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a b s t r a c t 

Fully automatic vertebrae tumor diagnosis (FAVTD) means using an end-to-end network to directly per- 

form vertebrae recognition and tumor diagnosis from MRI images. FAVTD is clinically crucial for tumor 

screening and treatment, which helps prevent further metastasis and save the patients’ lives. However, 

FAVTD has not yet been fully attempted due to the challenges raised by tumor appearance variabil- 

ity as well as MRI image field of view (FOV) and/or characteristics diversity. We propose a RE asoning 

D iscriminativ E di C t I onary-embe D ded n E twork (RE-DECIDE) to tackle the challenges in FAVTD. RE-DECIDE 

contains an elaborated enhanced-supervision recognition network (ERN) and a self-adaptive reasoning 

diagnosis network (SRDN). ERN is implemented in a feed-forward dictionary learning manner, which en- 

codes each vertebra by the sparse codes and uses the sparse projections of the vertebrae coordinates 

onto multiple observation axes for supervision. ERN thus provides multiple sparse encodings of all ver- 

tebrae (and their ground truths) to enhance supervision, which reinforces the discrimination of different 

vertebrae and thus improves recognition performance. SRDN first highlights the most informative feature 

in the recognized vertebrae based on an attention mechanism. It then performs feature interaction, i.e., 

exchanges features of different vertebrae based on the graph reasoning mechanism. A reasoning control- 

ling strategy is designed to prompt feature interaction in vertebrae with the same diagnosis labels and 

meanwhile reduces that in vertebrae with different labels, which avoids over-smoothing and improves 

diagnosis performance. RE-DECIDE is trained and evaluated using a challenging dataset consisting of 600 

MRI images; the evaluation results show that RE-DECIDE achieves high performance in both recognition 

(accuracy: 0.940) and diagnosis (AUC: 0.947) tasks. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Fully automatic vertebrae tumor diagnosis (FAVTD) means 

ecognizing each vertebra by classifying its label and regressing its 

ounding box, and meanwhile diagnosing whether it is invaded by 

umors in an end-to-end network. The diagnosing procedure is in 

ssence a machine learning classification task. FAVTD is clinically 

ignificant because: (1) Early diagnosis and treatment of spinal 

umors, the most fatal processes in spine ( Weilbaecher et al., 

011 ), is crucial to prevent further metastasis and save the pa- 

ients’ lives ( Mundy, 2002 ). (2) FAVTD enables direct diagnosis 

f vertebrae tumors without manual processes such as vertebrae 

xtraction. FAVTD not only eliminates the time-consuming and 
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abor-intensive work but also provides diagnosis performance 

hat is independent on the experience of the clinicians. Thus, 

AVTD may clinically assist radiologists as an automated processor 

or locating lesions, planning treatments, and preventing further 

etastasis ( Soffer et al., 2019 ). We mainly consider FAVTD in mag- 

etic resonance imaging (MRI) images because of its sensitivity to 

oft tissues such as spinal tumors ( Shah and Salzman, 2011; Wang 

t al., 2017b; Chmelik et al., 2018 ). 

However, both recognition and diagnosis tasks in FAVTD are 

hallenging in MRI images. (1) For the recognition task, MRI im- 

ge characteristics (resolution, scales, and image intensity distribu- 

ion) vary widely due to the different usages of imaging protocols 

nd endorectal coils. For example, the three images in Fig. 1 (a1) 

ave different FOV’s (S ∼T10, S ∼T12, and L4 ∼T10 respectively). The 

cales, resolutions, and intensities of these three images are also 

ifferent (e.g., the vertebrae are of different sizes; those in the 

econd image have low resolutions; those in the first image have 

https://doi.org/10.1016/j.media.2022.102456
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2022.102456&domain=pdf
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Fig. 1. Both recognition and diagnosis tasks in FAVTD are challenging. (1) Fig. 1 (a1 ∼a3) show the challenges of vertebrae recognition. Fig. 1 (a1) shows input images with 

different FOVs and image characteristics (scales, resolutions, and intensities). For example, the FOVs can be different, i.e., the three images’ FOV are respectively S ∼T10, 

S ∼T12, and L4 ∼T10. The scales, resolutions, and intensities can also be different, e.g., the vertebrae in the three images are of different size; the second image has very low 

resolution; and the vertebral bodies in the first image has higher intensity. Fig. 1 (a2) shows vertebrae recognition is challenging because of the vertebrae’s repetitive nature, 

i.e., different vertebrae have similar appearances. This makes it difficult to distinguish an image containing L5 ∼T11 vertebrae and one containing L4 ∼T10 (the two images in 

Fig. 1 (a2)). Moreover, in clinical practice, patients often have different body parts examined, which means that there may be no specifically-shaped structure (such as the 

sacrum). Thus, it is impossible to rely on these structures to assist in recognizing vertebrae with similar appearances, i.e., this adds to the challenge of repetitive nature for 

distinguishing different vertebrae. Fig. 1 (a3) shows that pathological variations can change the appearance of the vertebrae in an unpredictable manner, thus even the same 

vertebrae can show different appearances. This adds to the challenge of vertebrae recognition. (2) Fig. 1 (b1 ∼b4) shows the challenges of tumor diagnosis. Fig. 1 (b1 ∼b3) 

shows that tumors have different appearances such as global or local hypo-/hyper intense, semi-circular/ring-like structure, and diffuse pepper-sale textures. Fig. 1 (b4) shows 

that non-tumor diseases such as end-plate osteochondritis may show similar appearances. These issues make tumor diagnosis challenging. 
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igher intensities). Furthermore, as shown in Fig. 1 (a2), the ap- 

earances of different vertebrae are similar due to their repeti- 

ive nature. This makes it difficult for even experienced physicians 

o distinguish an image containing different vertebrae (e.g., in the 

wo images in Fig. 1 (a2), it is difficult to tell an image contain-

ng L5 ∼T11 vertebrae from one containing L4 ∼T10). Moreover, in 

linical practice, patients often have different body parts examined 

i.e., FOV difference), which means that it is not guaranteed that 

ome specifically-shaped structures (such as the sacrum) exist in 

he input image. Thus, it is impossible to rely on these structures 

o assist in recognizing vertebrae with similar appearance, i.e., this 

dds to the challenge of repetitive nature for distinguishing dif- 

erent vertebrae. Besides, as shown in Fig. 1 (a3), pathological vari- 

tions can change the appearance of the vertebrae in an unpre- 

ictable manner, thus even the same vertebrae can show differ- 

nt appearances. This makes it more challenging to distinguish the 

ame vertebrae with various appearances from different vertebrae 

ith similar appearances. Wrong recognitions may further result 

n wrong-site surgery ( Zhao et al., 2019b ), severe medical malprac- 

ice in clinical practice ( Makary et al., 2006 ). (2) For the diagnosis

ask, the tumor appearance variability raises challenges for distin- 

uishing spinal tumors from other diseases. For example, as shown 

n Fig. 1 (b1) ∼(b3), tumors may present local intensity changes 

n approximately circular or ring-like areas, global hypo-intense, 

r hyper-intense, and diffuse pepper-salt like textures in images 

f different MRI modalities and tumor pathology. However, as a 

ontrast, other spinal diseases, such as end-plate osteochondritis 

 Fig. 1 (b4)), may appear similar to tumors (e.g., the left figure of 

ig. 1 (b4) and the right figure of Fig. 1 (b2)) that are even difficult

or experienced clinicians to distinguish. Furthermore, the diagno- 
2

is task may suffer from massive irrelevant interference informa- 

ion (which may show tumor-like patterns) in the non-vertebrae 

arts in the input MRI image if the recognition work is not well 

erformed. This shows the necessity of simultaneously performing 

he recognition and diagnosis tasks in an end-to-end system. 

FAVTD in MRI images has not yet been attempted in the ex- 

sting literature. For closely relative works, some researchers auto- 

atically detect metastases from CT images. These methods mainly 

rst extract the spinal region using classical image processing or 

achine learning methods and then perform tumor diagnosis us- 

ng the features in the spinal region. For example, ( Burns et al., 

013 ) first identifies the spine canal using region growing, and 

hen detect lesions using the watershed algorithm; ( Wiese et al., 

011 ) uses thresholding and region growing to segment the spine, 

hen uses the watershed algorithm for lesion candidate detection, 

nd lastly uses support vector machines to diagnose metastasis; 

 Chmelik et al., 2018 ) uses intensity projections and adaptive fil- 

ers to locate the spine, then uses 3D CNN’s to perform tumor di- 

gnosis. These methods show accurate and promising results in CT 

mages, however, they may not be robust enough to properly han- 

le MRI images. 

Several works also perform single diagnosis or vertebrae de- 

ection/recognition tasks, which have the potential to be extended 

nto FAVTD. (1) For tumor diagnosis, ( Wang et al., 2017b ) detects 

umors from manually extracted MRI patches using parallel convo- 

utional neural networks (CNN) to deal with different input resolu- 

ions. (2) Much more work has been attempted for vertebrae de- 

ection/recognition. Here, we define “capturing the vertebrae cen- 

roid points” as “detection”, whereas “joint vertebrae classifica- 

ion and bounding box regression” as “recognition” to avoid con- 
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usion. For vertebrae detection, ( Glocker et al., 2013 ) uses random 

orests and probabilistic graphical models to regress vertebrae cen- 

roid points; ( Chen et al., 2015 ) uses CNN’s jointly trained with a

hape regression model to extract more robust features for verte- 

rae detection; ( Yang et al., 2017 ) uses deeply supervised CNN en- 

anced by message passing to accurately predict pixel-wise prob- 

bility maps of each vertebrae centroid. These works can precisely 

apture each vertebrae centroid, however, simultaneously classify- 

ng their labels and regressing their bounding boxes may be more 

linically meaningful for the succeeding diagnosis procedure ( Zhao 

t al., 2019b; 2021 ). For vertebrae recognition, ( Lootus et al., 2014 )

resents an accurate method using the deformable part model 

etector and dynamic programming; ( Windsor et al., 2020 ) pro- 

oses a two-stage detecting-labeling CNN for accurate vertebrae 

ecognition in whole MRI scan. However, ( Lootus et al., 2014 ) 

eeds the sacrum to be present, whereas the training set used 

n ( Windsor et al., 2020 ) contains only MRI images containing the 

acrum. Other object detection, recognition, or segmentation meth- 

ds, such as the active contour methods ( Zhao et al., 2017 ), Faster

CNN ( Ren et al., 2015 ), YOLO detector ( Yang and Deng, 2020 ), and

SD detector ( Liu et al., 2016 ), have also been used for finding hu-

an tissues or lesions from medical images ( Guo et al., 2021; Gao 

t al., 2019 ). In all, the above works have provided a reliable de- 

ection and diagnosis (machine learning classification) algorithm, 

hich lays a solid foundation for FAVTD. 

