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Abstract

Post-training quantization is widely employed to reduce the computational demands
of neural networks. Typically, individual substructures, such as layers or blocks
of layers, are quantized with the objective of minimizing quantization errors in
their pre-activations by fine-tuning the corresponding weights. Deriving this local
objective from the global objective of minimizing task loss involves two key
simplifications: assuming substructures are mutually independent and ignoring
the knowledge of subsequent substructures as well as the task loss. In this work,
we assess the effects of these simplifications on weight-only quantization of large
language models. We introduce two multi-block fine-tuning strategies and compare
them against the baseline of fine-tuning single transformer blocks. The first captures
correlations of weights across blocks by jointly optimizing multiple quantized
blocks. The second incorporates knowledge of subsequent blocks by minimizing
the error in downstream pre-activations rather than focusing solely on the quantized
block. Our findings indicate that the effectiveness of these methods depends on
the specific network model, with no impact on some models but demonstrating
significant benefits for others.

1 Introduction

Recently, large language models (LLMs) [Zhang et al., 2022, Touvron et al., 2023, Jiang et al., 2023]
have transformed the field of natural language processing, achieving impressive results on various
challenging language tasks [Wei et al., 2022, Bubeck et al., 2023]. Nevertheless, these models, often
containing billions of parameters, typically demand substantial computational power. Post-training
quantization (PTQ) has emerged as a practical method for reducing the size and computational
requirements of LLMs without the need for retraining and requiring only a small set of calibration
data [Frantar et al., 2022, Xiao et al., 2023, Lin et al., 2024, Shao et al., 2024]. By converting high-
precision weights and activations to lower-precision representations, PTQ enables the deployment
of LLMs on resource-constrained devices, expanding their applicability in real-world scenarios. In
this study, we focus on weight-only quantization, as model weights are the primary factor impacting
memory bandwidth and, consequently, the runtime of LLM inference [Kim et al., 2023].
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(a) Single-block PTQ

(b) Look-ahead PTQ

(c) Multi-block PTQ

Figure 1: Commonly, for SB-PTQ, each block is independently optimized with the loss attached to
its output (a). We propose LA-PTQ (b) and MB-PTQ (c), where the reconstruction loss is attached to
a subsequent block. For LA-PTQ, still a single block is optimized (red) while all other blocks are
not modified (blue). The blocks that contribute to the computation of the gradient are highlighted
in green. For MB-PTQ, multiple blocks are jointly optimized. All the previous blocks are already
quantized and fine-tuned (indicated with zig-zag lines).

Current PTQ methods independently optimize layers [Hubara et al., 2021, Frantar et al., 2022, Xiao
et al., 2023, Lin et al., 2024] or blocks of layers [Li et al., 2021, Cheng et al., 2023, Shao et al.,
2024]. Such block-wise optimization, although computationally efficient, ignores correlations across
blocks and disregards the knowledge of subsequent blocks and the task loss. Despite the potential
significance of these limitations, there has been little research addressing them.

Nagel et al. [2020] derived the local, layer-wise objective from the global, task-based objective. Their
study investigates how leaving out information about the later layers and task loss affects optimizing
the first layer of ResNet-18. They discover that optimizing without this information works better than
with it. Li et al. [2021] extended this study to blocks with an arbitrary number of layers. Based on
their theoretical analysis, they suggest that incorporating the squared derivative of the task loss with
respect to pre-activations into the optimization objective can improve performance. Additionally,
their empirical results show that fine-tuning multiple layers together, such as in Residual Bottleneck
Blocks, produces better outcomes compared to fine-tuning individual layers in CNN architectures.
However, they note that increasing the number of layers increases the generalization error, likely due
to the limited number of calibration samples. Ding et al. [2023] increase the scope of fine-tuning to
multiple transformer blocks. While they show that this improves the task performance, their results
rely on additional techniques that obscure the direct effect of increasing cross-block dependencies.

