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ABSTRACT

Fully automatic vertebrae tumor diagnosis (FAVTD) means using an end-to-end network to directly per-
form vertebrae recognition and tumor diagnosis from MRI images. FAVID is clinically crucial for tumor
screening and treatment, which helps prevent further metastasis and save the patients’ lives. However,
FAVTD has not yet been fully attempted due to the challenges raised by tumor appearance variabil-
ity as well as MRI image field of view (FOV) and/or characteristics diversity. We propose a REasoning
DiscriminativE diCtlonary-embeDded nEtwork (RE-DECIDE) to tackle the challenges in FAVTD. RE-DECIDE
contains an elaborated enhanced-supervision recognition network (ERN) and a self-adaptive reasoning
diagnosis network (SRDN). ERN is implemented in a feed-forward dictionary learning manner, which en-
codes each vertebra by the sparse codes and uses the sparse projections of the vertebrae coordinates
onto multiple observation axes for supervision. ERN thus provides multiple sparse encodings of all ver-
tebrae (and their ground truths) to enhance supervision, which reinforces the discrimination of different
vertebrae and thus improves recognition performance. SRDN first highlights the most informative feature
in the recognized vertebrae based on an attention mechanism. It then performs feature interaction, i.e.,
exchanges features of different vertebrae based on the graph reasoning mechanism. A reasoning control-
ling strategy is designed to prompt feature interaction in vertebrae with the same diagnosis labels and
meanwhile reduces that in vertebrae with different labels, which avoids over-smoothing and improves
diagnosis performance. RE-DECIDE is trained and evaluated using a challenging dataset consisting of 600
MRI images; the evaluation results show that RE-DECIDE achieves high performance in both recognition
(accuracy: 0.940) and diagnosis (AUC: 0.947) tasks.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

labor-intensive work but also provides diagnosis performance
that is independent on the experience of the clinicians. Thus,

Fully automatic vertebrae tumor diagnosis (FAVTD) means
recognizing each vertebra by classifying its label and regressing its
bounding box, and meanwhile diagnosing whether it is invaded by
tumors in an end-to-end network. The diagnosing procedure is in
essence a machine learning classification task. FAVTD is clinically
significant because: (1) Early diagnosis and treatment of spinal
tumors, the most fatal processes in spine (Weilbaecher et al.,
2011), is crucial to prevent further metastasis and save the pa-
tients’ lives (Mundy, 2002). (2) FAVID enables direct diagnosis
of vertebrae tumors without manual processes such as vertebrae
extraction. FAVTD not only eliminates the time-consuming and
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FAVTD may clinically assist radiologists as an automated processor
for locating lesions, planning treatments, and preventing further
metastasis (Soffer et al., 2019). We mainly consider FAVTD in mag-
netic resonance imaging (MRI) images because of its sensitivity to
soft tissues such as spinal tumors (Shah and Salzman, 2011; Wang
et al.,, 2017b; Chmelik et al., 2018).

However, both recognition and diagnosis tasks in FAVID are
challenging in MRI images. (1) For the recognition task, MRI im-
age characteristics (resolution, scales, and image intensity distribu-
tion) vary widely due to the different usages of imaging protocols
and endorectal coils. For example, the three images in Fig. 1(al)
have different FOV’s (S~T10, S~T12, and L4~T10 respectively). The
scales, resolutions, and intensities of these three images are also
different (e.g., the vertebrae are of different sizes; those in the
second image have low resolutions; those in the first image have
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Challenges in recognition and diagnosis tasks of comprehensive vertebrae tumor diagnosis (CVTD)

(a) Recognition challenges: different field of view (FOV), image characteristics, repetitive nature, and pathological variation

(al) diversity of FOVs, image characteristics
scale, resolutions, and intensi

(a2) repetitive nature (appearance similarity challenges
recognition without specifically-shaped structure
L5-TI11 | § 1L4-T10

(a3) pathological variation
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(b) Diagnosis challenges: diverse tumor appearances (red arrows) and similar appearing non-tumor diseases (blue arrows)

(b2) semi-circular/ring-like structure
sometimes insignificant

(b1) global/local hypo-/hyperintense

(b3) diffuse pepper-salt textures

(b4) non-tumor diseases with
similar appearance

Fig. 1. Both recognition and diagnosis tasks in FAVTD are challenging. (1) Fig. 1(al~a3) show the challenges of vertebrae recognition. Fig. 1(al) shows input images with
different FOVs and image characteristics (scales, resolutions, and intensities). For example, the FOVs can be different, i.e., the three images’ FOV are respectively S~T10,
S~T12, and L4~T10. The scales, resolutions, and intensities can also be different, e.g., the vertebrae in the three images are of different size; the second image has very low
resolution; and the vertebral bodies in the first image has higher intensity. Fig. 1(a2) shows vertebrae recognition is challenging because of the vertebrae’s repetitive nature,
i.e., different vertebrae have similar appearances. This makes it difficult to distinguish an image containing L5~T11 vertebrae and one containing L4~T10 (the two images in
Fig. 1(a2)). Moreover, in clinical practice, patients often have different body parts examined, which means that there may be no specifically-shaped structure (such as the
sacrum). Thus, it is impossible to rely on these structures to assist in recognizing vertebrae with similar appearances, i.e., this adds to the challenge of repetitive nature for
distinguishing different vertebrae. Fig. 1(a3) shows that pathological variations can change the appearance of the vertebrae in an unpredictable manner, thus even the same
vertebrae can show different appearances. This adds to the challenge of vertebrae recognition. (2) Fig. 1(b1~b4) shows the challenges of tumor diagnosis. Fig. 1(b1~b3)
shows that tumors have different appearances such as global or local hypo-/hyper intense, semi-circular/ring-like structure, and diffuse pepper-sale textures. Fig. 1(b4) shows
that non-tumor diseases such as end-plate osteochondritis may show similar appearances. These issues make tumor diagnosis challenging.

higher intensities). Furthermore, as shown in Fig. 1(a2), the ap-
pearances of different vertebrae are similar due to their repeti-
tive nature. This makes it difficult for even experienced physicians
to distinguish an image containing different vertebrae (e.g., in the
two images in Fig. 1(a2), it is difficult to tell an image contain-
ing L5~T11 vertebrae from one containing L4~T10). Moreover, in
clinical practice, patients often have different body parts examined
(i.e., FOV difference), which means that it is not guaranteed that
some specifically-shaped structures (such as the sacrum) exist in
the input image. Thus, it is impossible to rely on these structures
to assist in recognizing vertebrae with similar appearance, i.e., this
adds to the challenge of repetitive nature for distinguishing dif-
ferent vertebrae. Besides, as shown in Fig. 1(a3), pathological vari-
ations can change the appearance of the vertebrae in an unpre-
dictable manner, thus even the same vertebrae can show differ-
ent appearances. This makes it more challenging to distinguish the
same vertebrae with various appearances from different vertebrae
with similar appearances. Wrong recognitions may further result
in wrong-site surgery (Zhao et al., 2019b), severe medical malprac-
tice in clinical practice (Makary et al., 2006). (2) For the diagnosis
task, the tumor appearance variability raises challenges for distin-
guishing spinal tumors from other diseases. For example, as shown
in Fig. 1(b1)~(b3), tumors may present local intensity changes
in approximately circular or ring-like areas, global hypo-intense,
or hyper-intense, and diffuse pepper-salt like textures in images
of different MRI modalities and tumor pathology. However, as a
contrast, other spinal diseases, such as end-plate osteochondritis
(Fig. 1(b4)), may appear similar to tumors (e.g., the left figure of
Fig. 1(b4) and the right figure of Fig. 1(b2)) that are even difficult
for experienced clinicians to distinguish. Furthermore, the diagno-

sis task may suffer from massive irrelevant interference informa-
tion (which may show tumor-like patterns) in the non-vertebrae
parts in the input MRI image if the recognition work is not well
performed. This shows the necessity of simultaneously performing
the recognition and diagnosis tasks in an end-to-end system.