Dictionary learning (sparse coding) has the potential to benefit 

AVTD because it can obtain discriminative features. For example, 

 Sun et al., 2019 ) designs a supervised dictionary learning network 

or enhanced image classification performance. ( Jiang et al., 2013 ) 

roposes a label consistency strategy to prompt samples with the 

ame class labels have similar sparse codes. ( Zhang et al., 2020 ) 

evelops an enhanced dictionary learning method for object de- 

ection in 3D ultrasound patches. However, two difficulties hin- 

er its application in FAVTD: (1) The dictionary and the sparse 

odes are generally trained in an alternate manner ( Aharon et al., 

006 ), which is difficult to be integrated into the end-to-end train- 

ng of CNN’s. (2) The ground truth sparse codes are typically dif- 

cult to obtain. Traditional dictionary learning uses unsupervised 

econstruction to obtain sparse codes, which may not be optimal 

or the main recognition ( Zhao et al., 2019a ) and diagnosis tasks 

 Coates and Ng, 2011 ). ( Liu et al., 2018 ) tries to combine dictionary

earning with CNN’s for scene recognition. We ( Zhao et al., 2021 ) 

lso conduct preliminary research on combining dictionary learn- 

ng with CNN’s in an image detection framework. However, these 

ethods only calculate the sparse codes and use them for classi- 

cation. Nevertheless, the potential of sparse codes to encode the 

parsely distributed vertebrae can be further exploited to enhance 

ecognition performance. 

Graph reasoning may help to capture relation-aware informa- 

ion to improve diagnosis (classification) accuracy in FAVTD, how- 

ver, it has not been widely exploited due to over-smoothing is- 

ues. For example, ( Wang et al., 2018 ) purposes a non-local net- 

ork for leveraging spatial and sequential relationships for video 

lassification; ( Chen et al., 2019b; Liang et al., 2019 ) uses graph 

easoning between label features for multi-label image recogni- 

ion or object detection tasks; ( Chen et al., 2019a ) uses graph rea-

oning for capturing global relations between distant regions for 

mage classification and semantic segmentation. For tumor diag- 

osis, when it is difficult to distinguish spinal tumors from simi- 

ar non-tumor diseases, graph reasoning allows diagnostic features 

f other vertebrae to help diagnose ( Jiang et al., 2020 ) based on

eature similarity. However, since graph reasoning is in essence 

eighted average between different nodes (i.e., recognized verte- 

rae in our work), it may cause over-smoothing (i.e., the features 

f nodes with different labels may be “mixed” together, which may 

ause features of nodes with different labels to become similar) 
3

 Chen et al., 2019b ) and on the contrary harm feature discrimina- 

ion. Thus, it would be interesting to explore a method to leverage 

raph reasoning for capturing relation dependencies while avoid- 

ng over-smoothing. 

We propose a novel reasoning discriminative dictionary- 

mbedded network (RE-DECIDE) for FAVTD, which overcomes the 

RI FOV and image characteristics variety, vertebrae repetitive na- 

ure, and tumor appearance variability in the recognition and di- 

gnosis tasks. Our RE-DECIDE performs two tasks in an end-to- 

nd framework: firstly, vertebrae labels (e.g., T11, T12, L1, L2, L3, 

tc.) and bounding boxes are predicted by the recognition net- 

ork, i.e., the recognition task; then, vertebrae diagnostic labels 

e.g., tumor/non-tumor) are predicted by the diagnosis network, 

.e., the diagnosis task. As shown in Fig. 2 : 

• To overcome the FOV and image characteristics challenges in 

the recognition task, an enhanced-supervision recognition net- 

work (ERN) is designed to use projection-based sparse codes 

to encode vertebrae and prompt discrimination of different 

vertebrae. ERN encodes each vertebra by predicting L sparse 

codes via feed-forward dictionary learning. The sparse codes 

are trained to approach the projections of ground truth angu- 

lar points onto L observation axes (OA). Since the projections of 

different vertebrae on different OAs exhibit adequate discrep- 

ancy, the trained sparse codes have better distinguishability of 

different vertebrae. Under the projections’ guidance, the ensem- 

ble of predicted sparse codes helps to distinguish different ver- 

tebrae ( Xie et al., 2017; Quan et al., 2016 ). 
• To overcome the tumor appearance variability in the diagnosis 

task, a self-adaptive reasoning diagnosis network (SRDN) is de- 

signed to interact between vertebrae features considering their 

diagnostic labels. This leverages the relational clues between 

different recognized vertebrae to contribute to each other’s fi- 

nal diagnosis predictions. Furthermore, to prompt the validity 

of graph reasoning and avoid over-smoothing, SRDN leverages 

attention mechanism to highlight the most informative fea- 

tures for tumor diagnosis; also, it designs a self-adaptive rea- 

soning controlling strategy to facilitate feature interaction be- 

tween vertebrae of the same diagnosis labels while reducing 

feature interaction between those of different diagnosis labels. 

This alleviates the over-smoothing problem while allowing fea- 

tures from easy-to-diagnosis vertebrae to assist in diagnosing 

the difficult ones. 

In all, after adopting HPN ( Zhao et al., 2021 ) for feature extrac- 

ion and coarse regional proposal localization, our RE-DECIDE elab- 

rately designs two sub-networks, i.e., ERN and SRDN, to individ- 

ally perform the recognition and diagnosis tasks in FAVTD; ERN 

nd SRDN share some features and forms an end-to-end network. 

Our contributions can be summarized as: 

(1) For the first time, an accurate computer aided diagnosis 

CAD) tool is designed to perform vertebrae recognition and tumor 

iagnosis together in a fully automatic end-to-end network based 

n graph reasoning and dictionary learning mechanisms. This work 

ffectively reduces the burden on clinicians to manually analyze 

he medical data. 

(2) Projection-guided dictionary learning is embedded into a 

NN-based recognition framework in a forward propagation man- 

er to encode each vertebra by sparse codes. This strategy lever- 

ges the projections of vertebrae angular points on different OAs 

or enhanced supervision, which prompts the discrimination of 

ertebrae with repetitive appearances in MRI images of different 

OV’s. 

(3) For the first time, we develop a self-adaptive graph reason- 

ng diagnosis (classification) method that can control the feature 

nteraction weights according to graph node labels. This strategy 

voids over-smoothing while keeping the advantages of graph rea- 
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Fig. 2. RE-DECIDE addresses the challenges of comprehensive vertebrae tumor diagnosis by two elaborated models ERN and SRDN. ERN encodes vertebrae by multiple sparse 

codes, which are supervised by the ground truth projections for enhanced supervision to tackle the recognition challenges. SRDN allows different vertebrae to contribute to 

each other based on their feature similarity, which assists diagnosis of the “difficult” vertebrae by means of other vertebrae. 
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oning, which prompts the discrimination between spinal tumors 

nd other similar-appearing diseases. 

In this work, we advance our preliminary attempt on vertebrae 

etection in MICCAI 2020 ( Zhao et al., 2020 ) in the following as-

ects: (1) We propose a self-adaptive reasoning diagnosis network 

o improve diagnosis performance. We also conduct elaborate ex- 

eriments to explore when graph reasoning is beneficial for clas- 

ification tasks. (2) We propose a region attention module to fo- 

us on the most informative diagnostic features. (3) We provide 

ore detailed descriptions and discussions on the dictionary learn- 

ng module used in ( Zhao et al., 2020 ) for a better demonstra-

ion of how the projection-guided enhanced supervision is imple- 

ented and how it helps FAVTD. (4) A more comprehensive review 

f FAVTD (as well as its closely relative work), dictionary learning, 

nd graph reasoning is conducted to provide a panorama of exist- 

ng work. 

. Methodology 

Our reasoning discriminative dictionary-embedded network 

RE-DECIDE, Fig. 2 ) is an end-to-end framework for fully automatic 

ertebrae tumor diagnosis (FAVTD). RE-DECIDE first adopts a hi- 

rarchical proposal network (HPN, Section 2.1 ) ( Zhao et al., 2021 ) 

o coarsely locate regions containing vertebrae. Then, two cascad- 

ng modules are deliberately designed to respectively perform the 

ecognition and diagnosis task: (1) enhanced-supervision recog- 

ition network (ERN, Section 2.2 ) takes the coarse regions and 

he corresponding features as input; it then outputs the recog- 

ized vertebrae labels and bounding boxes. ERN contains a ver- 

ebrae sparse encoder that designs a feed-forward dictionary 

earning layer to obtain sparse codes encoding each vertebra, and 

 projection-based ground truth generator that leverages the 

rojections of each vertebra on L observation axes for ground 

ruth sparse codes. ERN also develops an enhanced supervi- 

ion strategy for the ensemble of different predictions to im- 

rove the generalized vertebrae recognition accuracy and tackle 

he FOV/characteristics challenges. (2) self-adaptive reasoning di- 

gnosis network (SRDN, Section 2.3 ) takes the recognized verte- 

rae as input; it finally outputs a diagnostic prediction indicating 

hether each vertebra is invaded by tumors. SRDN contains a re- 

ion attention module that helps the network to focus on the 

ost informative diagnostic features and a feature interactor that 

llows the diagnostic features of one vertebra to help to diagnose 

he others in a graph reasoning manner. SRDN also designs a self- 

daptive reasoning strategy for preventing over-smoothing in the 
4 
easoning procedure and alleviating the tumor appearance variabil- 

ty challenges. 

.1. Brief retrospect of hierarchical proposal network (HPN) 

.1.1. Hierarchical proposal network (HPN) 

To present a complete and comprehensible workflow of our RE- 

ECIDE, we firstly briefly retrospect the Hierarchical proposal net- 

ork (HPN) and show how is it interfaced with the succeeding 

nhanced-supervision recognition network (ERN) and self-adaptive 

easoning diagnosis network (SRDN). HPN takes the original in- 

ut MRI slice as input. It generates multi-scale anchors at different 

egular locations, extracts hierarchical image features correspond- 

ng to all anchors, and predicts which anchors contain vertebrae as 

ell as the coarse locations of the vertebrae by generating propos- 

ls. More detailed knowledge of HPN can be found in our previous 

ork ( Zhao et al., 2021 ). All implementation details of HPN (e.g., 

he number of layers, blocks, and structure of each block) are the 

ame as in our previous work. The output proposals of HPN in- 

lude positive and negative proposals. The positive proposals are 

ulti-scale rectangle boxes that coarsely cover class-agnostic ver- 

ebrae. The negative proposals are non-vertebral regions in the im- 

ge (usually, non-maximum suppression is used to select the most 

ifficult negative proposals to accelerate training). Both positive 

nd negative proposals are used to train the succeeding recogni- 

ion network ERN (Section 2.2), whereas only recognized vertebrae 

corresponding to positive proposals) are used to train the diag- 

osis network SRDN (Section 2.3). Besides the proposals, the hier- 

rchical image features are shared to the succeeding network for 

ecognition and/or diagnosis tasks. 