In this work, we propose two methods that allow us to evaluate the effect of the two key simplifications
in the derivation of the local from the global objective. The term block refers to a transformer block
unless stated otherwise. The first method bundles multiple blocks together during optimization
enabling second-order interactions across these blocks. We name this method multi-block PTQ
(MB-PTQ). The second method fine-tunes each block with the target of minimizing the error in
the output of a downstream block. This effectively allows each block to "look ahead" and inform
its optimization about the effect on this downstream block. We name this method look-ahead PTQ
(LA-PTQ). We formalize MB-PTQ and LA-PTQ in Section 2, compare them with the baseline of
single-block PTQ (SB-PTQ) in Section 3, and discuss the results in Section 4.
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2 Methods

In this section, we revisit the derivation of the local objective from the global one and define
quantization. Building upon the visualizations in Figure 1, we formally introduce SB-PTQ, LA-PTQ,
and MB-PTQ.

Global to Local Objective Finding the optimal quantization can be formulated as the following
global optimization objective that minimizes the error in the task loss caused by quantization:

argmin
∆w

E [L(x,y,w +∆w)− L(x,y,w)] , (1)

where L is the task loss, x are the inputs, y are the true labels, w is the flattened vector of all model
weights, and ∆w is the perturbations to the weights introduced by quantization. The expectation is
over x and y.

Nagel et al. [2020] approximated this objective by a second-order Taylor expansion around w where
H(w) is the Hessian of the task loss with respect to weights w and the first-order term is ignored
since the model is assumed to have converged:

argmin
∆w

E
[
∆wTH(w)∆w

]
. (2)

To obtain the local, layer-wise objective two simplifications are applied. First, the layers are as-
sumed to be mutually independent, resulting in a block-diagonal structure for the Hessian matrix.
Consequently, each layer ℓ can be optimized separately in Equation 2:

argmin
∆w(ℓ)

E
[
∆w(ℓ)TH(w(ℓ))∆w(ℓ)

]
. (3)

However, this objective remains computationally challenging, as calculating H(w(ℓ)) requires com-
puting the Hessian ∇2

z(ℓ)L of the task loss with respect to the pre-activations z(ℓ):

H(w(ℓ)) = E
[
x(ℓ−1)x(ℓ−1)T ⊗∇2

z(ℓ)L
]
, (4)

where ⊗ denotes the Kronecker product. To simplify this objective, we further assume this Hessian to
be a constant diagonal matrix, i.e. ∇2

z(ℓ)L = c× I, effectively ignoring the knowledge of downstream
layers and the task loss. Hence, we arrive at the local, layer-wise optimization objective that minimizes
the error in the pre-activations caused by quantization:

argmin
∆w(ℓ)

E
[
∆w(ℓ)T x(ℓ−1)x(ℓ−1)T∆w(ℓ)

]
= argmin

∆w(ℓ)

E
[(

∆w(ℓ)T x(ℓ−1)
)2

]
. (5)

Li et al. [2021] extended the previous objective to encompass blocks containing any number of layers,
demonstrating that the global objective can be effectively approximated by locally minimizing the
error in block outputs.

Weight Quantization Following Cheng et al. [2023] we quantize the high-precision weights W to
b-bit precision by

W̃ = s · clip
(⌈

W

s
+V

⌋
, 0, 2b − 1

)
, (6)

where V is a learnable parameter to adjust rounding, ⌈·⌋ is the round-to-nearest (RTN) operation, and
clip(x, n,m) restricts the value of x to lie within the range [n,m]. The scaling factor is defined as

s =
max(W) · α−min(W) · β

2b − 1
, (7)

where α, β ∈ [0, 1] are learnable parameters.
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LA-PTQ In LA-PTQ, the learnable parameters α, β and V of the k-th transformer block are
optimized, using the outputs of the k+n-th block as reconstruction target. To facilitate the discussion,
we refer to n as the number of look-ahead blocks. In practice, if the network has L blocks, the
reconstruction target is set to block min(k + n,L), though we omit this detail here for simplicity.
In this optimization setting, only the parameters of the block k are tuned while the parameters of
the other blocks are kept frozen. Let (·)(k) denote the parameters of the k-th block. Then, the
optimization target is expressed as follows:

argmin
α(k),β(k),V(k)

