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ABSTRACT

Large Language Models (LLMs) have recently been successfully applied to re-
gression tasks—such as time series forecasting and tabular prediction—by lever-
aging their in-context learning abilities. However, their autoregressive decod-
ing process may be ill-suited to continuous-valued outputs, where obtaining
predictive distributions over numerical targets requires repeated sampling, lead-
ing to high computational cost and inference time. In this work, we inves-
tigate whether distributional properties of LLM predictions can be recovered
without explicit autoregressive generation. To this end, we study a set of re-
gression probes trained to predict statistical functionals (e.g., mean, median,
quantiles) of the LLM’s numerical output distribution directly from its internal
representations. Our results suggest that LLM embeddings carry informative
signals about summary statistics of their predictive distributions, including the
numerical uncertainty. This investigation opens up new questions about how
LLMs internally encode uncertainty in numerical tasks, and about the feasi-
bility of lightweight alternatives to sampling-based approaches for uncertainty-
aware numerical predictions. Code to reproduce our experiments can be found at
https://anonymous.4open.science/r/quess_l1lm-811B/l

1 INTRODUCTION

With the increasing capabilities of LLMs, a growing body of work has explored their use for structured
data prediction—most notably for tabular data regression (e.g. Requeima et al.||2024; |Hegselmann
et al.} 2023 [Shysheya et al., 2025} Vacareanu et al.,|2024) and time series forecasting (e.g. Gruver
et al., [2024; Xue & Salim, [2023). These studies demonstrate that LLMs can act as competitive
regressors, even without task-specific fine-tuning. This advantage is especially pronounced in low-
data regimes, where LLMs can leverage their pre-training, prior knowledge, and capacity to condition
on auxiliary textual context to match or outperform specialised models. We provide a more detailed
overview of related works in Appendix [A]

However, issuing numerical predictions with LLMs requires sequential autoregressive generation—
real-valued numbers typically span multiple tokens requiring multiple forward passes of the input
through the LLM to generate a single prediction. This makes inference costly and time-consuming,
especially when many samples are needed—for example, to quantify the uncertainty (Gruver et al.,
2024; |Requeima et al., 2024)) or improve prediction accuracy (Requeima et al., 2024).

This raises a natural question: is there a way of eliciting the LLM’s predictive distribution without
performing costly autoregressive number generation? This question is non-trivial: generating a real
number requires determining its order of magnitude, including decisions about decimal placement
and termination—choices that are made only after several tokens have already been generated. Our
work therefore contributes to exploring the broader question of how LLMs ‘plan’ their outputs before
generation begins (Lindsey et al., 2025).

In this work, focusing on the problem of time series forecasting specifically, we explore to what extent
the LLM’s internal representation of the input sequence can be used to reconstruct its numerical
predictive distribution of the next number, requiring just a single pass through the LLM. Concretely,
we explore the following three questions:
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Figure 1: Illustration of this paper’s goals and methodology.

Do LLMs encode the next number they intend to generate? (Section[2) We begin by examining
whether LLM’s internal representations of the input series encode sufficient information to recover
point predictions—specifically, the greedy output, mean, and median of the predictive distribution.
To test this, we develop a magnitude-factorised regression probe that separates prediction into two
components: a coarse magnitude classification and a scale-invariant value regression, such that our
model can effectively learn to predict numbers of varying orders of magnitude. Trained on LLM
embeddings from synthetic time series data, our probe accurately predicts numerical targets across
data with varying orders of magnitude..

Can we elicit the uncertainty of the LLM’s predictive distribution? (Section[3) We then ask
whether uncertainty information is also captured in LLM’s hidden states. Using a magnitude-
factorised quantile regression model, we train probes to predict the quantiles of the LLM’s output
distribution, approximated via sampling. The resulting models accurately recover the interquartile
range and produce well-calibrated confidence intervals.

What is the practical value of our findings? (Sections[d]and[5) The ability to recover numerical
predictions directly from LLM embeddings holds the potential to bypass auto-regressive sampling—
offering savings in inference time and computational costs, which we demonstrate empirically.
However, for such probes to be practically useful, they must generalise beyond the specific conditions
under which they were trained. We therefore evaluate whether a single probing model can be deployed
across varied settings without retraining. First, we test generalisation to unseen time series lengths.
Second, we assess generalisability of our previous results to real-world data. We investigate whether
probes trained on real-world data generalise across different sub-domains and whether probes trained
on synthetic data generalise to real-world data. We demonstrate that, while some drop in calibration
occurs on out-of-distribution datasets, our probes demonstrate encouraging generalisation abilities,
showing the universality of LLM’s representations of numerical quantities.

Our findings provide new insights into the numerical capabilities of LLMs: much of the “reasoning”
underlying numerical predictions appears to be encoded in the model’s internal representations of
the input, prior to token-level decoding. This raises questions whether auto-regressive sampling
is necessary to extract real-valued outputs from LLMs, and opens the door to developing more
efficient, single-pass approaches. By showing that both point estimates and uncertainty can be
reliably extracted from hidden states, our work suggests a lightweight, general-purpose strategy for
deploying LLMs in regression tasks—particularly in settings where computational efficiency and
uncertainty estimation are essential. We hope these results motivate further study of how LLMs
internally represent numerical quantities, and how this information can be surfaced for practical
downstream use.

2 Do LLMsS ENCODE THE NEXT NUMBER THEY INTEND TO GENERATE?

LLMs are trained for next-token-predictions. Thus, as a single number typically spans multiple tokens,
obtaining a complete numerical prediction from the LLM requires repeated auto-regressive sampling.
This can be computationally expensive in number-heavy tasks, particularly when one would like to
obtain repeated samples for the purpose of uncertainty estimation. To mitigate this overhead, we
ask: to what extent is the full predicted number—beyond just its leading digit—already encoded in the
LLM'’s internal representation, prior to any token-by-token generation? If such information can be
reliably extracted, one could sidestep autoregressive generation altogether. However, this possibility
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is not trivial: critical aspects of number generation, such as the placement of the decimal point or
number termination, which determine the order of magnitude of the number, often occur late in the
decoding process, particularly for large magnitudes.

