^{N_{sa}} \mathbb{1}\{y^j \in \mathcal{C}(\alpha)\}, \quad \text{where } y^j \sim p_{\text{LLM}}(\cdot | \mathbf{x}).$$

313 Table 2 reports the empirical coverage for 50%, 90%, and 95% intervals across datasets of varying
314 scale. In all cases, empirical coverage closely matches the target level, indicating that the quantile
315 probe is well-calibrated.

316
317 Table 2: Coverage of the predicted confidence
318 intervals. Values denote empirical coverage
319 (%) \pm standard error.

α	50%	90%	95%
1.0	52.0 ± 0.4	90.9 ± 0.3	95.5 ± 0.2
10.0	52.7 ± 0.5	91.3 ± 0.3	96.1 ± 0.2
1000.0	51.4 ± 0.3	90.7 ± 0.3	95.7 ± 0.2
10000.0	48.2 ± 0.3	90.5 ± 0.2	95.4 ± 0.2

320
321
322
323 **Q** Our findings provide strong evidence that **the uncertainty of the LLM’s predictive distribution is encoded in its internal activations and can be effectively elicited using a quantile regression probe**. The probe is capable of predicting meaningful spread measures, producing well-calibrated confidence intervals that match the empirical coverage. These results suggest that LLMs internalise rich distributional information during generation, which can be accessed and approximated efficiently via probing. This opens up new opportunities for downstream applications that rely on uncertainty quantification—such as safe decision-making, model-based control, and probabilistic reasoning—while avoiding the overhead of autoregressive sampling.

324 4 EFFICIENCY AND ACCURACY

327 In this section, we further investigate the practical applicability of probing models from the perspective
 328 of computational and inference time efficiency as well as accuracy with respect to the ground truth
 329 time series value. Throughout this section, we focus on the scalar probing models from section 2.

330 4.1 ERRORS WITH RESPECT TO THE GROUND-TRUTH

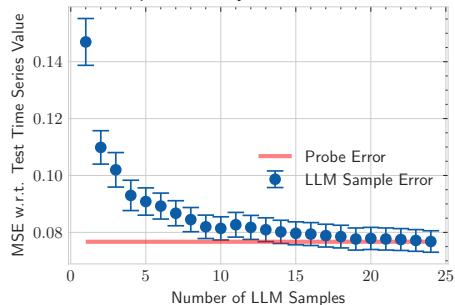
333 Table 3: MSE of predicted values vs. the
 334 ground truth $x_{i,n+1}$.

335 predicted value	336 probe (\hat{y}_i^*)	337 LLM (y_i^*)
338 * = greedy	0.0652	0.0668
339 * = mean	0.0562	0.0555
340 * = median	0.0561	0.0553

341 \bar{x}	342 \bar{x}_i	343 $x_{i,n}$	344 GP
345 0.3454	0.0878	0.1226	0.0717

346 predictions with respect to the ground-truth next value of the time series are presented in Table 3.
 347 Results were obtained for the probing models from section 2.2 and the dataset with scale 1.0. We
 348 make two key observations. First, consistent with prior work (Requeima et al., 2024), the LLM’s
 349 median prediction achieves the lowest error relative to the ground truth. Second, our probe attains
 350 errors comparable to those obtained by sampling directly from the LLM. This places its performance
 351 in context: **the probe captures enough information from hidden states to match the LLM’s own**
 352 **accuracy on the one-step-ahead prediction task.**

353 4.2 SAMPLE EFFICIENCY AND COMPUTATIONAL COSTS



354 Figure 4: The probe achieves comparable
 355 error to using around 20-25 LLM samples
 356 on the one step ahead prediction task.

357 For a detailed discussion regarding the computational costs comparisons of LLM sampling and
 358 inference with our probe, see Appendix C.3.

371 5 GENERALISATION

372 Finally, we investigate the generalisation capabilities of our approach along several axes including
 373 context length generalisation, applicability to real-world data, and cross-dataset generalisation. As the
 374 process of training a probe can be costly, such generalisation capabilities are important for real-world
 375 applications, if we would like to use a pre-trained probe on new datasets with different distributional
 376 properties. Throughout this section, we focus on the quantile probing models from section 3.

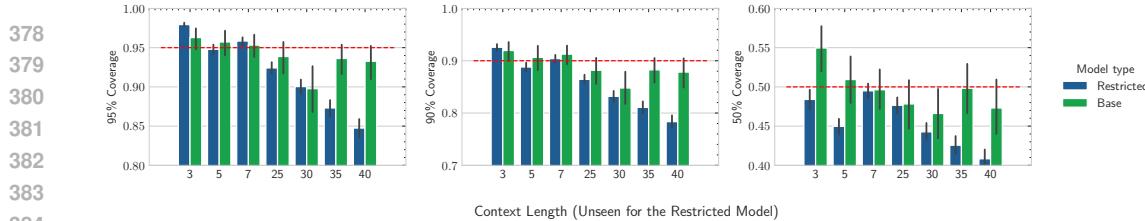


Figure 5: *Generalisation to unseen context lengths.* A probe trained on a restricted context length range (Restricted) exhibits greater deviation in empirical coverage outside its training range.

5.1 GENERALISATION TO UNSEEN CONTEXT LENGTHS

First, we ask whether a probe trained on a fixed range of input sequence lengths generalises to longer or shorter contexts. We train and compare against each other two models:

- **Base:** Trained on input sequences \mathbf{x} with lengths in range $[3, 40]$.
- **Restricted:** Trained only on input sequences \mathbf{x} with lengths in range $[10, 20]$.

At test time, we evaluate both models on contexts shorter than 10 and longer than 20. We assess generalisation by measuring the empirical coverage of predicted confidence intervals, as defined in section 3.2. Figure 5 shows results on the dataset with the scale factor 1.0.

We observe that while both models achieve reasonable calibration, the Restricted model exhibits slightly greater deviations from the nominal coverage, particularly for context lengths further from the training distribution. These results suggest that the probe generalises to novel context lengths, but training on a wider context ranges should be beneficial for a more robust generalisation.

5.2 APPLICABILITY TO REAL-WORLD DATA

Thus far, our analysis has focused on synthetic data. In this section, we evaluate whether our probing model can be trained successfully on real-world datasets, and how well predictions can generalise across different types of input series.

To assess this, we construct a dataset using time series from the Darts (Herzen et al., 2022) and Monash (Godahewa et al., 2021) collections. Following the same format as in our synthetic experiments, we generate LLM embeddings and samples for approximately 45,000 distinct sequences across 31 sub-datasets (e.g., US Births, Air Passengers). Furthermore, we also investigate an even stronger form of generalisation: from a model trained on synthetic data only to testing on real-world data. For this purpose, we train the following models:

- **Real (all):** Trained on a random 80% of all sequences across all sub-datasets. The remaining 20% is held out for testing.
- **Real (5 fold):** We partition the dataset into 5 folds such that, in each fold, one model is trained on 80% of the sub-datasets and evaluated on the remaining 20%. This ensures that each sub-dataset appears in the test fold of exactly one out of 5 models trained.
- **Synth:** A model trained on the combination of the 4 synthetic datasets with scales 1.0, 10.0, 1000.0 and 10000.0.

At test time, the above models face increasingly stronger distribution shifts. In terms of generalisation performance to previously unseen data distributions we can view the Real (all) model as an upper-bound baseline for Real (5 fold) and Synth.

In Table 4, we report the average coverage of the CI across all training types. We observe that the Real (all) model demonstrates good performance, with the empirical coverage of LLM samples closely matching the expected coverage. The Real (5 fold) model demonstrates a slight downgrade in performance. Interestingly, while the Synth model underperforms, it still demonstrates good generalisation for some of the sub-datasets as we can see on Figure 6. This figure shows the distribution of the absolute error of the predicted median vs. the median of LLM samples across

Table 4: Coverage of the CI intervals on previously unseen testing inputs.

