
Published as a conference paper at ICLR 2022

DEEP AUTOAUGMENT

Yu Zheng1, Zhi Zhang2, Shen Yan1, Mi Zhang1
1Michigan State University, 2Amazon Web Services
zhengy30@msu.edu, zhiz@amazon.com, {yanshen6, mizhang}@msu.edu

ABSTRACT

While recent automated data augmentation methods lead to state-of-the-art results,
their design spaces and the derived data augmentation strategies still incorporate
strong human priors. In this work, instead of fixing a set of hand-picked default
augmentations alongside the searched data augmentations, we propose a fully
automated approach for data augmentation search named Deep AutoAugment
(DeepAA). DeepAA progressively builds a multi-layer data augmentation pipeline
from scratch by stacking augmentation layers one at a time until reaching conver-
gence. For each augmentation layer, the policy is optimized to maximize the cosine
similarity between the gradients of the original and augmented data along the
direction with low variance. Our experiments show that even without default aug-
mentations, we can learn an augmentation policy that achieves strong performance
with that of previous works. Extensive ablation studies show that the regularized
gradient matching is an effective search method for data augmentation policies.
Our code is available at: https://github.com/MSU-MLSys-Lab/DeepAA.

1 INTRODUCTION

Augmentation
Policy

Default
Transformation

1

(A)

Transformation
2

Transformation
2

Transformation
1

Transformation
1

Default
Transformation

2

Augmentation
Policy

Transformation
2

Transformation
2

Transformation
1

Transformation
1

Transformation
K-1

Transformation
K-1

Transformation
K

Transformation
K

(B)

...

Figure 1: (A) Existing automated data augmentation meth-
ods with shallow augmentation policy followed by hand-
picked transformations. (B) DeepAA with deep augmentation
policy with no hand-picked transformations.

Data augmentation (DA) is a powerful tech-
nique for machine learning since it effec-
tively regularizes the model by increas-
ing the number and the diversity of data
points (Goodfellow et al., 2016; Zhang
et al., 2017). A large body of data aug-
mentation transformations has been pro-
posed (Inoue, 2018; Zhang et al., 2018;
DeVries & Taylor, 2017; Yun et al., 2019;
Hendrycks et al., 2020; Yan et al., 2020)
to improve model performance. While ap-
plying a set of well-designed augmentation
transformations could help yield consider-
able performance enhancement especially
in image recognition tasks, manually select-
ing high-quality augmentation transforma-
tions and determining how they should be
combined still require strong domain exper-
tise and prior knowledge of the dataset of
interest. With the recent trend of automated
machine learning (AutoML), data augmen-
tation search flourishes in the image domain (Cubuk et al., 2019; 2020; Ho et al., 2019; Lim et al.,
2019; Hataya et al., 2020; Li et al., 2020; Liu et al., 2021), which yields significant performance
improvement over hand-crafted data augmentation methods.

Although data augmentation policies in previous works (Cubuk et al., 2019; 2020; Ho et al., 2019; Lim
et al., 2019; Hataya et al., 2020; Li et al., 2020) contain multiple transformations applied sequentially,
only one or two transformations of each sub-policy are found through searching whereas the rest
transformations are hand-picked and applied by default in addition to the found policy (Figure 1(A)).
From this perspective, we believe that previous automated methods are not entirely automated as
they are still built upon hand-crafted default augmentations.

1

https://github.com/MSU-MLSys-Lab/DeepAA

Published as a conference paper at ICLR 2022

In this work, we propose Deep AutoAugment (DeepAA), a multi-layer data augmentation search
method which aims to remove the need of hand-crafted default transformations (Figure 1(B)). DeepAA
fully automates the data augmentation process by searching a deep data augmentation policy on
an expanded set of transformations that includes the widely adopted search space and the default
transformations (e.g. flips, Cutout, crop). We formulate the search of data augmentation policy as a
regularized gradient matching problem by maximizing the cosine similarity of the gradients between
augmented data and original data with regularization. To avoid exponential growth of dimensionality
of the search space when more augmentation layers are used, we incrementally stack augmentation
layers based on the data distribution transformed by all the previous augmentation layers.

We evaluate the performance of DeepAA on three datasets – CIFAR-10, CIFAR-100, and ImageNet –
and compare it with existing automated data augmentation search methods including AutoAugment
(AA) (Cubuk et al., 2019), PBA (Ho et al., 2019), Fast AutoAugment (FastAA) (Lim et al., 2019),
Faster AutoAugment (Faster AA) (Hataya et al., 2020), DADA (Li et al., 2020), RandAugment (RA)
(Cubuk et al., 2020), UniformAugment (UA) (LingChen et al., 2020), TrivialAugment (TA) (Müller
& Hutter, 2021), and Adversarial AutoAugment (AdvAA) (Zhang et al., 2019). Our results show that,
without any default augmentations, DeepAA achieves the best performance compared to existing
automatic augmentation search methods on CIFAR-10, CIFAR-100 on Wide-ResNet-28-10 and
ImageNet on ResNet-50 and ResNet-200 with standard augmentation space and training procedure.

We summarize our main contributions below:

• We propose Deep AutoAugment (DeepAA), a fully automated data augmentation search
method that finds a multi-layer data augmentation policy from scratch.