.1.2. The interface of HPN and ERN 

After obtaining the proposals and the hierarchical image fea- 

ures using HPN, ROI aligning ( Zhao et al., 2021 ) is adopted to 

hoose features of the most suitable scale from the hierarchical 

mage features, crop the chosen feature using the proposals, and 

hen resize them to a certain size (7 × 7 in our work). After 

OI aligning, each proposal corresponds to a 7 × 7 ×256 feature 

ap. Then, the feature maps are fed into 2 cascading convolu- 

ional layers with “VALID” paddings (the first one has a kernel 

ize of 7 × 7 ×256 × 1024, and the second 1 × 1 ×1024 × 1024, 

tride 1) followed by batch normalization layers and ReLU activa- 

ion layers; the feature size of the second convolutional layer are 

hus 1 × 1 ×1024. Lastly, for each proposal, its features are flat- 

ened into vectors (denoted as x ∈ R 

M ) by squeezing the dimen- 
i 
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Fig. 3. The enhanced-supervision recognition network (ERN). In ERN, Regional proposals and features are firstly obtained as in ( Ren et al., 2015 ) and ( Zhao et al., 2021 ) 

( Fig. 3 (a1 ∼a2)). Then, our ERN embeds each vertebrae by L sparse codes using feed-forward dictionary learning methods such as LISTA ( Fig. 3 (a3)). The sparse codes are 

then used for predicting the labels and bounding boxes of each vertebra ( Fig. 3 (a4)). The sparse codes are supervised by the projections of the vertebrae’s angular point 

coordinates to L observation axes (detailed in Fig. 4 ) for enhanced supervision; and the ensemble of their predictions can improve recognition performance. 
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ionalities with size 1 and fed into ERN (Section 2.2) for vertebrae 

ecognition (joint vertebrae label classification and bounding box 

egression). 

.1.3. The interface of HPN, ERN, and SRDN 

After recognizing the vertebrae existing in an input MRI slice, 

 procedure similar to ROI aligning is performed for the diagno- 

is task. In this procedure, features of the most suitable scale are 

till chosen from the hierarchical image features, and then the cho- 

en feature is cropped and resized to a certain size (32 × 32 in 

ur work). The only difference is that the cropping uses the rec- 

gnized vertebrae bounding boxes (the output of ERN) instead of 

he proposals. After this procedure, each vertebrae corresponds to 

 32 × 32 ×256 diagnostic feature (denoted as F i ∈ R 

h ×w ×c ). Then, 

 i s are fed into the region attention module (Section 2.3.2) of SRDN 

Section 2.3) to obtain the modulated diagnostic feature F ′ 
i 
. F ′ 

i 
s are 

ext fed into a simple network (this network first uses 3 cascading 

onvolutional layers of sizes 3 × 3 ×256 × 512, 3 × 3 ×512 × 512, 

nd 3 × 3 ×512 × 1024, stride 1, each with “SAME” paddings and 

ollowed by a batch normalization layer, a ReLU activation layer, 

nd a max-pooling layer; then, it uses 2 convolutional layers with 

ernel size 4 × 4 ×1024 × 1024 and 1 × 1 ×1024 × 1024 with 

VALID” paddings followed by batch normalization layers); the out- 

ut feature size of the network is thus 1 × 1 ×1024. Next, the 

imensionalities with size 1 are squeezed to obtain the flattened 

iagnostic features y i for every vertebra. The y i s are fed to the 

eature interactor with a self-adaptive reasoning controller (Sec- 

ions 2.3.3 and 2.3.4) in SRDN to predict whether a vertebra is in- 

aded by tumors. 

.2. Enhanced-supervision recognition network (ERN) 

.2.1. Overall workflow 

The inputs of ERN are the regional proposals (including posi- 

ive and negative proposals) and hierarchical image features pro- 

ided by the HPN ( Fig. 3 (a1)). As mentioned in Section 2.1.2, each

roposal’s features are firstly flattened into vectors (denoted as x i 
or the i th proposal, Fig. 3 (a2))) by ROI aligning and some con-

olutional layers. Then, x are fed into the vertebrae sparse en- 
i 

5 
oder ( Fig. 3 (a3)/(b), Section 2.2.2) to calculated the sparse codes 

 i for each proposal. Meanwhile, the ground truth sparse codes a ∗
i 

re calculated by the projection-based ground truth generator 

 Fig. 4 , Section 2.2.3). The a i are finally used to predict the labels

nd bounding boxes by inverse projection. Losses from label clas- 

ification, bounding box regression, and sparse code prediction are 

ll used for enhanced supervision in network training ( Fig. 3 (a4), 

ection 2.2.4). 

.2.2. Vertebrae sparse encoder 

The vertebrae sparse encoder is designed to acquire represen- 

ative sparse codes for recognizing different vertebrae. It designs a 

eed-forward dictionary learning layer to calculate the sparse code 

 i for each x i . The subtlety of dictionary learning in recognition 

asks is that the objects (vertebrae) are sparsely distributed, i.e., a 

ertebra has only four angular points, whereas an image has much 

ore pixels. This triggers the thought to use sparse codes a i to en- 

ode the angular points’ positions; furthermore, it also draws forth 

n interesting idea of enhancing the supervision of sparse codes by 

redicting multiple a i ’s and supervising them with projections of 

round truth angular points onto different OA’s ( Xue et al., 2019 ). 

eanwhile, it is confirmed in the compressive sensing community 

hat a i is able to be obtained by x i (the output of CNN’s) by min-

mizing 1 
2 ‖ x i − Da i ‖ 2 2 + λ‖ a i ‖ 1 over a i . Inspired by the LISTA algo-

ithm ( Gregor and LeCun, 2010 ), we use Eq. (1) (visually demon- 

trated in Fig. 3 (b)) to obtain a i : 

 

t 
i = η(a t−1 

i 
+ βD 

T (x i − Da t−1 
i 

) ;λt ) , 

here η(r ;λ) = sgn (r ) max { | r | − λ, 0 } (1) 

Eq. (1) demonstrates the principles how the vertebrae sparse 

ncoder iteratively compute the sparse codes a i with the verte- 

rae feature x i . In Eq. (1) , the sparse code of the i th proposal a t 
i 

s updated iteratively by the shrinkage function η. η is a thresh- 

lding function that processes its input r element by element: For 

ach element r j , threshold λ is subtracted from its original abso- 

ute value 
∣∣r j 

∣∣; if 
∣∣r j 

∣∣ − λ < 0 , this element is set to 0 in the next

teration. T iterations (typically T = 3 ∼ 6 ) are applied to calculate 

eliable a . The superscript t means the iteration number. In our 
i 
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Fig. 4. Detailed illustrations of the projection-based enhanced supervision strategy in ERN. Fig. 4 (a) shows how the projection is conducted, and Fig. 4 (b) shows how the GT 

sparse codes are formed. This strategy fully leverages the diversity of projections onto different OAs for improving recognition discrimination. 
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esign, since Eq. (1) is a differentiable architecture, the dictionary 

 as well as all λt ’s can be trained together with the preceding 

NN’s in an end-to-end manner. 

.2.3. Projection-based ground truth generator 

The projection-based ground truth (GT) generator is designed 

or generating ground truths a ∗
i 

to supervise the sparse codes, 

hich is the key procedure of supervision enhancement. The most 

traightforward method for generating GT sparse codes is to estab- 

ish a sparse matrix whose size is the same as the input image. 

he elements in the matrix corresponding to the vertebrae angu- 

ar point coordinates are 1 and the others are 0. Then, the sparse 

atrix can be resized to 1D vectors as GT sparse codes encoding 

ertebrae positions. However, this strategy may cause the sparse 

ector to be too large (e.g., its length would reach 262,144 if the 

nput image is 512 × 512). Thus, we consider leveraging the an- 

ular point coordinates’ projections onto L OAs around the input 

mage. For each vertebra (corresponding to a positive proposal in 

ig. 3 (a1)), its four angular points would form four intercepts x ’s 

nd signed distances h ’s when projected onto one OA; then the 

 ’s and h ’s would form a sparse vector. For example, as shown in

ig. 4 (a), when the four angular points are projected to the hori- 

ontal OA, four x ’s and h ’s are obtained (those with subscript 1r,

b, 1g, 1p in Fig. 4 (a)); they then establish a sparse vector ( a ∗
i 1 

in
6 
ig. 4 (b), where the values at positions x 1 r /x 1 b /x 1 g /x 1 p of the vector

re respectively h 1 r /h 1 b /h 1 g /h 1 p , whereas the other positions are 

). Then, the sparse vectors established by other OA’s (e.g., a ∗
i 2 

and 

 

∗
i 3 

in Fig. 4 (b)) are concatenated together to form the GT sparse 

ode a ∗
i 
. As shown in Fig. 4 , the orientations of these axes are uni-

ormly distributed (for clarity, the projections of only one verte- 

ra to L = 3 axes are demonstrated). For each non-vertebrae re- 

ion (corresponding to a negative proposal in Fig. 3 (a1)), its ground 

ruth sparse codes are set to zero vectors. 

.2.4. Enhanced supervision strategy 

After obtaining the predicted a i and the ground truth a ∗
i 

(for 

ach vertebrae, they are vectors of length “image _ size × L ”), we 

esign a loss function for enhanced supervision. Firstly, two sibling 

ully connected (FC) layers (respectively of sizes “(image _ size × L ) ×
v ertebrae _ class _ numbers × L ) ” and “(image _ size × L ) × (v ertebrae _

lass _ numbers × L × 4) )” are used as inverse projections; they take 

 i as input and separately output L object class probability vectors 

nd 4 × L bounding box coordinates for each class. Then, two other 

ully connected layers (respectively of sizes “(v ertebrae _ class _ 

umbers × L ) × v ertebrae _ class _ number s ” and “(v er tebrae _ class _ 

umbers × L × 4) × v ertebrae _ class _ numbers × 4 ”) are used for the 

nsemble learning for vertebrae classification and bounding box 

egression. Next, as in our previous work ( Zhao et al., 2019b ), 
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essage passing method is leveraged for vertebrae class probabil- 

ty calibration. Finally, all these calibrated class probabilities u i 1 ,l 
, 

ounding boxes v i 2 ,l , and sparse codes a i 3 ,l are supervised by the 

orresponding ground truths u ∗
i 1 

, v ∗
i 2 

, and a ∗
i 3 ,l 

, i.e., the total loss

unction of the recognition task is: 

 r = 

λ1 

N 1 

N 1 ∑ 

i 1 =1 

L ∑ 

l=1 

L ce (u i 1 ,l , u 

∗
i 1 
) + 

λ2 

N 2 

N 2 ∑ 

i 2 =1 

L ∑ 

l=1 

L sl (v i 2 ,l , v 
∗
i 2 
) 

+ 

λ3 

N 3 

N 3 ∑ 

i 3 =1 

L ∑ 

l=1 

L sl (a i 3 ,l , a 
∗
i 3 ,l 

) (2) 

Eq. (2) means the losses of the recognition task contains three 

arts, i.e., the vertebrae label classification loss, the vertebrae lo- 

ation regression loss, and the sparse code regression loss. For 

ore details: (1) L ce (u i 1 ,l 
, u ∗

i 1 
) means the cross entropy loss of

he predicted class probabilities u i 1 ,l 
produced by the lth sparse 

ode and the ground truth label u ∗
i 1 

, N 1 is the total proposal num-

er. (2) L sl (v i 2 ,l , v 
∗
i 2 
) means the average of the smooth L1 loss

 Ren et al., 2015 ) of all elements in vector v i 2 ,l − v ∗
i 2 

, i.e., the dif-

erence between the lth sparse code’s prediction of the i 2 th verte- 

ra’s bounding box coordinates v i 2 ,l and the corresponding ground 

ruth v ∗
i 2 

, N 2 is the positive proposal number. (3) L sl (a i 3 ,l , a 
∗
i 3 ,l 

)

eans the smooth L1 loss of each predicted sparse code and its 

round truth, N 3 is the total sparse code number. In this way, 

ur ERN provides L supervision and L predictions (class proba- 

ilities, bounding boxes, and sparse codes) for each vertebra for 

nhanced supervision. The ensemble of the L predictions deter- 

ine the final recognitions, which improves the recognition dis- 

rimination and handles the FOV/image characteristics challenge. 