2.1 METHOD

Objective. Let x = [z1,...,x,] be a sequence of numbers (e.g., an equally-spaced time series).
Given x, a language model induces a predictive distribution pym(- | x) over the next value 2, 1.
In this section, we investigate whether the internal representations of the LLM encode sufficient
information to predict this distribution’s key statistics. Specifically, we aim to train independent
probing models to recover: (a) the LLM’s greedy prediction, (b) the mean, and (c) the median of
pm- The empirically estimated scalar statistics of the LLM’s predictive distribution are our targets
for prediction based on the LLM’s hidden representation of the input series x.

LLM Representation. Following Gruver et al,| (2024)), we serialise an input series x to text as
“x1,x9,x3,...,%y, . We do not apply any scaling to the time series before serializing the inputs.
This is important, as LLLMs often contain contextual prior knowledge and scaling of the original time
series may prohibit the LLM from using this prior knowledge effectively. From a pre-selected set
of N transformer layers denoted by #, we extract the final token’s hidden state from each layer,
obtaining a set of embeddings {hz[—l] € Rifnoaet ; ¢ € ’H} We concatenate these embedding vectors
to form a single input for the probe:

e := concat (hy[—1]),,, € R%w, )

where dinput = dmodet X |#|. The choice of the hidden layers # is a hyperparameter of our model.
Throughout the main body of this paper we use the Llama-2-7B model, for which dpege; = 4096, and
we set H as the last 8 layers. Experiments with other LLMs can be found in Appendix [C] alongside
an ablation study on the choice of layers.

Datasets. We use synthetically generated datasets to evaluate probing performance. Each sequence
x is sampled from a set of functions exhibiting varied dynamics, including sinusoidal patterns,
Gaussians, beat functions, and random noise (see Appendix [B.3]for details). The generated time
series also vary in the length, n, and the level of noise, to ensure diversity of the input embed-
dings and target distributions. We generate variants of the dataset by scaling the value range from
[-1,1] to [-10, 10], [-1000, 1000], and [—10000, 10000]. We also combine the datasets of differ-
ent scales to obtain a larger dataset of approximately 70k unique sequences, balanced across the
different orders of magnitude. In this section, our training datasets take the following structure:

greedy

NN
{ (xi, e,y ymean, y;“ed‘a“) } o where N is the total number of examples in a dataset, y;
i=

mean y;“ed‘a“ the empirical mean and median, respectively,

the LLM’s greedy prediction given x;, and y; :
estimated based on N, samples from the LLM’s predictive distribution, {y7 }2=¢ ~ py(-x;). In

. 1=
our experiments we set Ny, = 100.

Probing Model. A significant challenge in training regression probes for LLM numerical predictions
is the wide spread of target magnitudes. Standard regression losses such as the MSE or transformation
techniques like log-scaling fail to provide stable gradients, prioritising optimisation of the largest
values only. To address this, we introduce a magnitude-factorised regression model that consists of
two components (both initialised as MLPs, see Appendix for hyperparameter details):

* forder Rédimu —y RM: 3 classifier predicting the order of magnitude of the target number.

* fya : Rémutl 5 R: aregressor predicting the target value scaled by the predicted order.

The magnitude classification component predicts the order of magnitude of a target value y*, where
* € {greedy, mean, median}. Formally, we define the order of magnitude of a scalar y as: m(y) =
[logyo(|y|)|. For a given input x and its corresponding representation e, foqer(€) outputs a vector of
logits of a set of pre-defined magnitude classes my € {Mmin, - - - , Mmax }. In our experiments, we
let myin and My ax be the minimum and maximum orders of magnitude in the training data. The
predicted vector of magnitude class probabilities (after softmax) is denoted as softmax( fya(€)) =

P(X) = [Prins -+ P
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The regression component predicts a scaled version of the target value, conditioned on all possible
magnitude classes (to allow the model to adjust its prediction based on the predicted magnitude). For

each magnitude class my € {Mmin, - - - , Mmax }, the corresponding scale is equal s, = 10™*. The
regression head takes as input the concatenation of the feature representation e and the scale factor sy,
outputting 7, = fva([e; s]) for each k. This produces regression outputs r = [F s« -+ s Frinpas )

for all magnitude classes. The conditional prediction for each magnitude order my; is then computed
as: Y = 1 - 10k,

Loss Function and Training. Our model supports a two-phase training procedure:

* Phase 1: Train only the classification head while freezing the regression head, using the classifi-
cation loss—standard cross-entropy loss for magnitude prediction:

Ny
1
Lorder = Fb § CI‘OSSED’EI‘OpyLOSS(p(Xi), m(y;k))a 2
=1

where NNy, is the batch size.

* Phase 2: Train only the regression head while freezing the classification head, using the regression
loss, i.e. the mean squared error between the predicted scaled value and the scaled target value:

N, 2
1 Yi A
Lya = N E_l <rm — W) ,  where 1h; = arg MAX P, (xi). 3)

Empirically, we find that the 2-stage training procedure performs better than joint training of the
order and value heads. To further provide justification for our approach, in Appendix [C.I]we compare
the performance of our magnitude-factorised probe against a vanilla MLP probe, showing significant
performance gains.

Expected Prediction. During evaluation of our model, we compute the expected prediction by
marginalising over the top-/ magnitude classes: Ex[§] = > c\op i Py, Uk, Where top-K refers to
the K magnitude classes with highest predicted probabilities (we set K = 3).

2.2 RESULTS

Order of magnitude. We first investigate to what extent our probing model can correctly recover
the order of magnitude of the number the LLM intends to generate. We train three separate models,
one for each of the mean, median and greedy targets. In this experiment, we use the combined
dataset consisting of time series with varying scales. The bar chart on the right hand side of Figure 2]
visualises that the classifier part of our magnitude-factorised model achieves above 90% accuracy in
predicting the exponent of the target values. Further, as visualised with the scatter plots on Figure
we find strong correlation between our probes’ final predictions and the target statistics.