• We formulate such multi-layer data augmentation search as a regularized gradient matching
problem. We show that maximizing cosine similarity along the direction of low variance is
effective for data augmentation search when augmentation layers go deep.

• We address the issue of exponential growth of the dimensionality of the search space when
more augmentation layers are added by incrementally adding augmentation layers based on
the data distribution transformed by all the previous augmentation layers.

• Our experiment results show that, without using any default augmentations, DeepAA
achieves stronger performance compared with prior works.

2 RELATED WORK

Automated Data Augmentation. Automating data augmentation policy design has recently emerged
as a promising paradigm for data augmentation. The pioneer work on automated data augmentation
was proposed in AutoAugment (Cubuk et al., 2019), where the search is performed under reinforce-
ment learning framework. AutoAugment requires to train the neural network repeatedly, which
takes thousands of GPU hours to converge. Subsequent works (Lim et al., 2019; Li et al., 2020; Liu
et al., 2021) aim at reducing the computation cost. Fast AutoAugment (Lim et al., 2019) treats data
augmentation as inference time density matching which can be implemented efficiently with Bayesian
optimization. Differentiable Automatic Data Augmentation (DADA) (Li et al., 2020) further reduces
the computation cost through a reparameterized Gumbel-softmax distribution (Jang et al., 2017).
RandAugment (Cubuk et al., 2020) introduces a simplified search space containing two interpretable
hyperparameters, which can be optimized simply by grid search. Adversarial AutoAugment (AdvAA)
(Zhang et al., 2019) searches for the augmentation policy in an adversarial and online manner. It also
incorporates the concept of Batch Augmentaiton (Berman et al., 2019; Hoffer et al., 2020), where
multiple adversarial policies run in parallel. Although many automated data augmentation methods
have been proposed, the use of default augmentations still imposes strong domain knowledge.

Gradient Matching. Our work is also related to gradient matching. In (Du et al., 2018), the authors
showed that the cosine similarity between the gradients of different tasks provides a signal to detect
when an auxiliary loss is helpful to the main loss. In (Wang et al., 2020), the authors proposed to
use cosine similarity as the training signal to optimize the data usage via weighting data points. A
similar approach was proposed in (Müller et al., 2021), which uses the gradient inner product as a
per-example reward for optimizing data distribution and data augmentation under the reinforcement
learning framework. Our approach also utilizes the cosine similarity to guide the data augmentation

2

Published as a conference paper at ICLR 2022

search. However, our implementation of cosine similarity is different from the above from two
aspects: we propose a Jacobian-vector product form to backpropagate through the cosine similarity,
which is computational and memory efficient and does not require computing higher order derivative;
we also propose a sampling scheme that effectively allows the cosine similarity to increase with
added augmentation stages.

3 DEEP AUTOAUGMENT

3.1 OVERVIEW

Data augmentation can be viewed as a process of filling missing data points in the dataset with
the same data distribution (Hataya et al., 2020). By augmenting a single data point multiple times,
we expect the resulting data distribution to be close to the full dataset under a certain type of
transformation. For example, by augmenting a single image with proper color jittering, we obtain a
batch of augmented images which has similar distribution of lighting conditions as the full dataset.
As the distribution of augmented data gets closer to the full dataset, the gradient of the augmented
data should be steered towards a batch of original data sampled from the dataset. In DeepAA, we
formulate the search of the data augmentation policy as a regularized gradient matching problem,
which manages to steer the gradient to a batch of original data by augmenting a single image multiple
times. Specifically, we construct the augmented training batch by augmenting a single training data
point multiple times following the augmentation policy. We construct a validation batch by sampling
a batch of original data from the validation set. We expect that by augmentation, the gradient of
augmented training batch can be steered towards the gradient of the validation batch. To do so,
we search for data augmentation that maximizes the cosine similarity between the gradients of the
validation data and the augmented training data. The intuition is that an effective data augmentation
should preserve data distribution (Chen et al., 2020) where the distribution of the augmented images
should align with the distribution of the validation set such that the training gradient direction is close
to the validation gradient direction.

Another challenge for augmentation policy search is that the search space can be prohibitively large
with deep augmentation layers (K ≥ 5). This was not a problem in previous works, where the
augmentation policies is shallow (K ≤ 2). For example, in AutoAugment Cubuk et al. (2019),
each sub-policy contains K = 2 transformations to be applied sequentially, and the search space of
AutoAugment contains 16 image operations and 10 discrete magnitude levels. The resulting number
of combinations of transformations in AutoAugment is roughly (16 × 10)2 = 25, 600, which is
handled well in previous works. However, when discarding the default augmentation pipeline and
searching for data augmentations from scratch, it requires deeper augmentation layers in order to
perform well. For a data augmentation with K = 5 sequentially applied transformations, the number
of sub-policies is (16× 10)5 ≈ 1011, which is prohibitively large for the following two reasons. First,
it becomes less likely to encounter a good policy by exploration as good policies become more sparse
on high dimensional search space. Second, the dimension of parameters in the policy also grows
with K, making it more computational challenging to optimize. To tackle this challenge, we propose
to build up the full data augmentation by progressively stacking augmentation layers, where each
augmentation layer is optimized on top of the data distribution transformed by all previous layers.
This avoids sampling sub-policies from such a large search space, and the number of parameters of
the policy is reduced from |T|K to T for each augmentation layer.