4) The weights λ1 ∼ λ3 are chosen based on the experience of 

ur previous work ( Zhao et al., 2021; 2019b ). For λ1 and λ2 , 

hey are chosen to be 1 as in ( Zhao et al., 2021 ). For λ3 , we set

t as 0.05 so that the sparse loss is no larger than half of the

ain recognition loss ( Zhao et al., 2019b ), however, we find that 

he recognition results do not change much when λ3 varies from 

.05 to 0.5. 

.2.5. Discussions 

The reason that ERN helps distinguish different vertebrae is 

wofold. 

loo(1) The projection-based sparse codes make better use of the 

ocational information of different vertebrae to improve discrimi- 

ation. The projection-based sparse codes help RE-DECIDE to bet- 

er discriminate different vertebrae than the classical object detec- 

ors (such as Faster RCNN, YOLO, and SSD) as well as our previous 

ethod that also uses dictionary learning ( Zhao et al., 2021 ). The 

nitial motivation of using projection-based sparse codes is that, 

parse coding, generally speaking, has the potential to obtain dis- 

riminative features. Thus, our previous work conducts preliminary 

esearch on combining dictionary learning with CNNs in an im- 

ge detection framework. However, it only uses dictionary learn- 

ng based on an embedded k-sparse autoencoder to prompt the 

iscrimination of the proposal features. Nevertheless, the verte- 

rae are sparsely distributed in the input image, which triggers the 

hought to use make better use of the sparse codes to encode the 

ertebrae and prompt the discrimination of similar-appearing ver- 

ebrae of the classical detectors. Thus, our current work, as a con- 

rast, leverages the discrepancy of projections of vertebrae angu- 

ar points on different OAs to be more aware of the locational in- 

ormation of different vertebrae. As mentioned in ( Windsor et al., 

020 ), the vertebra location can be used to assist in predicting ver- 

ebrae labels, while in ERN, the sparse codes formed by projec- 

ions on different OAs can take fuller advantage of the locational 
7

iscrepancy of different vertebrae when constructing and super- 

ising the sparse codes. In our ERN, after calculating the sparse 

odes to encode each vertebra, the sparse codes are supervised 

sing the projection of the ground truth angular point coordi- 

ates onto L OAs. This richens the locational discrepancy, for ex- 

mple, the projections of some vertebrae onto one OA overlap, 

hose onto other OAs can still show enough locational discrep- 

ncy because the OAs’ orientations are diverse ( Xue et al., 2019 ). 

n this way, the projections onto the L OAs bring more discrepancy 

or different vertebrae to prompt discrimination, i.e., the recogni- 

ion performance of distinguishing similar-appearing vertebrae of 

ifferent labels is thus improved. Using all L GT projections to 

imultaneously supervise the predicted ones (i.e., enhanced su- 

ervision), the final recognitions are determined by the ensem- 

le of the L predictions, which helps lower risks of over-fitting 

 Quan et al., 2016 ) compared with the classical detectors such as 

OLO, SSD, and Faster RCNN. To summarize, the projection-guided 

ictionary learning strategy is more beneficial for vertebrae recog- 

ition. 

(2) Setting the sparse codes of negative proposals to zero vec- 

ors helps the recognition network to be more discriminative of 

ositive and negative proposals, i.e., vertebrae and non-vertebrae 

egions, which is very beneficial in our workflow where message 

assing is used for correcting the pre-recognition results (detailed 

n ( Zhao et al., 2021 )). This strategy helps the network to distin-

uish vertebrae and non-vertebrae regions because increases the 

iscrepancy of the features of positive and negative regions, i.e., 

hrough training, the features of vertebrae regions would gradu- 

lly approach the ground truth sparse codes obtained by projec- 

ions; meanwhile those of the non-vertebrae regions would ap- 

roach 0. This is crucial for the message passing calibration be- 

ause it can better guarantee a correct neighboring relationship of 

he pre-recognized vertebrae sequence that is fed into the mes- 

age passing. In more detail, the validity of the message passing 

alibration algorithm relies on the neighboring relationship of its 

nputs (i.e., the pre-recognized vertebrae sequence). The message 

assing calibration can be summarized as first sorting the pre- 

ecognized vertebrae into a sequence (i.e., the neighboring rela- 

ionship is determined by this sorting procedure using the rela- 

ive positions of the pre-recognized boxes), and then performing 

lass probability vector (CPV) calibration on the pre-recognition 

equence. If the pre-recognitions correctly distinguish the verte- 

rae and non-vertebrae regions, each recognized box will corre- 

pond to the CPV of an existing vertebra; even if the CPV is wrong, 

ts neighboring relationships are correct, and the neighboring pre- 

ecognitions can use their CPVs to calibrate it. On the other hand, 

f the pre-recognition mistakes vertebrae with non-vertebrae re- 

ions, the sorting procedure may yield wrong neighboring rela- 

ionships (i.e., inserting a false positive into the sequence or miss- 

ng a vertebra in the sequence), which will result in the calibra- 

ion process being invalid. For example, in Fig. 5 (a), the exist- 

ng vertebrae in the image are S1 ∼T12, but there is a false posi-

ive in the pre-recognitions shown by the yellow dashed box, i.e., 

ertebrae and non-vertebrae regions are mistaken. This results in 

ne more CPV being inserted into the sorted pre-recognition se- 

uence, i.e., a non-vertebrae region will erroneously correspond 

o one CPV. This ruins the calibration procedure, i.e., the yellow 

ashed box will be taken as L2, while the labels of the L1 and 

12 will be taken as T12 and T11, i.e., they are out by one. Also,

n Fig. 5 (b), the T12 is missing in the pre-recognitions, i.e., ver- 

ebrae and non-vertebrae regions are again mistaken. This results 

n one CPV being missing in the sorted pre-recognition sequence. 

he message passing can not calibrate the missing CPV, i.e., the 

issing vertebrae can not be retrieved. Although in our previ- 

us work, a x coordinate threshold is designed to alleviate this 

roblem, the hard threshold may be over-fitted to some datasets. 
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Fig. 5. Discriminating vertebrae with non-vertebrae regions helps message passing calibration. Fig. 5 (a) and (b) shows two typical wrong cases where vertebrae with non- 

vertebrae regions are mistaken, i.e., false positives and false negatives (missing recognitions). Under this circumstance, the message passing is not able to calibrate because 

its input sequences are wrong. Our ERN prompts discrimination of vertebrae with non-vertebrae regions by setting the sparse codes of negative proposals to zero. 
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hus, to summarize, the projection-based sparse codes improve 

iscrimination of positive and negative proposals, which prompts 

he reliability of message passing and benefits the recognition 

ask. 

.3. Self-adaptive reasoning diagnosis network (SRDN) 

.3.1. Overall workflow 

The inputs of SRDN are the recognized vertebrae (i.e., the ERN 

esults, which corresponds only to the positive proposals) and the 

ierarchical image features (these features are shared between ERN 

nd SRDN). As mentioned in Section 2.1.3, each vertebra’s diagnos- 

ic features F i ∈ R 

h ×w ×c ( Fig. 6 (a1)) are firstly obtained by a pro-

edure similar to ROI aligning. Then, the region attention module 

 Fig. 6 (a2), Section 2.3.2) is designed to highlight the informative 

eatures and obtain F i ’ ( Fig. 6 (a3)). Next, F i ’ are flattened into di-

gnostic features y i ∈ R 

M ( Fig. 6 (a3)) by the convolutional layers 

entioned in Section 2.1.3. Afterwards, y i are fed into the feature 

nteractor ( Fig. 6 (a4), Section 2.3.3) to capture relation-aware in- 

ormation between recognized vertebrae via graph reasoning. The 

nteracted features (denoted as y ′ 
i 

Fig. 6 (a5)) are then used to cal- 

ulate diagnosis loss. Furthermore, in order to alleviate the over- 

moothing problem of graph reasoning, a self-adaptive reasoning 

ontroller ( Fig. 6 (a4)/(b), Section 2.3.4) is designed to adjust the 

easoning weights according to vertebrae diagnostic labels. 

.3.2. Region attention module 

The region attention module ( Fig. 6 (a2)) is designed to high- 

ight the most informative features for tumor diagnosis. It takes 

he cropped and resized features F i as its input, and outputs the 

odulated diagnostic feature F ′ 
i 
∈ R 

h ×w ×c by the residual attention 

etwork shown in Eq. (3) : 

 

′ 
i = (1 + f (F i )) � F i (3) 

Eq. (3) indicates that the region attention module is essen- 

ially a pixel-wise attention mask (weight matrix) for pixels inside 
8 
he vertebrae bounding boxes, which is implemented in a resid- 

al manner. For more detail, in order to calculate the attention 

ask, we first design a residual unit (the residual unit contains 

hree cascading convolutional layers of sizes 1 × 1 ×256 × 64, 

 × 3 ×64 × 64, and 1 × 1 ×64 × 256, stride 1, each with “SAME”

addings and followed by a batch normalization layer and a ReLU 

ctivation layer; shortcut connections ( He et al., 2016 ) is used to 

dd up the input and output of these layers, i.e., the residual con- 

ection). Having defined the residual units, the attention masks 

f (F i ) is calculated by first feeding the input F i into cascading 

residual unit - residual unit - max-pooling layers - residual unit 

 max-pooling layers - residual unit - up-sampling (bilinear inter- 

olation) - residual unit - up-sampling - batch normalization” lay- 

rs; and then using two cascading convolutional layers (the first 

s of size 1 × 1 ×256 × 256, stride 1, with “SAME” paddings and 

ollowed by a batch normalization layer and a ReLU activation 

ayer, the second is of size 1 × 1 ×256 × 1, stride 1, with “SAME”

addings and followed by a sigmoid activation layer) to convert the 

hannel number to 1. Finally, the attention mask f (F i ) is element- 

ise multiplied to F i (the symbol � in Eq. (3) ) in a residual man-

er with shortcut connections (i.e., the 1 + f (F i ) term in Eq. (3) ). In

his way, the region attention module highlights the most informa- 

ive diagnostic features inside the vertebrae contour while keeping 

he performance to be no worse than the counterpart without at- 

ention. 