Precision in generated digits. To further assess Table 1: MSE obtained when predicting the
whether the LLM’s internal representations encode  statistics of the LLM’s predictive distribution.
fine-grained information beyond the order of magni-
tude, we focus on the dataset with time series values i, target g; (ours) X Xi Zin
in the interval [—1, 1]. We report the mean squared s — mean 0.006 0.256 0.035 0.085
error (MSE) of our predictions in Table|l{and com- % =median 0.006 0.260 0.041 0.087
pare them against three simple baselines, using as the % =greedy  0.015  0.273 0.065 0.109
prediction: a) the average value of the entire training
dataset (X), b) the average of the series x; (X;), or ¢) the las value of the series x; (x; ). We also
provide scatter plots for this dataset in Appendix [C] Interestingly, among the three targets considered
(mean, median, greedy), the model performs worst when predicting the greedy output. We hypothe-
sise that this is because the greedy prediction is not an explicit function of the model’s predictive
distribution, but rather a by-product of the autoregressive decoding process, making it harder to
recover precisely from internal states.

Q These results show that the internal representations of a pre-trained LLM encode detailed
information about its intended numerical output—even before any tokens are generated. Our
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Figure 2: Predicted vs. true values of mean, median and greedy prediction, presented on log scale.
The probing model accurately recovers the number that the LLM intends to predict, indicating that
the internal representations encode the order of magnitude of prediction.

probing model accurately recovers not only the order of magnitude, but also fine-grained point
estimates of the mean, median, and the greedy output. This demonstrates that much of the
numerical reasoning performed by the LLM is already present in its hidden states, and may not
require the autoregressive decoding process.

3 CAN WE ELICIT THE UNCERTAINTY OF THE LLM’S PREDICTIVE
DISTRIBUTION?

In the previous section, we demonstrated that point estimates—such as the greedy prediction, mean,
and median—of an LLM’s predictive distribution pyim(- | x) can be recovered from its internal
representations without the need for performing auto-regressive sampling. Encouraged by these
findings, we now investigate whether we can go beyond point estimates to recover the uncertainty of
pLLM by approximating its distributional shape. Specifically, we attempt to recover multiple quantiles
of pLrm, enabling a coarse-grained reconstruction of its distribution function and providing an easy
way of estimating the confidence intervals for the LLM’s predictions.

3.1 METHOD

Quantile Regression. Since the distribution ppy may be multi-modal and non-Gaussian, we rule
out parametric approximations. Instead, we adopt quantile regression, which enables direct estimation
of distributional shape without strong assumptions about its form. Let Q = [71, ..., 7] be a list of
target quantile levels. For each 7° € [0, 1], we denote the predicted quantile value as ¢° . We train
the quantile predictor using the pinball loss (Koenker & Hallockl [2001)), computed with respect to
LLM samples y] ~ prim(- | x;). For a single quantile level 7, predicted quantile value § and a single

LLM sample yf , this loss function is defined as:
PinballLoss(7, §, ¥/ ) := max (T(yf —q),1—-7)(G— yf)) . 4)

Probing Model. As in section 2] we use a magnitude-factorised model to address the challenge
of scale variance in numerical outputs. The quantile model takes an equivalent form to the one in
section [2] except we introduce S classification and regression heads, one for each quantile level,

denoted by f2.., and f:,, respectively. As previously, each classification head outputs a vector

of magnitude class probabilities p* = [p2. ,...,p%..]. The regression heads output vectors of
conditional scaled values r® = [r2, ....,r5 . |. For an order my the predicted conditional quantile

value is computed as ¢° = r}, - 10™*.

Datasets. We use the same datasets as in section[2] but with target values being the raw LLM samples

{yf };V:s‘i instead of the aggregate statistics.

Training. Unlike in the previous section, we use a joint training approach (2-phase training did not
yield any significant improvements in performance). We construct the total loss as the sum of the
cross-entropy losses for magnitude prediction and pinball losses for quantile regression:

S
L= Z( (S)rder + 8- Lial) ’ Q)
s=1
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Ny
1
srder = ﬁb ; CI‘OSSEHtI‘OpyLOSS (ps (Xi)v m(@f)) ’ (6)
1 Nb Nsa yj
Ls, = oo Z Z PinballLoss (73, e, 1om(q)> . (7
=1 j=1

In the above, ¢; denotes the empirical quantile value derived from the LLM samples {y } ;V:‘{ In our
experiments, we use a set of S = 7 quantile levels: Q = [0.025,0.05,0.25,0.5,0.75,0.95,0.975].
This choice of allows us to easily estimate: the median, the interquartile range (IQR), as well as the
90% and 95% confidence intervals.

3.2 RESULTS

IQR Prediction. To investigate whether the LLM’s internal representations encode information
about the spread of its predictive distribution, we estimate the interquartile range (IQR) using the
predicted 25th and 75th percentiles. As the IQR is sensitive to scale, we normalise it by the predicted
median, and similarly normalise the empirical IQR from LLM samples using the sample median.
If the probe captures uncertainty faithfully, we should observe a monotonic relationship between
the predicted and empirical (normalised) IQRs. Scatter plots in Figure 3] show a strong correlation
between predicted and sample-based IQRs, with points aligning well on the z = y. This demonstrates
that our probing model is able to infer distributional spread from the LLM’s hidden states.
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Figure 3: Predicted vs. sample-based IQR (both median-normalised). The model accurately tracks
the variability of the LLM’s output distribution.

Confidence Interval Coverage. Next, we evaluate Table 2: Coverage of the predicted confidence
whether the predicted quantiles yield calibrated con- intervals. Values denote empirical coverage
fidence intervals. Given a desired confidence level (%) + standard error.

a and its associated interval C(«) predicted by the

probe, we compute the empirical coverage by check- a 50% 90% 95%
ing what fraction of LLM samples fall within the 520404 909+03 955+02
predicted interval. We expect that: 10.0 327+05 913+03 96.1+02
1000.0 51403 90.7+03 957%0.2
a=Eyp(x [H{y € C(a)}] 10000.0 482+03 90.5+02 954+0.2
| N ‘
~ N ; 1{y’ € C(«)}, wherey’ ~ prim(-|x).

Table 2] reports the empirical coverage for 50%, 90%, and 95% intervals across datasets of varying
scale. In all cases, empirical coverage closely matches the target level, indicating that the quantile
probe is well-calibrated.

