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ABSTRACT

Large language model (LLM) unlearning aims to surgically remove the influence
of undesired data or knowledge from an existing model while preserving its utility
on unrelated tasks. This paradigm has shown promise in addressing privacy and
safety concerns. However, recent findings reveal that unlearning effects are often
fragile: post-unlearning manipulations such as weight quantization or fine-tuning
can quickly neutralize the intended forgetting. Prior efforts to improve robust-
ness primarily reformulate unlearning objectives by explicitly assuming the role
of vulnerability sources. In this work, we take a different perspective by investi-
gating the role of the optimizer, independent of unlearning objectives and formu-
lations, in shaping unlearning robustness. We show that the “grade” of the opti-
mizer, defined by the level of information it exploits, ranging from zeroth-order
(gradient-free) to first-order (gradient-based) to second-order (Hessian-based), is
tightly linked to the resilience of unlearning. Surprisingly, we find that down-
grading the optimizer, such as using zeroth-order methods or compressed-gradient
variants (e.g., gradient sign-based optimizers), often leads to stronger robustness.
While these optimizers produce noisier and less precise updates, they encourage
convergence to harder-to-disturb basins in the loss landscape, thereby resisting
post-training perturbations. By connecting zeroth-order methods with random-
ized smoothing, we further highlight their natural advantage for robust unlearn-
ing. Motivated by these insights, we propose a hybrid optimizer that combines
first-order and zeroth-order updates, preserving unlearning efficacy while enhanc-
ing robustness. Extensive experiments on the MUSE and WMDP benchmarks,
across multiple LLM unlearning algorithms, validate that our approach achieves
more resilient forgetting without sacrificing unlearning quality.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities in natural language un-
derstanding and generation across diverse applications (Achiam et al., 2023; Touvron et al., 2023;
Yang et al., 2025a). However, their pre-training on massive data corpora raises growing concerns
about safety, privacy, and trustworthiness (Mazeika et al., 2024; Li et al., 2024; Liu et al., 2025;
Huang et al., 2024). LLMs may inadvertently reproduce copyrighted content (Eldan & Russinovich,
2023; Shi et al., 2024), expose personally identifiable information (Staab et al., 2023; Yao et al.,
2024a), or generate harmful instructions (Barrett et al., 2023; Li et al., 2024). To address these risks,
LLM unlearning has emerged as a promising direction, aiming to remove the influence of unde-
sired data, knowledge, and associated model capabilities without incurring the cost of retraining the
entire model and preserving the model’s general utility (Yao et al., 2024b; Fan et al., 2024; Zhang
et al., 2024a; Zhuang et al., 2025; Reisizadeh et al., 2025; O’Brien et al., 2025).

Despite recent progress in developing LLM unlearning algorithms that achieve both effective for-
getting and utility preservation (Yao et al., 2024b; Zhang et al., 2024a; Fan et al., 2024; Li et al.,
2024; Jia et al., 2024a), ensuring robust unlearning remains a significant challenge. Unlearning per-
formance can quickly deteriorate under post-unlearning weight perturbations. Prior work shows that
fine-tuning on even a small set of forgotten samples or semantically related texts can substantially
reverse unlearning effects (Lynch et al., 2024; Hu et al., 2024), while model compression techniques
such as quantization may also resurface erased content (Zhang et al., 2024d). Furthermore, when
unlearned models are adapted to downstream tasks via fine-tuning, their unlearning guarantees often
degrade (Wang et al., 2025a).
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Existing research on robust LLM unlearning has primarily focused on problem-level reformulations
or algorithm-level modifications, often assuming a specific vulnerability source and tailoring the
unlearning method accordingly. For instance, Fan et al. (2025) cast robust unlearning as a min–max
problem against relearning-induced perturbations and adapt sharpness-aware minimization (SAM)
(Foret et al., 2020) to strengthen robustness. Tamirisa et al. (2024) propose tamper-resistant un-
learning via meta-learning, modeling the attacker as a weight-tampering adversary. Similarly, Wang
et al. (2025a) leverage invariant risk minimization (IRM) (Arjovsky et al., 2019) to regularize un-
learning against degradation from irrelevant fine-tuning. While effective, these approaches rely on
customized changes to unlearning objectives, thereby modifying the underlying optimization al-
gorithm itself. In contrast, the role of the base optimizer, independent of any problem-wise and
algorithm-level modifications, in shaping unlearning robustness remains largely unexplored. No-
tably, even heuristic optimizer adjustments, such as increasing the learning rate, have been observed
to improve robustness against weight quantization (Zhang et al., 2024d), hinting at a deeper connec-
tion. This raises the central research question of this work:

(Q) How does the choice of optimizer influence the robustness of LLM unlearning, and what
optimizers can improve robustness without sacrificing unlearning effectiveness?

To address this question, we introduce the concept of optimizer grade for LLM unlearning, defined
by the level of gradient information utilized by an optimizer. The first-order (FO) gradient-based
Adam optimizer (Kingma & Ba, 2014), widely adopted in LLM unlearning (Shi et al., 2024; Li
et al., 2024; Jia et al., 2024a; Fan et al., 2024; Zhang et al., 2024d), represents a “high-grade” op-
timizer. In contrast, down-graded alternatives reduce the precision of gradient information. For
example, gradient-compression methods such as signSGD and signAdam (Bernstein et al., 2018)
quantize gradients into low-bit representations, while zeroth-order (ZO) optimizers rely solely on
finite-difference estimates of objective values, serving as gradient-free counterparts to FO methods
(Chen et al., 2023; Liu et al., 2020; Zhang et al., 2024c). Although these optimizers reduce gradi-
ent fidelity, they remain principled and convergence-guaranteed, making them suitable for solving
general optimization tasks, including LLM unlearning.

From the perspective of optimizer grade, a key finding of our work is that downgrading optimizers
can unexpectedly enhance unlearning robustness. We provide both technical rationale and empirical
evidence showing a clear link between optimizer grade and robustness grade. In particular, ZO
optimizers, while less precise in unlearning effectiveness, exhibit strong robustness against weight
tampering. Building on this insight, we propose a Hybrid optimizer that integrates FO and ZO
methods within a unified framework, combining the robustness of ZO with the optimization accuracy
of FO. In summary, our contributiosn are listed below.

• We present the first systematic study of optimizer choice in LLM unlearning, showing that down-
grading the optimizer (via quantized or zeroth-order updates) can improve robustness against weight
tampering. We also provide a rationale: downgraded optimizers introduce higher optimization noise
tolerance, making unlearned models more resilient to post-unlearning weight perturbations.