3.2 SEARCH SPACE

Let O denote the set of augmentation operations (e.g. identity, rotate, brightness), m denote an
operation magnitude in the set M, and x denote an image sampled from the space X . We define the
set of transformations as the set of operations with a fixed magnitude as T := {t|t = o(· ; m), o ∈
O and m ∈ M}. Under this definition, every t is a map t : X → X , and there are |T| = |M| · |O|
possible transformations. In previous works (Cubuk et al., 2019; Lim et al., 2019; Li et al., 2020;
Hataya et al., 2020), a data augmentation policy P consists of several sub-policies. As explained
above, the size of candidate sub-policies grows exponentially with depth K. Therefore, we propose a
practical method that builds up the full data augmentation by progressively stacking augmentation
layers. The final data augmentation policy hence consists of K layers of sequentially applied policy
P = {P1, · · · ,PK}, where policy Pk is optimized conditioned on the data distribution augmented

3

Published as a conference paper at ICLR 2022

by all previous (k − 1) layers of policies. Thus we write the policy as a conditional distribution
Pk := pθk(n|{P1, · · · ,Pk−1}) where n denotes the indices of transformations in T. For the purpose
of clarity, we use a simplified notation as pθk to replace pθk(n|{P1, · · · ,Pk−1}).

3.3 AUGMENTATION POLICY SEARCH VIA REGULARIZED GRADIENT MATCHING

Assume that a single data point x is augmented multiple times following the policy pθ. The resulting
average gradient of such augmentation is denoted as g(x, θ), which is a function of data x and policy
parameters θ. Let v denote the gradients of a batch of the original data. We optimize the policy by
maximizing the cosine similarity between the gradients of the augmented data and a batch of the
original data as follows:

θ = argmax
θ

cosineSimilarity(v, g(x, θ)) (1)

= argmax
θ

vT · g(x, θ)
∥v∥·∥g(x, θ)∥

where ∥·∥ denotes the L2-norm. The parameters of the policy can be updated via gradient ascent:

θ ← θ + η∇θ cosineSimilarity(v, g(x, θ)), (2)

where η is the learning rate.

3.3.1 POLICY SEARCH FOR ONE LAYER

We start with the case where the data augmentation policy only contains a single augmentation layer,
i.e., P = {pθ}. Let L(x;w) denote the classification loss of data point x where w ∈ RD represents
the flattened weights of the neural network. Consider applying augmentation on a single data point
x following the distribution pθ. The resulting averaged gradient can be calculated analytically by
averaging all the possible transformations in T with the corresponding probability p(θ):

g(x; θ) =

|T|∑
n=1

pθ(n)∇wL(tn(x);w) (3)

= G(x) · pθ

where G(x) =
[
∇wL(t1(x);w), · · · ,∇wL(t|T|(x);w)

]
is a D × |T| Jacobian matrix, and pθ =

[pθ(1), · · · , pθ(|T|)]T is a |T| dimensional categorical distribution. The gradient w.r.t. the cosine
similarity in Eq. (2) can be derived as:

∇θ cosineSimilarity(v, g(x; θ)) = ∇θpθ · r (4)

where

r = G(x)T
(

v

∥g(θ)∥
− vT g(θ)

∥g(θ)∥2
· g(θ)

∥g(θ)∥

)
(5)

which can be interpreted as a reward for each transformation. Therefore, pθ · r in Eq.(4) represents
the average reward under policy pθ.

3.3.2 POLICY SEARCH FOR MULTIPLE LAYERS

The above derivation is based on the assumption that g(θ) can be computed analytically by Eq.(3).
However, when K ≥ 2, it becomes impractical to compute the average gradient of the augmented
data given that the search space dimensionality grows exponentially with K. Consequently, we need
to average the gradient of all |T|K possible sub-policies.

To reduce the parameters of the policy to T for each augmentation layer, we propose to incrementally
stack augmentations based on the data distribution transformed by all the previous augmentation
layers. Specifically, let P = {P1, · · · ,PK} denote the K-layer policy. The policy Pk modifies the
data distribution on top of the data distribution augmented by the previous (k − 1) layers. Therefore,
the policy at the kth layer is a distribution Pk = pθk(n) conditioned on the policies {P1, · · · ,Pk−1}

4

Published as a conference paper at ICLR 2022

where each one is a |T|-dimensional categorical distribution. Given that, the Jacobian matrix at the
kth layer can be derived by averaging over the previous (k − 1) layers of policies as follows:

G(x)k =

|T|∑
nk−1=1

· · ·
|T|∑

n1=1

pθk−1
(nk−1) · · · pθ1(n1)[∇wL((t1 ◦ tnk−1

· · · ◦ tn1
)(x);w), · · · ,

∇wL((t|T| ◦ tnk−1
◦ · · · ◦ tn1

)(x);w)]

(6)

where Gk can be estimated via the Monte Carlo method as:

G̃k(x) =
∑

ñk−1∼pθk

· · ·
∑

ñ1∼pθ1

[∇wL((t1 ◦ tñk−1
· · · ◦ tñ1

)(x);w), · · · ,

∇wL((t|T| ◦ tñk−1
◦ · · · ◦ tñ1

)(x);w)]

(7)

where ñk−1 ∼ pθk−1
(n), · · · , ñ1 ∼ pθ1(n).