Q Our findings provide strong evidence that the uncertainty of the LLM’s predictive distri-
bution is encoded in its internal activations and can be effectively elicited using a quantile
regression probe. The probe is capable of predicting meaningful spread measures, producing
well-calibrated confidence intervals that match the empirical coverage. These results suggest
that LL.Ms internalise rich distributional information during generation, which can be accessed
and approximated efficiently via probing. This opens up new opportunities for downstream
applications that rely on uncertainty quantification—such as safe decision-making, model-based
control, and probabilistic reasoning—while avoiding the overhead of autoregressive sampling.
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4 EFFICIENCY AND ACCURACY

In this section, we further investigate the practical applicability of probing models from the perspective
of computational and inference time efficiency as well as accuracy with respect to the ground truth
time series value. Throughout this section, we focus on the scalar probing models from section 2}

4.1 ERRORS WITH RESPECT TO THE GROUND-TRUTH

Table 3: MSE of predicted values vs. the In this experiment, we compare the error of our probes’

ground truth x; 1. predictions with respect to the ground-truth next value
- Z; n+1 of the input time series x; = (T41,...,Tin).

predicted value  probe (§;) LLM(y;)  We present the comparison between the error achieved

* = greedy 0.0652 0.0668 by using the probe trained to predict the mean, me-

* — mean 0.0562 0.0555 dian and greedy statistics of the LLM distribution

* = median 0.0561 0.0553 (€prope = (97 — ®in+1)?]) vs. by using these statis-

tics directly (¢f 1y = E [(y} — i,n41)?])- For a better
— — sense of scale, we additionally present the errors using
X Xi Tin Gp the simple baselines introduced in section[2.2] as well
0.3454  0.0878 0.1226  0.0717 as the error of the mean prediction of a GP model fit
to the input time series x;. The MSE values of the
predictions with respect to the ground-truth next value of the time series are presented in Table [3]
Results were obtained for the probing models from section [2.2]and the dataset with scale 1.0. We
make two key observations. First, consistent with prior work (Requeima et al., 2024])), the LLM’s
median prediction achieves the lowest error relative to the ground truth. Second, our probe attains
errors comparable to those obtained by sampling directly from the LLM. This places its performance
in context: the probe captures enough information from hidden states to match the LLM’s own
accuracy on the one-step-ahead prediction task.

4.2 SAMPLE EFFICIENCY AND COMPUTATIONAL COSTS

We further compare the error of the probe in pre-
dicting x; 41 vs. using the mean prediction of the
LLM using N empirical samples. Figure {4 illus-
trates this on a dataset with scale 1.0. The hori-
I - zontal line shows the error _attained by our probe,

I Probe Error - emem — | [(§™ — ;,,41)%] and the blue points with

®  LLM Sample Error 7 probe . '
. error bars show the error attained when using N LLM

) ,
IIEIEIEEEM samples, e (N) = E {(y?‘eanw — xi’n+1)2:| , where

. N j
0 5 10 15 20 %y is the mean of N LLM samples: {y]}}L, ~

Number of LLM Samples .. .
prim(+|x;). Our probe outperforms empirical sampling
Figure 4: The probe achieves comparable for all NV up to 20-25 samples, demonstrating that a
error to using around 20-25 LLM samples probe of this kind can serve as a computationally ef-
on the one step ahead prediction task. ficient surrogate for making numerical predictions.

[y

n
[N
I

t. Test Time Series Value

©0.10

MSE w.r
=)
3

For a detailed discussion regarding the computational costs comparisons of LLM sampling and
inference with our probe, see Appendix [C.3]

5 GENERALISATION

Finally, we investigate the generalisation capabilities of our approach along several axes including
context length generalisation, applicability to real-world data, and cross-dataset generalisation. As the
process of training a probe can be costly, such generalisation capabilities are important for real-world
applications, if we would like to use a pre-trained probe on new datasets with different distributional
properties. Throughout this section, we focus on the quantile probing models from section
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Figure 5: Generalisation to unseen context lengths. A probe trained on a restricted context length
range (Restricted) exhibits greater deviation in empirical coverage outside its training range.

5.1 GENERALISATION TO UNSEEN CONTEXT LENGTHS

First, we ask whether a probe trained on a fixed range of input sequence lengths generalises to longer
or shorter contexts. We train and compare against each other two models:

* Base: Trained on input sequences x with lengths in range [3, 40].
* Restricted: Trained only on input sequences x with lengths in range [10, 20].

At test time, we evaluate both models on contexts shorter than 10 and longer than 20. We assess
generalisation by measuring the empirical coverage of predicted confidence intervals, as defined in
section[3.2} Figure[5]shows results on the dataset with the scale factor 1.0.

We observe that while both models achieve reasonable calibration, the Restricted model exhibits
slightly greater deviations from the nominal coverage, particularly for context lengths further from
the training distribution. These results suggest that the probe generalises to novel context lengths, but
training on a wider context ranges should be beneficial for a more robust generalisation.

5.2 APPLICABILITY TO REAL-WORLD DATA Table 4: Coverage of the CI intervals on previ-
ously unseen testing inputs.

Thus far, our analysis has focused on synthetic data.
In this section, we evaluate whether our probing a 50% 90% 95%

model can be trained successfully on real-world Model
datasets, and how well predictions can generalise  Real (all) 48.8+0.1 88.5+0.1 94.3+0.1

across different types of input series. Real (5 fold) 434+02 82.1+02 89.4+0.2
Synth 302+£03 67.7+x04 773+x04

To assess this, we construct a dataset using time
series from the Darts (Herzen et al.|[2022)) and Monash (Godahewa et al.|[2021])) collections. Following
the same format as in our synthetic experiments, we generate LLM embeddings and samples for
approximately 45,000 distinct sequences across 31 sub-datasets (e.g., US Births, Air Passengers).
Furthermore, we also investigate an even stronger form of generalisation: from a model trained on
synthetic data only to testing on real-world data. For this purpose, we train the following models:

* Real (all): Trained on a random 80% of all sequences across all sub-datasets. The remaining
20% 1is held out for testing.

* Real (5 fold): We partition the dataset into 5 folds such that, in each fold, one model is
trained on 80% of the sub-datasets and evaluated on the remaining 20%. This ensures that each
sub-dataset appears in the test fold of exactly one out of 5 models trained.