Model	α	50%	90%	95%
Real (all)		48.8 ± 0.1	88.5 ± 0.1	94.3 ± 0.1
Real (5 fold)		43.4 ± 0.2	82.1 ± 0.2	89.4 ± 0.2
Synth		30.2 ± 0.3	67.7 ± 0.4	77.3 ± 0.4

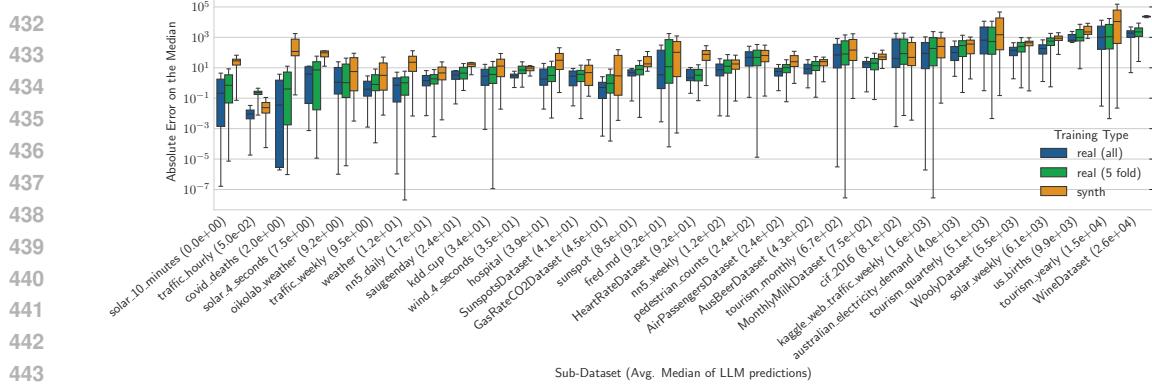


Figure 6: Absolute error on the median across different sub-dataset. Comparison of generalisation across models trained on different data.

all sub-datasets. The x-axis is sorted by increasing order of magnitude of the datasets defined by the average of the median of LLM samples. We note that the sub-datasets in our collection cover different ranges of values (with individual LLM samples varying in magnitude from 10^{-3} to 10^{13}). We suspect that this is the key reason why the probing model struggles to generalise across some datasets.

Q Key Insights. The probing model exhibit some, albeit limited, generalisation across context lengths. When applied to real-world datasets, the model achieves accurate empirical coverage and demonstrates partial transferability to unseen data distributions. Cross-dataset generalisation is possible, but challenged by large variation in scale and distribution.

6 DISCUSSION, LIMITATIONS AND FURTHER WORK

While most probing studies of LLMs focus on predicting discriminative behaviours in natural language tasks, we instead target numerical prediction, which is particularly challenging due to high variance in output magnitudes. To address this, we introduce novel probes that decompose the task into magnitude classification and scaled value regression. Our findings show that LLMs encode rich numerical information about their predictions *before* autoregressive decoding. Training lightweight probes on hidden states allows us to recover both point estimates (mean, median, greedy outputs) and uncertainty. This suggests that much of the LLM’s “reasoning” over numerical outputs occurs during input processing, with autoregressive decoding primarily simply surfacing the predictions. Beyond offering insight into how LLMs handle regression, our results also open a practical path: enabling uncertainty-aware numerical prediction without the computational cost of repeated sampling.

Despite these promising results, several limitations remain. First, our approach requires access to internal model activations, even though it does not involve fine-tuning the LLM itself. Second, while our probing models exhibit some generalisation ability, they are still model-specific, requiring retraining for each architecture or tokenization scheme. Third, training and evaluation requires approximating the LLM’s predictive distribution via empirical sampling, which is an imperfect and computationally expensive proxy.

Future work could extend this framework to a broader range of structured data and prediction tasks, including univariate or multivariate regression and time-series forecasting, as well as multi-step ahead prediction tasks. While in this work we focused on quantifying the spread of the LLM distribution using quantile regression (which allowed us to obtain the estimates of the confidence intervals), future models can consider using alternative methods for modelling LLM’s predictive distributions (e.g. Bayesian neural networks) which might offer a more fine-grained description of the distribution. Further, a deeper investigation into the mechanistic basis of numerical encoding—that is, how and where numerical quantities are represented across LLM layers—may also uncover connections to known computational circuits or arithmetic operations. Finally, motivated by our generalisation results, a key next step is the development of a universal probing model that can be applied off-the-shelf to a given LLM across diverse tasks and domains.

486 REFERENCES
487

488 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
489 Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,
490 Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dongdong
491 Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang Dai,
492 Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit Garg,
493 Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emmann Haider, Junheng Hao, Russell J.
494 Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin Jin,
495 Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim, Lev
496 Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden, Xihui
497 Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengheh Liu, Weishung Liu, Xiaodong Liu, Chong Luo,
498 Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro Mendes,
499 Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker,
500 Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo de Rosa,
501 Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael
502 Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia Song,
503 Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan
504 Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp Witte, Haiping Wu,
505 Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Jilong Xue, Sonali Yadav,
506 Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan, Chenruidong Zhang, Cyril
507 Zhang, Jianwen Zhang, Li Lyra Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and Xiren Zhou.
508 Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone, August 2024.
509 URL <http://arxiv.org/abs/2404.14219>. arXiv:2404.14219 [cs].

510 Mubashara Akhtar, Abhilash Shankarampeta, Vivek Gupta, Arpit Patil, Oana Cocarascu, and Elena
511 Simperl. Exploring the Numerical Reasoning Capabilities of Language Models: A Comprehensive
512 Analysis on Tabular Data. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the
513 Association for Computational Linguistics: EMNLP 2023*, pp. 15391–15405, Singapore, December
514 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.1028.
515 URL <https://aclanthology.org/2023.findings-emnlp.1028/>.

516 Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes,
517 November 2018. URL <http://arxiv.org/abs/1610.01644>. arXiv:1610.01644 [stat].

518 Amos Azaria and Tom Mitchell. The Internal State of an LLM Knows When It’s Lying, October
519 2023. URL <http://arxiv.org/abs/2304.13734>. arXiv:2304.13734 [cs].

520 Nora Belrose, Igor Ostrovsky, Lev McKinney, Zach Furman, Logan Smith, Danny Halawi, Stella
521 Biderman, and Jacob Steinhardt. Eliciting Latent Predictions from Transformers with the Tuned
522 Lens, November 2025. URL <http://arxiv.org/abs/2303.08112>. arXiv:2303.08112
523 [cs].

524 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
525 2025. URL <https://arxiv.org/abs/2501.12948>.

526 Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I. Webb, Rob J. Hyndman, and Pablo Montero-
527 Manso. Monash Time Series Forecasting Archive, May 2021. URL <http://arxiv.org/abs/2105.06643>. arXiv:2105.06643 [cs].

528 Siavash Golkar, Mariel Pettee, Michael Eickenberg, Alberto Bietti, Miles Cranmer, Geraud Krawezik,
529 Francois Lanusse, Michael McCabe, Ruben Ohana, Liam Parker, Bruno Régaldo-Saint Blancard,
530 Tiberiu Tesileanu, Kyunghyun Cho, and Shirley Ho. xVal: A Continuous Numerical Tokenization
531 for Scientific Language Models, December 2024. URL <http://arxiv.org/abs/2310.02989>. arXiv:2310.02989 [stat].

532 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
533 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela
534 Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem
535 Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
536 Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya

540 Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang
 541 Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song,
 542 Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
 543 Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina
 544 Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang,
 545 Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire
 546 Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron,
 547 Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang,
 548 Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer
 549 van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang,
 550 Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua
 551 Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani,
 552 Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz
 553 Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhota, Lauren Rantala-Yearly, Laurens van der
 554 Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
 555 Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat
 556 Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya
 557 Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman
 558 Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang,
 559 Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic,
 560 Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu,
 561 Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira
 562 Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain
 563 Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar
 564 Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov,
 565 Shaoliang Nie, Sharan Narang, Sharath Raparth, Sheng Shen, Shengye Wan, Shruti Bhosale,
 566 Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane
 567 Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha,
 568 Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
 569 Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet,
 570 Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin
 571 Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide
 572 Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei,
 573 Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan,
 574 Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey,
 575 Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma,
 576 Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo,
 577 Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew
 578 Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita
 579 Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
 580 Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola,
 581 Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence,
 582 Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu,
 583 Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris
 584 Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel
 585 Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich,
 586 Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine
 587 Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban
 588 Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat
 589 Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
 590 Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang,
 591 Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha,
 592 Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan
 593 Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai
 Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya,
 Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica
 Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan
 Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal,
 Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran

594 Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A,
 595 Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca
 596 Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson,
 597 Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally,
 598 Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov,
 599 Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat,
 600 Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White,
 601 Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
 602 Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
 603 Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager,
 604 Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang,
 605 Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra,
 606 Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ
 607 Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh,
 608 Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji
 609 Yamamoto, Sharad Ramaswamy, Shaun Lindsay, Shuang Feng, Shenghao Lin,
 610 Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,
 611 Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe,
 612 Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny
 613 Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara
 614 Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou,
 615 Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish
 616 Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihalescu, Vladimir Ivanov,
 617 Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian
 618 Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi,
 619 Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen
 620 Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
 621 Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The Llama 3 Herd of Models, November 2024. URL
 622 <http://arxiv.org/abs/2407.21783>. arXiv:2407.21783 [cs].