• We propose FO–ZO hybrid optimization, a unified framework that integrates FO and ZO optimiz-
ers, combining ZO-induced robustness with FO-driven unlearning effectiveness.

• We validate our findings through extensive experiments across diverse unlearning tasks and meth-
ods, demonstrating a consistent link between optimizer grade and unlearning robustness.

2 RELATED WORKS

LLM unlearning. LLM unlearning aims to remove memorized data or specific model behavior from
pretrained LLMs (Liu et al., 2025; Fan et al., 2024; Maini et al., 2024; Jia et al., 2024a; Shi et al.,
2024). Its applications span copyright protection (Shi et al., 2024; Eldan & Russinovich, 2023),
privacy preservation (Wu et al., 2023; Lee et al., 2024; Kuo et al., 2025), and the removal of harmful
abilities (Li et al., 2024; Lang et al., 2025; Zhou et al., 2024; Tamirisa et al., 2024)(Wang et al.,
a). Most existing approaches are fine-tuning based, employing regularized optimization to promote
forgetting while retaining general utility (Yao et al., 2024b; Li et al., 2024; Zhang et al., 2024a; Fan
et al., 2024; Jia et al., 2024a; Reisizadeh et al., 2025; Yang et al., 2025b)(Wang et al., b;a). Com-
plementary lines of work perform unlearning at inference time without altering model parameters,
including in-context unlearning (Thaker et al., 2024; Pawelczyk et al., 2023) and intervention-based
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decoding strategies (Liu et al., 2024; Suriyakumar et al., 2025; Deng et al., 2025; Bhaila et al.,
2025)(Wang et al., 2025b).

Robustness of LLM unlearning. Recent studies have shown that unlearned LLMs remain vulner-
able to both input-level and weight-level “perturbations” (Hu et al., 2024; Lynch et al., 2024; Łucki
et al., 2024; Fan et al., 2025). Input-space perturbations, such as in-context examples or adversarial
prompts/jailbreaks, can still elicit forgotten information from the model (Łucki et al., 2024; Sinha
et al., 2025; Yuan et al., 2025). Weight-space perturbations include quantization, which can resur-
face memorized data (Zhang et al., 2024d), relearning on forgotten or semantically similar data (Hu
et al., 2024; Che et al., 2025; Lynch et al., 2024), and irrelevant downstream fine-tuning that reverses
unlearning effects (Wang et al., 2025a). To enhance robustness, several algorithmic defenses have
been proposed. Tamper-resistant safeguards leverage meta-learning to anticipate weight tampering
(Tamirisa et al., 2024), while latent adversarial training improves resilience in the representation
space (Sheshadri et al., 2024). Fan et al. (2025) cast robust unlearning as a min-max optimization
problem and apply sharpness-aware minimization (SAM) and smoothness-inducing techniques. In-
variant risk minimization (IRM) has been employed to mitigate vulnerabilities from irrelevant fine-
tuning (Wang et al., 2025a), and divergence-based regularization, such as Jensen–Shannon diver-
gence, has also been introduced to strengthen robustness (Singh et al., 2025). Beyond optimization
strategies, other works explore robust data filtering and pre-training methods to resist harmful weight
tampering (O’Brien et al., 2025).

Optimization for LLM unlearning. The LLM unlearning problem is typically formulated as an
optimization task, making it natural to study through the optimization lens. A notable example is Jia
et al. (2024b), who introduced second-order unlearning (SOUL) by linking influence-function-based
unlearning (Koh & Liang, 2017) with the second-order optimizer Sophia (Liu et al., 2023), thereby
enhancing forgetting performance via iterative influence removal. Similarly, Reisizadeh et al. (2025)
leveraged bi-level optimization to balance unlearning effectiveness and utility retention, while Fan
et al. (2025) adopted min–max robust optimization to improve resilience. Despite these advances,
the role of optimizer grade in shaping unlearning robustness has received little attention. In partic-
ular, ZO optimization (Liu et al., 2020; Nesterov & Spokoiny, 2017; Duchi et al., 2015; Ghadimi
& Lan, 2013), which estimates gradients from function evaluations and finite differences (avoid-
ing backpropagation), has not been studied for LLM unlearning. Initial efforts only applied ZO to
non-LLM settings, such as memory-efficient unlearning (Zhang et al., 2025a) and graph unlearning
(Xiao et al., 2025), primarily for computational efficiency. Similarly, ZO has also been explored
for memory-efficient fine-tuning of LLMs (Malladi et al., 2023; Zhang et al., 2024c; Tan et al.,
2025; Mi et al., 2025). In this work, we instead examine ZO from a robust unlearning perspective,
showing that, even as a highly degraded form of optimization, it can enhance the resilience of LLM
unlearning against weight tampering.

3 PRELIMINARIES AND PROBLEM STATEMENT: OPTIMIZER “GRADE” VS.
UNLEARNING ROBUSTNESS

LLM unlearning setup. LLM unlearning refers to the process of selectively erasing the influence
of specific data or knowledge (and the associated model behaviors) from a trained model, while
preserving its overall usefulness. The aim is to make the model “forget” undesired content (e.g.,
private, copyrighted, or harmful information) without the cost of retraining from scratch and without
impairing its performance on unrelated tasks.

Formally, LLM unlearning is typically cast as a regularized optimization problem involving two
competing objectives: a forget loss (ℓf ), which enforces the removal of the undesired data/knowl-
edge, and a retain loss (ℓr), which preserves the model’s general utility. The forget loss is evaluated
on the forget dataset Df using an unlearning-specific objective, while the retain loss is computed on
the retain dataset Dr using standard objectives such as cross-entropy or KL divergence (Maini et al.,
2024). This yields the optimization problem (Liu et al., 2025):

minimize
θ

ℓf(θ|Df) + λℓr(θ|Dr), (1)

where λ ≥ 0 is a regularization parameter that balances unlearning effectiveness (captured by ℓf )
against utility retention (captured by ℓr). In (1), the choice of the unlearning objective ℓf determines
the specific unlearning method applied to solve the problem. For instance, if ℓf = −ℓr, then gradient
descent optimization effectively leverages the gradient difference between prediction losses on Df

and Dr to promote forgetting. This approach is referred to as Gradient Difference (GradDiff) (Liu
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et al., 2022; Yao et al., 2024b). Alternatively, if ℓf is defined via the Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023) objective by treating the forget data in Df exclusively as negative
samples, then the resulting negative-sample-only formulation leads to the Negative Preference Opti-
mization (NPO) method (Zhang et al., 2024a; Fan et al., 2024) for solving (1). Furthermore, if ℓf is
cast as a min-max objective against worst-case perturbations (aimed at enhancing unlearning robust-
ness, as will be discussed later), then the resulting forget loss corresponds to the Sharpness-Aware
Minimization (SAM) objective, giving rise to the SAM-based robust unlearning (Fan et al., 2025).