* Synth: A model trained on the combination of the 4 synthetic datasets with scales 1.0, 10.0,
1000.0 and 10000.0.

At test time, the above models face increasingly stronger distribution shifts. In terms of generalisation
performance to previously unseen data distributions we can view the Real (all) model as an upper-
bound baseline for Real (5 fold) and Synth.

In Table[d] we report the average coverage of the CI across all training types. We observe that the
Real (all) model demonstrates good performance, with the empirical coverage of LLM samples
closely matching the expected coverage. The Real (5 fold) model demonstrates a slight downgrade
in performance. Interestingly, while the Synth model underperforms, it still demonstrates good
generalisation for some of the sub-datasets as we can see on Figure [§] This figure shows the
distribution of the absolute error of the predicted median vs. the median of LLM samples across
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Figure 6: Absolute error on the median across different sub-dataset. Comparison of generalisation
across models trained on different data.

all sub-datasets. The x-axis is sorted by increasing order of magnitude of the datasets defined by
the average of the median of LLM samples. We note that the sub-datasets in our collection cover
different ranges of values (with individual LLM samples varying in magnitude from 1072 to 10*3).
We suspect that this is the key reason why the probing model struggles to generalise across some
datasets.

Q Key Insights. The probing model exhibit some, albeit limited, generalisation across context
lengths. When applied to real-world datasets, the model achieves accurate empirical coverage and
demonstrates partial transferability to unseen data distributions. Cross-dataset generalisation is
possible, but challenged by large variation in scale and distribution.

6 DISCUSSION, LIMITATIONS AND FURTHER WORK

While most probing studies of LLMs focus on predicting discriminative behaviours in natural
language tasks, we instead target numerical prediction, which is particularly challenging due to high
variance in output magnitudes. To address this, we introduce novel probes that decompose the task
into magnitude classification and scaled value regression. Our findings show that LLMs encode rich
numerical information about their predictions before autoregressive decoding. Training lightweight
probes on hidden states allows us to recover both point estimates (mean, median, greedy outputs) and
uncertainty. This suggests that much of the LLM’s “reasoning” over numerical outputs occurs during
input processing, with autoregressive decoding primarily simply surfacing the predictions. Beyond
offering insight into how LLMs handle regression, our results also open a practical path: enabling
uncertainty-aware numerical prediction without the computational cost of repeated sampling.

Despite these promising results, several limitations remain. First, our approach requires access to
internal model activations, even though it does not involve fine-tuning the LLM itself. Second,
while our probing models exhibit some generalisation ability, they are still model-specific, requiring
retraining for each architecture or tokenization scheme. Third, training and evaluation requires
approximating the LLM’s predictive distribution via empirical sampling, which is an imperfect and
computationally expensive proxy.

Future work could extend this framework to a broader range of structured data and prediction tasks,
including univariate or multivariate regression and time-series forecasting, as well as multi-step
ahead prediction tasks. While in this work we focused on quantifying the spread of the LLM
distribution using quantile regression (which allowed us to obtain the estimates of the confidence
intervals), future models can consider using alternative methods for modelling LLLM’s predictive
distributions (e.g. Bayesian neural networks) which might offer a more fine-grained description of
the distribution. Further, a deeper investigation into the mechanistic basis of numerical encoding—
that is, how and where numerical quantities are represented across LLM layers—may also uncover
connections to known computational circuits or arithmetic operations. Finally, motivated by our
generalisation results, a key next step is the development of a universal probing model that can be
applied off-the-shelf to a given LLM across diverse tasks and domains.
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A RELATED WORKS

LLMs for Structured Data. With the advances in the performance of LLMs, several methods
have been proposed which utilise LLM’s pre-training and prior knowledge to make predictions on
structured data, namely fabular data (e.g. Requeima et al., 2024} |Hegselmann et al., [2023; |Shysheya
et al.,[2025; |Vacareanu et al.l[2024) and time series data (e.g.|Gruver et al.| 2024; |Xue & Salim, 2023).
These works show that LLMs can serve as competitive predictive models even without task-specific
fine-tuning. This is particularly evident in the small sample regime, where large-scale pre-training,
access to prior knowledge and ability to condition on textual information allows LLMs to match or
outperform the performance of purpose-built regressors.

Numerical Predictive Distributions of LLMs. When used as regressors, LLMs can provide not
only point estimates but also full predictive distributions, reflecting their stochastic nature. To
elicit continuous distributions over numerical outputs, |Gruver et al.| (2024) and [Requeima et al.
(2024) propose an autoregressive approach that generates logit values over discretised numeric
bins, which are then scaled to form a valid probability distribution. Access to such distributions is
crucial for downstream tasks requiring uncertainty quantification, including decision-making under
uncertainty and Bayesian optimisation. However, these methods are computationally intensive, as
they require multiple sequential queries to the LLM to construct a single distribution (e.g., p(123.4) =
p(1)p(2]1)p(3]|12)p(.|123)p(4]123.)). This motivates us to explore alternative approaches to eliciting
numerical predictive distributions from LLMs.

Discrepancy between number generation and auto-regression. As next-token predictors, LLMs
are not explicitly trained to understand the value of numbers. Due to their autoregressive nature,
early tokens encode digits before key decisions like decimal placement (that determine a number’s
magnitude) are made. This can lead to surprisingly poor performance on simple numerical tasks
(Yang et al.l 2019} |Akhtar et al) [2023} Zhou et al.| [2024; |Schwartz et al., [2024). To address
these limitations, several works have proposed alternatives to standard autoregressive decoding
for numerical predictions. For instance, |Golkar et al.| (2024) introduce a special [NUM] token,
replaced post-hoc with a continuous value predicted by a learned regression head—though this requires
retraining the model. Others (Singh & Strouse, 2024} |Schwartz et al., 2024)) investigate number-
specific tokenizations to improve numerical accuracy of LLMs. In contrast, we ask whether one
can bypass autoregressive decoding in pre-trained LLMs by directly reading out the predictive
distribution from the internal representations.
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Probing and LLMs. Probe classifiers, or simply probes, are models trained to uncover specific
properties directly from the intermediate representations of neural models |Alain & Bengio|(2018)). In
the context of LLMs, a growing body of works from the area of mechanistic interpretability studied
what kind of properties can be directly recovered from the internal representations of the LLMs
(without the need for decoding), and where within the internal representations they are located (e.g.
which layer). Amongst others, prior work has probed LLMs for properties such as factuality of the
generated responses |Obeso et al.| (2025);|Orgad et al.|(2025)); |Azaria & Mitchell| (2023)), semantic
entropy |[Kossen et al.| (2024)), toxicity Roy et al.| (2023);|Wen et al.|(2023), text sentiment Palma et al.
(2025)) and even training order recency Krasheninnikov et al.|(2025). While the previous works focus
primarily on training probe classifiers, in this work we focus on probe regressors, proposing our
magnitude-factorised probe as a method for handling targets with large range of continuous values
(spanning several orders of magnitude). By focusing on continuous values, we uncover that the
hidden states of the LLMs uncover much more fine-grained information than suggested by previous
works (which probe primarily for binary—or binarised—properties).