FAVTD in MRI images has not yet been attempted in the ex-
isting literature. For closely relative works, some researchers auto-
matically detect metastases from CT images. These methods mainly
first extract the spinal region using classical image processing or
machine learning methods and then perform tumor diagnosis us-
ing the features in the spinal region. For example, (Burns et al.,
2013) first identifies the spine canal using region growing, and
then detect lesions using the watershed algorithm; (Wiese et al.,
2011) uses thresholding and region growing to segment the spine,
then uses the watershed algorithm for lesion candidate detection,
and lastly uses support vector machines to diagnose metastasis;
(Chmelik et al., 2018) uses intensity projections and adaptive fil-
ters to locate the spine, then uses 3D CNN’s to perform tumor di-
agnosis. These methods show accurate and promising results in CT
images, however, they may not be robust enough to properly han-
dle MRI images.

Several works also perform single diagnosis or vertebrae de-
tection/recognition tasks, which have the potential to be extended
into FAVTD. (1) For tumor diagnosis, (Wang et al., 2017b) detects
tumors from manually extracted MRI patches using parallel convo-
lutional neural networks (CNN) to deal with different input resolu-
tions. (2) Much more work has been attempted for vertebrae de-
tection/recognition. Here, we define “capturing the vertebrae cen-
troid points” as “detection”, whereas “joint vertebrae classifica-
tion and bounding box regression” as “recognition” to avoid con-
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fusion. For vertebrae detection, (Glocker et al., 2013) uses random
forests and probabilistic graphical models to regress vertebrae cen-
troid points; (Chen et al.,, 2015) uses CNN’s jointly trained with a
shape regression model to extract more robust features for verte-
brae detection; (Yang et al., 2017) uses deeply supervised CNN en-
hanced by message passing to accurately predict pixel-wise prob-
ability maps of each vertebrae centroid. These works can precisely
capture each vertebrae centroid, however, simultaneously classify-
ing their labels and regressing their bounding boxes may be more
clinically meaningful for the succeeding diagnosis procedure (Zhao
et al,, 2019b; 2021). For vertebrae recognition, (Lootus et al., 2014)
presents an accurate method using the deformable part model
detector and dynamic programming; (Windsor et al., 2020) pro-
poses a two-stage detecting-labeling CNN for accurate vertebrae
recognition in whole MRI scan. However, (Lootus et al., 2014)
needs the sacrum to be present, whereas the training set used
in (Windsor et al., 2020) contains only MRI images containing the
sacrum. Other object detection, recognition, or segmentation meth-
ods, such as the active contour methods (Zhao et al., 2017), Faster
RCNN (Ren et al., 2015), YOLO detector (Yang and Deng, 2020), and
SSD detector (Liu et al., 2016), have also been used for finding hu-
man tissues or lesions from medical images (Guo et al., 2021; Gao
et al, 2019). In all, the above works have provided a reliable de-
tection and diagnosis (machine learning classification) algorithm,
which lays a solid foundation for FAVTD.

Dictionary learning (sparse coding) has the potential to benefit
FAVTD because it can obtain discriminative features. For example,
(Sun et al., 2019) designs a supervised dictionary learning network
for enhanced image classification performance. (Jiang et al., 2013)
proposes a label consistency strategy to prompt samples with the
same class labels have similar sparse codes. (Zhang et al., 2020)
develops an enhanced dictionary learning method for object de-
tection in 3D ultrasound patches. However, two difficulties hin-
der its application in FAVTD: (1) The dictionary and the sparse
codes are generally trained in an alternate manner (Aharon et al.,
2006), which is difficult to be integrated into the end-to-end train-
ing of CNN's. (2) The ground truth sparse codes are typically dif-
ficult to obtain. Traditional dictionary learning uses unsupervised
reconstruction to obtain sparse codes, which may not be optimal
for the main recognition (Zhao et al., 2019a) and diagnosis tasks
(Coates and Ng, 2011). (Liu et al., 2018) tries to combine dictionary
learning with CNN'’s for scene recognition. We (Zhao et al., 2021)
also conduct preliminary research on combining dictionary learn-
ing with CNN’s in an image detection framework. However, these
methods only calculate the sparse codes and use them for classi-
fication. Nevertheless, the potential of sparse codes to encode the
sparsely distributed vertebrae can be further exploited to enhance
recognition performance.

Graph reasoning may help to capture relation-aware informa-
tion to improve diagnosis (classification) accuracy in FAVTD, how-
ever, it has not been widely exploited due to over-smoothing is-
sues. For example, (Wang et al., 2018) purposes a non-local net-
work for leveraging spatial and sequential relationships for video
classification; (Chen et al., 2019b; Liang et al., 2019) uses graph
reasoning between label features for multi-label image recogni-
tion or object detection tasks; (Chen et al., 2019a) uses graph rea-
soning for capturing global relations between distant regions for
image classification and semantic segmentation. For tumor diag-
nosis, when it is difficult to distinguish spinal tumors from simi-
lar non-tumor diseases, graph reasoning allows diagnostic features
of other vertebrae to help diagnose (Jiang et al., 2020) based on
feature similarity. However, since graph reasoning is in essence
weighted average between different nodes (i.e., recognized verte-
brae in our work), it may cause over-smoothing (i.e., the features
of nodes with different labels may be “mixed” together, which may
cause features of nodes with different labels to become similar)
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(Chen et al.,, 2019b) and on the contrary harm feature discrimina-
tion. Thus, it would be interesting to explore a method to leverage
graph reasoning for capturing relation dependencies while avoid-
ing over-smoothing.

We propose a novel reasoning discriminative dictionary-
embedded network (RE-DECIDE) for FAVTD, which overcomes the
MRI FOV and image characteristics variety, vertebrae repetitive na-
ture, and tumor appearance variability in the recognition and di-
agnosis tasks. Our RE-DECIDE performs two tasks in an end-to-
end framework: firstly, vertebrae labels (e.g., T11, T12, L1, L2, L3,
etc.) and bounding boxes are predicted by the recognition net-
work, i.e., the recognition task; then, vertebrae diagnostic labels
(e.g., tumor/non-tumor) are predicted by the diagnosis network,
i.e., the diagnosis task. As shown in Fig. 2:

o To overcome the FOV and image characteristics challenges in
the recognition task, an enhanced-supervision recognition net-
work (ERN) is designed to use projection-based sparse codes
to encode vertebrae and prompt discrimination of different
vertebrae. ERN encodes each vertebra by predicting L sparse
codes via feed-forward dictionary learning. The sparse codes
are trained to approach the projections of ground truth angu-
lar points onto L observation axes (OA). Since the projections of
different vertebrae on different OAs exhibit adequate discrep-
ancy, the trained sparse codes have better distinguishability of
different vertebrae. Under the projections’ guidance, the ensem-
ble of predicted sparse codes helps to distinguish different ver-
tebrae (Xie et al., 2017; Quan et al., 2016).

To overcome the tumor appearance variability in the diagnosis
task, a self-adaptive reasoning diagnosis network (SRDN) is de-
signed to interact between vertebrae features considering their
diagnostic labels. This leverages the relational clues between
different recognized vertebrae to contribute to each other’s fi-
nal diagnosis predictions. Furthermore, to prompt the validity
of graph reasoning and avoid over-smoothing, SRDN leverages
attention mechanism to highlight the most informative fea-
tures for tumor diagnosis; also, it designs a self-adaptive rea-
soning controlling strategy to facilitate feature interaction be-
tween vertebrae of the same diagnosis labels while reducing
feature interaction between those of different diagnosis labels.
This alleviates the over-smoothing problem while allowing fea-
tures from easy-to-diagnosis vertebrae to assist in diagnosing
the difficult ones.

In all, after adopting HPN (Zhao et al., 2021) for feature extrac-
tion and coarse regional proposal localization, our RE-DECIDE elab-
orately designs two sub-networks, i.e., ERN and SRDN, to individ-
ually perform the recognition and diagnosis tasks in FAVTD; ERN
and SRDN share some features and forms an end-to-end network.

Our contributions can be summarized as:

(1) For the first time, an accurate computer aided diagnosis
(CAD) tool is designed to perform vertebrae recognition and tumor
diagnosis together in a fully automatic end-to-end network based
on graph reasoning and dictionary learning mechanisms. This work
effectively reduces the burden on clinicians to manually analyze
the medical data.