To evaluate unlearning performance, we primarily adopt the MUSE benchmark (Shi et al., 2024),
which targets copyrighted information removal. MUSE consists of two subsets: unlearning book
contents from Harry Potter (“books corpus”, MUSE-Books) and unlearning BBC News articles
(“news corpus”, MUSE-News). Performance is assessed using three metrics: verbatim memorization
on the forget set (Df ; VerbMem), knowledge memorization on the forget set (Df ; KnowMem),
and knowledge memorization on the retain set (Dr; KnowMem). Unlearning is conducted on two
fine-tuned models: ICLM-7B trained on the books corpus and LLaMA2-7B trained on the news
corpus. We focus on MUSE because it jointly covers data-centric unlearning evaluation (captured by
VerbMem) and knowledge-centric unlearning evaluation (captured by KnowMem). In addition, we
also include experiments on the WMDP (Li et al., 2024) and TOFU (Maini et al., 2024) benchmarks
in the additional experiment section.

Unlearning robustness challenge. Once a model has been unlearned to erase undesired informa-
tion, it is crucial that the forgetting effect remains stable. In other words, the model should be robust
post-unlearning against both intentional and unintentional weight perturbations. In this work, we
focus on two representative forms of weight tampering studied in LLM unlearning: relearning at-
tacks (Hu et al., 2024; Fan et al., 2025; Deeb & Roger, 2024), which represent intentional perturba-
tions aimed at restoring forgotten knowledge, and weight quantization (Zhang et al., 2025b), which
reflects unintentional perturbations introduced by model compression.

Relearning attacks exploit data samples that follow the forget data distribution, for example, subsets
of Df (Fan et al., 2025; Hu et al., 2024) or retain data Dr drawn from the same distribution as Df
(Deeb & Roger, 2024). These samples are used to update the unlearned model and test whether
the resulting weight perturbations (denoted as δ) can undo the effects of unlearning in (1), thereby
resurfacing the forgotten information. Formally, the relearning attack can be expressed as

minimize
δ

ℓrelearn (θu + δ | Drelearn) , (2)

where θu denotes the unlearned model from (1) and Drelearn is the relearn dataset. Unless specified
otherwise, we set Drelearn as a subset of Df . Following (Fan et al., 2025), relearn is instantiated
by fine-tuning the unlearned model for a fixed number of steps, e.g., 100, which we denote as
“Relearn100”. Different from relearning attacks, quantization compresses the full-precision weights
of the unlearned model into lower precision by reducing the number of bits used to represent them.
As shown in (Zhang et al., 2025b), although quantization is a benign compression technique, it can
unintentionally undermine unlearning by shifting parameters toward regions in the loss landscape
that resurface forgotten knowledge.

The “grade” of an optimizer: Motivation for its link to unlearning robustness. Prior work has
begun to examine the optimizer’s influence on LLM unlearning. Here, we use the term optimizer to
refer to the objective-agnostic optimization method employed to solve the unlearning problem in (1).
For instance, first-order gradient-based methods such as Adam (Kingma & Ba, 2014) can be used to
implement multiple unlearning approaches like GradDiff and NPO. It has been shown in (Jia et al.,
2024c) that the choice of optimizer can impact unlearning effectiveness. For example, second-order
optimizers such as Sophia (Liu et al., 2023) closely connect to influence function-based unlearning
(Koh & Liang, 2017; Jia et al., 2024c), which estimates and removes the effect of specific training
data on a model. However, no prior work has examined the optimizer’s role in shaping unlearning
robustness against weight perturbations like relearning attacks and quantization.

In this work, we introduce a fresh perspective by examining the notion of “optimizer grade” and its
relationship to the grade of unlearning robustness. By “optimizer grade”, we refer to the level of
(descent) information an optimizer leverages to guide the optimization trajectory converging toward
a (locally) optimal solution. We can differentiate the optimizer grade based on the order of gradi-
ent information an optimizer exploits. For instance, zeroth-order (ZO) optimization methods (Liu
et al., 2020), which approximate gradients through finite differences of objective function values,
can be regarded as a downgrade of first-order (FO) methods; FO methods, in turn, are a down-
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(a) MUSE-News: Performance on Df and Dr (b) MUSE-Books: Performance on Df and Dr

Figure 1: Unlearning performance under 4-bit weight quantization using NPO on MUSE with different opti-
mizers (Sophia, Adam, 8-bit Adam, and 1-bit Adam). Performance is measured by unlearning effectiveness
(VerbMem and KnowMem on Df , left plots in each sub-figure) and utility (KnowMem on Dr, right plots in
each sub-figure). “Pre-unlearn” represents the target model to conduct unlearning, and “before Q” (the circle)
and “after Q” (the diamond) represent the unlearned models before and after 4-bit weight quantization. (a)
Unlearning on MUSE-News. (b) Unlearning on MUSE-Books.
grade of second-order (SO) methods. Furthermore, even within the same order, the optimizer grade
can vary depending on whether the gradient information is compressed. A well-known example is
gradient sign-based FO optimization, such as signSGD (Bernstein et al., 2018), which represents
a downgrade of standard SGD. Therefore, we focus on optimizer grades from two perspectives:
(a) inter-order, comparing zeroth-, first-, and second-order methods; and (b) intra-order, contrast-
ing compressed versus uncompressed gradient information within the first order. The problem of
interest can thus be formulated as: How does the optimizer grade affect unlearning robustness?

An interesting and, as we will show later, insightful conclusion is that a downgraded optimizer can
in fact lead to upgraded unlearning robustness. We motivate it by comparing unlearning robustness
under 4-bit weight quantization (via GPTQ (Frantar et al., 2022)) across optimizers of varying or-
ders, using NPO on the MUSE benchmark. The optimizers include the SO optimizer Sophia, the
FO optimizer Adam, and its downgraded gradient-compressed variants: 8-bit Adam (with 8-bit gra-
dient compression) (Dettmers et al., 2022) and 1-bit Adam (with 1-bit gradient compression, also
known as signAdam) (Wang et al., 2019). As shown in Fig. 1, before quantization (“before Q”), the
unlearning performance of downgraded optimizers (8-bit Adam and 1-bit Adam) is comparable to
that of full-precision Adam and Sophia, as indicated by similar VerbMem, KnowMem on Df and
KnowMem on Dr. However, when the unlearned models are subjected to 4-bit quantization for
post-unlearning robustness assessment, the unlearning performance of FO Adam and SO Sophia is
substantially worse compared to their downgraded optimizer counterparts (e.g., 1-bit Adam), as ev-
idenced by increases in VerbMem and KnowMem on Df . By comparison, the SO optimizer Sophia
shows the weakest robustness on Df after quantization, even worse than the FO Adam. This high-
lights a clear interplay between optimizer grade and robustness. Focusing on utility measured by
KnowMem on Dr, we observe that quantized unlearned models gain utility, whereas the original
pre-unlearned model suffers a utility drop after quantization. This occurs because quantization can
partially revert the unlearning effect, thereby easing the tradeoff between forgetting on Df and re-
tention on Dr, which in turn boosts utility.