623 Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large Language Models Are Zero-
 624 Shot Time Series Forecasters, August 2024. URL <http://arxiv.org/abs/2310.07820>.
 625 arXiv:2310.07820 [cs].

626 Stefan Hergelmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David
 627 Sontag. TabLLM: Few-shot Classification of Tabular Data with Large Language Models, March
 628 2023. URL <http://arxiv.org/abs/2210.10723>. arXiv:2210.10723 [cs].

629 Julien Herzen, Francesco Lässig, Samuele Giuliano Piazzetta, Thomas Neuer, Léo Tafti, Guillaume
 630 Raille, Tomas Van Pottelbergh, Marek Pasieka, Andrzej Skrodzki, Nicolas Huguenin, Maxime
 631 Dumonal, Jan Koćisz, Dennis Bader, Frédéric Gusset, Mounir Benhedi, Camila Williamson,
 632 Michal Kosinski, Matej Petrik, and Gaël Grosch. Darts: User-Friendly Modern Machine Learning
 633 for Time Series. *Journal of Machine Learning Research*, 23(124):1–6, 2022. ISSN 1533-7928.
 634 URL <http://jmlr.org/papers/v23/21-1177.html>.

635 Roger Koenker and Kevin F. Hallock. Quantile Regression. *Journal of Economic Perspectives*,
 636 15(4):143–156, December 2001. ISSN 0895-3309. doi: 10.1257/jep.15.4.143. URL <https://www.aeaweb.org/articles?id=10.1257/jep.15.4.143>.

637 Boshko Koloski, Andrei Margelou, Xiangjian Jiang, Blaž Škrlj, Nikola Simidžievski, and Mateja
 638 Jamnik. LLM Embeddings for Deep Learning on Tabular Data, February 2025. URL <http://arxiv.org/abs/2502.11596>. arXiv:2502.11596 [cs] version: 1.

639 Jannik Kossen, Jiatong Han, Muhammed Razzak, Lisa Schut, Shreshth Malik, and Yarin Gal.
 640 Semantic Entropy Probes: Robust and Cheap Hallucination Detection in LLMs, June 2024. URL
 641 <http://arxiv.org/abs/2406.15927>. arXiv:2406.15927 [cs].

642 Dmitrii Krasheninnikov, Richard E. Turner, and David Krueger. Fresh in memory: Training-order
 643 recency is linearly encoded in language model activations, September 2025. URL <http://arxiv.org/abs/2509.14223>. arXiv:2509.14223 [cs].

648 Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L. Turner,
 649 Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar, Adly
 650 Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan, Adam
 651 Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman, Kelley
 652 Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the Biology of a Large Language
 653 Model. *Transformer Circuits Thread*, 2025. URL <https://transformer-circuits.pub/2025/attribution-graphs/biology.html>.

654
 655 Oscar Obeso, Andy Ardit, Javier Ferrando, Joshua Freeman, Cameron Holmes, and Neel Nanda.
 656 Real-Time Detection of Hallucinated Entities in Long-Form Generation, September 2025. URL
 657 <http://arxiv.org/abs/2509.03531>. arXiv:2509.03531 [cs].

658
 659 Hadas Orgad, Michael Toker, Zorik Gekhman, Roi Reichart, Idan Szpektor, Hadas Kotek, and Yonatan
 660 Belinkov. LLMs Know More Than They Show: On the Intrinsic Representation of LLM Hal-
 661 lucinations, May 2025. URL <http://arxiv.org/abs/2410.02707>. arXiv:2410.02707
 662 [cs].

663 Koyena Pal, Jiuding Sun, Andrew Yuan, Byron C. Wallace, and David Bau. Future Lens: Anticipating
 664 Subsequent Tokens from a Single Hidden State. In *Proceedings of the 27th Conference on*
 665 *Computational Natural Language Learning (CoNLL)*, pp. 548–560, 2023. doi: 10.18653/v1/2023.
 666 *conll-1.37*. URL <http://arxiv.org/abs/2311.04897>. arXiv:2311.04897 [cs].

667
 668 Dario Di Palma, Alessandro De Bellis, Giovanni Servedio, Vito Walter Anelli, Fedelucio Narducci,
 669 and Tommaso Di Noia. LLaMAs Have Feelings Too: Unveiling Sentiment and Emotion Repre-
 670 sentations in LLaMA Models Through Probing, June 2025. URL <http://arxiv.org/abs/2505.16491>. arXiv:2505.16491 [cs].

671
 672 James Requeima, John Bronskill, Dami Choi, Richard E. Turner, and David Duvenaud. LLM
 673 Processes: Numerical Predictive Distributions Conditioned on Natural Language, December 2024.
 674 URL <http://arxiv.org/abs/2405.12856>. arXiv:2405.12856 [stat].

675
 676 Sarthak Roy, Ashish Harshavardhan, Animesh Mukherjee, and Punyajoy Saha. Probing LLMs for
 677 hate speech detection: strengths and vulnerabilities, October 2023. URL <http://arxiv.org/abs/2310.12860>. arXiv:2310.12860 [cs].

678
 679 Eli Schwartz, Leshem Choshen, Joseph Shtok, Sivan Doveh, Leonid Karlinsky, and Assaf Arbelle.
 680 NumeroLogic: Number Encoding for Enhanced LLMs’ Numerical Reasoning, March 2024. URL
 681 <http://arxiv.org/abs/2404.00459>. arXiv:2404.00459 [cs] version: 1.

682
 683 Aliaksandra Shysheya, John Bronskill, James Requeima, Shoaib Ahmed Siddiqui, Javier Gonza-
 684 lez, David Duvenaud, and Richard E. Turner. JoLT: Joint Probabilistic Predictions on Tab-
 685 ular Data Using LLMs, February 2025. URL <http://arxiv.org/abs/2502.11877>.
 686 arXiv:2502.11877 [stat].

687
 688 Aaditya K. Singh and D. J. Strouse. Tokenization counts: the impact of tokenization on arith-
 689 metic in frontier LLMs, February 2024. URL <http://arxiv.org/abs/2402.14903>.
 690 arXiv:2402.14903 [cs].

691
 692 Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya Sachan. A Mechanistic Interpretation of
 693 Arithmetic Reasoning in Language Models using Causal Mediation Analysis, October 2023. URL
 694 <http://arxiv.org/abs/2305.15054>. arXiv:2305.15054 [cs].

695
 696 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 697 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
 698 tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
 699 Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 700 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 701 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen

702 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 703 Sergey Edunov, and Thomas Scialom. Llama 2: Open Foundation and Fine-Tuned Chat Models,
 704 July 2023. URL <http://arxiv.org/abs/2307.09288>. arXiv:2307.09288 [cs].
 705

706 Robert Vacareanu, Vlad-Andrei Negru, Vasile Suciu, and Mihai Surdeanu. From Words to Numbers:
 707 Your Large Language Model Is Secretly A Capable Regressor When Given In-Context Examples,
 708 September 2024. URL <http://arxiv.org/abs/2404.07544>. arXiv:2404.07544 [cs].
 709

710 Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh, and Matt Gardner. Do NLP Models Know
 711 Numbers? Probing Numeracy in Embeddings, September 2019. URL <http://arxiv.org/abs/1909.07940>. arXiv:1909.07940 [cs].
 712

713 Jiaxin Wen, Pei Ke, Hao Sun, Zhixin Zhang, Chengfei Li, Jinfeng Bai, and Minlie Huang. Unveiling
 714 the Implicit Toxicity in Large Language Models. In Houda Bouamor, Juan Pino, and Kalika
 715 Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language
 716 Processing*, pp. 1322–1338, Singapore, December 2023. Association for Computational Linguistics.
 717 doi: 10.18653/v1/2023.emnlp-main.84. URL <https://aclanthology.org/2023.emnlp-main.84/>.
 718

719 Hao Xue and Flora D. Salim. PromptCast: A New Prompt-based Learning Paradigm for
 720 Time Series Forecasting, December 2023. URL <http://arxiv.org/abs/2210.08964>. arXiv:2210.08964 [stat].
 721