E
[
||T (X,W(k), ...,W(k+n))− T (X,W̃(k),Wk+1, ...,W(k+n))||F

]
, (8)

where T (X,W(i), ...,W(i+n)) denotes the transformation applied to the input X over n transformer
blocks with their respective weights W(i), ...,W(i+n). The expectation is over the input X and
|| · ||F denotes the Frobenius norm. Starting with the first block (k = 1), we sequentially optimize
one block at a time, progressively quantizing the neural network’s weights. For each block k, the
output from the already quantized part of the network serves as the input X. Single block PTQ is the
special case of n = 0.

MB-PTQ In MB-PTQ, the learnable parameters of n blocks are jointly optimized. More formally,
for blocks k to k + n− 1 to be optimized this is expressed as follows:

argmin
α,β,V

E
[
||T (X,W(k), ...,W(k+n−1))− T (X,W̃(k), ...,W̃(k+n−1))||F

]
, (9)

where α, β, and V denote the parameters of all n blocks. In contrast to LA-PTQ, after quantizing the
parameters of the current n blocks, we move on to the next set of n blocks, without overlap between
the sets of blocks. This approach differs from that of Ding et al. [2023], who permit consecutive sets
of n blocks to overlap, thereby optimizing the overlapping blocks multiple times.

3 Experiments

In this section, we first describe the details of our experimental setup, followed by a comparison of
our proposed approaches, LA-PTQ and MB-PTQ, against the baseline method, SB-PTQ.

3.1 Setup

We use the abbreviations LA-n and MB-n to refer to LA-PTQ and MB-PTQ with n blocks, respec-
tively. LA-n refers to the setting where one block is fine-tuned with n− 1 look-ahead blocks and
MB-n refers to the setting where n blocks are jointly fine-tuned. Note that in both cases there are a
total of n blocks involved in each optimization round (compare Figure 1b to 1c). As reference, we
also provide the accuracy for the full precision (FP) and round-to-nearest (RTN) cases. In the RTN
scenario, weights are quantized, but not fine-tuned.

We evaluate our methodology on LLaMa-2-7B [Touvron et al., 2023], Mistral-7B-v0.1 [Jiang et al.,
2023], OPT-6.7B, and OPT-125M [Zhang et al., 2022]. Our primary metric is the average accuracy
across 11 zero-shot tasks, including HellaSwag [Zellers et al., 2019], WinoGrande [Sakaguchi et al.,
2021], PIQA [Bisk et al., 2020], LAMBADA [Paperno et al., 2016], TruthfulQA [Lin et al., 2022],
OpenBookQA [Mihaylov et al., 2018], BoolQ [Clark et al., 2019], RTE [Dagan et al., 2010], ARC-
Easy, ARC-Challenge [Clark et al., 2018], and MMLU [Hendrycks et al., 2021], which we compute
by using the lm-evaluation-harness [Gao et al., 2024]. We report the average accuracy across
these tasks in the main body of the paper and provide the individual accuracy results for each task in
Appendix B.

In general, our experimental setup follows that of Cheng et al. [2023] if not specified otherwise.
Quantization is limited to the weights of the linear layers in transformer blocks excluding the
embedding and the final linear layer. Weights are quantized down to 4 bits, where each group of
128 weights share a learnable scaling factor (see Equation 6 and 7). Calibration data is randomly
sampled using the same seed from the publicly available pile-10k dataset, which consists of the first
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Figure 2: Comparison of task accuracy for look-ahead (LA-) and multi-block (MB-) PTQ against
single-block (SB-) PTQ, across varying numbers of blocks n and different network models. For all
models, we present the average and standard error over 4 trials.

10k samples from the Pile dataset [Gao et al., 2020]. For fine-tuning, 512 calibration samples with a
sequence length of 2048 tokens are used. SignSGD is used for optimization with a linear learning
rate decay and a batch size of 8. Unlike Cheng et al. [2023], we decrease the learning rate from
5× 10−3 to 1× 10−3 to ensure the stability of convergence during fine-tuning. To account for this
lower learning rate and potentially more challenging optimization objectives, we increase the number
of fine-tuning steps from 200 to 1000.