4 DOWNGRADING THE OPTIMIZER UPGRADES UNLEARNING ROBUSTNESS

Optimizer downgrade via gradient compression. Let mt denote the descent direction used in
the t-th update of a FO optimizer, with the update rule given by θt+1 = θt − ηmt, where η > 0
denotes a learning rate. For Adam, mt corresponds to the momentum term (i.e., moving average of
adaptive gradients) (Reddi et al., 2018), while for SGD, mt is simply the gradient of the objective
function. The gradient compression replaces the full-precision gradient with a quantized version,
obtained through a quantization operator Q(·;N) using the gradient’s N -bit representation:

θt+1 = θt − ηQ(mt;N); And if N = 1, then Q(mt; 1) = sign(mt), (3)

where sign(x) denotes the element-wise sign of the vector x. The SGD variant of (3) with N =
1 corresponds to signSGD (Bernstein et al., 2018). Similarly, the Adam variants with N = 8
and N = 1 give rise to 8-bit Adam (Dettmers et al., 2022) and signAdam (Wang et al., 2019),
respectively. It is also worth noting that gradient compression reduces the information available in
the descent step (3), yet it still suffices to guarantee convergence of the optimization (Bernstein et al.,
2018). As shown in Fig. 1, gradient compression improves unlearning robustness compared to its
uncompressed counterpart under post-unlearning weight quantization. This effect can be explained
from (3): When a gradient compression-based optimizer is used for unlearning, it naturally improves
tolerance to weight perturbations, as the quantization operator Q(·) effectively acts as a “denoiser”,
mapping perturbed weights onto the same discrete bit values.
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(a) GradDiff vs. quantization (b) NPO vs. quantization

(c) GradDiff vs. relearning (d) NPO vs. relearning
Figure 2: On MUSE-Books, (a-b): Unlearning performance under 4-bit weight quantization using GradDiff
and NPO with different optimizers (Adam, signSGD, signAdam, (FO) RS, ZO method). The figure format is
consistent with Fig. 1. (c-d): Unlearn performance with relearning 100 steps (“Relearn100”), using GradDiff
and NPO with different optimizers.

Optimizer downgrade via ZO gradient estimation and its link to randomized smoothing. The
observation that gradient compression yields tolerance to weight perturbations suggests a broader
principle: if an optimizer inherently tolerates noise, it may also enhance robustness when applied
to unlearning. Following this principle, downgrading from FO to ZO optimization can also im-
prove robustness, since ZO methods estimate gradients via finite differences of objective function
values, while still enjoying provable convergence guarantees (Liu et al., 2020). Formally, the ZO
approximation of the FO gradient ∇f(x) for an objective function f(x) is given by

∇̂f(x) =
1

q

q∑
i=1

[
f(x+ µui)− f(x− µui)

2µ

]
ui, (4)

where {ui}qi=1 are random direction vectors (e.g., sampled uniformly from the unit sphere), and
µ > 0 is the perturbation size used for finite differences. As shown theoretically in (Liu et al.,
2018), the ZO gradient estimator is an unbiased estimator (4) of the gradient of a smoothed version
of the original objective function,

fµ(x) := Eu

[
f(x+ µu)

]
, with ∇fµ(x) = Eu[∇̂f(x)], (5)

where the expectation is taken over the random direction vector u. Therefore, employing a ZO
gradient estimation-based optimizer is equivalent to solving a randomized smoothing (RS) (Cohen
et al., 2019) of the original problem (Liu et al., 2020), where ∇̂f(x) serves as a stochastic gradient
estimate of the smoothed objective. It is clear from (5) that RS inherently incorporates random
noise into the optimization process. Indeed, minimizing an RS-type unlearning objective (with a FO
optimizer) has been shown to improve unlearning robustness (Fan et al., 2025).

There exist many variants of ZO optimization methods. For LLM unlearning we emphasize two
choices. First, sampling random vectors from the unit sphere distribution rather than a Gaussian
yields more stable unlearning by reducing gradient estimation variance (Ma & Huang, 2025). Sec-
ond, we adopt the AdaZO optimizer (Shu et al., 2025), a state-of-the-art method that further reduces
variance and improves convergence. Unless otherwise specified, ZO refers to AdaZO.

Enhanced unlearning robustness to weight quantization via downgraded optimizers. Extend-
ing Fig. 1 by incorporating additional downgraded optimizers beyond Adam (including signSGD,
RS, and AdaZO), Fig. 2(a-b) reports the initial unlearning performance on MUSE-Books (“before
Q”) and the performance under 4-bit weight quantization (“after Q”), using GradDiff and NPO as
the unlearning methods. Consistent with Fig. 1, the 1-bit compressed optimizers signAdam and
signSGD improve quantization robustness compared to Adam. Likewise, the first-order RS-based
optimization also achieves both effective unlearning before quantization and improved robustness
after quantization. The ZO optimizer, viewed as the ZO downgrade of RS, shows more nuanced
behavior. Prior to quantization, ZO exhibits weaker unlearning: for both GradDiff and NPO, it
yields higher VerbMem and KnowMem on Df and lower KnowMem on Dr. However, after quanti-
zation, ZO demonstrates remarkably strong robustness: it attains substantially lower VerbMem and
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Figure 3: Linear mode connectivity (LMC) between downgraded optimizers (signSGD, signAdam, RS, and
ZO) and Adam on MUSE-Books, using NPO.

KnowMem on Df than other methods. This pattern holds across both GradDiff- and NPO-based un-
learning. The tradeoff is that ZO yields the weakest utility, reflecting its downgraded optimization
accuracy. As will be shown later, we can leverage ZO’s robustness benefits to improve FO-based
unlearning via a hybrid approach that integrate ZO with FO.