Complementary findings from mechanistic interpretability suggest that, even in purely textual settings,
LLM hidden states encode representations of tokens that the model is most likely to generate several
tokens ahead (Pal et al., 2023; Lindsey et al., [2025} |Belrose et al., 2025). In contrast to these works,
we show that similar results hold also when using LLMs for numerical predictions, allowing to
uncover not only the marginal distributions of tokens at each of the steps ahead, but also the properties
of the entire numerical predictive distribution of the LLM (mean, median, quantiles).

Probing numeracy in LLM embeddings. A number of prior works give evidence that simple
probing models can be used to learn numerical values encoded in the LLM embeddings. |Wallace
et al.| (2019) has shown that the value of a number can be successfully decoded from its encoded
word embedding (e.g., “71” — 71.0.). [Stolfo et al.| (2023) identified specific layers in LLMs that
store numerical content, recoverable via simple linear probes, while Zhu et al.| (2023 demonstrated
that intervening on these layers alters generated outputs. More recently, Koloski et al.|(2025) showed
that LLM embeddings can serve as effective covariates in downstream regression models.

Taken together, these results support the hypothesis that it should be possible to train probes that
efficiently approximate the numerical predictive distribution of the LLM, motivating our work.

B DETAILS OF THE EXPERIMENTAL SETUP

B.1 ASSETS AND LICENSING INFORMATION
The following existing assets were used to produce the experimental results:

¢ Monash dataset Godahewa et al.[(2021)

¢ Darts dataset Herzen et al.| (2022)

¢ Llama-2-7B model Touvron et al.| (2023

¢ Llama-3-8B model |Grattafior et al.| (2024)

¢ Llama-3-3B model |Grattafion et al.| (2024)

¢ Phi-3.5-mini model |Abdin et al.| (2024)

* DeepSeek-R1-Distill-Llama-8B model DeepSeek-Al| (2025)

B.2 COMPUTER INFRASTRUCTURE USED

Hardware. All experiments were conducted using 2 separate NC24rs_v3 instances and one
NC80adis_H100_v5 instance on the Microsoft Azure cloud platform. These instances are a part of
Azure’s GPU-optimised virtual machine series, with their hardware specifications summarised in
Table

Generating the synthetic dataset for one scaling factor Dy € {1, 10,1000, 10000} took no more
than 10h. Training one probe model took no more than 4h.
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Table 5: Azure Virtual Machine Specifications

Specification NC24rs_v3 NC80adis_H100_v5
vCPUs 24 80

System Memory (GiB) 448 640

GPU Model 4x NVIDIA Tesla V100 2x NVIDIA H100 NVL
GPU Memory (per GPU) 16 GiB 94 GiB

Total GPU Memory 64 GiB 188 GiB

GPU Architecture Volta Hopper

CUDA Version 11.x 12.x

CPU Model Intel Xeon E5-2690 v4 AMD EPYC Genoa
Local Storage 29TB 7.1 TB

B.3 DETAILS OF THE DATASETS
B.3.1 DETAILS OF THE SYNTHETIC TIME SERIES DATASET

We generate a synthetic dataset comprising time series derived from a family of parametric functions,
each evaluated over a fixed domain and perturbed with controlled noise. The purpose is to simulate
diverse temporal patterns, inducing varying levels of uncertainty in the LLM’s predictions.

We use a set of base functions defined over the interval = € [0, 60], discretised into 120 equidistant
points. The functions are summarised in Table[6] For each function and value of a, we generate a
clean series y = f(a - ), and then apply:

+ Additive Gaussian noise with variance o € {0.0,0.01,0.05,0.1}.
e Vertical scaling by b ~ U(0, Dycqte)
e Vertical translation by d ~ U (—Dscale, Dscate)

From each transformed series, we sample 10 different subsequences for each of the lengths n €
{3,5,7,10,13,15,17, 20, 25, 30, 35, 40}, with each subsequence starting at a random offset. Each
sequence becomes a training input. Inputs are serialized as floating-point strings with a user-defined
number of decimal places p (we use p = 4 for Dy, = 1.0, p = 3 for Dyeye = 10.0, p = 2 for
Dygeate = 1000.0 and p = 1 for Dgeqe = 10000.0). This results in 33600 generated time series for
each value of Dgcye.

Concatenated dataset. Having constructed the individual dataset for each scaling factor Dgg,e €
{1, 10, 1000, 10000}, we also construct one concatenated dataset. In doing that, we limit the number
of datapoints to 70000 and ensure that the y.y values of the generated time series are equally
distributed on the log scale, from 1072 to 10%. This is to ensure a balanced distribution of the train
and test examples.

Dataset filtering. Before using the generated datasets for training the probing models, we apply
dataset filtering to exclude any potential outliers. Namely, we ensure that the mean, median and
greedy LLM prediction lie in [— Dycate, Dscate]-

B.3.2 MONASH DATASET

* Data Loading: We use the data from the Monash dataset, preprocessed by |Gru-
ver et al. (2024) and available from https://drive.google.com/file/d/
1sKrpWbD3LvLQ_e51WgX3wJqT50sTdlaz/view?usp=sharing. Each sub-
dataset file contains tuples of the form (train, test), which are concatenated to
form complete univariate time series.