722 Shu Yang, Linbo Wang, and Peng Ding. Causal inference with confounders missing not at random,
 723 February 2019. URL <http://arxiv.org/abs/1702.03951>. arXiv:1702.03951 [stat].
 724

725 Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou.
 726 Transformers Can Achieve Length Generalization But Not Robustly, February 2024. URL
 727 <http://arxiv.org/abs/2402.09371>. arXiv:2402.09371 [cs].
 728

729 Angela Yaqian Zhu, Nandita Mitra, and Jason Roy. Addressing positivity violations in causal effect
 730 estimation using Gaussian process priors. *Statistics in Medicine*, 42(1):33–51, 2023. ISSN 1097-
 731 0258. doi: 10.1002/sim.9600. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.9600>. _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/sim.9600>.
 732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756	APPENDIX CONTENTS	
757		
758		
759	A Related Works	15
760		
761		
762	B Details of the Experimental Setup	16
763	B.1 Assets and Licensing Information	16
764	B.2 Computer infrastructure used	16
765	B.3 Details of the datasets	17
766	B.4 Details of the probing models	18
767		
768		
769	C Additional Experimental Results	19
770		
771	C.1 Comparison against vanilla MLP probe	19
772	C.2 Results with other LLMs	20
773	C.3 Computational Costs and Inference Time	25
774	C.4 Layer Ablation Study	25
775	C.5 Mean Absolute Loss per quantile	25
776		
777		
778		
779	A RELATED WORKS	
780		

781 **LLMs for Structured Data.** With the advances in the performance of LLMs, several methods
 782 have been proposed which utilise LLM’s pre-training and prior knowledge to make predictions on
 783 structured data, namely *tabular data* (e.g. Requeima et al., 2024; Hegselmann et al., 2023; Shysheya
 784 et al., 2025; Vacareanu et al., 2024) and *time series data* (e.g. Gruver et al., 2024; Xue & Salim, 2023).
 785 These works show that LLMs can serve as competitive predictive models even *without task-specific*
 786 *fine-tuning*. This is particularly evident in the small sample regime, where large-scale pre-training,
 787 access to prior knowledge and ability to condition on textual information allows LLMs to match or
 788 outperform the performance of purpose-built regressors.

789 **Numerical Predictive Distributions of LLMs.** When used as regressors, LLMs can provide not
 790 only point estimates but also full predictive distributions, reflecting their stochastic nature. To
 791 elicit continuous distributions over numerical outputs, Gruver et al. (2024) and Requeima et al.
 792 (2024) propose an autoregressive approach that generates logit values over discretised numeric
 793 bins, which are then scaled to form a valid probability distribution. Access to such distributions is
 794 crucial for downstream tasks requiring uncertainty quantification, including decision-making under
 795 uncertainty and Bayesian optimisation. However, these methods are computationally intensive, as
 796 they require multiple sequential queries to the LLM to construct a single distribution (e.g., $p(123.4) =$
 797 $p(1)p(2|1)p(3|12)p(.|123)p(4|123.)$). This motivates us to explore alternative approaches to eliciting
 798 numerical predictive distributions from LLMs.

799 **Discrepancy between number generation and auto-regression.** As next-token predictors, LLMs
 800 are not explicitly trained to understand the value of numbers. Due to their autoregressive nature,
 801 early tokens encode digits before key decisions like decimal placement (that determine a number’s
 802 magnitude) are made. This can lead to surprisingly poor performance on simple numerical tasks
 803 (Yang et al., 2019; Akhtar et al., 2023; Zhou et al., 2024; Schwartz et al., 2024). To address
 804 these limitations, several works have proposed alternatives to standard autoregressive decoding
 805 for numerical predictions. For instance, Golkar et al. (2024) introduce a special [NUM] token,
 806 replaced post-hoc with a continuous value predicted by a learned regression head—though this requires
 807 retraining the model. Others (Singh & Strouse, 2024; Schwartz et al., 2024) investigate number-
 808 specific tokenizations to improve numerical accuracy of LLMs. In contrast, we ask whether one
 809 can bypass autoregressive decoding in *pre-trained* LLMs by directly reading out the predictive
 distribution from the internal representations.

810 Probing and LLMs. Probe classifiers, or simply probes, are models trained to uncover specific
 811 properties directly from the intermediate representations of neural models Alain & Bengio (2018). In
 812 the context of LLMs, a growing body of works from the area of mechanistic interpretability studied
 813 what kind of properties can be directly recovered from the internal representations of the LLMs
 814 (without the need for decoding), and where within the internal representations they are located (e.g.
 815 which layer). Amongst others, prior work has probed LLMs for properties such as factuality of the
 816 generated responses Obeso et al. (2025); Orgad et al. (2025); Azaria & Mitchell (2023), semantic
 817 entropy Kossen et al. (2024), toxicity Roy et al. (2023); Wen et al. (2023), text sentiment Palma et al.
 818 (2025) and even training order recency Krasheninnikov et al. (2025). While the previous works focus
 819 primarily on training probe classifiers, in this work we focus on *probe regressors*, proposing our
 820 magnitude-factorised probe as a method for handling targets with large range of continuous values
 821 (spanning several orders of magnitude). By focusing on continuous values, we uncover that the
 822 hidden states of the LLMs uncover much more fine-grained information than suggested by previous
 823 works (which probe primarily for binary-or binarised-properties).

824 Complementary findings from mechanistic interpretability suggest that, even in purely textual settings,
825 LLM hidden states encode representations of tokens that the model is most likely to generate several
826 tokens ahead (Pal et al., 2023; Lindsey et al., 2025; Belrose et al., 2025). In contrast to these works,
827 we show that similar results hold also when using LLMs for numerical predictions, allowing to
828 uncover not only the marginal distributions of tokens at each of the steps ahead, but also the properties
829 of the entire numerical predictive distribution of the LLM (mean, median, quantiles).

830 Probing numeracy in LLM embeddings. A number of prior works give evidence that simple
 831 probing models can be used to learn numerical values encoded in the LLM embeddings. Wallace
 832 et al. (2019) has shown that the value of a number can be successfully decoded from its encoded
 833 word embedding (e.g., “71” → 71.0.). Stolfo et al. (2023) identified specific layers in LLMs that
 834 store numerical content, recoverable via simple linear probes, while Zhu et al. (2023) demonstrated
 835 that intervening on these layers alters generated outputs. More recently, Koloski et al. (2025) showed
 836 that LLM embeddings can serve as effective covariates in downstream regression models.

837 Taken together, these results support the hypothesis that it should be possible to train probes that
838 efficiently approximate the numerical *predictive distribution* of the LLM, motivating our work.

840 B DETAILS OF THE EXPERIMENTAL SETUP

842 B.1 ASSETS AND LICENSING INFORMATION

844 The following existing assets were used to produce the experimental results:

- 846 • Monash dataset** Godahewa et al. (2021)
- 847 • Darts dataset** Herzen et al. (2022)
- 848 • Llama-2-7B model** Touvron et al. (2023)
- 849 • Llama-3-8B model** Grattafiori et al. (2024)
- 850 • Llama-3-3B model** Grattafiori et al. (2024)
- 851 • Phi-3.5-mini model** Abdin et al. (2024)
- 852 • DeepSeek-R1-Distill-Llama-8B model** DeepSeek-AI (2025)

856 B.2 COMPUTER INFRASTRUCTURE USED

858 Hardware. All experiments were conducted using 2 separate NC24rs_v3 instances and one
 859 NC80adis_H100_v5 instance on the Microsoft Azure cloud platform. These instances are a part of
 860 Azure’s GPU-optimised virtual machine series, with their hardware specifications summarised in
 861 Table 5.

863 Generating the synthetic dataset for one scaling factor $D_{\text{scale}} \in \{1, 10, 1000, 10000\}$ took no more
 than 10h. Training one probe model took no more than 4h.