ZO exhibits stronger robustness than other optimizers against relearning. Fig. 2(c-d) shows
unlearning robustness under relearning attacks. Among first-order downgraded optimizers, FO RS
performs the best, with lower VerbMem and KnowMem on Dr after 100 relearning steps (“Re-
learn100”) for both GradDiff and NPO, consistent with literature on smoothness optimization (Fan
et al., 2025). In contrast, signAdam and signSGD show only occasional gains over Adam. The
most notable improvement comes from ZO, which consistently yields the lowest VerbMem and
KnowMem on Df across both unlearning methods. Results on robustness to relearning (Fig. 2(c-
d)) and weight quantization (Fig. 2(a-b)) highlight the distinctive advantage of the downgraded ZO
optimizer over RS, gradient-compressed FO, and standard FO. We hypothesize that ZO guides un-
learning into a different optimization basin, yielding distinct dynamics and greater robustness.

To validate the distinctiveness of ZO optimizers, we use linear mode connectivity (LMC) (Frankle
et al., 2020; Qin et al., 2022; Lubana et al., 2023; Pal et al., 2025) to compare converged unlearning
solutions from two optimizers. LMC assesses whether two unlearned models can be connected by
linear interpolation in parameter space. Formally, for θ1 and θ2, LMC holds if the unlearning met-
ric (e.g., KnowMem on Df ) of θ(α) = αθ1 + (1 − α)θ2 remains consistent as α ∈ [0, 1] varies.
Fig. 3 shows LMC between models unlearned with downgraded optimizers and Adam. Gradient-
compressed optimizers (signSGD, signAdam) display clear connectivity with Adam: VerbMem on
Df , KnowMem on Df , and KnowMem on Dr remain stable across interpolation, indicating conver-
gence to the same basin. In contrast, ZO lacks LMC with Adam, implying convergence to a separate
basin supporting its distinctive unlearning and robustness.

5 BEST OF BOTH WORLDS: LLM UNLEARNING VIA HYBRID OPTIMIZATION

As indicated by Fig. 3, FO and ZO optimizers converge to different basins: FO yields stronger
unlearning but limited robustness, whereas ZO offers weaker unlearning before quantization and
relearning yet greater robustness to weight perturbations, due to the perturbation tolerance of its
gradient estimation and optimization. This raises the question of whether integrating ZO into FO
can achieve both effective unlearning and robustness beyond the standard FO optimizer.

Recall that ZO is inherently noisier than FO due to gradient estimation variance (4), which limits
optimization efficiency (Liu et al., 2020). To address this, we propose a hybrid FO–ZO method
(“Hybrid”): FO optimization (Adam by default) is applied to the pre-unlearned model θ for N steps,
producing θN ; then ZO optimization (AdaZO by default) continues for another N steps to obtain
θ2N . This alternation repeats, ending on a ZO round, so the final model is θkN for k alternating
rounds.

Rationale behind FO-ZO hybrid: A leader-follower game. In the proposed hybrid strategy, the
alternation between FO and ZO naturally integrates their optimization effects. This can be viewed
as a two-player game: the high-grade FO optimizer acts as a player that solves the unlearning
problem with high precision, while the ZO optimizer introduces noise, effectively solving a random-
smoothing objective that enhances tolerance to weight perturbations. However, we find that starting
with the FO optimizer and ending with the ZO optimizer yields stronger unlearning robustness and
a more stable optimization process, consistent with our design goal. The rationale behind the hybrid
schedule is that this two-player game can be viewed as a leader–follower game (also known as bi-
level optimization) (Zhang et al., 2024b). Since unlearning robustness is the primary goal, the ZO
optimizer should be treated as the “leader.” Meanwhile, the FO optimizer, as a high-grade optimizer
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(a) GradDiff vs. quantization (b) NPO vs. quantization

(c) GradDiff vs. relearning (d) NPO vs. relearning
Figure 4: (a–b): Unlearning performance before and after 4-bit quantization on MUSE-Books using GradDiff
and NPO with optimizers Adam, SAM, signAdam, and Hybrid FO–ZO. (c–d): GradDiff and NPO on MUSE-
Books under different optimizers against “Relearn100” (100 relearning steps). The figure format follows Fig. 2.

with stronger unlearning effectiveness, acts as the “follower,” providing a high-quality initialization
for ZO and reducing the variance introduced by ZO gradient estimation.

Hybrid optimization achieves both strong unlearning effectiveness and robustness. In Fig. 4,
we show that the “Hybrid” optimizer demonstrates superior robustness to both weight quantiza-
tion (Fig. 4(a–b)) and relearning (Fig. 4(c–d)), outperforming gradient-compressed signAdam, stan-
dard Adam, and SAM (sharpness-aware minimization with explicit robust design). As shown in
Fig. 4(a–b), before quantization, Hybrid achieves superior unlearning effectiveness, evidenced by the
lowest VerbMem and KnowMem scores on Df , while preserving utility as measured by KnowMem
on Dr. This stands in sharp contrast to the ZO optimizer in Fig. 2, where robustness gains come at the
cost of utility loss. After quantization, Hybrid maintains consistent robustness benefits, with utility
drops similar to those of the original model. Notably, its robustness gains even surpass SAM, de-
spite SAM’s explicit robustness design in the unlearning objective. Fig. 4(c–d) further demonstrates
Hybrid’s robustness against relearning. For both GradDiff- and NPO-based unlearning, Hybrid
achieves substantially lower VerbMem and KnowMem after Relearn100.

6 ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments validating the link between optimizer grade and
unlearning robustness grade, including evaluations on WMDP (Li et al., 2024), TOFU (Maini et al.,
2024), and supportive experiments for our proposal.

Experiment setups. We further evaluate on the WMDP benchmark, which tests harmful knowl-
edge removal via LLM unlearning. Following the robustness protocol in (Fan et al., 2025), we
fine-tune unlearned models on a small subset of forget samples for varying epochs. Experiments
use Zephyr-7B-beta with two stateful unlearning algorithms: representation misdirection for
unlearning (RMU) (Li et al., 2024) and NPO. Baselines include Adam, signAdam, ZO, and SAM,
compared against our Hybrid. Unlearning effectiveness is measured by test accuracy on WMDP-
Bio, while utility is measured by accuracy on MMLU (Hendrycks et al., 2020); effective unlearning
corresponds to low WMDP-Bio and high MMLU accuracy. We further validate the proposed Hy-
brid method on the TOFU benchmark (Maini et al., 2024), designed for fictitious unlearning on a
synthetic QA dataset. Using NPO under the forget10 scenario, the goal is to erase memorization
of fictitious authors. The target model is LLaMA2-7B fine-tuned on the dataset corpus. Evaluation
uses three metrics: (i) Probability on Df (Prob.), (ii) ROUGE-L on Df (Rouge), and (iii) Model util-
ity (MU), aggregating memorization on Dr, real authors, and world knowledge. Effective unlearning
corresponds to low Prob./Rouge and high MU.