* Resampling: To ensure computational tractability, each series is subsampled (via strided
slicing) to contain at most 1000 time steps.

¢ Series Selection: For each dataset, a maximum of 50 time series are selected at random to
control the number of examples used during training.
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Function name Formula a-range

sin sin(x) [0.5, 6.0]
linear_sin 0.2 - sin(x) + 4£5 [0.5, 6.0]
sinc sinc(z) [0.05,0.2]
xsine 2230 . sin(x — 30) [0.5, 1.3]
beat sin(z) - sin (%) [0.1, 6.0]

2_2)2

gaussian_wave e~ cos(10m(x — 2)) [0.01,0.1]
random Uu-1,1) (0.0, 1.0]

Table 6: Functions used to generate time series data, their mathematical forms, and the range of the
time-scaling parameter a.

* Subsequence Generation: From each selected series, we extract multiple training subse-
quences of varying lengths n € {3,5,7,10, 13,15, 17, 20, 25, 30, 35, 40}. For each length,
we generate up to 10 training subsequences, sampled at different offsets.

B.3.3 DARTS DATASET

» Data Loading: We use the data from the Darts dataset, available from the darts python
package. We use the following sub-datasets: AirPassengersDataset, AusBeerDataset,
GasRateCO2Dataset, MonthlyMilkDataset, SunspotsDataset, WineDataset, WoolyDataset,
HeartRateDataset.

* Resampling: To ensure computational tractability, the series for the datasets Sunspots-
Dataset and HeartRateDataset are subsampled (via strided slicing).

¢ Series Selection: For each dataset, all available time series are selected.

* Subsequence Generation: From each selected series, we extract multiple training subse-
quences of varying lengths n € {3,5,7,10, 13,15, 17, 20, 25, 30, 35, 40}. For each length,
we generate up to 10 training subsequences, sampled at different offsets.

B.3.4 LLM GENERATION SETTINGS

We generate the LLM hidden states from LLMs available through the huggingface library. For
each of the input time series, we obtain 100 samples from the LLM, generated auto-regressively, as
well as the greedy generation. During generation for Llama-2-7b, as its tokenizer encodes each digit
separately, we narrow down the generated tokens to just the digits, decimal point and +/— signs. For
obtaining the random samples, we use temperature=1.0 and top_p=0.95. We exclude from
the final dataset samples for which generation failed at least once (i.e. the obtained generation was
not a valid number), such that each time series in the final dataset has exactly 100 LLM samples.

B.3.5 TRAIN-VALIDATION-TEST SPLIT

Before training, we split each of the datasets in 80% training dataset, 10% validation dataset and 10%
test dataset. Unless otherwise stated (in the generalisation experiments), these splits are random. We
do not apply any scaling or transformation to either the LLM embeddings (which are inputs to our
model) or the outputs.

B.4 DETAILS OF THE PROBING MODELS

Our magnitude-factorised regression models, used both for the purpose of point prediction and for
the purpose of quantile regression have the hyperparameters as reported in Table[7]and Table[8] We
train the model using the ADAM optimiser.

We also report any deviations from these values for specific experiments:

* Figure2} max_mag = 4.
* Table[l} 1r = 1074, max_epochs = 2000.
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Hyperparameter Description Default Value
min_mag Minimum exponent for base-10 magnitude —3
scaling (as used by forder)
max_mag Maximum exponent for base-10 magnitude  log;(Dscale)
scaling
beta Weight for regression loss component 10.0
K Top-K exponents taken into consideration 3
(see Equation 4)
hidden_layers Number of hidden layers in feature extrac- 1
tor
hidden_dim Dimensionality of hidden feature represen- 512
tation
activation_func Activation function used in the MLP GELU

hidden_states_list A list of the hidden states # to use as input  [25,. .., 32]

Table 7: Model-specific hyperparameters for the magnitude-factorised models.

Hyperparameter Description Default Value
learning_rate Learning rate for the optimizer 107°
weight_decay L2 regularization weight 1.0
scheduler_step_size Learning rate scheduler step size 100
scheduler_gamma Learning rate scheduler step size 0.5
batch_size Number of samples per training batch 1024
max_epochs Number of training epochs 500
patience Patience for the early stopping 200

Table 8: Optimizer and training-related hyperparameters.

* Figure[6l min_mag = 10 max_mag = 10.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 COMPARISON AGAINST VANILLA MLP PROBE

In Table 0] we compare our magnitude-factorised probe with a vanilla MLP trained on the same
hidden representations. Both models use a single hidden layer of size 512 and a learning rate of 10~°.
Evaluation is conducted on Llama-2 using the synthetic time series dataset with scale Dycqe = 1.0,
which provides the narrowest range of magnitudes among those we study. Even in this relatively
simple setting, the magnitude-factorised probe achieves substantial improvements over the baseline,
reducing MSE by 41%, 33%, and 42% for greedy, mean, and median predictions respectively. These
results highlight the importance of probe design: a negative finding with one architecture does not
necessarily imply that information is absent from the LLM’s hidden states—it may simply reflect the
limitations of the probing model.

Table 9: MSE of the values predicted with the magnitude-factorised (MFP) model vs. a vanilla MLP.

predicted value  MFP probe (ours) MLP probe (log-scaling) MLP probe (no log-scaling)

greedy 0.0150 0.0400 0.0255
mean 0.0061 0.0091 0.0092
median 0.0058 0.0101 0.0100
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C.2 RESULTS WITH OTHER LLMS

We provide results for the key experiments in the main paper with more LLMs. As the tokenizers of
models outside of the Llama-2 family do not encode digits separately, we do not narrow down the
generated tokens during decoding. For obtaining the random samples, we use temperature=1.0
and top_p=0.95. We perform repeated sampling until for each time series, we obtain 100 LLM
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Figure 9: Sample efficiency on the task of one step ahead predictions. Results analogous to Figure@
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Table 10: MSE for the predictions on the dataset with scale Dy = 1.0, reported for all models.
Results analogous to Table E}

(a) Llama-2-7B (b) Llama-3-8B

y;,target ¢; (ours) X X Zin y;, target ¢; (ours) X X Zin

* = mean 0.006  0.256 0.035 0.085 * = mean 0.007  0.253 0.047 0.093
* =median  0.006  0.260 0.041 0.087 * =median  0.012  0.264 0.061 0.106
* = greedy 0.015  0.273 0.065 0.109 * = greedy 0.016  0.255 0.072 0.122