3.2 Results

Evaluation on Zero-Shot Tasks We evaluate MB-PTQ and LA-PTQ with an increasing number
of blocks to capture the impact of progressively introducing more cross-block dependencies and
incorporating knowledge from blocks further ahead. Specifically, we fine-tune Mistral-7B-v0.1,
LlaMa-2-7B, and OPT-6.7B using LA-PTQ with up to 3 look-ahead blocks and MB-PTQ with
substructures of up to 4 blocks. For OPT-125M, as the end-to-end optimization of this model fits into
the memory of a single GPU, we iterate over all possible configurations.

We observe that the effect of LA-PTQ and MB-PTQ on the task accuracy depends on the model (see
Figure 2). While for Mistral-7B-v0.1 and OPT-6.7B the accuracy of both LA-PTQ and MB-PTQ does
not improve compared to SB-PTQ, LlaMa-2-7B shows an improvement with an increasing number of
blocks that saturates at 2 blocks. The absence of improvement for OPT-6.7B can be likely explained
by SB-PTQ already being sufficient to recover the full-precision performance. For OPT-125M,
we observe that both LA-PTQ and MB-PTQ achieve higher accuracy compared to the baseline
SB-PTQ for certain block configurations, with LA-PTQ showing more consistent improvement than
MB-PTQ. However, the overall differences in accuracy for this model are small (compare FP to
RTN in Figure 2d), and these trends are not statistically significant. In contrast to the other models,
for OPT-125M, we do not significantly benefit from fine-tuning single blocks in isolation (compare
SB-PTQ to RTN in Figure 2b and 2d).

Ablations on Hyperparameters We validate the choice of our learning rate on the example of
MB-3 and LA-4 (for details, see Table A.1). Generally, we observe a low sensitivity of the accuracy
on the learning rate. However, fine-tuning Mistral-7B-v0.1 with MB-3 using a learning rate of
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Figure 3: The dependence of task accuracy on the size of the calibration dataset (left) and the number
of fine-tuning iterations (left) is shown on the example of LlaMa-2-7B. Default values are highlighted
in bold.

5 × 10−3 diverges and results in a significant performance drop. Hence, our default learning rate
(1× 10−3) serves as an effective middle ground, ensuring smooth convergence across various models
and configurations.

For LA-PTQ, the number of free parameters is the same as in SB-PTQ. However, for MB-PTQ,
the number of free parameters increases with the number of blocks, n. To assess the potential for
overfitting in this case, we examine the relationship between accuracy and the number of fine-tuning
iterations, as well as the size of the calibration dataset using LlaMa-2-7B (see Figure 3). Since
performance does not improve with an increasing number of calibration samples or a decreasing
number of fine-tuning iterations, we can rule out overfitting as the reason why LA-PTQ and MB-
PTQ fail to outperform SB-PTQ in certain models. In general, these experiments further validate
our selection of default hyperparameters, as they demonstrate comparable or superior performance
compared to alternative configurations. However, the performance continuous to improve, albeit at
slow pace, as the number of fine-tuning iterations increases. This underscores the delicate trade-off
between enhanced performance and the computational resources invested.

4 Discussion

We investigated how incorporating knowledge of subsequent transformer blocks and interactions
across blocks effect the fine-tuning of quantized weights in LLMs. We found that the effectiveness of
these approaches is model-specific and cannot be generalized across all models. While we do not
observe improvements for the Mistral-7B-v0.1, OPT-125M and OPT-6.7B models, the LlaMa-2-7B
model shows enhanced task accuracy. However, it is important to note that including more blocks in
the optimization process increases computational costs. Further research is needed to explore how the
effectiveness of our methods depends on different network models and to extend this investigation to
larger LLMs.