.3.3. Feature interactor 

The feature interactor ( Fig. 6 (a4)/(b)) aims at allowing verte- 

rae with more distinguishing diagnostic features to assist in diag- 

osing the ones that are “hard” to classify. Our feature interactor 

onstructs an undirected graph using diagnostic features y i based 

n their feature similarity and then performs reasoning among the 

raph nodes (vertebrae features) using Eq. (4) : 

 

′ = σ (E ψ(Y ) W ) 

here E = norm 

(
φ(Y ) φ(Y ) T 

)
(4) 
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Fig. 6. The self-adaptive reasoning diagnosis network (SRDN). In SRDN, a region attention module is firstly designed to highlight the most informative features inside the 

recognized vertebrae for a more accurate diagnosis. Then, the vertebrae features are processed by a feature interactor with a self-adaptive reasoning controller. This allows 

diagnosing the “hard” vertebrae with the help of the features of the relatively “easier” ones while preventing the over-smoothing problem. 
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Eq. (4) demonstrates the principles of the feature interactor 

ased on graph reasoning. For more details, Y is the diagnostic 

eature matrix (the i th column corresponds to y i ), φ and ψ are 

perations adjusting the channel number (e.g., a 1 × 1 convolu- 

ional layer or a fully connected layer; in our work we simply use 

 1 × 1 convolutional layer) with ReLU activation, W is a fully con- 

ected layer to adjust feature dimensions as in ( Jiang et al., 2020 ),

nd the “norm” operation means column-wise normalization (i.e., 

orm (A ) = 

A ∑ 

k A (k, :) 
) to force elements in E to be in range (0, 1].

q. (4) shows that feature similarity matrix E is calculated using 

airwise inner product of every vertebrae feature, e.g., its element 

(i, j) is calculated by producing i th row of φ(Y ) and the j th col-

mn of φ(Y 

T ) element by element and then summing up the pro- 

uctions, which is the inner product of y i and y j . Thus, if the two

ertebrae i and j have similar features, then E (i, j) would be rela-

ively larger. Then, feature interaction is performed by graph rea- 

oning, i.e., calculating E ψ(Y ) W . In this procedure, the resulting 

ertebrae (nodes) feature would be the weighted sum of its own 

eature and the other nodes’, and the weights (edges) are the el- 

ments in a row in E . The more similar the two nodes are, the

tronger the corresponding edge (i.e., E (i, j) ) is, and the features of

hese two nodes (vertebrae) would contribute to each other with 

 higher weight. In this way, for a vertebra that is difficult to clas- 

ify whether it is invaded by tumors, the other vertebrae’s features 

an be used for assistance (more detailed discussions will be con- 

ucted in Section 2.3.5). 

.3.4. Self-adaptive reasoning controller 

The self-adaptive reasoning controller is designed for prevent- 

ng the over-smoothing issue of graph reasoning. After feature in- 
9 
eraction by the similarity matrix E , the enhanced diagnostic fea- 

ures Y 

′ is fused into Y by lateral concatenations. Then, the fused 

eatures [ Y , Y 

′ ] are fed into fully connected layers to calculate 

he diagnostic logits c , which are supervised by the ground truth 

iagnostic labels c ∗ for minimizing the cross-entropy loss L c = 

 ce (c , c ∗) . However, as analyzed above, we desire vertebrae with 

imilar features to have higher interaction weights, a natural idea 

o achieve this is to design a strategy to control feature interaction 

y promoting vertebrae with the same label to have similar fea- 

ures. Thus, we design a self-adaptive reasoning controller to for- 

ulate this strategy as a loss function: 

 E = exp(−(E same − E di f f erent )) 

= exp[ −( 
∑ 

i, j 

( E m 

� E − (1 − E m 

) � E ))] (5) 

Eq. (5) designs a loss term to control the feature similarity 

atrix E , i.e., it prompts vertebrae with the same (different) di- 

gnostic labels to have larger (smaller) feature exchange weights 

o control graph reasoning. For more details, E m 

is a 0–1 ma- 

rix, 1 is an all 1 matrix, both E m 

and 1 have the same shape 

ith E . � means element-wise production. The 
∑ 

i, j operation in 

q. (5) means summing up all elements in the matrix, thus, the 

rst term in Eq. (5) means summing up the elements in E where 

orresponding E m 

equals 1, i.e., E same would be the sum of reason- 

ng weights of vertebrae with the same diagnostic labels. In this 

ay, the loss term −(E same − E di f f erent ) encourages positions in E 

orresponding to vertebrae with the same labels to be larger (i.e., 

ertebrae with the same diagnostic labels to have larger feature 

xchange weights as shown in Fig. 6 (b)). To guarantee the loss is 

arger than 0, an exp expression is used. Furthermore, since the 
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etwork has no a pr ior i idea about how many vertebrae are rec-

gnized, the self-adaptive reasoning loss is only valid when the 

raining of the recognition network comes to stability (i.e., after 

20 0 0 0 steps). Also, if all the vertebrae in an image have the same

iagnostic labels (i.e., all of them are invaded by tumors or vise 

ersa), this loss is set to 0 to guarantee the validity of training. 

he self-adaptive reasoning loss L E is minimized together with the 

iagnose loss L c , i.e., the total loss of the diagnosis task is: 

 d = L c + L E = 

λ4 

N 4 

N 4 ∑ 

i =1 

L ce (c i , c 
∗
i ) 

+ λ5 exp(−(E same − E di f f erent )) (6) 

Eq. (6) means the loss of the diagnosis task contains two parts, 

.e., the diagnostic classification loss and the self-adaptive reason- 

ng loss. For more details: (1) L c is the cross-entropy loss of the 

redictions c i and the diagnostic ground truth c ∗
i 
, N 4 is the num- 

er of the recognized vertebrae. (2) The weight λ5 is set to restrict 

 E to be no larger than 0.5 L c as in our previous work ( Zhao et al.,

019b ). All losses are minimized using Momentum Optimizer. 

.3.5. Discussions 

The reason that SRDN benefits diagnosis performance is also 

wofold. 

(1) The attentional mechanism highlights the most informative 

eatures for the diagnosis task. Based on the recognized bound- 

ng boxes, the attentional mechanism further highlights the in- 

ormative information (e.g., tumor-like patterns inside the verte- 

rae contour) while suppresses useless features (e.g., interverte- 

ral disc portions inside the recognized boxes, which may be mis- 

aken as tumors by the diagnosis network) by learning an amplifi- 

ation factor f (F i ) and modifying each element in F i in a residual 

anner. For more details, the attention module in Section 2.3.2 is 

 “down-sample - up-sample” architecture (corresponding to the 

ax-pooling layers and the bilinear interpolation layers); during 

he down-sampling steps, the network can increase the receptive 

eld and collect global diagnostic features of the whole vertebrae; 

fter reaching the lowest resolution, the up-sampling steps retrieve 

he input resolution and combine the global diagnostic features 

ith the original fine-grained diagnostic features by lateral con- 

ections ( Wang et al., 2017a ). The final attention masks f (F i ) is

 matrix whose size is the same with the input features; f (F i ) ’s

alues are in range 0 ∼1 because sigmoid activation is used as the 

ast layer. Thus, f (F i ) plays the role of feature selection, i.e., when 

he value of a pixel in f (F i ) approaches 1, then the feature of this

ixel is highlighted; while when that of f (F i ) approaches 0, then 

he feature of this pixel is diminished. The residual connection can 

void feature value degrading in deeper networks. The attention 

ask f (F i ) is automatically learned during training; in our work 

s well as other object recognition tasks, if the object mask is 

vailable, it can be used for supervising the attention mask for im- 

roved attentional performance. Similar approaches have also been 

everaged in ( Wang et al., 2017a; Pang et al., 2019 ) for feature se-

ection in other medical image analysis tasks. 

(2) The feature interactor with self-adaptive reasoning control 

trategy can find meaningful relational clues from different ver- 

ebrae for tumor diagnosis, i.e., for a “hard” vertebra that is dif- 

cult to diagnose, features of other “easier” vertebrae could be 

sed for assistance. Intuitively, if an oncologist finds it difficult to 

ell tumors from similar-appearing disease (e.g., end-plate osteo- 

hondritis) for the “hard” vertebra, but he finds some other “eas- 

er” vertebrae in the input image are obviously invaded by tu- 

ors, then he would infer that the current vertebra is very likely 

o be also invaded by tumors, i.e., the oncologist uses the fea- 

ure clues of the “easier” vertebrae to diagnose the “hard” one 

ased on some clinical knowledge. This triggers the thought to de- 
10 
ign our feature interactor (Section 2.3.3) to mimic this process, 

.e., if the “hard” vertebra’s features are similar to those of some 

easier” ones, then the features of the “easier” ones are added to 

hose of the “hard” ones in a graph reasoning manner shown in 

q. (4) . In this way, the resulting node (vertebrae) features are the 

eighted sum of its own feature and the other vertebrae’s, i.e., 

he relational clues contained in the features of the “easier” ver- 

ebrae may be used to assist in diagnosing the “hard” ones based 

n their feature similarity. However, naively performing graph rea- 

oning among vertebrae features can also result in over-smoothing 

i.e., diagnostic features of all vertebrae approach their average), 

hich may on the contrary decrease diagnostic discrimination. To 

eal with this problem, we propose a self-adaptive reasoning con- 

roller to prompt/suppress the feature exchange of vertebrae with 

he same/different diagnostic label, i.e., the exchange of vertebrae 

eatures is supervised by the diagnostic labels. In more details, dur- 

ng training, the reasoning controller (Section 2.3.4) achieves this 

y increasing/decreasing the feature exchange weight among verte- 

rae with the same/different diagnostic labels, i.e., the E ( i,j ) will be 

rained to be larger if the vertebrae i and j have the same diagnos- 

ic label and vice versa. Thus, if the diagnostic label of the “hard”

ertebra and those of the “easier” vertebrae are the same, the fea- 

ures of the “easy” vertebrae would be added to the “hard” verte- 

rae with a larger weight, and these vertebrae would be prompted 

o have similar diagnostic features. On the contrary, graph reason- 

ng is discouraged among vertebrae with different diagnostic la- 

els. This hinders the feature exchange among vertebrae with dif- 

erent diagnostic labels, which alleviates the over-smoothing prob- 

em. In this way, the features of the “hard” vertebrae would ap- 

roach those of the “easy” ones with the same diagnostic labels 

y controlled graph reasoning, i.e., the diagnostic features of the 

easy” vertebrae are used to assist in diagnosing the “hard” ones. 

hus, to summarize, the feature interactor with self-adaptive rea- 

oning controller prompts the graph reasoning procedure to be 

ore reasonable and benefits the diagnosis task. 

. Experiments and discussions 

Dataset, implementations, ground truth annotations, and 

valuation metrics. RE-DECIDE has been intensively evaluated us- 

ng a dataset containing 600 challenging spinal MRI images of 

163 patients. The dataset contains arbitrary MRI images of tho- 

acic, lumbar, and sacrum vertebrae of 6 different FOVs. Our data 

as been approved by the Research Ethics Board of Western Uni- 

ersity (REBID: 17656E). For each patient, 3 ∼4 slices where all 

xisting vertebrae are not severely distorted are chosen from 3D 

cans and resized to 512 × 512. The training/testing dataset prepa- 

ation is similar to our previous work, i.e., we use the standard 

ve-fold cross-validation for evaluation. For more details: (1) To 

valuate the recognition performance of RE-DECIDE, we construct 

ur training/testing datasets using MRI images of 6 different FOV’s 

s in our previous work ( Zhao et al., 2020; 2021 ). The number of

mages of each FOV is kept approximately the same in the train- 

ng/testing dataset in each fold to provide sufficient training data 

or each FOV. For each FOV, the training and testing images of each 

old are randomly selected. (2) To evaluate the diagnostic perfor- 

ance of RE-DECIDE, we construct our training/testing datasets us- 

ng 4600 vertebrae (among which 818 of them are invaded by dif- 

erent types of tumors) to mimic the scenario encountered in clin- 

cal practice where tumors show a large appearance variety. The 

ertebrae invaded/not invaded by tumors are completely randomly 

plit into the training and testing set. 