The average gradient at the kth layer can be estimated by the Monte Carlo method as:

g̃(x; θk) =
∑

ñk∼pθk

· · ·
∑

ñ1∼pθ1

∇wL ((tñk
◦ · · · ◦ tñ1

)(x);w) . (8)

Therefore, the reward at the kth layer is derived as:

r̃k(x) =
(
G̃k(x)

)T
(

v

∥g̃k(x; θk)∥
− vT g̃k(x; θk)

∥g̃k(x; θk)∥2
· g̃k(x; θk)

∥g̃k(x; θk)∥

)
. (9)

To prevent the augmentation policy from overfitting, we regularize the optimization by avoiding
optimizing towards the direction with high variance. Thus, we penalize the average reward with its
standard deviation as

rk = Ex{r̃k(x)} − c ·
√

Ex{(r̃k(x)− Ex{r̃k(x)})2} , (10)

where we use 16 randomly sampled images to calculate the expectation. The hyperparameter c
controls the degree of regularization, which is set to 1.0. With such regularization, we prevent the
policy from converging to the transformations with high variance.

Therefore the parameters of policy Pk (k ≥ 2) can be updated as:
θ ← θk + η∇θk cosineSimilarity(v, g(θk)) (11)

where
∇θ cosineSimilarity(v, gk(x; θ)) = ∇θpθk · rk. (12)

4 EXPERIMENTS AND ANALYSIS

Benchmarks and Baselines. We evaluate the performance of DeepAA on three standard benchmarks:
CIFAR-10, CIFAR-100, ImageNet, and compare it against a baseline based on standard augmentations
(i.e., flip left-righ, pad-and-crop for CIFAR-10/100, and Inception-style preprocesing (Szegedy
et al., 2015) for ImageNet) as well as nine existing automatic augmentation methods including (1)
AutoAugment (AA) (Cubuk et al., 2019), (2) PBA (Ho et al., 2019), (3) Fast AutoAugment (Fast
AA) (Lim et al., 2019), (4) Faster AutoAugment (Hataya et al., 2020), (5) DADA (Li et al., 2020), (6)
RandAugment (RA) (Cubuk et al., 2020), (7) UniformAugment (UA) (LingChen et al., 2020), (8)
TrivialAugment (TA) (Müller & Hutter, 2021), and (9) Adversarial AutoAugment (AdvAA) (Zhang
et al., 2019).

Search Space. We set up the operation set O to include 16 commonly used operations (identity, shear-
x, shear-y, translate-x, translate-y, rotate, solarize, equalize, color, posterize, contrast, brightness,
sharpness, autoContrast, invert, Cutout) as well as two operations (i.e., flips and crop) that are used as
the default operations in the aforementioned methods. Among the operations in O, 11 operations are
associated with magnitudes. We then discretize the range of magnitudes into 12 uniformly spaced
levels and treat each operation with a discrete magnitude as an independent transformation. Therefore,
the policy in each layer is a 139-dimensional categorical distribution corresponding to |T| = 139
{operation, magnitude} pairs. The list of operations and the range of magnitudes in the standard
augmentation space are summarized in Appendix A.

5

Published as a conference paper at ICLR 2022

4.1 PERFORMANCE ON CIFAR-10 AND CIFAR-100

Policy Search. Following (Cubuk et al., 2019), we conduct the augmentation policy search based
on Wide-ResNet-40-2 (Zagoruyko & Komodakis, 2016). We first train the network on a subset of
4, 000 randomly selected samples from CIFAR-10. We then progressively update the policy network
parameters θk (k = 1, 2, · · · ,K) for 512 iterations for each of the K augmentation layers. We use
the Adam optimizer (Kingma & Ba, 2015) and set the learning rate to 0.025 for policy updating.

Policy Evaluation. Using the publicly available repository of Fast AutoAugment (Lim et al., 2019),
we evaluate the found augmentation policy on both CIFAR-10 and CIFAR-100 using Wide-ResNet-
28-10 and Shake-Shake-2x96d models. The evaluation configurations are kept consistent with that of
Fast AutoAugment.

Results. Table 1 reports the Top-1 test accuracy on CIFAR-10/100 for Wide-ResNet-28-10 and
Shake-Shake-2x96d, respectively. The results of DeepAA are the average of four independent runs
with different initializations. We also show the 95% confidence interval of the mean accuracy. As
shown, DeepAA achieves the best performance compared against previous works using the standard
augmentation space. Note that TA(Wide) uses a wider (stronger) augmentation space on this dataset.

Baseline AA PBA FastAA FasterAA DADA RA UA TA(RA) TA(Wide) 1 DeepAA
CIFAR-10
WRN-28-10 96.1 97.4 97.4 97.3 97.4 97.3 97.3 97.33 97.46 97.46 97.56 ± 0.14
Shake-Shake (26 2x96d) 97.1 98.0 98.0 98.0 98.0 98.0 98.0 98.1 98.05 98.21 98.11 ± 0.12

CIFAR-100
WRN-28-10 81.2 82.9 83.3 82.7 82.7 82.5 83.3 82.82 83.54 84.33 84.02 ± 0.18
Shake-Shake (26 2x96d) 82.9 85.7 84.7 85.1 85.0 84.7 - - - 86.19 85.19 ± 0.28

Table 1: Top-1 test accuracy on CIFAR-10/100 for Wide-ResNet-28-10 and Shake-Shake-2x96d. The results of
DeepAA are averaged over four independent runs with different initializations. The 95% confidence interval is
denoted by ±.