In both LA-PTQ and MB-PTQ, the reconstruction loss is applied to the output of downstream blocks.
This increases the complexity of the optimization landscape due to the additional blocks and their
inherent non-linearities. While MB-PTQ may alleviate this increased complexity through a greater
number of free parameters and cross-block optimization compared to LA-PTQ, it does not show
superior performance (see Figure 2). This holds true even after ensuring that overfitting, either from a
small calibration dataset or excessive training iterations, does not occur (see Figure 3). While we
observe a significant performance improvement with LA-2 compared to LA-1 for LlaMa-2-7B (see
Figure 2b), further increasing n to extend the look-ahead does not yield additional benefits. Therefore,
setting n = 2 appears to offer a favorable balance between enhanced accuracy and computational
efficiency.

Extending the fine-tuning to the full network, in combination with the original training pipeline and
dataset, should ideally yield the best task accuracy. However, in our study, increasing the number of
calibration samples does not enhance performance and may even be detrimental (see Figure 3 left).
This could indicate a co-variate shift, i.e. a mismatch between the distributions of the calibration
and test datasets [Moreno-Torres et al., 2012]. On the other hand, increasing the number of fine-
tuning iterations improves the results (see Figure 3 right). Nevertheless, this significant increase in
computational demands, especially in comparison to the 200 iterations used by Cheng et al. [2023],
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may not justify the performance improvements over SB-PTQ, especially for LLMs. Exploring
strategies to reduce or accelerate fine-tuning iterations, such as using LORA adapters [Ding et al.,
2023, Bondarenko et al., 2024], is a promising direction for future research.

Ding et al. [2023] demonstrate the advantages of MB-PTQ over SB-PTQ (see their Table 3), which
they attribute to the overlap between blocks during the joint optimization of multiple blocks. This
raises the question of whether the observed benefits arise from the increased interaction between
overlapping and additional blocks, or if they result from the effective increase in fine-tuning iterations,
as each overlapping block is optimized multiple times. However, a direct comparison to their results
is challenging, since they combine MB-PTQ with several other advanced compression techniques
and do not isolate the specific effects of MB-PTQ.
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A The effect of learning rate on task accuracy

Model Config Learning Rate avg. 0-shot task acc.

LlaMa-2-7B

MB-3 1e-4 56.74
MB-3 1e-3 (default) 57.53
MB-3 5e-3 57.77

LA-4 1e-4 56.45
LA-4 1e-3 (default) 57.0
LA-4 5e-3 57.77

Mistral-7B-v0.1

MB-3 1e-4 62.19
MB-3 1e-3 (default) 62.42
MB-3 5e-3 37.54

LA-4 1e-4 62.19
LA-4 1e-3 (default) 62.4
LA-4 5e-3 62.51

OPT-6.7B

MB-3 1e-4 49.85
MB-3 1e-3 (default) 49.88
MB-3 5e-3 50.36

LA-4 1e-4 49.55
LA-4 1e-3 (default) 49.94
LA-4 5e-3 50.37

Table A.1: The effect of different settings of learning rates on the average 0-shot task accuracy of
LlaMa-2-7B and OPT-6.7B fine-tuned with MB-3 and LA-4. Our default learning rate (1e−3) stands
out as a good compromise to ensure favorable convergence of different models for both LA-PTQ and
MB-PTQ configurations.

B Raw accuracy numbers across zero-shot tasks

config mmlu lambada_openai hellaswag winogrande piqa truthfulqa_mc1 openbookqa boolq rte arc_easy arc_challenge avg

FP 41.31 73.92 57.13 69.22 78.07 25.21 31.4 77.74 62.82 76.26 43.52 57.87
RTN 40.21 72.58 56.88 68.82 77.53 24.85 31.4 77.52 56.32 76.26 43.09 56.86

LA-1 39.23 71.26 56.13 68.35 77.09 25.46 31.6 75.29 66.06 74.45 41.47 56.95
LA-2 40.74 72.66 56.57 68.9 77.48 25.83 32.6 76.24 60.65 75.34 42.83 57.26
LA-3 41.33 73.37 56.39 69.14 77.31 25.58 31.0 77.19 62.45 75.51 42.75 57.46
LA-4 41.08 72.99 56.5 68.98 77.8 24.72 30.8 77.43 58.84 75.42 42.41 57.0