As in our previous work ( Zhao et al., 2019b; 2020; 2021 ), RE- 

ECIDE is implemented in Python 3.6 on Tensorflow 1.13.0. For 

he hyper-parameters that exist in the previous work (such as the 

atch size, the initial learning rate, the learning rate decay fac- 
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or, the learning momentum, and the weights λ1 and λ2 ), they 

re kept the same as our previous work. For the hyper-parameters 

hat are new in the current work (such as the weights λ3 and 

5 ), as mentioned in Sections 2.2.4 and 2.3.4, we follow the strat- 

gy in ( Zhao et al., 2019b ) to force the additional losses, e.g., the

elf-adaptive reasoning loss, to be no larger than half of the main 

ecognition/diagnostic losses. We do not carry our fine-tuning on 

he hyper-parameters in our work, however, our RE-DECIDE frame- 

ork proves to work well with these hyper-parameters. 

An experienced oncologist for spinal tumors has carefully la- 

eled all vertebrae invaded by tumors twice with a temporal in- 

erval of one month. The second annotation is blinded to his initial 

nnotation, which is used to assess intra-operator variability. We 

efine the vertebrae invaded by tumors as a “positive” diagnostic 

abel; whereas the vertebrae not invaded by tumors as a “nega- 

ive” diagnostic label. If the two annotations have the same labels, 

he ground truth label is decided to be the manual label; if the 

wo annotations have different labels (one indicates tumor and the 

ther not), the vertebra is assigned a “positive” label (invaded by 

umors) for training. Also, for the vertebrae that the oncologist sus- 

ects (even if he is not that sure) to be invaded by tumors, they 

re given the positive label (i.e., labeled as tumor). This follows 

he clinical practice that mistaking a tumor as non-tumor is more 

evere than mistaking a non-tumor as tumor. In our dataset, the 

ncologist feels uncertain about 15% of the vertebrae, which in- 

icates our dataset is very challenging. All implementation details 

re the same as our previous work (please refer to Section 3.1 of 

hao et al., 2021 ). 

The evaluation metrics are the same with the conference ver- 

ion, i.e., we use standard five-fold cross-validation on seven fre- 

uently used metrics (image recognition accuracy (IRA), identifi- 

ation rate (IDR), and mAP 75 for recognition task; and ROC curve, 

rea under curve (AUC), accuracy, precision, and recall for diagno- 

is task). In more details: (1) For recognition, IRA is defined as the 

ercentage of images with all its vertebrae correctly detected, i.e., 

he ratio correctly recognized images/all images; IDR is defined as 

he accuracy of the individual vertebra classification, i.e., the per- 

entage of individual vertebrae that have been correctly detected; 

AP 75 is a comprehensive metric that considers the precision and 

ecall of the recognition task (not the same as the precision and 

ecall in the diagnosis task, which will be defined below), as well 

s the IoU (Intersection-over-union) of the predicted bounding box 

ith the ground truth boxes. More detailed explanations of these 

hree metrics can be seen in Section 3.2.2 of ( Zhao et al., 2021 ). (2)

or diagnosis (machine learning classification), accuracy means the 

atio of correctly classified vertebrae to the total vertebrae; pre- 

ision is the ratio of correctly classified “positive” vertebrae (i.e., 

ertebrae invaded by tumors) to the total classified “positive” ver- 

ebrae; recall is the ratio of correctly classified “positive” vertebrae 

o all “positive” vertebrae; ROC curve is a curve considering the 

alse positive rate and true positive rate (recall); AUC is the area 

nder the ROC curve. These five metrics have been widely used in 

lassification tasks ( Pedregosa et al., 2011 ). 

Qualitative and quantitative demonstrations for recogni- 

ion and diagnosis tasks. Experimental results show RE-DECIDE 

chieves satisfactory performance for both recognition and diagno- 

is tasks. 

(1) For the recognition task, Fig. 7 (a) qualitatively shows that 

E-DECIDE can recognize vertebrae of different categories de- 

pite the image FOV, characteristics, and vertebrae appearance 

ariety. The recognized vertebrae bounding boxes (dashed) over- 

ap well with the ground truth boxes (solid) of the correct la- 

els (colors). For quantitative evaluation, the black, red, and blue 

ars in Fig. 7 (b) show high IRA (overall: 0.940 ±0.023, individual 

OV’s: > 0.9), IDR (overall: 0.955 ±0.016, individual FOV’s: > 0.9), 

nd mAP 75 (overall: 0.949 ±0.021, individual FOV’s: > 0.927), which 
11 
eans that the recognition work produces very few wrongly classi- 

ed, missing, or false positive recognitions. Even for the most dif- 

cult FOV (L4 ∼T10, which is prone to be confused with L5 ∼T11 

OV), the recognition IRA and IDR still reaches 0.9 (although rela- 

ively lower than the other FOVs). 

(2) For the diagnosis task, Fig. 7 (a) also qualitatively demon- 

trates that RE-DECIDE provides diagnostic predictions that (PRED) 

s generally the same as the diagnostic ground truth (GT). For 

uantitative evaluation, Fig. 7 (c) shows that our work achieves a 

atisfactory tumor diagnosis ROC curve with an AUC of 0.947. If 

e regard vertebrae with predicted tumor probability greater than 

.5 as “positive” (suffering from tumors), we get a diagnostic accu- 

acy of 0.931, precision of 0.837, and recall of 0.760. The accuracy is 

igh, which means that our classifier in general achieves good per- 

ormance. The recall is relatively lower, which may be due to the 

ata imbalance in the diagnosis task (the “positive” vertebrae are 

ar less than the “negative” vertebrae) of our dataset; also, there 

re some “hard” vertebrae that even the two annotations of the on- 

ologist are not the same (which may be difficult for the diagnose 

etwork to classify and therefore affect the precision and recall). 

evertheless, our RE-DECIDE still achieves better performance than 

he compared methods (which will be demonstrated below); also, 

hese results are comparable with those of the oncologist (rows 1 

nd 7 in Table 1 ). 

There are some similarities between the oncologist’s diagno- 

is and the classification procedure of RE-DECIDE. For some “hard”

ertebrae such as the L3 of the left bottom figure in Fig. 7 (a), the

ositive diagnostic label (i.e., labeled as invaded by tumors) is de- 

ermined based on our labeling criteria (i.e., for the vertebrae that 

he oncologist suspects to be invaded by tumors, they are given 

he positive label even if he is not that sure). Actually, the on- 

ologist claims he is actually not that sure about whether it is 

nvaded by tumors based on its appearance. However, the diag- 

oses of other vertebrae can be used for help, e.g., the oncologist 

refers the L3 to be invaded because the other vertebrae are in- 

aded. In more detail, there is an insignificant ring-like structure 

pointed out by the red arrow in the enlarged figure ( Fig. 7 (d)));

lso, the left upper corner of the vertebrae seems to be “eroded”

nd shows a blurry edge (pointed out by the orange arrow in 

ig. 7 (d)). These may be the hints (although these hints may not 

e strong enough for diagnosis) that “L3 is invaded by tumors”; 

ased on these hints as well as the fact that some other verte- 

rae (e.g., L1, T10) are obviously invaded, the oncologist, at last, 

refers L3 to be invaded by tumor. Our SRDN may be able to use 

he self-adaptive graph reasoning strategy to mimic the oncolo- 

ists diagnosis procedure. In SRDN, the feature interactor with self- 

daptive reasoning controller constructs the feature similarity ma- 

rix E to guide feature exchange between different vertebrae. Each 

lement E(i, j) means the feature exchange weight of vertebrae i 

nd j . Via network training, E(i, j) would be larger if vertebrae i 

nd j have the same diagnostic labels. This strategy prompts the 

ertebrae with the same diagnostic labels to have more similar 

eatures; it also allows these vertebrae to exchange features with 

elatively large weights. In this way, even if a “hard” vertebra does 

ot have a very significant visual appearance indicating tumors (or 

on-tumors), its latent features can be guided to approach the ver- 

ebrae whose features are significant. For example, for the “hard”

3 vertebra which is difficult to diagnose based on its visual ap- 

earance, the features of the other vertebrae that are invaded by 

umors would be added to its feature, which causes the probabil- 

ty that the L3 is invaded by tumors to increase. In this way, the 

roposed network to some extent mimics the oncologist’s diagnos- 

ic procedure where other vertebrae’s features are used to assist 

iagnosis. 

Intra-comparison experiments. We first respectively remove 

RN and SRDN for ablation experiments. Then, to further explore 
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Fig. 7. Different metrics showing the effectiveness of our work. (a) Our network can accurately recognize vertebrae from images of different FOV and characteristics; it can 

also distinguish tumors from non-tumor diseases of various appearances. (b) Different metrics demonstrating high recognition performance. (c) The ROC curve and AUC 

value showing high diagnosis performance. (d) Enlarged parts near the L3 region of the left bottom figure in Fig. 7 (a) showing the oncologist’s diagnosis procedure. 

Table 1 

Superiority of RE-DECIDE to state-of-the-art methods and the ablation experiments. The first three columns (IRA, IDR, and mAP 75 ) are used to evaluate the 

recognition performance; meanwhile, the last four columns, (AUC, accuracy, precision, and recall) are used to evaluate the diagnosis performance. The results 

show our RE-DECIDE achieves high recognition performance with the help of the projection-based sparse codes and the enhanced supervision strategy in ERN; 

RE-DECIDE also achieves high diagnosis performance with the help of the region attention module and feature interactor with self-adaptive reasoning controller 

in SRDN. 

Method IRA IDR mAP 75 AUC accuracy precision recall 

RE-DECIDE (Our work) 0.940 ±0.023 0.955 ±0.016 0.949 ±0.021 0.947 ±0.069 0.931 ±0.002 0.837 ±0.042 0.760 ±0.055 

baseline 0.908 ±0.028 0.930 ±0.034 0.922 ±0.031 0.922 ±0.078 0.921 ±0.005 0.802 ±0.049 0.741 ±0.074 

Without SRDN 0.937 ±0.025 0.954 ±0.022 0.946 ±0.032 0.937 ±0.065 0.922 ±0.008 0.790 ±0.044 0.762 ±0.035 

Without reasoning in SRDN 0.939 ±0.032 0.956 ±0.025 0.944 ±0.030 0.943 ±0.064 0.929 ±0.009 0.830 ±0.023 0.756 ±0.054 

Without attention in SRDN 0.932 ±0.028 0.951 ±0.026 0.942 ±0.031 0.942 ±0.070 0.925 ±0.011 0.826 ±0.054 0.734 ±0.042 

Without reasoning constraint in SRDN 0.942 ±0.032 0.957 ±0.029 0.945 ±0.034 0.941 ±0.073 0.928 ±0.008 0.828 ±0.016 0.759 ±0.057 

intra-observer – – – – 0.964 0.874 0.838 

DECIDE ( Zhao et al., 2020 ) 0.936 ±0.028 0.954 ±0.019 0.947 ±0.014 0.942 ±0.068 0.926 ±0.082 0.821 ±0.028 0.743 ±0.039 

Siamese ( Wang et al., 2017b ) – – – 0.855 ±0.121 0.884 ±0.089 0.774 ±0.197 0.623 ±0.225 

Hi-scene ( Zhao et al., 2019b ) 0.878 ±0.048 0.930 ±0.053 0.923 ±0.039 – – – –

DI2IN ( Yang et al., 2017 ) 0.803 ±0.149 0.904 ±0.115 – – – – –

Faster-RCNN ( Ren et al., 2015 ) 0.750 ±0.138 0.869 ±0.104 0.848 ±0.146 – – – –

SSD ( Liu et al., 2016 ) 0.725 ±0.168 0.814 ±0.187 0.789 ±0.208 – – – –

YOLO-v3 ( Yang and Deng, 2020 ) 0.933 ±0.045 0.950 ±0.021 0.944 ±0.017 – – – –
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he effects of the region attention module, feature interactor, and 

elf-adaptive reasoning controller in SRDN, we respectively remove 

hese components (ERN is enabled in these experiments) and com- 

are the diagnostic performance to answer two interesting ques- 

ions: (1) How can the regional attention module help tumor diagno- 

is? (2) Under which circumstance can graph reasoning help the diag- 

osis task? 