Table 5: Azure Virtual Machine Specifications

Specification	NC24rs_v3	NC80adis_H100_v5
vCPUs	24	80
System Memory (GiB)	448	640
GPU Model	4x NVIDIA Tesla V100	2x NVIDIA H100 NVL
GPU Memory (per GPU)	16 GiB	94 GiB
Total GPU Memory	64 GiB	188 GiB
GPU Architecture	Volta	Hopper
CUDA Version	11.x	12.x
CPU Model	Intel Xeon E5-2690 v4	AMD EPYC Genoa
Local Storage	2.9 TB	7.1 TB

B.3 DETAILS OF THE DATASETS

B.3.1 DETAILS OF THE SYNTHETIC TIME SERIES DATASET

We generate a synthetic dataset comprising time series derived from a family of parametric functions, each evaluated over a fixed domain and perturbed with controlled noise. The purpose is to simulate diverse temporal patterns, inducing varying levels of uncertainty in the LLM’s predictions.

We use a set of base functions defined over the interval $x \in [0, 60]$, discretised into 120 equidistant points. The functions are summarised in Table 6. For each function and value of a , we generate a clean series $y = f(a \cdot x)$, and then apply:

- Additive Gaussian noise with variance $\sigma^2 \in \{0.0, 0.01, 0.05, 0.1\}$.
- Vertical scaling by $b \sim \mathcal{U}(0, D_{\text{scale}})$
- Vertical translation by $d \sim \mathcal{U}(-D_{\text{scale}}, D_{\text{scale}})$

From each transformed series, we sample 10 different subsequences for each of the lengths $n \in \{3, 5, 7, 10, 13, 15, 17, 20, 25, 30, 35, 40\}$, with each subsequence starting at a random offset. Each sequence becomes a training input. Inputs are serialized as floating-point strings with a user-defined number of decimal places p (we use $p = 4$ for $D_{\text{scale}} = 1.0$, $p = 3$ for $D_{\text{scale}} = 10.0$, $p = 2$ for $D_{\text{scale}} = 1000.0$ and $p = 1$ for $D_{\text{scale}} = 10000.0$). This results in 33600 generated time series for each value of D_{scale} .

Concatenated dataset. Having constructed the individual dataset for each scaling factor $D_{\text{scale}} \in \{1, 10, 1000, 10000\}$, we also construct one concatenated dataset. In doing that, we limit the number of datapoints to 70000 and ensure that the y_{test} values of the generated time series are equally distributed on the log scale, from 10^{-2} to 10^4 . This is to ensure a balanced distribution of the train and test examples.

Dataset filtering. Before using the generated datasets for training the probing models, we apply dataset filtering to exclude any potential outliers. Namely, we ensure that the mean, median and greedy LLM prediction lie in $[-D_{\text{scale}}, D_{\text{scale}}]$.

B.3.2 MONASH DATASET

- **Data Loading:** We use the data from the Monash dataset, preprocessed by Gruber et al. (2024) and available from https://drive.google.com/file/d/1sKrpWbD3LvLQ_e51WgX3wJqT50sTd1aZ/view?usp=sharing. Each sub-dataset file contains tuples of the form $(\text{train}, \text{test})$, which are concatenated to form complete univariate time series.
- **Resampling:** To ensure computational tractability, each series is subsampled (via strided slicing) to contain at most 1000 time steps.
- **Series Selection:** For each dataset, a maximum of 50 time series are selected at random to control the number of examples used during training.

Function name	Formula	a -range
sin	$\sin(x)$	[0.5, 6.0]
linear_sin	$0.2 \cdot \sin(x) + \frac{x}{450}$	[0.5, 6.0]
sinc	$\text{sinc}(x)$	[0.05, 0.2]
xsine	$\frac{x-30}{50} \cdot \sin(x - 30)$	[0.5, 1.3]
beat	$\sin(x) \cdot \sin\left(\frac{x}{2}\right)$	[0.1, 6.0]
gaussian_wave	$e^{-\frac{(x-2)^2}{2}} \cdot \cos(10\pi(x - 2))$	[0.01, 0.1]
random	$\mathcal{U}(-1, 1)$	[0.0, 1.0]

Table 6: Functions used to generate time series data, their mathematical forms, and the range of the time-scaling parameter a .

- **Subsequence Generation:** From each selected series, we extract multiple training subsequences of varying lengths $n \in \{3, 5, 7, 10, 13, 15, 17, 20, 25, 30, 35, 40\}$. For each length, we generate up to 10 training subsequences, sampled at different offsets.

B.3.3 DARTS DATASET

- **Data Loading:** We use the data from the Darts dataset, available from the `darts` python package. We use the following sub-datasets: `AirPassengersDataset`, `AusBeerDataset`, `GasRateCO2Dataset`, `MonthlyMilkDataset`, `SunspotsDataset`, `WineDataset`, `WoolyDataset`, `HeartRateDataset`.
- **Resampling:** To ensure computational tractability, the series for the datasets `SunspotsDataset` and `HeartRateDataset` are subsampled (via strided slicing).
- **Series Selection:** For each dataset, all available time series are selected.
- **Subsequence Generation:** From each selected series, we extract multiple training subsequences of varying lengths $n \in \{3, 5, 7, 10, 13, 15, 17, 20, 25, 30, 35, 40\}$. For each length, we generate up to 10 training subsequences, sampled at different offsets.

B.3.4 LLM GENERATION SETTINGS

We generate the LLM hidden states from LLMs available through the `huggingface` library. For each of the input time series, we obtain 100 samples from the LLM, generated auto-regressively, as well as the greedy generation. During generation for Llama-2-7b, as its tokenizer encodes each digit separately, we narrow down the generated tokens to just the digits, decimal point and $+/$ – signs. For obtaining the random samples, we use `temperature=1.0` and `top_p=0.95`. We exclude from the final dataset samples for which generation failed at least once (i.e. the obtained generation was not a valid number), such that each time series in the final dataset has exactly 100 LLM samples.

B.3.5 TRAIN-VALIDATION-TEST SPLIT

Before training, we split each of the datasets in 80% training dataset, 10% validation dataset and 10% test dataset. Unless otherwise stated (in the generalisation experiments), these splits are random. We do not apply any scaling or transformation to either the LLM embeddings (which are inputs to our model) or the outputs.

B.4 DETAILS OF THE PROBING MODELS

Our magnitude-factorised regression models, used both for the purpose of point prediction and for the purpose of quantile regression have the hyperparameters as reported in Table 7 and Table 8. We train the model using the ADAM optimiser.

We also report any deviations from these values for specific experiments:

- **Figure 2.** `max_mag = 4`.
- **Table 1.** `lr = 10-4`, `max_epochs = 2000`.

972	Hyperparameter	Description	Default Value
973	min_mag	Minimum exponent for base-10 magnitude scaling (as used by f_{order})	-3
974	max_mag	Maximum exponent for base-10 magnitude scaling	$\log_{10}(D_{\text{scale}})$
975	beta	Weight for regression loss component	10.0
976	K	Top-K exponents taken into consideration (see Equation 4)	3
977	hidden_layers	Number of hidden layers in feature extractor	1
978	hidden_dim	Dimensionality of hidden feature representation	512
979	activation_func	Activation function used in the MLP	GELU
980	hidden_states_list	A list of the hidden states \mathcal{H} to use as input	[25, ..., 32]

Table 7: Model-specific hyperparameters for the magnitude-factorised models.

989	Hyperparameter	Description	Default Value
990	learning_rate	Learning rate for the optimizer	10^{-5}
991	weight_decay	L2 regularization weight	1.0
992	scheduler_step_size	Learning rate scheduler step size	100
993	scheduler_gamma	Learning rate scheduler step size	0.5
994	batch_size	Number of samples per training batch	1024
995	max_epochs	Number of training epochs	500
996	patience	Patience for the early stopping	200

Table 8: Optimizer and training-related hyperparameters.

- **Figure 6.** $\text{min_mag} = 10$ $\text{max_mag} = 10$.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 COMPARISON AGAINST VANILLA MLP PROBE

In Table 9, we compare our magnitude-factorised probe with a vanilla MLP trained on the same hidden representations. Both models use a single hidden layer of size 512 and a learning rate of 10^{-5} . Evaluation is conducted on Llama-2 using the synthetic time series dataset with scale $D_{\text{scale}} = 1.0$, which provides the narrowest range of magnitudes among those we study. Even in this relatively simple setting, the magnitude-factorised probe achieves substantial improvements over the baseline, reducing MSE by 41%, 33%, and 42% for greedy, mean, and median predictions respectively. These results highlight the importance of probe design: a negative finding with one architecture does not necessarily imply that information is absent from the LLM’s hidden states—it may simply reflect the limitations of the probing model.

Table 9: MSE of the values predicted with the magnitude-factorised (MFP) model vs. a vanilla MLP.