Experiment results on WMDP. As WMDP unlearning is vulnerable to relearning attacks Fan et al.
(2025), we investigate the role of optimizers before and after such attacks. Relearning is simulated
by fine-tuning the unlearned model on 40 forget samples across epochs. Fig. 5 shows WMDP and
MMLU accuracy for RMU and NPO (a-b), and robustness under relearning (c-d). The proposed
Hybrid consistently outperforms baselines in both settings, notably surpassing SAM—despite its
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(a) RMU w/o relearn (b) NPO w/o relearn (c) RMU vs. relearn (d) NPO vs. relearn
Figure 5: Unlearning performance and relearning robustness of RMU and NPO on WMDP-Bio using different
optimizers (Adam, signAdam, ZO, SAM, and Hybrid). Relearning is conducted by fine-tuning the unlearned
model on 40 forget data samples across multiple epochs. (a) Unlearning effectiveness and utility retention of
RMU without relearning; (b) NPO without relearning; (c) RMU across different relearning epochs; (d) NPO
across different relearning epochs.
explicit robustness design—while retaining comparable or superior unlearning effectiveness before
relearning. Another notable observation is that when robustness against relearning is not considered,
the ZO optimizer appears inferior to other methods in Fig. 5(a-b), owing to its high optimization
variance from ZO gradient estimation, consistent with the MUSE results in Fig. 2. However, once
relearning is taken into account, the robustness benefit of ZO becomes evident in Fig. 5(c-d), even
surpassing Hybrid at larger relearning epochs. This again confirms our key finding that downgrading
the optimizer can enhance the robustness of unlearning.

Prob. ↓ Rouge ↓ MU ↑

Original 99.0 99.8 63.2
Retrain 14.8 39.9 61.3

Adam 0.0 0.0 53.2
ZO 30.4 41.7 50.3
Hybrid 0.0 1.8 61.5

(a) Unlearn performance on TOFU (b) Prob. with relearning. (b) Rouge. with relearning
Figure 6: Unlearning performance and robustness of NPO using Adam, ZO, and Hybrid optimizer on TOFU
under the forget10 scenario. (a) Unlearning effectiveness of NPO before relearning with different optimizers,
evaluated by probability (Prob.), ROUGE-L (Rouge), and model utility (MU). Here, “Original” denotes the
pre-unlearned target model, while “Retrain” refers to the model trained solely on the retain dataset, provided
by TOFU. (b–c) Robustness against relearning, showing Prob. and Rouge. against increasing relearning steps.

Experiments on TOFU. Fig. 6 presents the NPO-based unlearning performance on TOFU before
and after relearning using different optimizers (Adam, ZO, and Hybrid). As shown in Fig. 6(a), Hy-
brid consistently matches or outperforms Adam, achieving stronger unlearning effectiveness with
lower Prob. and Rouge. and higher MU. In contrast, ZO delivers weaker unlearning prior to relearn-
ing. However, Fig. 6(b–c) highlights the robustness advantage of ZO and Hybrid over Adam under
relearning, as both maintain lower Prob. and Rouge values with increasing steps. Notably, Hy-
brid provides the best overall trade-off, combining effective unlearning with resilience to relearning,
outperforming Adam and enjoying ZO’s robustness.

(a) NPO vs. quantization MUSE-Books (b) NPO vs. relearning MUSE-Books
Figure 7: (a) NPO-based unlearn performance and quantization robustness of Hybrid optimization with switch
steps 20, 5 and 100 (e.g., “Hybrid (N = 20)” represents Hybrid optimization where the FO and ZO optimizer
switch every 20 steps). (b) Relearning robustness of Hybrid optimization with different switch steps.

Ablation studies on hybrid optimization. We conduct additional experiments on MUSE-Books
to provide further justification for the optimizer scheduler design in Hybrid optization, detailed in
Sec. 5. As shown in Fig. 7, changing the switch step N does not materially affect unlearning’s ro-
bustness against quantization and relearning. Besides, Fig. 8 presents the performance where Hybrid
optimization has different steps N for FO and ZO. We can see that allocating an equal number of
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(a) NPO vs. quantization on MUSE-Books (b) NPO vs. relearning on MUSE-Books
Figure 8: (a) NPO-based unlearn performance and quantization robustness of Hybrid optimization where FO
and ZO have different steps (e.g., “FO= 10, ZO= 20” represents optimization with Adam for 10 steps and ZO
for 20 steps in each round), evaluated on MUSE-Books. (b) Relearning robustness of Hybrid optimization with
different FO and ZO steps.

FO and ZO updates (denoted as FO= 20, ZO= 20) achieves the best balance between unlearning
effectiveness and robustness. This outcome is consistent with our method design grounded in the
leader–follower game (Sec. 5). Assigning more FO than ZO steps (e.g., FO= 20, ZO= 10) results
in a decline in unlearning robustness because the “leader” component (ZO updates responsible for
steering the model toward robustness) becomes weaker than the “follower” (FO updates that em-
phasize high-precision unlearning but do not explicitly promote robustness). Conversely, assigning
more ZO than FO steps (e.g., FO= 10, ZO= 20) slightly reduces unlearning effectiveness, since
the “follower” (FO) becomes weaker to provide the high-fidelity updates needed to maintain strong
unlearning performance in a non-relearning evaluation setting.

Table 1: Run time (in minutes) of different optimizers for GradDiff and NPO-based unlearning on MUSE.

Dataset Unlearning Objective Optimization Method
Adam signSGD signAdam RS SAM ZO Hybrid

MUSE-Books
GradDiff 15.2 14.8 15.0 15.4 30.6 18.9 17.7

NPO 18.9 17.7 17.8 18.1 35.9 22.8 21.9

MUSE-News
GradDiff 33.2 31.1 32.6 35.9 85.7 40.8 41.7

NPO 39.3 38.5 39.0 39.8 81.3 40.9 39.3

Run time evaluation. As shown in Table. 1, downgraded optimizers such as ZO and Hybrid achieve
comparable wall-clock time to standard first-order optimizers. While ZO uses multiple function
evaluations, the absence of backward passes and the limited number of unlearning iterations make
its cost practically similar. We also observe that downgraded optimizers are significantly more ef-
ficient than the robust-optimization baseline SAM, whose sharpness-aware updates require an ex-
pensive inner loop. In contrast, our Hybrid method alternates between FO and ZO updates without
introducing any nested optimization, preserving efficiency while improving robustness.