4.2 PERFORMANCE ON IMAGENET

Policy Search. We conduct the augmentation policy search based on ResNet-18 (He et al., 2016).
We first train the network on a subset of 200, 000 randomly selected samples from ImageNet for 30
epochs. We then use the same settings as in CIFAR-10 for updating the policy parameters.

Policy Evaluation. We evaluate the performance of the found augmentation policy on ResNet-50 and
ResNet-200 based on the public repository of Fast AutoAugment (Lim et al., 2019). The parameters
for training are the same as the ones of (Lim et al., 2019). In particular, we use step learning rate
scheduler with a reduction factor of 0.1, and we train and evaluate with images of size 224x224.

Results. The performance on ImageNet is presented in Table 2. As shown, DeepAA achieves the
best performance compared with previous methods without the use of default augmentation pipeline.
In particular, DeepAA performs better on larger models (i.e. ResNet-200), as the performance of
DeepAA on ResNet-200 is the best within the 95% confidence interval. Note that while we train
DeepAA using the image resolution (224×224), we report the best results of RA and TA, which are
trained with a larger image resolution (244×224) on this dataset.

Baseline AA Fast AA Faster AA DADA RA UA TA(RA)1 TA(Wide)2 DeepAA
ResNet-50 76.3 77.6 77.6 76.5 77.5 77.6 77.63 77.85 78.07 78.30 ± 0.14
ResNet-200 78.5 80.0 80.6 - - - 80.4 - - 81.32 ± 0.17

Table 2: Top-1 test accuracy (%) on ImageNet for ResNet-50 and ResNet-200. The results of DeepAA are
averaged over four independent runs with different initializations. The 95% confidence interval is denoted by ±.

4.3 PERFORMANCE WITH BATCH AUGMENTATION

Batch Augmentation (BA) is a technique that draws multiple augmented instances of the same sample
in one mini-batch. It has been shown to be able to improve the generalization performance of the

1On CIFAR-10/100, TA (Wide) uses a wider (stronger) augmentation space, while the other methods
including TA (RA) uses the standard augmentation space.

6

Published as a conference paper at ICLR 2022

network (Berman et al., 2019; Hoffer et al., 2020). AdvAA (Zhang et al., 2019) directly searches
for the augmentation policy under the BA setting whereas for TA and DeepAA, we apply BA with
the same augmentation policy used in Table 1. Note that since the performance of BA is sensitive
to the hyperparameters (Fort et al., 2021), we have conducted a grid search on the hyperparameters
of both TA and DeepAA (details are included in Appendix D). As shown in Table 3, after tuning
the hyperparameters, the performance of TA (Wide) using BA is already better than the reported
performance in the original paper. The performance of DeepAA with BA outperforms that of both
AdvAA and TA (Wide) with BA.

AdvAA TA(Wide)
(original paper)

TA(Wide)
(ours) DeepAA

CIFAR-10 98.1 ± 0.15 98.04 ± 0.06 98.06 ± 0.23 98.21 ± 0.14
CIFAR-100 84.51 ± 0.18 84.62 ± 0.14 85.40 ± 0.15 85.61 ± 0.17

Table 3: Top-1 test accuracy (%) on CIFAR-10/100 dataset with WRN-28-10 with Batch Augmentation (BA),
where eight augmented instances were drawn for each image. The results of DeepAA are averaged over four
independent runs with different initializations. The 95% confidence interval is denoted by ±.

4.4 UNDERSTANDING DEEPAA

Figure 2: Top-1 test accuracy (%) on ImageNet
of DeepAA-simple, DeepAA, and other automatic
augmentation methods on ResNet-50.

Effectiveness of Gradient Matching. One unique-
ness of DeepAA is the regularized gradient match-
ing objective. To examine its effectiveness, we
remove the impact coming from multiple augmen-
tation layers, and only conduct search for a single
layer of augmentation policy. When evaluating the
searched policy, we apply the default augmentation
in addition to the searched policy. We refer to this
variant as DeepAA-simple. Figure 2 compares the
Top-1 test accuracy on ImageNet using ResNet-
50 between DeepAA-simple, DeepAA, and other
automatic augmentation methods. While there is
0.22% performance drop compared to DeepAA,
with a single augmentation layer, DeepAA-simple still outperforms other methods and is able to
achieve similar performance compared to TA (Wide) but with a standard augmentation space and
trains on a smaller image size (224×224 vs 244×224).

Policy Search Cost. Table 4 compares the policy search time on CIFAR-10/100 and ImageNet in
GPU hours. DeepAA has comparable search time as PBA, Fast AA, and RA, but is slower than Faster
AA and DADA. Note that Faster AA and DADA relax the discrete search space to a continuous
one similar to DARTS (Liu et al., 2018). While such relaxation leads to shorter searching time, it
inevitably introduces a discrepancy between the true and relaxed augmentation spaces.