MB-1 39.23 71.26 56.13 68.35 77.09 25.46 31.6 75.29 66.06 74.45 41.47 56.95
MB-2 40.81 72.42 56.4 68.75 78.07 25.46 31.6 75.78 63.18 75.88 42.66 57.37
MB-3 41.06 73.24 56.47 68.98 77.91 25.83 32.6 76.18 62.82 75.42 42.32 57.53
MB-4 41.62 73.04 56.73 68.43 78.13 24.85 33.2 78.35 59.21 75.88 42.92 57.49

Table A.2: LlaMa-2-7B accuracy across 0-shot tasks for both LA-PTQ and MB-PTQ.

config mmlu lambada_openai hellaswag winogrande piqa truthfulqa_mc1 openbookqa boolq rte arc_easy arc_challenge avg

FP 58.78 75.61 61.29 73.95 80.69 28.03 32.8 83.76 67.15 80.89 50.34 63.03
RTN 56.62 74.46 60.97 73.56 80.14 27.05 32.2 83.21 63.9 79.84 49.66 61.96

LA-1 58.16 75.12 61.05 73.32 80.74 28.15 33.4 83.12 62.45 80.22 50.34 62.37
LA-2 58.04 75.08 60.84 75.14 80.47 27.66 32.2 82.78 62.09 80.3 49.74 62.21
LA-3 57.9 75.24 60.89 74.11 80.36 27.42 33.4 83.27 61.37 79.92 49.49 62.12
LA-4 57.68 75.2 60.84 73.88 80.2 27.17 32.6 83.12 66.43 79.34 50.0 62.4
MB-1 58.16 75.12 61.05 73.32 80.74 28.15 33.4 83.12 62.45 80.22 50.34 62.37
MB-2 58.28 75.33 60.77 73.4 80.63 27.54 32.6 82.72 63.54 79.84 49.74 62.22
MB-3 58.65 74.79 60.76 73.72 80.03 28.15 33.2 83.06 64.26 80.3 49.74 62.42
MB-4 57.76 75.41 61.01 73.09 79.98 27.17 30.6 83.61 63.54 79.88 50.0 62.0

Table A.3: Mistral-7B-v0.1 accuracy across 0-shot tasks for both LA-PTQ and MB-PTQ.
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config mmlu lambada_openai hellaswag winogrande piqa truthfulqa_mc1 openbookqa boolq rte arc_easy arc_challenge avg

FP 24.89 67.69 50.52 65.27 76.28 21.79 27.6 66.06 55.23 65.61 30.63 50.14
RTN 25.39 66.1 49.34 64.25 76.17 21.3 27.2 61.1 53.43 65.99 31.06 49.21

LA-1 25.16 67.22 50.04 65.19 76.44 21.66 27.0 66.02 56.32 65.49 30.72 50.12
LA-2 24.98 67.48 50.1 65.98 76.17 22.03 27.6 66.33 55.23 65.95 30.8 50.24
LA-3 24.9 67.03 49.94 65.59 76.33 21.42 27.6 65.5 55.6 65.4 30.12 49.95
LA-4 24.85 66.95 50.06 65.35 76.5 21.05 27.2 66.15 55.6 65.66 29.95 49.94

MB-1 25.16 67.22 50.04 65.19 76.44 21.66 27.0 66.02 56.32 65.49 30.72 50.12
MB-2 24.98 67.53 50.14 65.43 76.44 21.05 26.4 65.96 56.68 65.7 30.38 50.06
MB-3 25.22 67.42 49.94 65.19 76.22 21.54 27.0 65.6 54.51 65.99 30.03 49.88
MB-4 24.98 67.09 50.17 65.51 76.22 20.81 25.8 65.72 55.6 65.87 31.4 49.92

Table A.4: OPT-6.7B accuracy across 0-shot tasks for both LA-PTQ and MB-PTQ.

config mmlu lambada_openai hellaswag winogrande piqa truthfulqa_mc1 openbookqa boolq rte arc_easy arc_challenge avg