Other ablation studies. In Appx. E, we further validate the robustness of Hybrid by conducting
relearning experiments on both Df and Dr for different numbers of steps, and additionally include
general utility (i.e., model capabilities that should be preserved but are not explicitly tested in un-
learning benchmarks) evaluation for the optimizers discussed in this study. As detailed in the ap-
pendix, Hybrid demonstrates consistent robustness on both Df and Dr, and lower-grade optimizers
do not necessarily compromise general utility.

7 CONCLUSION

To enhance the robustness of LLM unlearning against post-unlearning weight tampering (e.g., re-
learning attacks and weight quantization), we investigate the role of optimizer design and demon-
strate that downgrading the optimizer can improve robustness. This reveals a novel connection
between optimizer grade and unlearning robustness. Among downgraded optimizers, zeroth-order
(ZO) methods show weaker unlearning performance (when weight tampering is not considered)
but substantially greater robustness compared to first-order (FO) optimizers for unlearning. Build-
ing on this insight, we propose a FO-ZO hybrid optimization strategy that augments standard FO
unlearning with ZO updates, achieving both strong unlearning effectiveness and enhanced robust-
ness. Extensive experiments across multiple datasets validate the benefits of this approach. We refer
readers to Appx. A–C for discussions on limitations, ethics statement, and LLM usage.
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APPENDIX

A LIMITATIONS

While we conduct comprehensive experiments and in-depth analysis to show the role of optimizers
in robust LLM unlearning, certain limitations persist in our study. There are other optimizers we did
not include in our study, e.g., the Muon optimizer and the Shampoo optimizer. Also, our methods
and insights could be extended to relevant and important fields, such as safety alignment, which we
did not include in this work. Additionally, there needsstudy on whether the downgrade of optimizers
improves robustness in general.

B ETHICS STATEMENT

The datasets used in this paper are from publicly available sources and do not contain sensitive or
private information. Our research focuses on the LLM unlearning, which erases private or harmful
data memorization in LLMs and enhances LLM safety. By studying optimizer design and integrating
hybrid optimization, we further improve the robustness of unlearning, making it less vulnerable to
post-unlearning weight tampering.

C LLM STATEMENT

In this paper, the sole purpose of LLMs is to assist with improving the fluency of the paper, such
as refining the grammar. At no point did the language model contribute to research ideas or to the
generation of original content.

D DETAILED EXPERIMENT SETUP

Settings on MUSE. For the first-order (FO) optimizers (Adam, gradient-compressed Adam, and
RS) on both MUSE-Books and MUSE-News, we fix β in NPO to 0.1, and tune the learning rate in
the range [5e−6, 1e−5]. On MUSE-Books, we perform unlearning for 1 epoch and tune the retain
loss coefficient λ for GradDiff and NPO in {1.0, 10.0, 20.0, 50.0} via grid search. On MUSE-
News, we conduct 5 epochs of unlearning, saving checkpoints per epoch, and select the checkpoint
with the best retain performance as the final model.

For the zeroth-order (ZO) methods and Hybrid, we also fix β in NPO to 0.1 and make the same
grid search for λ. We tune the learning rate via grid search in [1e−5, 5e−5] and conduct 1000 steps
of unlearning, checkpointing every 100 steps to select the model with the best retain performance.
In Hybrid, we switch the optimizer every 20 steps on MUSE-Books and every 50 steps on MUSE-
News.

Settings on WMDP. For both NPO and RMU using FO optimizers, we perform 150 unlearning
steps. For NPO, we fix β to 0.1 and tune the hyperparameters via grid search: learning rate ∈
[5e−6, 1e−5] and λ ∈ {1.0, 2.5}. For RMU, we follow the default settings proposed in Li et al.
(2024).

For NPO and RMU using ZO and Hybrid, we perform 400 unlearning steps and checkpoint ev-
ery 100 steps, selecting the model with the best utility. We tune the learning rate via grid search
in [1e−5, 5e−5] and employ the same λ values as in the FO setting. For Hybrid, we switch the
optimizer every 20 steps.

Settings on TOFU. We fix β in NPO to 0.1 and tune λ ∈ {1.0, 2.5}. For the FO setting, we fix the
learning rate to 1e−5. For ZO and Hybrid, we tune the learning rate via grid search in [1e−5, 5e−5].
For Hybrid, we switch the optimizer every 20 unlearning steps.
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(a) GradDiff, relearn on Df (b) NPO, relearn on Df (c) GraDiff, relearn on Dr (d) NPO, relearn on Dr

Figure A1: Robustness of GradDiff and NPO on MUSE-Books against relearning on Df and Dr across different
numbers of relearning steps. The initial unlearned models at “step 0” are obtained using Adam, SAM, and
Hybrid optimizers, respectively.

E ABLATION STUDIES.

Additional experiments on hybrid optimization. We evaluate the robustness of the proposed
Hybrid optimizer under two relearning settings: using the forget set Df and the retain set Dr. While
earlier experiments considered the worst-case robustness scenario with Df as relearning samples,
our results show that Hybrid maintains robustness even when the relearning set is drawn from Dr,
demonstrating its resilience beyond the worst-case setting. Fig. A1 shows that Hybrid consistently
outperforms Adam and SAM, achieving lower KnowMem and VerbMem on Df across the relearn-
ing path. Moreover, Hybrid not only surpasses SAM with its explicit robustness design against
relearning attacks but also demonstrates stable resilience when fine-tuned on Dr.

General utility evaluation. We employ the following benchmarks and the lm-eval-harness
library (Gao et al., 2024) to evaluate the general utility of the unlearned models. These benchmarks
target different aspects of reasoning, factuality, and commonsense competence:

• Hellaswag (Zellers et al., 2019) measures a model’s ability to perform commonsense reasoning
in everyday situations. It presents a context and several possible sentence completions. High
performance indicates strong capability in narrative understanding and choosing contextually ap-
propriate continuations.

• TruthfulQA (Lin et al., 2021) evaluates the truthfulness and factual of model responses.
• ARC-Challenge (Clark et al., 2018) focuses on scientific question answering at the level of ele-

mentary and middle school multiple-choice exams.

As shown in Table. A1, models trained with down-graded optimizers and Hybrid etain competitive
performance relative to the upgraded FO optimizer, confirming that lower-grade optimizers do not
necessarily compromise general utility.

Table A1: General utility evaluation of different optimizers across unlearning benchmarks and methods. The
values in the table are the average of hellaswag, truthfulqa and arc evaluation scores.