1022	predicted value	MFP probe (ours)	MLP probe (log-scaling)	MLP probe (no log-scaling)
1023	greedy	0.0150	0.0400	0.0255
1024	mean	0.0061	0.0091	0.0092
1025	median	0.0058	0.0101	0.0100

1026 C.2 RESULTS WITH OTHER LLMs
1027

1028 We provide results for the key experiments in the main paper with more LLMs. As the tokenizers of
1029 models outside of the Llama-2 family do not encode digits separately, we *do not* narrow down the
1030 generated tokens during decoding. For obtaining the random samples, we use `temperature=1.0`
1031 and `top_p=0.95`. We perform repeated sampling until for each time series, we obtain 100 LLM
1032 samples $y_i^j \sim p_{\text{LLM}}(\cdot | \mathbf{x}_i)$.

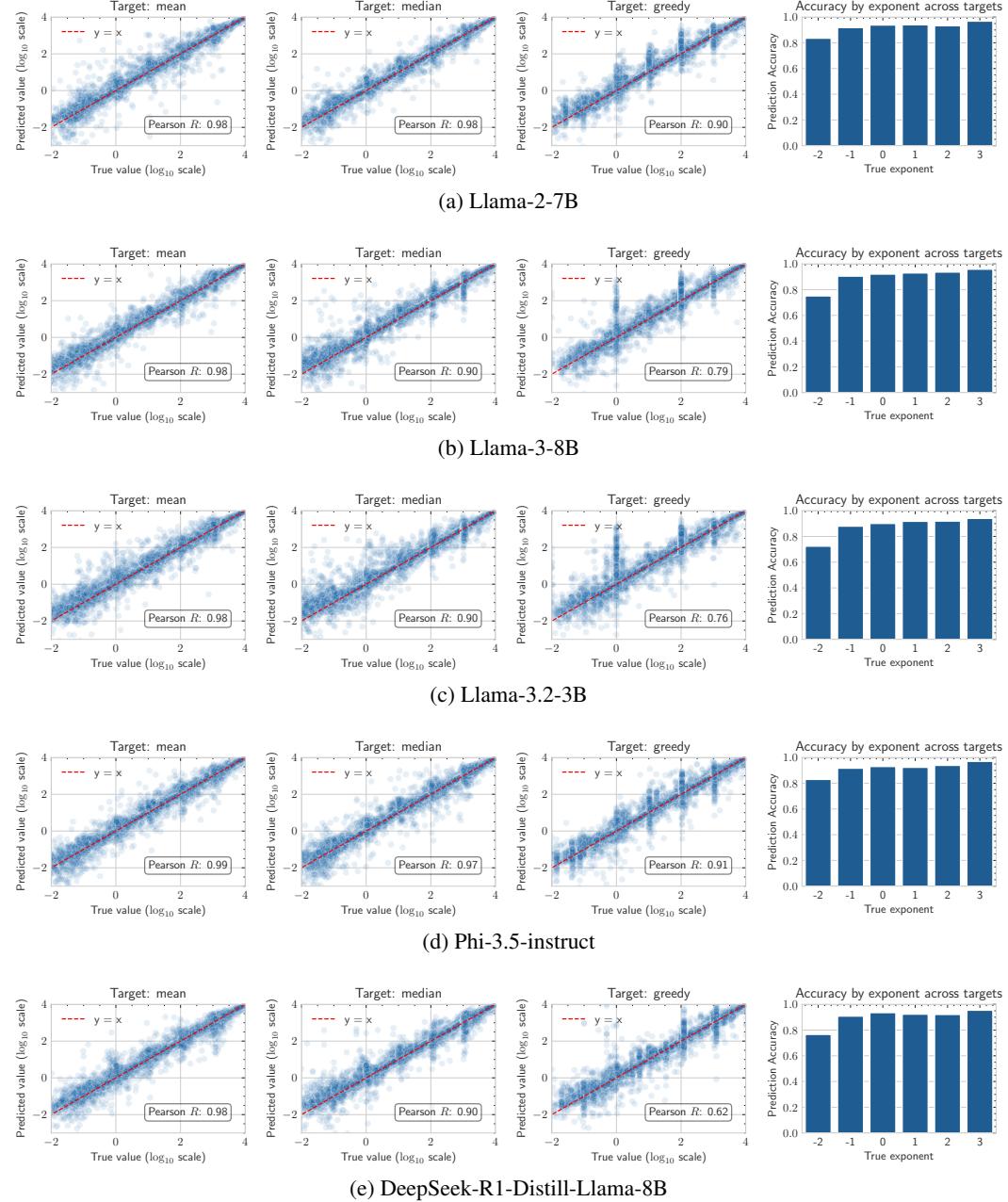


Figure 7: Predicted vs. sample mean, median and greedy prediction (on \log_{10} scale). Results analogous to Figure 2.

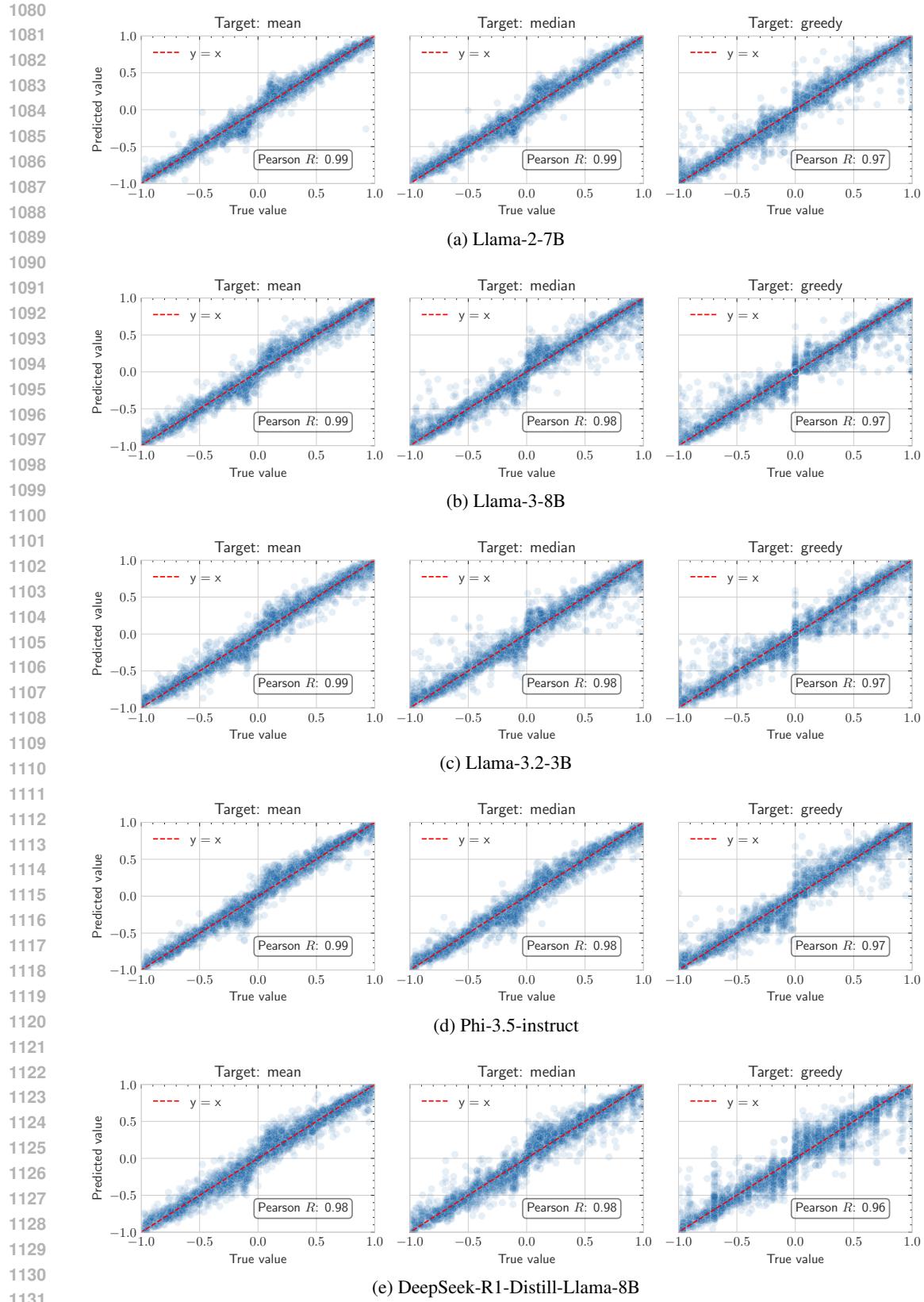


Figure 8: Predicted vs. sample mean, median and greedy prediction on the dataset with scale $D_{\text{scale}} = 1.0$.