For ablation experiments, as shown in Table 1 : (1) If both 

RN and SRDN are removed (row 2 in Table 1 ), the baseline 

ecognition-diagnosis framework achieves an acceptable perfor- 

ance for both recognition (IRA: 0.908 ±0.028, IDR: 0.930 ±0.034, 

AP 75 : 0.922 ±0.031) and diagnosis (AUC: 0.922 ±0.078, accuracy: 

.921 ±0.005, precision: 0.802 ±0.049, recall: 0.741 ±0.074) tasks. 

his performance shows that the baseline framework is capable 

f distinguishing different vertebrae and telling those invaded by 

umors from those not despite the MRI image characteristic vari- 

ty, i.e., it has the potential to be used for FAVTD. Also, the benefit
12 
f ERN and SRDN for recognition and diagnosis performances are 

emonstrated. (2) When ERN is enabled, the recognition perfor- 

ance shows an increase of IRA: ∼1.8%, IDR: ∼0.9%, mAP 75 : ∼2.4% 

columns 1 ∼3 of rows 1 and 2 in Table 1 ). This demonstrates the

rojection-based sparse codes and the enhanced supervision strat- 

gy in ERN help tackle the recognition challenges. (3) When SRDN 

s enabled, the diagnosis performance increases by AUC: ∼2.5%, 

ccuracy: ∼1.0%, precision: ∼3.5%, recall: ∼1.9% (columns 4 ∼7 of 

ows 1 and 2 in Table 1 ). This demonstrates in general SRDN ben-

fits tumor diagnosis by exchanging features between vertebrae; 

ompared with the baseline method, SRDN can on average cor- 

ectly diagnose ∼9.2 more vertebrae out of the 920 vertebrae in 

he testing dataset. 

To further answer the two above-mentioned questions men- 

ioning the components in SRDN, we carry out four experiments 

hown in columns 3 ∼6 in Table 1 . In these experiments, we: (1)

isable both regional attention module and feature interactor in 
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Fig. 8. The regional attention module highlights the most informative parts for di- 

agnosis ( Fig. 8 (b)). As a contrast, locations outside the vertebrae could be wrongly 

highlighted without regional attention ( Fig. 8 (a)). 
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RDN (row 3, this case is actually “baseline+ERN’); (2) respectively 

isable the feature interactor and regional attention module (rows 

 and 5); (3) disable the self-adaptive reasoning controller while 

nable feature interacting (row 6). The results are analyzed below: 

(1) By comparing the diagnostic results in rows 1, 2, 3, and 5, 

t is shown that the attention mechanism can in general improve 

iagnosis performance (row 1 VS rows 2/3/5). This first illustrates 

he effectiveness of the regional attention module, which helps fo- 

us on the informative features inside the vertebrae contours. This 

s also shown in Fig. 8 , which shows that without the attention 

odule, the network may wrongly highlight regions outside the 

ertebrae ( Fig. 8 (a)) and give a wrong diagnosis. Nevertheless, the 

ttentional mechanism solves this problem ( Fig. 8 (b)). 

(2) By conducting experiments in rows 1, 4 (where the feature 

nteractor based on graph reasoning is disabled), and 6 (where the 

eature interactor is enabled, but the self-adaptive reasoning con- 

roller is disabled), we further explore the effect of graph reasoning 

n diagnosis performance in condition that the attention module is 

nabled. To our surprise, the diagnostic results in row 6 are worse 

han those in row 4. This indicates that, although existing litera- 

ure ( Wang et al., 2017b; Chen et al., 2019b ) claim that graph rea-

oning can prompt image classification performance, we find that 

sing graph reasoning without constraints may also harm classifi- 

ation, which is probably due to the over-smoothing problem (ac- 

ually, in the experiment in row 6, we found that features of all 

ertebrae after reasoning are almost the same). However, row 1 

ives a better performance than rows 4 and 6, which means that 

uiding graph reasoning with weight constraints may produce bet- 

er results. Thus, adding constraints to graph reasoning (which can 

e implemented as losses in CNN-based architectures) provides a 

euristic idea for overcoming the over-fitting problem in image 

lassification besides the re-weighted scheme based on manually 

elected weights used in ( Chen et al., 2019b ). 

Another interesting finding is that although SRDN generally im- 

roves diagnosis performance, row 3 (without SRDN) shows rel- 

tively high recall. This may be caused by the data near the de- 

ision boundary of the diagnosis task, which accounts for quite a 

ew proportions in our relatively challenging dataset. As the train- 

ng goes on, the boundary is continually moving. If it moves to- 

ards where ‘the network tends to classify vertebrae as invaded by 

umors’, the results may contain more true positives but less true 

egatives (i.e., higher recall but lower precision) and vice versa. In 

he case in row 3, the decision boundary moves to such a location 

hat tends to produce positive diagnoses; as a result, the recall is 

igh at the expense of relatively lower accuracy and precision. In 

ontrast, SRDN prompts the boundary to move towards locations 

here more vertebrae are correctly classified, i.e., SRDN is benefi- 

ial to diagnosis and yields higher accuracy, precision, and AUC. 

Inter-comparison experiments. We compare our work with 

tate-of-the-art works performing recognition ( Zhao et al., 2019b ; 
13 
ang et al., 2017; Ren et al., 2015 ) or diagnosis ( Wang et al., 2017b )

ask. As shown in rows 1, 8 ∼12 in Table 1 , RE-DECIDE outper- 

orms all compared methods as well as the preliminary version DE- 

IDE in both recognition (first three columns) and diagnosis (last 

our columns) tasks. (1) For recognition, IRA, IDR, and mAP 75 all 

enefit from the enhanced supervision provided by the embed- 

ed dictionary. For all different FOV’s (including the most diffi- 

ult FOV T10 ∼L4), the recognition performance is higher than 90% 

 Fig. 3 (b)). Furthermore, by comparing with ( Yang et al., 2017 )

hat uses dictionary learning as post-processing for landmark re- 

nement, our embedded dictionary is more beneficial because it 

xploits the projections and introduces the ensemble of multiple 

redictions to improve vertebrae recognition discrimination. The 

dvantage of ERN is also shown by comparing RE-DECIDE with 

i-scene ( Zhao et al., 2019b ); ERN provides more discrimination 

nd shows its robustness against the vertebrae appearance changes 

rought about by the tumors. (2) For diagnosis, the superiority of 

E-DECIDE to the ablation experiment ( Wang et al., 2017b ) shows 

hat on one hand, SRDN improves the diagnostic discrimination; 

n the other hand, the fully automatic end-to-end recognition- 

iagnosis framework benefits tumor diagnosis. This framework not 

nly eliminates the tedious manual vertebrae extraction but also 

hares the rich hierarchical features to the diagnosis network. In 

his way, the workflow of our RE-DECIDE reinforces mutual bene- 

ts between two tasks and improves tumor diagnosis performance. 

Limitations. We list the limitations of our work for future re- 

earch. (1) Our SDRN tries to mimic the oncologists to use other 

ertebrae’s diagnostic features to assist in diagnosing the “hard”

nes. However, this assistance is still not exactly the same as 

he oncologists’ diagnosis procedure, e.g., the oncologists decide 

hether to use other vertebrae’s diagnostic features to assist diag- 

osis based on their rich clinical experience; while SRDN decides 

his based on the weight matrix E calculated by the inner produc- 

ion of vertebrae features extracted by the antecedent CNNs. This, 

n some rare cases, may lead to the propagation of wrong features 

o other vertebrae via graph reasoning, i.e., if the antecedent CNNs 

rovide correct features, the propagation of these features can en- 

ance performance, however, if wrong features are provided, the 

eatures of vertebrae of different diagnostic labels may also be rel- 

tively similar, which may also decrease the diagnosis performance 

ue to the feature exchange of their vertebrae. This may happen 

n the test phase of some splits in our experiments. Other graph 

easoning strategies, as well as other specialized methods such as 

etric learning, could further improve the diagnosis performance. 

lso, our Re-DECIDE is not intended for tumors farther from the 

ertebrae bodies. Moreover, our RE-DECIDE concerns giving a bi- 

ary prediction for whether a vertebra is invaded by tumors; it 

oes not discuss the suspected case where the oncologists prefer 

ot to make a determinate diagnosis. (2) The mutual effects be- 

ween the recognition task and the diagnosis task may bring dif- 

culties to the interpretability of FAVTD. Although, as mentioned 

bove, the mutual effects are beneficial to both tasks, we observe 

hat changes in SRDN may also affect the recognition and vice 

ersa. For example, the recognition performance in rows 1, 3, 4, 5, 

, and 8 should be approximately the same, however, it still shows 

 change of 1% in IRA. Similar issues also happen in the diagnosis 

ask. De-coupling the training of the two tasks may better clarify 

he analysis and enhance interpretability. 

. Conclusion 

In this paper, we have designed a reasoning discriminative 

ictionary-embedded network (RE-DECIDE) as a novel computer 

ided diagnosis (CAD) tool for fully automatic vertebrae tumor 

iagnosis (FAVTD) from MRI images. RE-DECIDE contains two 

ovel designs: (1) ERN uses feed-forward dictionary learning and 
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rojection-based enhanced supervision strategy to obtain discrim- 

native representations for vertebrae recognition and tackle the 

OV/characteristics challenges; (2) SRDN uses attentional module 

nd self-adaptive graph reasoning strategy for tumor diagnosis and 

lleviates the tumor appearance variability challenges. The effec- 

iveness of RE-DECIDE, as well as its advantage to the state-of-the- 

rt, have been demonstrated by extensive experiments. Readers are 

elcome to ask for the codes used in this work. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

eferences 

haron, M., Elad, M., Bruckstein, A., 2006. K-SVD: an algorithm for designing over- 

complete dictionaries for sparse representation. IEEE Trans. Signal Process. 54 
(11), 4311–4322 . 

urns, J.E., Yao, J., Wiese, T.S., Muñoz, H.E., Jones, E.C., Summers, R.M., 2013. Auto- 

mated detection of sclerotic metastases in the thoracolumbar spine at CT. Radi- 
ology 268 (1), 69–78 . 

hen, H., Shen, C., Qin, J., Ni, D., Shi, L., Cheng, J.C.Y., Heng, P.-A., 2015. Auto-
matic localization and identification of vertebrae in spine CT via a joint learning 

model with deep neural networks. In: International Conference on Medical Im- 
age Computing and Computer-Assisted Intervention. Springer, pp. 515–522 . 

hen, Y., Rohrbach, M., Yan, Z., Shuicheng, Y., Feng, J., Kalantidis, Y., 2019. 