Dataset AA PBA Fast AA Faster AA DADA RA DeepAA
CIFAR-10/100 5000 5 3.5 0.23 0.1 25 9
ImageNet 15000 - 450 2.3 1.3 5000 96

Table 4: Policy search time on CIFAR-10/100 and ImageNet in GPU hours.

Impact of the Number of Augmentation Layers. Another uniqueness of DeepAA is its multi-layer
search space that can go beyond two layers which existing automatic augmentation methods were
designed upon. We examine the impact of the number of augmentation layers on the performance of
DeepAA. Table 5 and Table 6 show the performance on CIFAR-10/100 and ImageNet respectively
with increasing number of augmentation layers. As shown, for CIFAR-10/100, the performance
gradually improves when more augmentation layers are added until we reach five layers. The
performance does not improve when the sixth layer is added. For ImageNet, we have similar

1TA (RA) achieves 77.55% top-1 accuracy with image resolution 224×224.
2TA (Wide) achieves 77.97% top-1 accuracy with image resolution 224×224.

7

Published as a conference paper at ICLR 2022

Figure 3: The distribution of operations at each layer of the policy for CIFAR-10/100 and ImageNet. The
probability of each operation is summed up over all 12 discrete intensity levels (see Appendix B and C) of the
corresponding transformation.

observation where the performance stops improving when more than five augmentation layers are
included.

1 layer 2 layers 3 layers 4 layers 5 layers 6 layers
CIFAR-10 96.3 ± 0.21 96.6 ± 0.18 96.9 ± 0.12 97.4 ± 0.14 97.56 ± 0.14 97.6 ± 0.12
CIFAR-100 80.9 ± 0.31 81.7 ± 0.24 82.2 ± 0.21 83.7 ± 0.24 84.02 ± 0.18 84.0 ± 0.19

Table 5: Top-1 test accuracy of DeepAA on CIFAR-10/100 for different numbers of augmentation layers. The
results are averaged over 4 independent runs with different initializations with the 95% confidence interval
denoted by ±.

1 layer 3 layers 5 layers 7 layers
ImageNet 75.27 ± 0.19 78.18 ± 0.22 78.30 ± 0.14 78.30 ± 0.14

Table 6: Top-1 test accuracy of DeepAA on ImageNet with ResNet-50 for different numbers of augmentation
layers. The results are averaged over 4 independent runs w/ different initializations with the 95% confidence
interval denoted by ±.

Figure 3 illustrates the distributions of operations in the policy for CIFAR-10/100 and ImageNet
respectively. As shown in Figure 3(a), the augmentation of CIFAR-10/100 converges to identity
transformation at the sixth augmentation layer, which is a natural indication of the end of the
augmentation pipeline. We have similar observation in Figure 3(b) for ImageNet, where the identity
transformation dominates in the sixth augmentation layer. These observations match our results listed
in Table 5 and Table 6. We also include the distribution of the magnitude within each operation for
CIFAR-10/100 and ImageNet in Appendix B and Appendix C.

Validity of Optimizing Gradient Matching with Regularization. To evaluate the validity of opti-
mizing gradient matching with regularization, we designed a search-free baseline named “DeepTA”.
In DeepTA, we stack multiple layers of TA on the same augmentation space of DeepAA without
using default augmentations. As stated in Eq.(10) and Eq.(12), we explicitly optimize the gradient
similarities with the average reward minus its standard deviation. The first term – the average reward
Ex{r̃k(x)} – encourages the direction of high cosine similarity. The second term – the standard
deviation of the reward

√
Ex{(r̃k(x)− Ex{r̃k(x)})2} – acts as a regularization that penalizes the

direction with high variance. These two terms jointly maximize the gradient similarity along the
direction with low variance. To illustrate the optimization trajectory, we design two metrics that
are closely related to the two terms in Eq.(10): the mean value, and the standard deviation of the
improvement of gradient similarity. The improvement of gradient similarity is obtained by subtracting
the cosine similarity of the original image batch from that of the augmented batch. In our experiment,
the mean and standard deviation of the gradient similarity improvement are calculated over 256
independently sampled original images.

8

Published as a conference paper at ICLR 2022

(a) Mean of the gradient similarity
improvement

(b) Standard deviation of the gradi-
ent similarity improvement

(c) Mean accuracy over different aug-
mentation depth

Figure 4: Illustration of the search trajectory of DeepAA in comparison with DeepTA on CIFAR-10.

As shown in Figure 4(a), the cosine similarity of DeepTA reaches the peak at the fifth layer, and
stacking more layers decreases the cosine similarity. In contrast, for DeepAA, the cosine similarity
increases consistently until it converges to identity transformation at the sixth layer. In Figure 4(b),
the standard deviation of DeepTA significantly increases when stacking more layers. In contrast, in
DeepAA, as we optimize the gradient similarity along the direction of low variance, the standard
deviation of DeepAA does not grow as fast as DeepTA. In Figure 4(c), both DeepAA and DeepTA
reach peak performance at the sixth layer, but DeepAA achieves better accuracy compared against
DeepTA. Therefore, we empirically show that DeepAA effectively scales up the augmentation depth
by increasing cosine similarity along the direction with low variance, leading to better results.