(2) Projection-guided dictionary learning is embedded into a
CNN-based recognition framework in a forward propagation man-
ner to encode each vertebra by sparse codes. This strategy lever-
ages the projections of vertebrae angular points on different OAs
for enhanced supervision, which prompts the discrimination of
vertebrae with repetitive appearances in MRI images of different
FOV’s.

(3) For the first time, we develop a self-adaptive graph reason-
ing diagnosis (classification) method that can control the feature
interaction weights according to graph node labels. This strategy
avoids over-smoothing while keeping the advantages of graph rea-
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Reasoning discriminative dictionary-embedded network (RE-DECIDE)
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Fig. 2. RE-DECIDE addresses the challenges of comprehensive vertebrae tumor diagnosis by two elaborated models ERN and SRDN. ERN encodes vertebrae by multiple sparse
codes, which are supervised by the ground truth projections for enhanced supervision to tackle the recognition challenges. SRDN allows different vertebrae to contribute to
each other based on their feature similarity, which assists diagnosis of the “difficult” vertebrae by means of other vertebrae.

soning, which prompts the discrimination between spinal tumors
and other similar-appearing diseases.

In this work, we advance our preliminary attempt on vertebrae
detection in MICCAI 2020 (Zhao et al., 2020) in the following as-
pects: (1) We propose a self-adaptive reasoning diagnosis network
to improve diagnosis performance. We also conduct elaborate ex-
periments to explore when graph reasoning is beneficial for clas-
sification tasks. (2) We propose a region attention module to fo-
cus on the most informative diagnostic features. (3) We provide
more detailed descriptions and discussions on the dictionary learn-
ing module used in (Zhao et al., 2020) for a better demonstra-
tion of how the projection-guided enhanced supervision is imple-
mented and how it helps FAVTD. (4) A more comprehensive review
of FAVTD (as well as its closely relative work), dictionary learning,
and graph reasoning is conducted to provide a panorama of exist-
ing work.

2. Methodology

Our reasoning discriminative dictionary-embedded network
(RE-DECIDE, Fig. 2) is an end-to-end framework for fully automatic
vertebrae tumor diagnosis (FAVID). RE-DECIDE first adopts a hi-
erarchical proposal network (HPN, Section 2.1) (Zhao et al., 2021)
to coarsely locate regions containing vertebrae. Then, two cascad-
ing modules are deliberately designed to respectively perform the
recognition and diagnosis task: (1) enhanced-supervision recog-
nition network (ERN, Section 2.2) takes the coarse regions and
the corresponding features as input; it then outputs the recog-
nized vertebrae labels and bounding boxes. ERN contains a ver-
tebrae sparse encoder that designs a feed-forward dictionary
learning layer to obtain sparse codes encoding each vertebra, and
a projection-based ground truth generator that leverages the
projections of each vertebra on L observation axes for ground
truth sparse codes. ERN also develops an enhanced supervi-
sion strategy for the ensemble of different predictions to im-
prove the generalized vertebrae recognition accuracy and tackle
the FOV/characteristics challenges. (2) self-adaptive reasoning di-
agnosis network (SRDN, Section 2.3) takes the recognized verte-
brae as input; it finally outputs a diagnostic prediction indicating
whether each vertebra is invaded by tumors. SRDN contains a re-
gion attention module that helps the network to focus on the
most informative diagnostic features and a feature interactor that
allows the diagnostic features of one vertebra to help to diagnose
the others in a graph reasoning manner. SRDN also designs a self-
adaptive reasoning strategy for preventing over-smoothing in the

reasoning procedure and alleviating the tumor appearance variabil-
ity challenges.

2.1. Brief retrospect of hierarchical proposal network (HPN)

2.1.1. Hierarchical proposal network (HPN)

To present a complete and comprehensible workflow of our RE-
DECIDE, we firstly briefly retrospect the Hierarchical proposal net-
work (HPN) and show how is it interfaced with the succeeding
enhanced-supervision recognition network (ERN) and self-adaptive
reasoning diagnosis network (SRDN). HPN takes the original in-
put MRI slice as input. It generates multi-scale anchors at different
regular locations, extracts hierarchical image features correspond-
ing to all anchors, and predicts which anchors contain vertebrae as
well as the coarse locations of the vertebrae by generating propos-
als. More detailed knowledge of HPN can be found in our previous
work (Zhao et al., 2021). All implementation details of HPN (e.g.,
the number of layers, blocks, and structure of each block) are the
same as in our previous work. The output proposals of HPN in-
clude positive and negative proposals. The positive proposals are
multi-scale rectangle boxes that coarsely cover class-agnostic ver-
tebrae. The negative proposals are non-vertebral regions in the im-
age (usually, non-maximum suppression is used to select the most
difficult negative proposals to accelerate training). Both positive
and negative proposals are used to train the succeeding recogni-
tion network ERN (Section 2.2), whereas only recognized vertebrae
(corresponding to positive proposals) are used to train the diag-
nosis network SRDN (Section 2.3). Besides the proposals, the hier-
archical image features are shared to the succeeding network for
recognition and/or diagnosis tasks.

2.1.2. The interface of HPN and ERN

After obtaining the proposals and the hierarchical image fea-
tures using HPN, ROI aligning (Zhao et al., 2021) is adopted to
choose features of the most suitable scale from the hierarchical
image features, crop the chosen feature using the proposals, and
then resize them to a certain size (7 x 7 in our work). After
ROI aligning, each proposal corresponds to a 7 x 7x256 feature
map. Then, the feature maps are fed into 2 cascading convolu-
tional layers with “VALID” paddings (the first one has a kernel
size of 7 x 7x256 x 1024, and the second 1 x 1x1024 x 1024,
stride 1) followed by batch normalization layers and ReLU activa-
tion layers; the feature size of the second convolutional layer are
thus 1 x 1x1024. Lastly, for each proposal, its features are flat-
tened into vectors (denoted as x; € RM) by squeezing the dimen-
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(a) Overall workflow of ERN for accurate vertebrae recognition
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Equation 1 in Fig.3(b) shows the behavior of an iterative unit:
- Each iterative unit uses the dictionary D and the shrinkage threshold A to

obtain sparser features.

- By stacking multiple iterative units, the sparse codes are finally obtained.

Fig. 3. The enhanced-supervision recognition network (ERN). In ERN, Regional proposals and features are firstly obtained as in (Ren et al, 2015) and (Zhao et al.,, 2021)
(Fig. 3(al~a2)). Then, our ERN embeds each vertebrae by L sparse codes using feed-forward dictionary learning methods such as LISTA (Fig. 3(a3)). The sparse codes are
then used for predicting the labels and bounding boxes of each vertebra (Fig. 3(a4)). The sparse codes are supervised by the projections of the vertebrae’s angular point
coordinates to L observation axes (detailed in Fig. 4) for enhanced supervision; and the ensemble of their predictions can improve recognition performance.

sionalities with size 1 and fed into ERN (Section 2.2) for vertebrae
recognition (joint vertebrae label classification and bounding box
regression).

2.1.3. The interface of HPN, ERN, and SRDN

After recognizing the vertebrae existing in an input MRI slice,
a procedure similar to ROI aligning is performed for the diagno-
sis task. In this procedure, features of the most suitable scale are
still chosen from the hierarchical image features, and then the cho-
sen feature is cropped and resized to a certain size (32 x 32 in
our work). The only difference is that the cropping uses the rec-
ognized vertebrae bounding boxes (the output of ERN) instead of
the proposals. After this procedure, each vertebrae corresponds to
a 32 x 32x256 diagnostic feature (denoted as F; € RP*Wxc), Then,
F;s are fed into the region attention module (Section 2.3.2) of SRDN
(Section 2.3) to obtain the modulated diagnostic feature F;. Fjs are
next fed into a simple network (this network first uses 3 cascading
convolutional layers of sizes 3 x 3x256 x 512, 3 x 3x512 x 512,
and 3 x 3x512 x 1024, stride 1, each with “SAME” paddings and
followed by a batch normalization layer, a ReLU activation layer,
and a max-pooling layer; then, it uses 2 convolutional layers with
kernel size 4 x 4x1024 x 1024 and 1 x 1x1024 x 1024 with
“VALID” paddings followed by batch normalization layers); the out-
put feature size of the network is thus 1 x 1x1024. Next, the
dimensionalities with size 1 are squeezed to obtain the flattened
diagnostic features y; for every vertebra. The y;s are fed to the
feature interactor with a self-adaptive reasoning controller (Sec-
tions 2.3.3 and 2.3.4) in SRDN to predict whether a vertebra is in-
vaded by tumors.