Graph-based global reasoning networks. In: Proceedings of the IEEE/CVF Con- 
ference on Computer Vision and Pattern Recognition, pp. 433–442 . 

hen, Z.-M., Wei, X.-S., Wang, P., Guo, Y., 2019. Multi-label image recognition with 
graph convolutional networks. In: Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition, pp. 5177–5186 . 
hmelik, J., Jakubicek, R., Walek, P., Jan, J., Ourednicek, P., Lambert, L., Amadori, E., 

Gavelli, G., 2018. Deep convolutional neural network-based segmentation and 

classification of difficult to define metastatic spinal lesions in 3D CT data. Med. 
Image Anal. 49, 76–88 . 

oates, A., Ng, A.Y., 2011. The importance of encoding versus training with sparse 
coding and vector quantization. ICML . 

ao, Z., Chung, J., Abdelrazek, M., Leung, S., Hau, W.K., Xian, Z., Zhang, H., Li, S.,
2019. Privileged modality distillation for vessel border detection in intracoro- 

nary imaging. IEEE Trans. Med. Imaging 39 (5), 1524–1534 . 
locker, B., Zikic, D., Konukoglu, E., Haynor, D.R., Criminisi, A., 2013. Vertebrae lo- 

calization in pathological spine CT via dense classification from sparse annota- 

tions. In: International Conference on Medical Image Computing and Comput- 
er-Assisted Intervention. Springer, pp. 262–270 . 

regor, K., LeCun, Y., 2010. Learning fast approximations of sparse coding. In: Pro- 
ceedings of the 27th International Conference on International Conference on 

Machine Learning, pp. 399–406 . 
uo, S., Xu, L., Feng, C., Xiong, H., Gao, Z., Zhang, H., 2021. Multi-level semantic

adaptation for few-shot segmentation on cardiac image sequences. Med. Image 

Anal. 73, 102170 . 
e, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recogni-

tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 770–778 . 

iang, C., Wang, S., Liang, X., Xu, H., Xiao, N., 2020. ElixirNet: relation-aware network 
architecture adaptation for medical lesion detection. In: Proceedings of the AAAI 

Conference on Artificial Intelligence, Vol. 34, pp. 11093–11100 . 

iang, Z., Lin, Z., Davis, L.S., 2013. Label consistent k-SVD: learning a discrimina- 
tive dictionary for recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35 (11), 

2651–2664 . 
iang, Z., Yang, M., Deng, L., Wang, C., Wang, B., 2019. Hierarchical depthwise graph 

convolutional neural network for 3D semantic segmentation of point clouds. 
In: 2019 International Conference on Robotics and Automation (ICRA). IEEE, 

pp. 8152–8158 . 

iu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C., 2016.
SSD: single shot multibox detector. In: European conference on computer vi- 

sion. Springer, pp. 21–37 . 
iu, Y., Chen, Q., Chen, W., Wassell, I., 2018. Dictionary learning inspired deep net- 

work for scene recognition. In: Proceedings of the AAAI Conference on Artificial 
Intelligence, Vol. 32 . 

ootus, M., Kadir, T., Zisserman, A., 2014. Vertebrae detection and labelling in lum- 

bar MR images. In: Computational Methods and Clinical Applications for Spine 
Imaging. Springer, pp. 219–230 . 
14 
akary, M.A., Sexton, J.B., Freischlag, J.A., Millman, E.A., Pryor, D., Holzmueller, C., 
Pronovost, P.J., 2006. Patient safety in surgery. Ann. Surg. 243 (5), 628 . 

undy, G.R., 2002. Metastasis to bone: causes, consequences and therapeutic op- 
portunities. Nat. Rev. Cancer 2 (8), 584–593 . 

ang, S., Su, Z., Leung, S., Nachum, I.B., Chen, B., Feng, Q., Li, S., 2019. Direct auto-
mated quantitative measurement of spine by cascade amplifier regression net- 

work with manifold regularization. Med. Image Anal. 55, 103–115 . 
edregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon- 

del, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour- 

napeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: machine 
learning in python. J. Mach. Learn. Res. 12, 2825–2830 . 

uan, Y., Xu, Y., Sun, Y., Huang, Y., Ji, H., 2016. Sparse coding for classification via
discrimination ensemble. In: Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, pp. 5839–5847 . 
en, S., He, K., Girshick, R., Sun, J., 2015. Faster R-CNN: towards real-time object de-

tection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 91–99 . 

hah, L.M., Salzman, K.L., 2011. Imaging of spinal metastatic disease. Int. J. Surg. 
Oncol. 2011 . 

offer, S., Ben-Cohen, A., Shimon, O., Amitai, M.M., Greenspan, H., Klang, E., 2019. 
Convolutional neural networks for radiologic images: a radiologists guide. Radi- 

ology 290 (3), 590–606 . 
un, X., Nasrabadi, N.M., Tran, T.D., 2019. Supervised deep sparse coding networks 

for image classification. IEEE Trans. Image Process. 29, 405–418 . 

ang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., Tang, X., 2017. Resid-
ual attention network for image classification. In: Proceedings of the IEEE Con- 

ference on Computer Vision and Pattern Recognition, pp. 3156–3164 . 
ang, J., Fang, Z., Lang, N., Yuan, H., Su, M.-Y., Baldi, P., 2017. A multi-resolution

approach for spinal metastasis detection using deep siamese neural networks. 
Comput. Biol. Med. 84, 137–146 . 

ang, X., Girshick, R., Gupta, A., He, K., 2018. Non-local neural networks. In: Pro- 

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
pp. 7794–7803 . 

eilbaecher, K.N., Guise, T.A., McCauley, L.K., 2011. Cancer to bone: a fatal attraction. 
Nat. Rev. Cancer 11 (6), 411–425 . 

iese, T., Burns, J., Yao, J., Summers, R.M., 2011. Computer-aided detection of scle- 
rotic bone metastases in the spine using watershed algorithm and support vec- 

tor machines. In: 2011 IEEE International Symposium on Biomedical Imaging: 

From Nano to Macro. IEEE, pp. 152–155 . 
indsor, R., Jamaludin, A., Kadir, T., Zisserman, A., 2020. A convolutional approach 

to vertebrae detection and labelling in whole spine MRI. In: International 
Conference on Medical Image Computing and Computer-Assisted Intervention. 

Springer, pp. 712–722 . 
ie, H., Li, J., Xue, H., 2017. A survey of dimensionality reduction techniques based 

on random projection. arXiv preprint arXiv: 1706.04371 . 

ue, Y., Bigras, G., Hugh, J., Ray, N., 2019. Training convolutional neural networks 
and compressed sensing end-to-end for microscopy cell detection. IEEE Trans. 

Med. Imaging 38 (11), 2632–2641 . 
ang, D., Xiong, T., Xu, D., Huang, Q., Liu, D., Zhou, S.K., Xu, Z., Park, J., Chen, M.,

Tran, T.D., et al., 2017. Automatic vertebra labeling in large-scale 3D CT using 
deep image-to-image network with message passing and sparsity regulariza- 

tion. In: International Conference on Information Processing in Medical Imaging. 
Springer, pp. 633–644 . 

ang, Y., Deng, H., 2020. GC-YOLOv3: you only look once with global context block. 

Electronics 9 (8), 1235 . 
hang, Y., He, X., Tian, Z., Jeong, J.J., Lei, Y., Wang, T., Zeng, Q., Jani, A.B., Curran, W.J.,

Patel, P., et al., 2020. Multi-needle detection in 3D ultrasound images using un- 
supervised order-graph regularized sparse dictionary learning. IEEE Trans. Med. 

Imaging 39 (7), 2302–2315 . 
hao, S., Chen, B., Chang, H., Wu, X., Li, S., 2020. Discriminative dictionary-em- 

bedded network for comprehensive vertebrae tumor diagnosis. In: International 

Conference on Medical Image Computing and Computer-Assisted Intervention. 
Springer, pp. 691–701 . 

hao, S., Gao, Z., Zhang, H., Xie, Y., Luo, J., Ghista, D., Wei, Z., Bi, X., Xiong, H., Xu, C.,
et al., 2017. Robust segmentation of intima–media borders with different mor- 

phologies and dynamics during the cardiac cycle. IEEE J. Biomed. Health Inform. 
22 (5), 1571–1582 . 

hao, S., Wu, X., Chen, B., Li, S., 2019. Automatic spondylolisthesis grading from 

MRIs across modalities using faster adversarial recognition network. Med. Im- 
age Anal. 58, 101533 . 

hao, S., Wu, X., Chen, B., Li, S., 2019. Automatic vertebrae recognition from arbi- 
trary spine MRI images by a hierarchical self-calibration detection framework. 

In: International Conference on Medical Image Computing and Computer-As- 
sisted Intervention. Springer, pp. 316–325 . 

hao, S., Wu, X., Chen, B., Li, S., 2021. Automatic vertebrae recognition from arbitrary 

spine MRI images by a category-consistent self-calibration detection framework. 
Med. Image Anal. 67, 101826 . 

http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0001
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0002
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0003
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0004
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0005
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0006
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0007
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0008
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0009
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0010
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0011
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0012
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0013
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0014
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0015
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0016
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0017
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0018
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0019
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0020
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0021
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0022
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0023
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0024
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0025
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0026
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0027
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0028
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0029
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0030
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0031
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0032
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0033
http://arxiv.org/abs/1706.04371
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0035
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0036
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0037
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0038
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0039
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0040
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0041
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0042
http://refhub.elsevier.com/S1361-8415(22)00103-7/sbref0043

	Reasoning discriminative dictionary-embedded network for fully automatic vertebrae tumor diagnosis
	1 Introduction
	2 Methodology
	2.1 Brief retrospect of hierarchical proposal network (HPN)
	2.1.1 Hierarchical proposal network (HPN)
	2.1.2 The interface of HPN and ERN
	2.1.3 The interface of HPN, ERN, and SRDN

	2.2 Enhanced-supervision recognition network (ERN)
	2.2.1 Overall workflow
	2.2.2 Vertebrae sparse encoder
	2.2.3 Projection-based ground truth generator
	2.2.4 Enhanced supervision strategy
	2.2.5 Discussions

	2.3 Self-adaptive reasoning diagnosis network (SRDN)
	2.3.1 Overall workflow
	2.3.2 Region attention module
	2.3.3 Feature interactor
	2.3.4 Self-adaptive reasoning controller
	2.3.5 Discussions


	3 Experiments and discussions
	4 Conclusion
	Declaration of Competing Interest
	References