Comparison with Other Policies. In Figure 7 in Appendix E, we compare the policy of DeepAA
with the policy found by other data augmentation search methods including AA, FastAA and DADA.
We have three interesting observations:

• AA, FastAA and DADA assign high probability (over 1.0) on flip, Cutout and crop, as those
transformations are hand-picked and applied by default. DeepAA finds a similar pattern that
assigns high probability on flip, Cutout and crop.

• Unlike AA, which mainly focused on color transformations, DeepAA has high probability
over both spatial and color transformations.

• FastAA has evenly distributed magnitudes, while DADA has low magnitudes (common
issues in DARTS-like method). Interestingly, DeepAA assigns high probability to the
stronger magnitudes.

5 CONCLUSION

In this work, we present Deep AutoAugment (DeepAA), a multi-layer data augmentation search
method that finds deep data augmentation policy without using any hand-picked default transforma-
tions. We formulate data augmentation search as a regularized gradient matching problem, which
maximizes the gradient similarity between augmented data and original data along the direction with
low variance. Our experimental results show that DeepAA achieves strong performance without
using default augmentations, indicating that regularized gradient matching is an effective search
method for data augmentation policies.

Reproducibility Statement: We have described our experiment settings in great details. The
evaluation of the found data augmentation policy is based the public repository of Fast AutoAugment.
We believe that our results can be readily reproduced.

ACKNOWLEDGEMENT

We thank Yi Zhu, Hang Zhang, Haichen Shen, Mu Li, and Alexander Smola for their help with
this work. This work was partially supported by NSF Award PFI:BIC-1632051 and Amazon AWS
Machine Learning Research Award.

9

Published as a conference paper at ICLR 2022

REFERENCES

Maxim Berman, Hervé Jégou, Andrea Vedaldi, Iasonas Kokkinos, and Matthijs Douze. Multigrain: a
unified image embedding for classes and instances. arXiv preprint arXiv:1902.05509, 2019.

Shuxiao Chen, Edgar Dobriban, and Jane H Lee. A group-theoretic framework for data augmentation.
Journal of Machine Learning Research, 21(245):1–71, 2020.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 113–123, 2019.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Advances in Neural Information Processing
Systems, volume 33, pp. 702–703, 2020.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Yunshu Du, Wojciech M Czarnecki, Siddhant M Jayakumar, Mehrdad Farajtabar, Razvan Pascanu,
and Balaji Lakshminarayanan. Adapting auxiliary losses using gradient similarity. arXiv preprint
arXiv:1812.02224, 2018.

Stanislav Fort, Andrew Brock, Razvan Pascanu, Soham De, and Samuel L Smith. Drawing multiple
augmentation samples per image during training efficiently decreases test error. arXiv preprint
arXiv:2105.13343, 2021.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning. MIT press
Cambridge, 2016.

Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki Nakayama. Faster autoaugment:
Learning augmentation strategies using backpropagation. In European Conference on Computer
Vision, pp. 1–16. Springer, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. Augmix: A simple data processing method to improve robustness and uncertainty.
International Conference on Learning Representations, 2020.

Daniel Ho, Eric Liang, Xi Chen, Ion Stoica, and Pieter Abbeel. Population based augmentation:
Efficient learning of augmentation policy schedules. In International Conference on Machine
Learning, pp. 2731–2741. PMLR, 2019.

Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten Hoefler, and Daniel Soudry. Augment
your batch: Improving generalization through instance repetition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8129–8138, 2020.

Hiroshi Inoue. Data augmentation by pairing samples for images classification. arXiv preprint
arXiv:1801.02929, 2018.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Yonggang Li, Guosheng Hu, Yongtao Wang, Timothy Hospedales, Neil M Robertson, and Yongxin
Yang. Differentiable automatic data augmentation. In European Conference on Computer Vision,
pp. 580–595. Springer, 2020.

Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim. Fast autoaugment.
Advances in Neural Information Processing Systems, 32, 2019.

10

Published as a conference paper at ICLR 2022

Tom Ching LingChen, Ava Khonsari, Amirreza Lashkari, Mina Rafi Nazari, Jaspreet Singh Sambee,
and Mario A Nascimento. Uniformaugment: A search-free probabilistic data augmentation
approach. arXiv preprint arXiv:2003.14348, 2020.

Aoming Liu, Zehao Huang, Zhiwu Huang, and Naiyan Wang. Direct differentiable augmentation
search. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
12219–12228, 2021.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations, 2018.

Samuel Müller, André Biedenkapp, and Frank Hutter. In-loop meta-learning with gradient-alignment
reward. arXiv preprint arXiv:2102.03275, 2021.

Samuel G. Müller and Frank Hutter. Trivialaugment: Tuning-free yet state-of-the-art data augmenta-
tion. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp.
774–782, October 2021.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Xinyi Wang, Hieu Pham, Paul Michel, Antonios Anastasopoulos, Jaime Carbonell, and Graham
Neubig. Optimizing data usage via differentiable rewards. In International Conference on Machine
Learning, pp. 9983–9995. PMLR, 2020.

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved training
procedure in timm. volume 34, 2021.

Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, and Liu Ren. Improve unsupervised domain
adaptation with mixup training. In arXiv preprint arXiv: 2001.00677, 2020.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032, 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision
Conference 2016. British Machine Vision Association, 2016.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-
ing deep learning requires rethinking generalization. In International Conference on Learning
Representations, 2017.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. International Conference on Learning Representations, 2018.