2.2. Enhanced-supervision recognition network (ERN)

2.2.1. Overall workflow

The inputs of ERN are the regional proposals (including posi-
tive and negative proposals) and hierarchical image features pro-
vided by the HPN (Fig. 3(al)). As mentioned in Section 2.1.2, each
proposal’s features are firstly flattened into vectors (denoted as x;
for the ith proposal, Fig. 3(a2))) by ROI aligning and some con-
volutional layers. Then, x; are fed into the vertebrae sparse en-

coder (Fig. 3(a3)/(b), Section 2.2.2) to calculated the sparse codes
a; for each proposal. Meanwhile, the ground truth sparse codes af
are calculated by the projection-based ground truth generator
(Fig. 4, Section 2.2.3). The a; are finally used to predict the labels
and bounding boxes by inverse projection. Losses from label clas-
sification, bounding box regression, and sparse code prediction are
all used for enhanced supervision in network training (Fig. 3(a4),
Section 2.2.4).

2.2.2. Vertebrae sparse encoder

The vertebrae sparse encoder is designed to acquire represen-
tative sparse codes for recognizing different vertebrae. It designs a
feed-forward dictionary learning layer to calculate the sparse code
a; for each x;. The subtlety of dictionary learning in recognition
tasks is that the objects (vertebrae) are sparsely distributed, i.e., a
vertebra has only four angular points, whereas an image has much
more pixels. This triggers the thought to use sparse codes a; to en-
code the angular points’ positions; furthermore, it also draws forth
an interesting idea of enhancing the supervision of sparse codes by
predicting multiple a;’s and supervising them with projections of
ground truth angular points onto different OA’s (Xue et al., 2019).
Meanwhile, it is confirmed in the compressive sensing community
that a; is able to be obtained by x; (the output of CNN’s) by min-
imizing }[/X; — Da;||Z + A|la;||; over a;. Inspired by the LISTA algo-
rithm (Gregor and LeCun, 2010), we use Eq. (1) (visually demon-
strated in Fig. 3(b)) to obtain a;:

al = n(@ '+ BD'(x; — Daj '); A1),
where 7(r; A) = sgn(r) max {|r| — A, 0} (1)

Eq. (1) demonstrates the principles how the vertebrae sparse
encoder iteratively compute the sparse codes a; with the verte-
brae feature x;. In Eq. (1), the sparse code of the ith proposal al?
is updated iteratively by the shrinkage function 7. n is a thresh-
olding function that processes its input r element by element: For
each element r;, threshold A is subtracted from its original abso-
lute value |r;|; if ;| — A <0, this element is set to 0 in the next
iteration. T iterations (typically T =3 ~ 6) are applied to calculate
reliable a;. The superscript t means the iteration number. In our
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Ground truth projection for enhanced
sparse coding supervision

(a) Projections

- projecting angular points
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observation axes
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L projections (some
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but those onto other
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- L GT sparse codes composed of projected intercepts x’s and signed
distances h’s (of different subscripts) for enhanced supervision.
- Ensemble of L predictions improves recognition performance.

Fig. 4. Detailed illustrations of the projection-based enhanced supervision strategy in ERN. Fig. 4(a) shows how the projection is conducted, and Fig. 4(b) shows how the GT
sparse codes are formed. This strategy fully leverages the diversity of projections onto different OAs for improving recognition discrimination.

design, since Eq. (1) is a differentiable architecture, the dictionary
D as well as all A!’s can be trained together with the preceding
CNN’s in an end-to-end manner.

2.2.3. Projection-based ground truth generator

The projection-based ground truth (GT) generator is designed
for generating ground truths aj to supervise the sparse codes,
which is the key procedure of supervision enhancement. The most
straightforward method for generating GT sparse codes is to estab-
lish a sparse matrix whose size is the same as the input image.
The elements in the matrix corresponding to the vertebrae angu-
lar point coordinates are 1 and the others are 0. Then, the sparse
matrix can be resized to 1D vectors as GT sparse codes encoding
vertebrae positions. However, this strategy may cause the sparse
vector to be too large (e.g., its length would reach 262,144 if the
input image is 512 x 512). Thus, we consider leveraging the an-
gular point coordinates’ projections onto L OAs around the input
image. For each vertebra (corresponding to a positive proposal in
Fig. 3(al)), its four angular points would form four intercepts x’s
and signed distances h’s when projected onto one OA; then the
x's and h’s would form a sparse vector. For example, as shown in
Fig. 4(a), when the four angular points are projected to the hori-
zontal OA, four Xx’s and h’s are obtained (those with subscript 1r,

1b, 1g, 1p in Fig. 4(a)); they then establish a sparse vector (a} in

Fig. 4(b), where the values at positions X1,/X1,/X1¢/X1p Of the vector
are respectively hy;/hqp/hig/h1p, whereas the other positions are

0). Then, the sparse vectors established by other OA’s (e.g., aj, and
ajy; in Fig. 4(b)) are concatenated together to form the GT sparse
code ar. As shown in Fig. 4, the orientations of these axes are uni-
formly distributed (for clarity, the projections of only one verte-
bra to L =3 axes are demonstrated). For each non-vertebrae re-
gion (corresponding to a negative proposal in Fig. 3(al)), its ground
truth sparse codes are set to zero vectors.

2.2.4. Enhanced supervision strategy

After obtaining the predicted a; and the ground truth a; (for
each vertebrae, they are vectors of length “image_size x L"), we
design a loss function for enhanced supervision. Firstly, two sibling
fully connected (FC) layers (respectively of sizes “(image_size x L) x
(vertebrae_class_numbers x L)” and *“(image_size x L) x (vertebrae_
class_numbers x L x 4))" are used as inverse projections; they take
a; as input and separately output L object class probability vectors
and 4 x L bounding box coordinates for each class. Then, two other
fully connected layers (respectively of sizes “(vertebrae_class_
numbers x L) x vertebrae_class_numbers” and “(vertebrae_class_
numbers x L x 4) x vertebrae_class_numbers x 4”) are used for the
ensemble learning for vertebrae classification and bounding box
regression. Next, as in our previous work (Zhao et al., 2019b),
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message passing method is leveraged for vertebrae class probabil-
ity calibration. Finally, all these calibrated class probabilities u; ;,
bounding boxes v;, ;, and sparse codes a;,; are supervised by the
corresponding ground truths u,.*], v;‘z, and a;;,,, i.e,, the total loss
function of the recognition task is:

Aok o A o
L = I\T]Z ZLce(uil,lﬂ ufl) + I\TZZ ZLSl(viz.IaV;;

i=1I=1 i=1 I=1

UL
+ﬁ32 > Ly(a,aj ) (2)

iy=1 I=1

Eq. (2) means the losses of the recognition task contains three
parts, i.e., the vertebrae label classification loss, the vertebrae lo-
cation regression loss, and the sparse code regression loss. For
more details: (1) Lce(“il,l,u?}) means the cross entropy loss of

the predicted class probabilities u; ; produced by the Ith sparse
code and the ground truth label u;, N, is the total proposal num-

ber. (2) LS,(viz_l,v;*z) means the average of the smooth L1 loss
(Ren et al,, 2015) of all elements in vector v;, ; —v;‘z, i.e., the dif-

ference between the Ith sparse code’s prediction of the i,th verte-
bra’s bounding box coordinates v;, ; and the corresponding ground
truth v;*z, N, is the positive proposal number. (3) le(ai3,1~a,§,,)
means the smooth L1 loss of each predicted sparse code and its
ground truth, N3 is the total sparse code number. In this way,
our ERN provides L supervision and L predictions (class proba-
bilities, bounding boxes, and sparse codes) for each vertebra for
enhanced supervision. The ensemble of the L predictions deter-
mine the final recognitions, which improves the recognition dis-
crimination and handles the FOV/image characteristics challenge.
(4) The weights A; ~ A3 are chosen based on the experience of
our previous work (Zhao et al., 2021; 2019b). For A; and X,,
they are chosen to be 1 as in (Zhao et al., 2021). For A3, we set
it as 0.05 so that the sparse loss is no larger than half of the
main recognition loss (Zhao et al.,, 2019b), however, we find that
the recognition results do not change much when A5 varies from
0.05 to 0.5.