Dataset Pre-unlearn Method Optimization Methods
Adam signAdam SAM ZO Hybrid

MUSE-Books 36.2
GradDiff 32.6 32.9 28.1 26.4 30.1

NPO 27.2 28.5 27.6 32.9 25.2

MUSE-News 41.9
GradDiff 37.0 37.7 37.4 36.5 36.7

NPO 38.8 40.9 32.7 37.0 37.3

WMDP 53.3
RMU 53.4 49.1 52.9 41.5 48.9
NPO 33.1 30.0 26.7 41.1 35.9

F ADDITIONAL RESULTS

We show the unlearning performance with quantization and relearning for GradDiff and NPO on
MUSE-News, using the down-graded optimizers, in Fig. A2. LMC of NPO on MUSE-News is
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shown in Fig. A3. We further show the performance of Hybrid on MUSE-News with NPO and
GradDiff, against relearning and quantization, in Fig. A4.

For both the study of downgraded optimizers and hybrid optimization, the experiment results on
MUSE-News are aligned with MUSE-Books: For instance, as shown in Fig. A2(a-b), ZO achieves
the best performance with 4-bit quantization (“with Q”). Fig. A2(c-d) further demonstrates the ro-
bustness of ZO against relearning, where ZO with both GradDiff and NPO acheives the lowest
KnowMem and VerbMem on Df after relearning 100 steps.

(a) GradDiff vs. quantization (b) NPO vs. quantization

(c) GradDiff vs. relearning (d) NPO vs. relearning
Figure A2: Unlearning performance and robustness using GradDiff and NPO on MUSE-News with different
optimizers (Adam, signSGD, signAdam, (FO) RS, ZO method). (a-b) shows unlearning’s robustness against
4-bit quantization, and (c-d) shows unlearning’s robustness against relearning 100 steps (“Relearn100”).

Figure A3: Linear mode connectivity (LMC) between downgraded optimizers (signSGD, signAdam, RS, and
ZO) and Adam on MUSE-News, using NPO for unlearning.

The effectiveness of hybrid optimization is also demonstrated on MUSE-News, as Fig. A4 illus-
trates. Across GradDiff and NPO, Hybrid yields unlearn performance on par with Adam. Espe-
cially with the NPO algorithm, Hybrid shows a clear robustness advantage against both quantization
(Fig. A4(b)) and relearning (Fig. A4(d)) compared to the baseline optimizers (e.g., Adam and SAM).
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(a) GradDiff vs. quantization (b) NPO vs. quantization

(c) GradDiff vs. relearning (d) NPO vs. relearning
Figure A4: (a-b):Unlearning performance before and after 4-bit quantization using GradDiff and NPO on
MUSE-News with the optimization methods: Adam, sharpness-aware minimization (SAM), signAdam and
hybrid FO-ZO optimization (Hybrid). (c-d): GradDiff and NPO with different optimizers against relearning
100 steps. The figure format is consistent with Fig. 2.

Method VerbMem (↓) KnowMem (↓) Retain (↑) Utility (↑)

w/o Q w/ Q W/o atk W. atk W/o atk W. atk Truth-
QA Hellaswag ARC-

Challenge

Pre-unlearn 99.8 85.3 59.4 36.8 66.9 50.5 21.4 50.0 37.3

NPO 0 48.5 0 34.8 53.65 51.0 23.3 31.0 27.3
NPO w. signSGD 0 15.6 0 20.6 44.5 42.0 22.2 35.8 31.7
NPO w. signAdam 0 30.7 0 25.8 35.9 52.5 23.6 33.2 28.8

NPO w. RS 0.0 34.5 0 23.4 54.6 49.9 23.4 31.1 28.2
NPO w. SAM 0.0 30.0 0.0 22.5 35.2 46.0 23.6 29.7 26.7
NPO w. ZO 20.7 16.2 23.9 16.4 36.6 21.1 18.5 44.7 35.5

NPO w. Hybrid 0 0 0 0 54.8 38.5 23.8 28.4 23.5

GradDiff 0 60.5 5.9 31.6 46.0 51.0 22.4 41.7 33.6
GradDiff w. signSGD 0 36.5 2.81 29.2 36.7 49.7 21.9 42.2 33.0
GradDiff w. signAdam 0 23.9 0.5 26.1 25.3 51.2 20.8 42.7 35.3

GradDiff w. RS 0 0.61 0 27.35 26.8 47.9 22.2 39.4 34.9
GradDiff w. SAM 0 13.4 0 30.4 44.5 50.0 21.4 42.1 33.5
GradDiff w. ZO 12.3 11.5 9.2 4.0 26.8 11.0 20.3 36.7 27.4

GradDiff w. Hybrid 0 0 0 0 48.5 38.2 24.1 30.8 24.2

Table A2: Unlearning evaluation and general utilities on MUSE-Books, using GradDiff and NPO.

Method VerbMem (↓) KnowMem (↓) Retain (↑) Utility (↑)

W/o atk W. atk W/o atk W. atk W/o atk W. atk Tru hellaswag ARC

Pre-unlearn 58.4 34.2 64.0 54.4 55.2 48.2 26.9 56.2 42.7

NPO 0.9 34.0 48.2 50.0 43.4 47.0 26.6 52.4 37.5
NPO w. signSGD 2.7 29.4 43.5 47.5 37.4 46.0 26.4 51.9 37.9
NPO w. signAdam 0.7 14.4 45.6 35.3 42.3 41.4 28.9 53.9 40.0

NPO w. RS 5.0 29.5 43.4 46.9 43.3 45.7 26.8 53.0 37.0
NPO w. SAM 0.0 19.5 42.0 47.6 35.2 42.0 26.1 42.7 29.4
NPO w. ZO 21.3 17.3 39.2 26.3 41.2 29.0 23.5 50.7 36.8

NPO w. Hybrid 8.9 8.4 35.9 32.0 38.9 34.0 26.4 49.7 35.7

GradDiff 5.9 26.2 30.9 48.2 46 51.5 26.9 56.2 42.7
GradDiff w. signSGD 4.9 27.2 17.1 49.5 26.4 50.6 26.1 49.0 37.2
GradDiff w. signAdam 3.6 11.8 27.3 43.1 35.8 36.1 25.2 49.3 36.4

GradDiff w. RS 4.9 25.9 24.4 52.8 32.8 47.9 26.1 49.4 37.6
GradDiff w. SAM 4.9 28.3 43.9 51.3 31.4 47.6 26.8 46.2 37.0
GradDiff w. ZO 21.3 16.7 29.6 15.8 30.4 19.5 2.6 50.3 36.6

GradDiff w. Hybrid 9.2 19.0 25.7 40.0 29.2 33.8 23.3 52.2 35.9

Table A3: Unlearning evaluation and general utilities on MUSE-Books, using GradDiff and NPO.
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