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

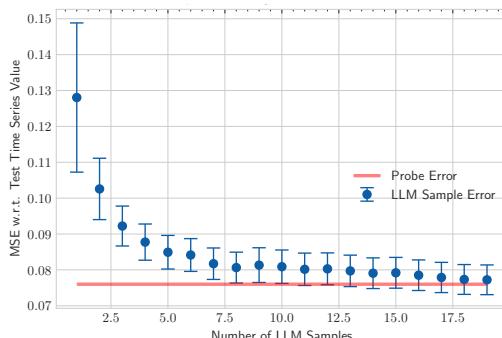
1183

1184

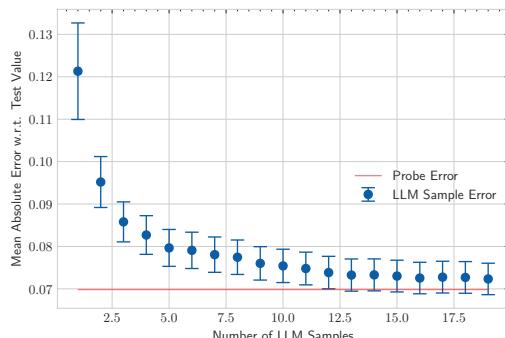
1185

1186

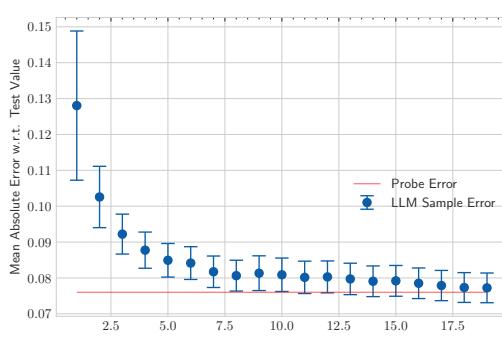
1187



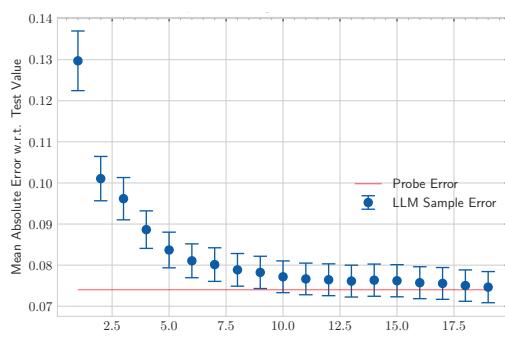
(a) Llama-2-7B



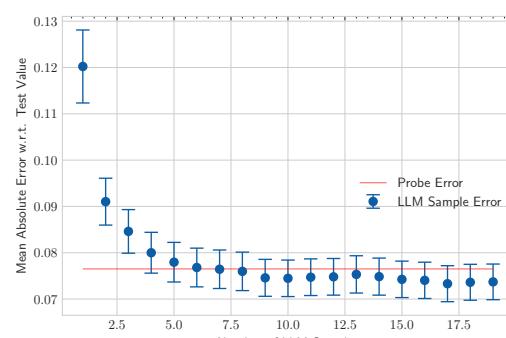
(b) Llama-3-8B



(c) Llama-3.2-3B



(d) Phi-3.5-instruct



(e) DeepSeek-R1-Distill-Llama-8B

Figure 9: Sample efficiency on the task of one step ahead predictions. Results analogous to Figure 4.

1188
 1189
 1190
 1191
 1192 Table 10: MSE for the predictions on the dataset with scale $D_{\text{scale}} = 1.0$, reported for all models.
 1193 Results analogous to Table 1.

(a) Llama-2-7B					(b) Llama-3-8B				
y_i^* , target	\hat{y}_i^* (ours)	\bar{x}	\bar{x}_i	$x_{i,n}$	y_i^* , target	\hat{y}_i^* (ours)	\bar{x}	\bar{x}_i	$x_{i,n}$
* = mean	0.006	0.256	0.035	0.085	* = mean	0.007	0.253	0.047	0.093
* = median	0.006	0.260	0.041	0.087	* = median	0.012	0.264	0.061	0.106
* = greedy	0.015	0.273	0.065	0.109	* = greedy	0.016	0.255	0.072	0.122

(c) Llama-3.2-3B				
y_i^* , target	\hat{y}_i^* (ours)	\bar{x}	\bar{x}_i	$x_{i,n}$
* = mean	0.007	0.260	0.0484	0.092
* = median	0.013	0.271	0.062	0.104
* = greedy	0.018	0.267	0.075	0.119

(d) Phi-3.5-mini-instruct					(e) DeepSeek-R1-Distill-Llama-8B				
y_i^* , target	\hat{y}_i^* (ours)	\bar{x}	\bar{x}_i	$x_{i,n}$	y_i^* , target	\hat{y}_i^* (ours)	\bar{x}	\bar{x}_i	$x_{i,n}$
* = mean	0.008	0.248	0.042	0.100	* = mean	0.009	0.247	0.045	0.110
* = median	0.012	0.252	0.047	0.104	* = median	0.013	0.253	0.056	0.120
* = greedy	0.020	0.270	0.060	0.113	* = greedy	0.020	0.264	0.069	0.135

1211 Table 11: Coverage of the CI for all models. Results analogous to Table 2.
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220

(a) Llama-2-7B					(b) Llama-3-8B				
α	50%	90%	95%	dataset	α	50%	90%	95%	dataset
1.0	52.0 ± 0.4	90.9 ± 0.3	95.5 ± 0.2		1.0	54.4 ± 0.6	90.4 ± 0.4	94.7 ± 0.3	
10.0	52.7 ± 0.5	91.3 ± 0.3	96.1 ± 0.2		10.0	53.8 ± 0.6	91.8 ± 0.4	96.3 ± 0.2	
1000.0	51.4 ± 0.3	90.7 ± 0.3	95.7 ± 0.2		1000.0	51.7 ± 0.4	91.2 ± 0.3	96.0 ± 0.2	
10000.0	48.2 ± 0.3	90.5 ± 0.2	95.4 ± 0.2		10000.0	50.8 ± 0.4	91.1 ± 0.3	95.3 ± 0.2	

(c) Phi-3.5-mini-instruct				
α	50%	90%	95%	dataset
1.0	49.9 ± 0.5	89.3 ± 0.4	94.3 ± 0.3	
10.0	50.9 ± 0.5	89.3 ± 0.4	95.1 ± 0.3	
1000.0	47.6 ± 0.4	88.0 ± 0.3	93.3 ± 0.3	
10000.0	47.3 ± 0.3	87.3 ± 0.3	93.8 ± 0.2	