Xinyu Zhang, Qiang Wang, Jian Zhang, and Zhao Zhong. Adversarial autoaugment. In International
Conference on Learning Representations, 2019.

11

Published as a conference paper at ICLR 2022

A A LIST OF STANDARD AUGMENTATION SPACE

Operation Magnitude
Identity -
ShearX [-0.3, 0.3]
ShearY [-0.3, 0.3]
TranslateX [-0.45, 0.45]
TranslateY [-0.45, 0.45]
Rotate [-30, 30]
AutoContrast -
Invert -
Equalize -
Solarize [0, 256]
Posterize [4, 8]
Contrast [0.1, 1.9]
Color [0.1, 1.9]
Brightness [0.1, 1.9]
Sharpness [0.1, 1.9]
Flips -
Cutout 16 (60)
Crop -

Table 7: List of operations in the search space and the corresponding range of magnitudes in the
standard augmentation space. Note that some operations do not use magnitude parameters. We add
flip and crop to the search space which were found in the default augmentation pipeline in previous
works. Flips operates by randomly flipping the images with 50% probability. In line with previous
works, crop denotes pad-and-crop and resize-and-crop transforms for CIFAR10/100 and ImageNet
respectively. We set Cutout magnitude to 16 for CIFAR10/100 dataset to be the same as the Cutout in
the default augmentation pipeline. We set Cutout magnitude to 60 pixels for ImageNet which is the
upper limit of the magnitude used in AA (Cubuk et al., 2019).

12

Published as a conference paper at ICLR 2022

B THE DISTRIBUTION OF MAGNITUDES FOR CIFAR-10/100

Figure 5: The distribution of discrete magnitudes of each augmentation transformation in each
layer of the policy for CIFAR-10/100. The x-axis represents the discrete magnitudes and the y-axis
represents the probability. The magnitude is discretized to 12 levels with each transformation having
its own range. A large absolute value of the magnitude corresponds to high transformation intensity.
Note that we do not show identity, autoContrast, invert, equalize, flips, Cutout and crop because they
do not have intensity parameters.

13

Published as a conference paper at ICLR 2022

C THE DISTRIBUTION OF MAGNITUDES FOR IMAGENET

Figure 6: The distribution of discrete magnitudes of each augmentation transformation in each layer
of the policy for ImageNet. The x-axis represents the discrete magnitudes and the y-axis represents
the probability. The magnitude is discretized to 12 levels with each transformation having its own
range. A large absolute value of the magnitude corresponds to high transformation intensity. Note
that we do not show identity, autoContrast, invert, equalize, flips, Cutout and crop because they do
not have intensity parameters.

14

Published as a conference paper at ICLR 2022

D HYPERPARAMETERS FOR BATCH AUGMENTATION

The performance of BA is sensitive to the training settings (Fort et al., 2021; Wightman et al., 2021).
Therefore, we conduct a grid search on the learning rate, weight decay and number of epochs for TA
and DeepAA with Batch Augmentation. The best found parameters are summarized in Table 8 in
Appendix. We did not tune the hyperparameters of AdvAA (Zhang et al., 2019) since AdvAA claims
to be adaptive to the training process.

Dataset Augmentation Model Batch Size Learning Rate Weight Decay Epoch

CIFAR-10 TA (Wide) WRN-28-10 128 × 8 0.2 0.0005 100
DeepAA WRN-28-10 128 × 8 0.2 0.001 100

CIFAR-100 TA (Wide) WRN-28-10 128 × 8 0.4 0.0005 35
DeepAA WRN-28-10 128 × 8 0.4 0.0005 35

Table 8: Model hyperparameters of Batch Augmentation on CIFAR10/100 for TA (Wide) and
DeepAA. Learning rate, weight decay and number of epochs are found via grid search.

15

Published as a conference paper at ICLR 2022

E COMPARISON OF DATA AUGMENTATION POLICY

Sampling probability of each transformations cumulated over all augmentation layers

(a) DeepAA (b) AA

(c) FastAA (d) DADA

Figure 7: Comparison of the policy of DeepAA and some publicly available augmentaiotn policy
found by other methods including AA, FastAA and DADA on CIFAR-10. Since the compared
methods have varied numbers of augmentation layers, we cumulate the probability of each operation
over all the augmentation layers. Thus, the cumulative probability can be larger than 1. For AA, Fast
AA and DADA, we add additional 1.0 probability to flip, Cutout and Crop, since they are applied by
default. In addition, we normalize the magnitude to the range [-5, 5], and use color to distinguish
different magnitudes.

16

	Introduction
	Related Work
	Deep AutoAugment
	Overview
	Search Space
	Augmentation Policy Search via Regularized Gradient Matching
	Policy Search for One layer
	Policy Search for Multiple layers

	Experiments and Analysis
	Performance on CIFAR-10 and CIFAR-100
	Performance on ImageNet
	Performance with Batch Augmentation
	Understanding DeepAA

	Conclusion
	A list of standard augmentation space
	The distribution of magnitudes for CIFAR-10/100
	The distribution of magnitudes for ImageNet
	Hyperparameters for Batch Augmentation
	Comparison of data augmentation policy