FP 22.88 37.86 29.18 50.36 62.95 23.99 16.6 55.44 50.18 43.52 19.11 37.46
RTN 22.87 36.76 28.81 51.7 63.33 24.85 18.4 49.42 49.82 42.38 18.86 37.02

LA-1 22.95 37.03 28.81 49.49 62.84 23.75 16.8 55.63 46.21 43.48 19.45 36.95
LA-2 23.0 37.2 28.85 49.57 63.0 24.36 17.0 57.03 45.49 43.56 19.11 37.11
LA-3 23.02 36.91 29.08 50.28 62.46 23.99 16.8 55.78 49.82 43.41 20.05 37.39
LA-4 22.85 36.97 28.87 50.36 62.79 23.99 16.4 56.3 46.57 43.39 19.45 37.09
LA-5 22.75 37.76 28.87 50.91 62.57 23.87 16.8 55.87 49.82 43.28 18.77 37.33
LA-6 22.87 37.51 28.86 50.75 62.51 23.87 16.6 55.69 50.54 43.43 20.05 37.52
LA-7 22.94 37.71 28.89 51.3 62.73 23.99 16.6 55.78 47.65 43.18 19.62 37.31
LA-8 22.86 37.45 29.03 50.91 63.28 23.99 17.2 54.25 51.62 43.31 19.62 37.59
LA-9 22.87 38.07 28.93 50.59 63.0 24.11 16.0 55.02 49.82 42.72 19.28 37.31
LA-10 22.85 38.04 28.99 51.14 63.06 24.24 15.6 55.63 48.01 42.93 19.71 37.29
LA-11 22.87 38.15 28.88 50.51 62.51 24.11 17.4 54.46 46.21 43.48 19.43 37.11
LA-12 22.87 37.43 29.06 51.54 62.79 23.87 16.4 54.98 46.57 42.93 20.05 37.14

Table A.5: OPT-125M accuracy across 0-shot tasks for LA-PTQ.

config mmlu lambada_openai hellaswag winogrande piqa truthfulqa_mc1 openbookqa boolq rte arc_easy arc_challenge avg

FP 22.88 37.86 29.18 50.36 62.95 23.99 16.6 55.44 50.18 43.52 19.11 37.46
RTN 22.87 36.76 28.81 51.7 63.33 24.85 18.4 49.42 49.82 42.38 18.86 37.02

MB-1 22.95 37.03 28.81 49.49 62.84 24.36 16.8 55.63 46.21 43.48 19.45 36.95
MB-2 22.96 37.12 28.75 48.93 63.11 24.36 16.4 54.83 46.21 43.69 19.11 37.61
MB-3 22.9 37.8 28.86 50.28 62.84 24.24 16.4 55.86 48.43 43.6 20.31 37.31
MB-4 22.82 37.34 28.84 49.8 62.73 23.75 17.0 55.38 46.57 42.63 18.86 36.88
MB-5 22.93 37.36 28.94 50.36 63.28 23.62 16.2 56.48 49.46 42.72 20.05 37.4
MB-6 22.93 37.18 29.03 50.04 62.73 24.11 16.2 55.29 47.29 42.93 19.11 36.99
MB-7 23.0 36.87 28.98 50.67 62.84 24.24 17.0 55.81 48.38 42.59 19.28 37.24
MB-8 22.97 36.77 28.9 50.91 62.57 24.24 17.0 54.34 46.57 42.21 19.45 36.9
MB-9 22.99 36.74 28.87 50.2 62.35 24.36 15.8 53.91 48.01 42.76 20.48 36.95
MB-10 22.95 36.64 28.81 49.57 62.62 24.11 16.8 57.0 49.46 42.63 19.54 37.28
MB-11 23.0 37.36 28.98 51.3 62.4 24.36 15.8 55.63 49.46 43.01 19.88 37.38
MB-12 22.95 36.99 28.86 51.38 62.79 23.87 16.0 54.71 50.18 42.59 19.37 37.24

Table A.6: OPT-125M accuracy across 0-shot tasks for MB-PTQ.
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