2.2.5. Discussions

The reason that ERN helps distinguish different vertebrae is
twofold.

loo(1) The projection-based sparse codes make better use of the
locational information of different vertebrae to improve discrimi-
nation. The projection-based sparse codes help RE-DECIDE to bet-
ter discriminate different vertebrae than the classical object detec-
tors (such as Faster RCNN, YOLO, and SSD) as well as our previous
method that also uses dictionary learning (Zhao et al., 2021). The
initial motivation of using projection-based sparse codes is that,
sparse coding, generally speaking, has the potential to obtain dis-
criminative features. Thus, our previous work conducts preliminary
research on combining dictionary learning with CNNs in an im-
age detection framework. However, it only uses dictionary learn-
ing based on an embedded k-sparse autoencoder to prompt the
discrimination of the proposal features. Nevertheless, the verte-
brae are sparsely distributed in the input image, which triggers the
thought to use make better use of the sparse codes to encode the
vertebrae and prompt the discrimination of similar-appearing ver-
tebrae of the classical detectors. Thus, our current work, as a con-
trast, leverages the discrepancy of projections of vertebrae angu-
lar points on different OAs to be more aware of the locational in-
formation of different vertebrae. As mentioned in (Windsor et al.,
2020), the vertebra location can be used to assist in predicting ver-
tebrae labels, while in ERN, the sparse codes formed by projec-
tions on different OAs can take fuller advantage of the locational
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discrepancy of different vertebrae when constructing and super-
vising the sparse codes. In our ERN, after calculating the sparse
codes to encode each vertebra, the sparse codes are supervised
using the projection of the ground truth angular point coordi-
nates onto L OAs. This richens the locational discrepancy, for ex-
ample, the projections of some vertebrae onto one OA overlap,
those onto other OAs can still show enough locational discrep-
ancy because the OAs’ orientations are diverse (Xue et al., 2019).
In this way, the projections onto the L OAs bring more discrepancy
for different vertebrae to prompt discrimination, i.e., the recogni-
tion performance of distinguishing similar-appearing vertebrae of
different labels is thus improved. Using all L GT projections to
simultaneously supervise the predicted ones (i.e., enhanced su-
pervision), the final recognitions are determined by the ensem-
ble of the L predictions, which helps lower risks of over-fitting
(Quan et al., 2016) compared with the classical detectors such as
YOLO, SSD, and Faster RCNN. To summarize, the projection-guided
dictionary learning strategy is more beneficial for vertebrae recog-
nition.

(2) Setting the sparse codes of negative proposals to zero vec-
tors helps the recognition network to be more discriminative of
positive and negative proposals, i.e., vertebrae and non-vertebrae
regions, which is very beneficial in our workflow where message
passing is used for correcting the pre-recognition results (detailed
in (Zhao et al., 2021)). This strategy helps the network to distin-
guish vertebrae and non-vertebrae regions because increases the
discrepancy of the features of positive and negative regions, i.e.,
through training, the features of vertebrae regions would gradu-
ally approach the ground truth sparse codes obtained by projec-
tions; meanwhile those of the non-vertebrae regions would ap-
proach 0. This is crucial for the message passing calibration be-
cause it can better guarantee a correct neighboring relationship of
the pre-recognized vertebrae sequence that is fed into the mes-
sage passing. In more detail, the validity of the message passing
calibration algorithm relies on the neighboring relationship of its
inputs (i.e., the pre-recognized vertebrae sequence). The message
passing calibration can be summarized as first sorting the pre-
recognized vertebrae into a sequence (i.e., the neighboring rela-
tionship is determined by this sorting procedure using the rela-
tive positions of the pre-recognized boxes), and then performing
class probability vector (CPV) calibration on the pre-recognition
sequence. If the pre-recognitions correctly distinguish the verte-
brae and non-vertebrae regions, each recognized box will corre-
spond to the CPV of an existing vertebra; even if the CPV is wrong,
its neighboring relationships are correct, and the neighboring pre-
recognitions can use their CPVs to calibrate it. On the other hand,
if the pre-recognition mistakes vertebrae with non-vertebrae re-
gions, the sorting procedure may yield wrong neighboring rela-
tionships (i.e., inserting a false positive into the sequence or miss-
ing a vertebra in the sequence), which will result in the calibra-
tion process being invalid. For example, in Fig. 5(a), the exist-
ing vertebrae in the image are S1~T12, but there is a false posi-
tive in the pre-recognitions shown by the yellow dashed box, i.e.,
vertebrae and non-vertebrae regions are mistaken. This results in
one more CPV being inserted into the sorted pre-recognition se-
quence, i.e., a non-vertebrae region will erroneously correspond
to one CPV. This ruins the calibration procedure, i.e., the yellow
dashed box will be taken as L2, while the labels of the L1 and
T12 will be taken as T12 and T11, i.e., they are out by one. Also,
in Fig. 5(b), the T12 is missing in the pre-recognitions, i.e., ver-
tebrae and non-vertebrae regions are again mistaken. This results
in one CPV being missing in the sorted pre-recognition sequence.
The message passing can not calibrate the missing CPV, i.e., the
missing vertebrae can not be retrieved. Although in our previ-
ous work, a x coordinate threshold is designed to alleviate this
problem, the hard threshold may be over-fitted to some datasets.
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(a) false positive (yellow box)
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(b) false negative (no blue box)

Fig. 5. Discriminating vertebrae with non-vertebrae regions helps message passing calibration. Fig. 5(a) and (b) shows two typical wrong cases where vertebrae with non-
vertebrae regions are mistaken, i.e., false positives and false negatives (missing recognitions). Under this circumstance, the message passing is not able to calibrate because
its input sequences are wrong. Our ERN prompts discrimination of vertebrae with non-vertebrae regions by setting the sparse codes of negative proposals to zero.

Thus, to summarize, the projection-based sparse codes improve
discrimination of positive and negative proposals, which prompts
the reliability of message passing and benefits the recognition
task.

2.3. Self-adaptive reasoning diagnosis network (SRDN)

2.3.1. Overall workflow

The inputs of SRDN are the recognized vertebrae (i.e., the ERN
results, which corresponds only to the positive proposals) and the
hierarchical image features (these features are shared between ERN
and SRDN). As mentioned in Section 2.1.3, each vertebra’s diagnos-
tic features F; e R"*Wx¢ (Fig. 6(al)) are firstly obtained by a pro-
cedure similar to ROI aligning. Then, the region attention module
(Fig. 6(a2), Section 2.3.2) is designed to highlight the informative
features and obtain F;’ (Fig. 6(a3)). Next, F;’ are flattened into di-
agnostic features y; e RM (Fig. 6(a3)) by the convolutional layers
mentioned in Section 2.1.3. Afterwards, y; are fed into the feature
interactor (Fig. 6(a4), Section 2.3.3) to capture relation-aware in-
formation between recognized vertebrae via graph reasoning. The
interacted features (denoted as y; Fig. 6(a5)) are then used to cal-
culate diagnosis loss. Furthermore, in order to alleviate the over-
smoothing problem of graph reasoning, a self-adaptive reasoning
controller (Fig. 6(a4)/(b), Section 2.3.4) is designed to adjust the
reasoning weights according to vertebrae diagnostic labels.