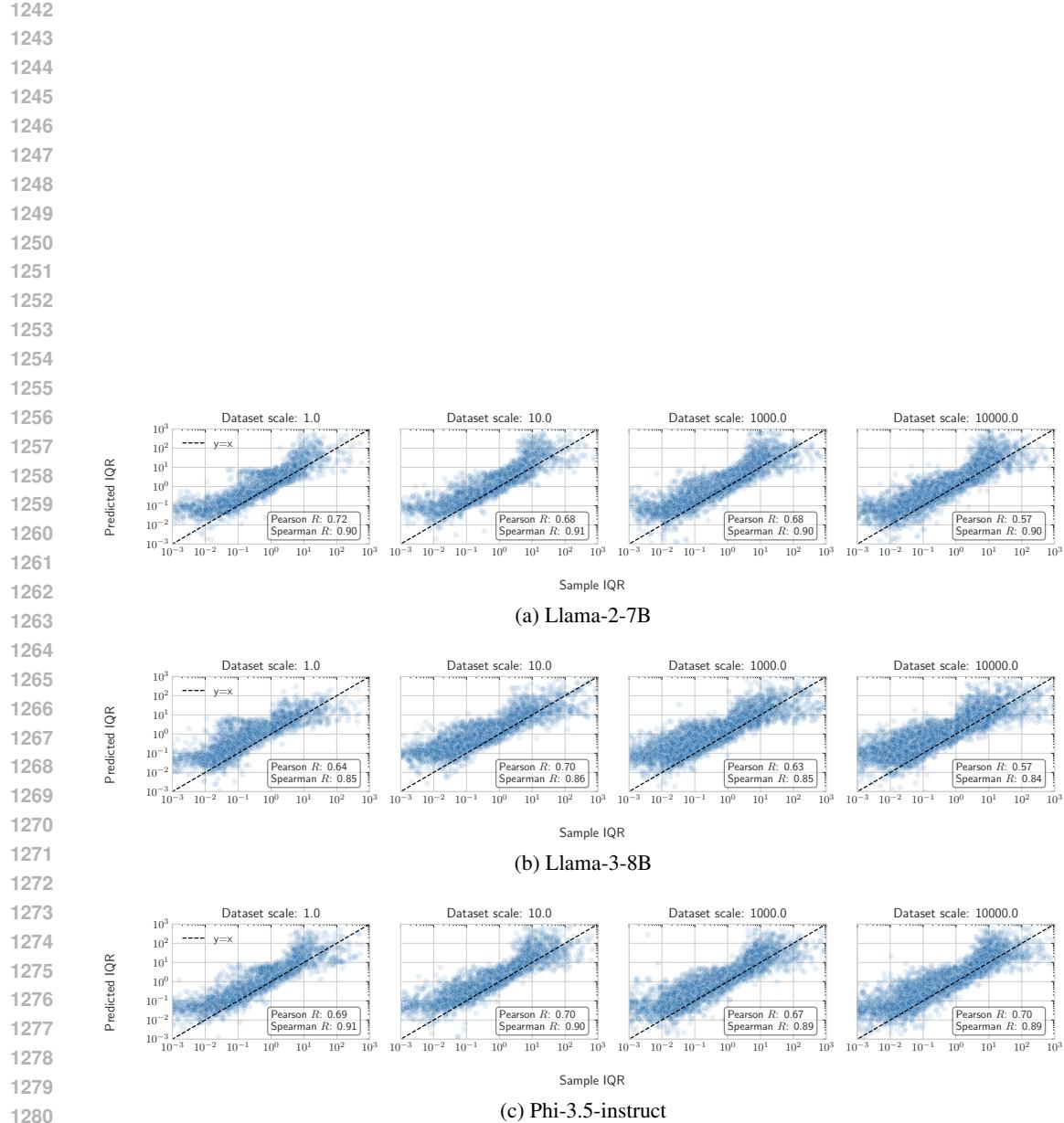


Figure 10: Predicted IQR vs. Sample IQR (median adjusted). Results analogous to Figure 3.

1296
1297

C.3 COMPUTATIONAL COSTS AND INFERENCE TIME

1298

Crucial for understanding the validity of our approach is the comparison of the inference cost of the proposed probe vs. autoregressive sampling. Ignoring the cost of encoding the input time series with the LLM (as this cost is shared by both methods) we note that decoding each token with the 7B-parameter LLMs (such as Llama-2) requires $14B$ FLOPS, which means that, for a model with digit-by-digit tokenization obtaining n samples of a 5-digit number requires $n \times 70B$ FLOPS. In comparison, using our magnitude-factorised probe (which we assume uses 8 concatenated layers of the LLM and thus has input of size $8 \times 4,096 = 32,768$, 1 hidden layer of dimension 512, and a maximum of $k = 9$ separate heads corresponding to each of the magnitude bins) incurs the constant cost of $32,768 \times 512 + 512 \times 9 \approx 17M$ FLOPS for the magnitude classification model and $32,768 \times 512 + 512 \times 1 \approx 17M$ FLOPS for the regression model, so $34M$ parameters in total per one statistic. If we wanted to predict, say, 7 different quantile values, we would need 7 models of the same size, requiring $234M$ FLOPS. Thus, the required number of computations for using the probe vs. generating even 1 LLM sample is far lower.

1300

We further validate these estimates by comparing the times needed to generate n samples from the LLM vs. the time needed to obtain a single median estimate from our probe. We run the experiments using the Llama-2-7B model, averaging the results over 100 random time series samples consisting of 20 data points each. We run all the timing experiments on one instance of a H100 GPU. In this setting, inference with a trained probe model (including the process of obtaining the hidden representation of the LLM) takes 0.034 ± 0.006 s. We include the times required for obtaining n LLM samples in Table 12. These results confirm that even generating a single sample via autoregression is roughly $47\times$ slower than running the full inference pipeline with our probe.

1302

1303

Table 12: Average time to generate n LLM samples.

1304

1305

n samples	1	5	10	20	50	100
time (s)	1.59 ± 0.08	1.62 ± 0.07	1.71 ± 0.07	1.83 ± 0.07	2.35 ± 0.08	3.28 ± 0.08

1306

1307

C.4 LAYER ABLATION STUDY

1308

1309

In this section, we ablate the choice of the layers \mathcal{H} used by our probing models by training on individual layers of the LLM, letting $\mathcal{H} = \{\ell\}$ for each $\ell \in [16, \dots, 32]$. Our results provide further insights into how information about the LLM’s numerical predictive distribution is spread across the layers.

1310

1311

Figure 11 shows the results for the probing models from section 2. For the target of the greedy LLM prediction, we see that the most relevant information is contained in the last layers of the LLM, although generally the variations between the layers are not that significant. We further observe that concatenating information from across different layers leads to significant performance improvements. For the mean target, which is predicted with a higher accuracy, we observe that information relevant for predicting the magnitude and the scaled value of the target is distributed less uniformly, concentrating in the 30th layer.

1312

1313

Table 12 shows analogous results for the quantile regression model from section 3.2. The observed pattern for median prediction is similar to the one of mean prediction from Figure 11. In terms of the uncertainty information, we find it to be more uniformly encoded across the layers and again that concatenating information across several layers leads to an improved probing performance.

1314

1315

C.5 MEAN ABSOLUTE LOSS PER QUANTILE

1316

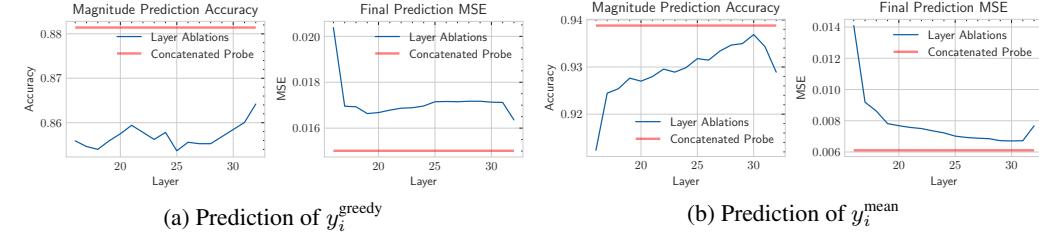
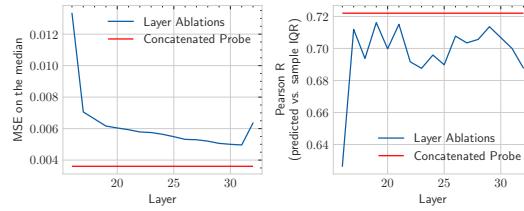
1317

In addition to the results presented in Section 3, we report the mean absolute error between the empirical quantile \tilde{q}^s and the predicted quantile \hat{q}^s for all quantile levels. Results are shown in Table 13. We observe that the absolute errors are higher for quantile levels further from the median.

1318

1319

1320

1350
1351
1352
1353
13541355
1356
1357
1358
1359
1360
1361
1362
Figure 11: *Layer ablation for Llama-2-7B on the probing model from section 2.*1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
13791380
1381
1382
Figure 12: *Layer ablation for Llama-2-7B on the quantile probing model from section 3.* MSE on
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403Table 13: *Quantile regression – mean absolute error per quantile.* Values represent the mean absolute error between the empirical quantile \hat{q}^s and the predicted quantile \hat{q}^s for all quantile levels.

quantile level τ^s	0.025	0.05	0.25	0.5	0.75	0.95	0.97
dataset							
1.0	0.58	0.40	0.16	0.05	0.15	0.40	0.60
10.0	3.12	2.16	0.45	0.28	0.49	1.91	3.26
1000.0	111.16	61.54	14.83	12.10	14.30	46.04	115.71
10000.0	843.11	380.06	119.80	100.41	118.90	483.33	1172.27