(c) Llama-3.2-3B

y;,target ¢; (ours) X Xi Tin

* = mean 0.007  0.260 0.0484 0.092
* =median  0.013  0.271 0.062 0.104
* = greedy 0.018 0.267 0.075 0.119

(d) Phi-3.5-mini-instruct (e) DeepSeek-R1-Distill-Llama-8B

y; , target g7 (ours) X X Ti,n y; , target  g; (ours) X Xi Ti,n

* = mean 0.008 0.248 0.042 0.100 * =mean 0.009  0.247 0.045 0.110
* =median  0.012  0.252 0.047 0.104 =+ =median 0.013 0.253 0.056 0.120
* = greedy 0.020  0.270 0.060 0.113  * = greedy 0.020  0.264 0.069 0.135

Table 11: Coverage of the CI for all models. Results analogous to Table

(a) Llama-2-7B (b) Llama-3-8B
« 50% 90% 95% « 50% 90% 95%
dataset dataset
1.0 52004 90903 955+0.2 1.0 544+06 904+04 947+0.3

10.0 527405 913+03 96.1+0.2 10.0 53.8+0.6 91.8+04 963+0.2
1000.0 51403 90.7£03 95.7+0.2 1000.0 51.7+04 91.2+£03 96.0+0.2
10000.0 482+03 905+02 954+0.2 10000.0 50.8+0.4 91.1+03 953+0.2

(c¢) Phi-3.5-mini-instruct

« 50% 90% 95%
dataset
1.0 499+0.5 893+04 943+0.3

10.0 509+£0.5 893+04 951+03
1000.0 47.6+04 88.0+0.3 933+03
10000.0 47.3+0.3 873+03 93.8+0.2
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Figure 10: Predicted IQR vs. Sample IQR (median adjusted). Results analogous to Figure
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C.3 COMPUTATIONAL COSTS AND INFERENCE TIME

Crucial for understanding the validity of our approach is the comparison of the inference cost of
the proposed probe vs. autoregressive sampling. Ignoring the cost of encoding the input time series
with the LLM (as this cost is shared by both methods) we note that decoding each token with the
7B-parameter LLMs (such as Llama-2) requires 1458 FLOPS, which means that, for a model with
digit-by-digit tokenization obtaining n samples of a 5-digit number requires n x 705 FLOPS. In
comparison, using our magnitude-factorised probe (which we assume uses 8 concatenated layers
of the LLM and thus has input of size 8 x 4,096 = 32,768, 1 hidden layer of dimension 512,
and a maximum of k¥ = 9 separate heads corresponding to each of the magnitude bins) incurs the
constant cost of 32, 768 x 512 4+ 512 x 9 ~ 17M FLOPS for the magnitude classification model
and 32,768 x 512 4 512 x 1 =~ 17M FLOPS for the regression model, so 34 M parameters in total
per one statistic. If we wanted to predict, say, 7 different quantile values, we would need 7 models
of the same size, requiring 234 FLOPS. Thus, the required number of computations for using the
probe vs. generating even 1 LLM sample is far lower.

We further validate these estimates by comparing the times needed to generate n samples from the
LLM vs. the time needed to obtain a single median estimate from our probe. We run the experiments
using the Llama-2-7B model, averaging the results over 100 random time series samples consisting of
20 data points each. We run all the timing experiments on one instance of a H100 GPU. In this setting,
inference with a trained probe model (including the process of obtaining the hidden representation
of the LLM) takes 0.034 £ 0.006s. We include the times required for obtaining n LLM samples in
Table[12] These results confirm that even generating a single sample via autoregression is roughly
47x slower than running the full inference pipeline with our probe.

Table 12: Average time to generate n LLM samples.

n samples 1 5 10 20 50 100
time () 1.59£0.08 1.624+0.07 1.71£0.07 1834+0.07 235+£0.08 3.28+0.08

C.4 LAYER ABLATION STUDY

In this section, we ablate the choice of the layers H used by our probing models by training on
individual layers of the LLM, letting % = {¢} for each £ € [16, ..., 32]. Our results provide further
insights into how information about the LLLM’s numerical predictive distribution is spread across the
layers.

Figure [TT] shows the results for the probing models from section [2] For the target of the greedy
LLM prediction, we see that the most relevant information is contained in the last layers of the
LLM, although generally the variations between the layers are not that significant. We further
observe that concatenating information from across different layers leads to significant performance
improvements. For the mean target, which is predicted with a higher accuracy, we observe that
information relevant for predicting the magnitude and the scaled value of the target is distributed less
uniformly, concentrating in the 30th layer.

Table [I2] shows analogous results for the quantile regression model from section[3.2] The observed
pattern for median prediction is similar to the one of mean prediction from Figure|L1] In terms of the
uncertainty information, we find it to be more uniformly encoded across the layers and again that
concatenating information across several layers leads to an improved probing performance.

C.5 MEAN ABSOLUTE LOSS PER QUANTILE
In addition to the results presented in Section [3] we report the mean absolute error between the

the empirical quantile ¢° and the predicted quantile ¢° for all quantile levels. Results are shown in
Table [I3} We observe that the absolute errors are higher for quantile levels further from the median.
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Figure 11: Layer ablation for Llama-2-7B on the probing model from section
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Figure 12: Layer ablation for Llama-2-7B on the quantile probing model from section MSE on
the median (left, lower is better) and the Pearson R between predicted IQR and sample IQR (right,
higher is better).

Table 13: Quantile regression — mean absolute error per quantile. Values represent the mean absolute
error between the empirical quantile ¢° and the predicted quantile ¢° for all quantile levels.

quantile level 7°  0.025 0.05 0.25 0.5 0.75 0.95 0.97

dataset

1.0 0.58 0.40 0.16 0.05 0.15 0.40 0.60
10.0 3.12 2.16 0.45 0.28 0.49 1.91 3.26
1000.0 111.16 61.54 14.83 12.10 1430  46.04 115.71
10000.0 843.11 380.06 119.80 100.41 118.90 483.33 1172.27
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