2.3.2. Region attention module

The region attention module (Fig. 6(a2)) is designed to high-
light the most informative features for tumor diagnosis. It takes
the cropped and resized features F; as its input, and outputs the
modulated diagnostic feature F; RhxWx¢ by the residual attention
network shown in Eq. (3):

F=(1+fF)eF (3)

Eq. (3) indicates that the region attention module is essen-
tially a pixel-wise attention mask (weight matrix) for pixels inside

the vertebrae bounding boxes, which is implemented in a resid-
ual manner. For more detail, in order to calculate the attention
mask, we first design a residual unit (the residual unit contains
three cascading convolutional layers of sizes 1 x 1x256 x 64,
3 x 3x64 x 64, and 1 x 1x64 x 256, stride 1, each with “SAME”
paddings and followed by a batch normalization layer and a ReLU
activation layer; shortcut connections (He et al., 2016) is used to
add up the input and output of these layers, i.e., the residual con-
nection). Having defined the residual units, the attention masks
f(F;) is calculated by first feeding the input F; into cascading
“residual unit - residual unit - max-pooling layers - residual unit
- max-pooling layers - residual unit - up-sampling (bilinear inter-
polation) - residual unit - up-sampling - batch normalization” lay-
ers; and then using two cascading convolutional layers (the first
is of size 1 x 1x256 x 256, stride 1, with “SAME” paddings and
followed by a batch normalization layer and a ReLU activation
layer, the second is of size 1 x 1x256 x 1, stride 1, with “SAME”
paddings and followed by a sigmoid activation layer) to convert the
channel number to 1. Finally, the attention mask f(F;) is element-
wise multiplied to F; (the symbol ® in Eq. (3)) in a residual man-
ner with shortcut connections (i.e., the 1 + f(F;) term in Eq. (3)). In
this way, the region attention module highlights the most informa-
tive diagnostic features inside the vertebrae contour while keeping
the performance to be no worse than the counterpart without at-
tention.

2.3.3. Feature interactor

The feature interactor (Fig. 6(a4)/(b)) aims at allowing verte-
brae with more distinguishing diagnostic features to assist in diag-
nosing the ones that are “hard” to classify. Our feature interactor
constructs an undirected graph using diagnostic features y; based
on their feature similarity and then performs reasoning among the
graph nodes (vertebrae features) using Eq. (4):

Y = o (E¥ (Y)W)
where E = norm (¢ (Y)¢(Y)") (4)
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(a) Overall workflow of SRDN for accurate tumor diagnosis
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same(different) diagnostic labels to have larger (smaller) feature
exchange weights by magnifying(minishing) E(z, j) where Eu(7, j)=1/0

Fig. 6. The self-adaptive reasoning diagnosis network (SRDN). In SRDN, a region attention module is firstly designed to highlight the most informative features inside the
recognized vertebrae for a more accurate diagnosis. Then, the vertebrae features are processed by a feature interactor with a self-adaptive reasoning controller. This allows
diagnosing the “hard” vertebrae with the help of the features of the relatively “easier” ones while preventing the over-smoothing problem.

Eq. (4) demonstrates the principles of the feature interactor
based on graph reasoning. For more details, Y is the diagnostic
feature matrix (the ith column corresponds to y;), ¢ and ¥ are
operations adjusting the channel number (e.g., a 1 x 1 convolu-
tional layer or a fully connected layer; in our work we simply use
a1 x 1 convolutional layer) with ReLU activation, W is a fully con-
nected layer to adjust feature dimensions as in (Jiang et al., 2020),
and the “norm operation means column-wise normalization (i.e.,
norm(A) = o A(k )) to force elements in E to be in range (0, 1].

Eq. (4) shows that feature similarity matrix E is calculated using
pairwise inner product of every vertebrae feature, e.g., its element
E(i, j) is calculated by producing ith row of ¢(Y) and the jth col-
umn of ¢(YT) element by element and then summing up the pro-
ductions, which is the inner product of y; and y;. Thus, if the two
vertebrae i and j have similar features, then E(i, j) would be rela-
tively larger. Then, feature interaction is performed by graph rea-
soning, i.e., calculating Ev(Y)W. In this procedure, the resulting
vertebrae (nodes) feature would be the weighted sum of its own
feature and the other nodes’, and the weights (edges) are the el-
ements in a row in E. The more similar the two nodes are, the
stronger the corresponding edge (i.e., E(i, j)) is, and the features of
these two nodes (vertebrae) would contribute to each other with
a higher weight. In this way, for a vertebra that is difficult to clas-
sify whether it is invaded by tumors, the other vertebrae’s features
can be used for assistance (more detailed discussions will be con-
ducted in Section 2.3.5).

2.3.4. Self-adaptive reasoning controller
The self-adaptive reasoning controller is designed for prevent-
ing the over-smoothing issue of graph reasoning. After feature in-

teraction by the similarity matrix E, the enhanced diagnostic fea-
tures Y’ is fused into Y by lateral concatenations. Then, the fused
features [Y, Y’] are fed into fully connected layers to calculate
the diagnostic logits ¢, which are supervised by the ground truth
diagnostic labels c¢* for minimizing the cross-entropy loss L. =
Lee(c, c*). However, as analyzed above, we desire vertebrae with
similar features to have higher interaction weights, a natural idea
to achieve this is to design a strategy to control feature interaction
by promoting vertebrae with the same label to have similar fea-
tures. Thus, we design a self-adaptive reasoning controller to for-
mulate this strategy as a loss function:

Lg = exp(—(Esqme — Edifferent))

exp[— () (Em @ E— (1 —Em) ® E))] (5)
ij

Eq. (5) designs a loss term to control the feature similarity
matrix E, i.e., it prompts vertebrae with the same (different) di-
agnostic labels to have larger (smaller) feature exchange weights
to control graph reasoning. For more details, En is a 0-1 ma-
trix, 1 is an all 1 matrix, both Eyn and 1 have the same shape
with E. ® means element-wise production. The }; ; operation in
Eq. (5) means summing up all elements in the matrix, thus, the
first term in Eq. (5) means summing up the elements in E where
corresponding Ep, equals 1, i.e., Esgme would be the sum of reason-
ing weights of vertebrae with the same diagnostic labels. In this
way, the loss term —(Esame — Egifferens) €NCOUrages positions in E
corresponding to vertebrae with the same labels to be larger (i.e.,
vertebrae with the same diagnostic labels to have larger feature
exchange weights as shown in Fig. 6(b)). To guarantee the loss is
larger than 0, an exp expression is used. Furthermore, since the
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network has no a priori idea about how many vertebrae are rec-
ognized, the self-adaptive reasoning loss is only valid when the
training of the recognition network comes to stability (i.e., after
~20000 steps). Also, if all the vertebrae in an image have the same
diagnostic labels (i.e., all of them are invaded by tumors or vise
versa), this loss is set to 0 to guarantee the validity of training.
The self-adaptive reasoning loss Lg is minimized together with the
diagnose loss L, i.e., the total loss of the diagnosis task is:

L
Ly=Lc+1Lp= N—: Y Le(ci )
i=1

+ )»5exp(— (Esame - Edifferent)) (6)

Eq. (6) means the loss of the diagnosis task contains two parts,
i.e,, the diagnostic classification loss and the self-adaptive reason-
ing loss. For more details: (1) L. is the cross-entropy loss of the
predictions ¢; and the diagnostic ground truth cf, N4 is the num-
ber of the recognized vertebrae. (2) The weight A5 is set to restrict
Lg to be no larger than 0.5L; as in our previous work (Zhao et al.,
2019b). All losses are minimized using Momentum Optimizer.

2.3.5. Discussions

The reason that SRDN benefits diagnosis performance is also
twofold.

(1) The attentional mechanism highlights the most informative
features for the diagnosis task. Based on the recognized bound-
ing boxes, the attentional mechanism further highlights the in-
formative information (e.g., tumor-like patterns inside the verte-
brae contour) while suppresses useless features (e.g., interverte-
bral disc portions inside the recognized boxes, which may be mis-
taken as tumors by the diagnosis network) by learning an amplifi-
cation factor f(F;) and modifying each element in F; in a residual
manner. For more details, the attention module in Section 2.3.2 is
a “down-sample - up-sample” architecture (corresponding to the
max-pooling layers and the bilinear interpolation layers); during
the down-sampling steps, the network can increase the receptive
field and collect global diagnostic features of the whole vertebrae;
after reaching the lowest resolution, the up-sampling steps retrieve
the input resolution and combine the global diagnostic features
with the original fine-grained diagnostic features by lateral con-
nections (Wang et al., 2017a). The final attention masks f(F;) is
a matrix whose size is the same with the input features; f(F;)’s
values are in range 0~1 because sigmoid activation is used as the
last layer. Thus, f(F;) plays the role of feature selection, i.e., when
the value of a pixel in f(F;) approaches 1, then the feature of this
pixel is highlighted; while when that of f(F;) approaches 0, then
the feature of this pixel is diminished. The residual connection can
avoid feature value degrading in deeper networks. The attention
mask f(F;) is automatically learned during training; in our work
as well as other object recognition tasks, if the object mask is
available, it can be used for supervising the attention mask for im-
proved attentional performance. Similar approaches have also been
leveraged in (Wang et al., 2017a; Pang et al., 2019) for feature se-
lection in other medical image analysis tasks.

(2) The feature interactor with self-adaptive reasoning control
strategy can find meaningful relational clues from different ver-
tebrae for tumor diagnosis, i.e., for a “hard” vertebra that is dif-
ficult to diagnose, features of other “easier” vertebrae could be
used for assistance. Intuitively, if an oncologist finds it difficult to
tell tumors from similar-appearing disease (e.g., end-plate osteo-
chondritis) for the “hard” vertebra, but he finds some other “eas-
ier” vertebrae in the input image are obviously invaded by tu-
mors, then he would infer that the current vertebra is very likely
to be also invaded by tumors, i.e., the oncologist uses the fea-
ture clues of the “easier” vertebrae to diagnose the “hard” one
based on some clinical knowledge. This triggers the thought to de-
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sign our feature interactor (Section 2.3.3) to mimic this process,
i.e,, if the “hard” vertebra’s features are similar to those of some
“easier” ones, then the features of the “easier” ones are added to
those of the “hard” ones in a graph reasoning manner shown in
Eq. (4). In this way, the resulting node (vertebrae) features are the
weighted sum of its own feature and the other vertebrae’s, i.e.,
the relational clues contained in the features of the “easier” ver-
tebrae may be used to assist in diagnosing the “hard” ones based
on their feature similarity. However, naively performing graph rea-
soning among vertebrae features can also result in over-smoothing
(i.e., diagnostic features of all vertebrae approach their average),
which may on the contrary decrease diagnostic discrimination. To
deal with this problem, we propose a self-adaptive reasoning con-
troller to prompt/suppress the feature exchange of vertebrae with
the same/different diagnostic label, i.e., the exchange of vertebrae
features is supervised by the diagnostic labels. In more details, dur-
ing training, the reasoning controller (Section 2.3.4) achieves this
by increasing/decreasing the feature exchange weight among verte-
brae with the same/different diagnostic labels, i.e., the E(i,j) will be
trained to be larger if the vertebrae i and j have the same diagnos-
tic label and vice versa. Thus, if the diagnostic label of the “hard”
vertebra and those of the “easier” vertebrae are the same, the fea-
tures of the “easy” vertebrae would be added to the “hard” verte-
brae with a larger weight, and these vertebrae would be prompted
to have similar diagnostic features. On the contrary, graph reason-
ing is discouraged among vertebrae with different diagnostic la-
bels. This hinders the feature exchange among vertebrae with dif-
ferent diagnostic labels, which alleviates the over-smoothing prob-
lem. In this way, the features of the “hard” vertebrae would ap-
proach those of the “easy” ones with the same diagnostic labels
by controlled graph reasoning, i.e., the diagnostic features of the
“easy” vertebrae are used to assist in diagnosing the “hard” ones.
Thus, to summarize, the feature interactor with self-adaptive rea-
soning controller prompts the graph reasoning procedure to be
more reasonable and benefits the diagnosis task.

3. Experiments and discussions

Dataset, implementations, ground truth annotations, and
evaluation metrics. RE-DECIDE has been intensively evaluated us-
ing a dataset containing 600 challenging spinal MRI images of
~163 patients. The dataset contains arbitrary MRI images of tho-
racic, lumbar, and sacrum vertebrae of 6 different FOVs. Our data
has been approved by the Research Ethics Board of Western Uni-
versity (REBID: 17656E). For each patient, 3~4 slices where all
existing vertebrae are not severely distorted are chosen from 3D
scans and resized to 512 x 512. The training/testing dataset prepa-
ration is similar to our previous work, i.e., we use the standard
five-fold cross-validation for evaluation. For more details: (1) To
evaluate the recognition performance of RE-DECIDE, we construct
our training/testing datasets using MRI images of 6 different FOV’s
as in our previous work (Zhao et al.,, 2020; 2021). The number of
images of each FOV is kept approximately the same in the train-
ing/testing dataset in each fold to provide sufficient training data
for each FOV. For each FOV, the training and testing images of each
fold are randomly selected. (2) To evaluate the diagnostic perfor-
mance of RE-DECIDE, we construct our training/testing datasets us-
ing 4600 vertebrae (among which 818 of them are invaded by dif-
ferent types of tumors) to mimic the scenario encountered in clin-
ical practice where tumors show a large appearance variety. The
vertebrae invaded/not invaded by tumors are completely randomly
split into the training and testing set.

As in our previous work (Zhao et al., 2019b; 2020; 2021), RE-
DECIDE is implemented in Python 3.6 on Tensorflow 1.13.0. For
the hyper-parameters that exist in the previous work (such as the
batch size, the initial learning rate, the learning rate decay fac-
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tor, the learning momentum, and the weights A; and A,), they
are kept the same as our previous work. For the hyper-parameters
that are new in the current work (such as the weights A3 and
As), as mentioned in Sections 2.2.4 and 2.3.4, we follow the strat-
egy in (Zhao et al., 2019b) to force the additional losses, e.g., the
self-adaptive reasoning loss, to be no larger than half of the main
recognition/diagnostic losses. We do not carry our fine-tuning on
the hyper-parameters in our work, however, our RE-DECIDE frame-
work proves to work well with these hyper-parameters.

An experienced oncologist for spinal tumors has carefully la-
beled all vertebrae invaded by tumors twice with a temporal in-
terval of one month. The second annotation is blinded to his initial
annotation, which is used to assess intra-operator variability. We
define the vertebrae invaded by tumors as a “positive” diagnostic
label; whereas the vertebrae not invaded by tumors as a “nega-
tive” diagnostic label. If the two annotations have the same labels,
the ground truth label is decided to be the manual label; if the
two annotations have different labels (one indicates tumor and the
other not), the vertebra is assigned a “positive” label (invaded by
tumors) for training. Also, for the vertebrae that the oncologist sus-
pects (even if he is not that sure) to be invaded by tumors, they
are given the positive label (i.e., labeled as tumor). This follows
the clinical practice that mistaking a tumor as non-tumor is more
severe than mistaking a non-tumor as tumor. In our dataset, the
oncologist feels uncertain about 15% of the vertebrae, which in-
dicates our dataset is very challenging. All implementation details
are the same as our previous work (please refer to Section 3.1 of
Zhao et al., 2021).

The evaluation metrics are the same with the conference ver-
sion, i.e.,, we use standard five-fold cross-validation on seven fre-
quently used metrics (image recognition accuracy (IRA), identifi-
cation rate (IDR), and mAP;5 for recognition task; and ROC curve,
area under curve (AUC), accuracy, precision, and recall for diagno-
sis task). In more details: (1) For recognition, IRA is defined as the
percentage of images with all its vertebrae correctly detected, i.e.,
the ratio correctly recognized images/all images; IDR is defined as
the accuracy of the individual vertebra classification, i.e., the per-
centage of individual vertebrae that have been correctly detected;
mAP;s is a comprehensive metric that considers the precision and
recall of the recognition task (not the same as the precision and
recall in the diagnosis task, which will be defined below), as well
as the IoU (Intersection-over-union) of the predicted bounding box
with the ground truth boxes. More detailed explanations of these
three metrics can be seen in Section 3.2.2 of (Zhao et al., 2021). (2)
For diagnosis (machine learning classification), accuracy means the
ratio of correctly classified vertebrae to the total vertebrae; pre-
cision is the ratio of correctly classified “positive” vertebrae (i.e.,
vertebrae invaded by tumors) to the total classified “positive” ver-
tebrae; recall is the ratio of correctly classified “positive” vertebrae
to all “positive” vertebrae; ROC curve is a curve considering the
false positive rate and true positive rate (recall); AUC is the area
under the ROC curve. These five metrics have been widely used in
classification tasks (Pedregosa et al., 2011).

Qualitative and quantitative demonstrations for recogni-
tion and diagnosis tasks. Experimental results show RE-DECIDE
achieves satisfactory performance for both recognition and diagno-
sis tasks.

(1) For the recognition task, Fig. 7(a) qualitatively shows that
RE-DECIDE can recognize vertebrae of different categories de-
spite the image FOV, characteristics, and vertebrae appearance
variety. The recognized vertebrae bounding boxes (dashed) over-
lap well with the ground truth boxes (solid) of the correct la-
bels (colors). For quantitative evaluation, the black, red, and blue
bars in Fig. 7(b) show high IRA (overall: 0.940+0.023, individual
FOV’s: >0.9), IDR (overall: 0.955+0.016, individual FOV’s: >0.9),
and mAPy5 (overall: 0.949+0.021, individual FOV’s: >0.927), which
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means that the recognition work produces very few wrongly classi-
fied, missing, or false positive recognitions. Even for the most dif-
ficult FOV (L4~T10, which is prone to be confused with L5~T11
FOV), the recognition IRA and IDR still reaches 0.9 (although rela-
tively lower than the other FOVs).

(2) For the diagnosis task, Fig. 7(a) also qualitatively demon-
strates that RE-DECIDE provides diagnostic predictions that (PRED)
is generally the same as the diagnostic ground truth (GT). For
quantitative evaluation, Fig. 7(c) shows that our work achieves a
satisfactory tumor diagnosis ROC curve with an AUC of 0.947. If
we regard vertebrae with predicted tumor probability greater than
0.5 as “positive” (suffering from tumors), we get a diagnostic accu-
racy of 0.931, precision of 0.837, and recall of 0.760. The accuracy is
high, which means that our classifier in general achieves good per-
formance. The recall is relatively lower, which may be due to the
data imbalance in the diagnosis task (the “positive” vertebrae are
far less than the “negative” vertebrae) of our dataset; also, there
are some “hard” vertebrae that even the two annotations of the on-
cologist are not the same (which may be difficult for the diagnose
network to classify and therefore affect the precision and recall).
Nevertheless, our RE-DECIDE still achieves better performance than
the compared methods (which will be demonstrated below); also,
these results are comparable with those of the oncologist (rows 1
and 7 in Table 1).

There are some similarities between the oncologist’s diagno-
sis and the classification procedure of RE-DECIDE. For some “hard”
vertebrae such as the L3 of the left bottom figure in Fig. 7(a), the
positive diagnostic label (i.e., labeled as invaded by tumors) is de-
termined based on our labeling criteria (i.e., for the vertebrae that
the oncologist suspects to be invaded by tumors, they are given
the positive label even if he is not that sure). Actually, the on-
cologist claims he is actually not that sure about whether it is
invaded by tumors based on its appearance. However, the diag-
noses of other vertebrae can be used for help, e.g., the oncologist
prefers the L3 to be invaded because the other vertebrae are in-
vaded. In more detail, there is an insignificant ring-like structure
(pointed out by the red arrow in the enlarged figure (Fig. 7(d)));
also, the left upper corner of the vertebrae seems to be “eroded”
and shows a blurry edge (pointed out by the orange arrow in
Fig. 7(d)). These may be the hints (although these hints may not
be strong enough for diagnosis) that “L3 is invaded by tumors”;
based on these hints as well as the fact that some other verte-
brae (e.g., L1, T10) are obviously invaded, the oncologist, at last,
prefers L3 to be invaded by tumor. Our SRDN may be able to use
the self-adaptive graph reasoning strategy to mimic the oncolo-
gists diagnosis procedure. In SRDN, the feature interactor with self-
adaptive reasoning controller constructs the feature similarity ma-
trix E to guide feature exchange between different vertebrae. Each
element E(i, j) means the feature exchange weight of vertebrae i
and j. Via network training, E(i, j) would be larger if vertebrae i
and j have the same diagnostic labels. This strategy prompts the
vertebrae with the same diagnostic labels to have more similar
features; it also allows these vertebrae to exchange features with
relatively large weights. In this way, even if a “hard” vertebra does
not have a very significant visual appearance indicating tumors (or
non-tumors), its latent features can be guided to approach the ver-
tebrae whose features are significant. For example, for the “hard”
L3 vertebra which is difficult to diagnose based on its visual ap-
pearance, the features of the other vertebrae that are invaded by
tumors would be added to its feature, which causes the probabil-
ity that the L3 is invaded by tumors to increase. In this way, the
proposed network to some extent mimics the oncologist’s diagnos-
tic procedure where other vertebrae’s features are used to assist
diagnosis.

Intra-comparison experiments. We first respectively remove
ERN and SRDN for ablation experiments. Then, to further explore
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(a) Quantitative illstration that RE-DECIDE successully tackles
the vertebrae recognition task and the tumor diagn sk in FAVTD
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(b) different metrics showing high recognition performance
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Fig. 7. Different metrics showing the effectiveness of our work. (a) Our network can accurately recognize vertebrae from images of different FOV and characteristics; it can
also distinguish tumors from non-tumor diseases of various appearances. (b) Different metrics demonstrating high recognition performance. (c) The ROC curve and AUC
value showing high diagnosis performance. (d) Enlarged parts near the L3 region of the left bottom figure in Fig. 7(a) showing the oncologist’s diagnosis procedure.

Table 1

Superiority of RE-DECIDE to state-of-the-art methods and the ablation experiments. The first three columns (IRA, IDR, and mAPss) are used to evaluate the
recognition performance; meanwhile, the last four columns, (AUC, accuracy, precision, and recall) are used to evaluate the diagnosis performance. The results
show our RE-DECIDE achieves high recognition performance with the help of the projection-based sparse codes and the enhanced supervision strategy in ERN;
RE-DECIDE also achieves high diagnosis performance with the help of the region attention module and feature interactor with self-adaptive reasoning controller

in SRDN.

Method IRA IDR mAPys AUC accuracy precision recall
RE-DECIDE (Our work) 0.940+0.023  0.955+0.016  0.949+0.021  0.947+0.069  0.931+0.002  0.837+0.042  0.760+0.055
baseline 0.908+0.028  0.930+0.034  0.922+0.031  0.922+0.078  0.921+0.005  0.802+0.049  0.741+0.074
Without SRDN 0.937+0.025  0.954+0.022  0.946+0.032  0.937+0.065  0.922+0.008  0.790+0.044  0.762+0.035
Without reasoning in SRDN 0.939+0.032  0.956+0.025  0.944+0.030  0.943+0.064  0.929+0.009  0.830+0.023  0.756+0.054
Without attention in SRDN 0.932+0.028  0.951+0.026  0.942+0.031  0.942+0.070  0.925+0.011  0.826+0.054  0.734+0.042
Without reasoning constraint in SRDN ~ 0.942+0.032  0.957+0.029  0.945+0.034  0.941+0.073  0.928+0.008  0.828+0.016  0.759+0.057
intra-observer - - - - 0.964 0.874 0.838
DECIDE (Zhao et al., 2020) 0.936+0.028  0.954+0.019  0.947+0.014  0.942+0.068  0.926+0.082  0.821+0.028  0.743+0.039
Siamese (Wang et al., 2017b) - - - 0.855+0.121 0.884+0.089 0.774+0.197 0.623+0.225
Hi-scene (Zhao et al., 2019b) 0.878+0.048  0.930+0.053  0.923+0.039 - - - -

DI2IN (Yang et al., 2017) 0.803+0.149  0.904+0.115 - - - - -
Faster-RCNN (Ren et al.,, 2015) 0.750+0.138  0.869+0.104  0.848+0.146 - - - -

SSD (Liu et al., 2016) 0.725+0.168  0.814+0.187  0.789+0.208 - - - -

YOLO-v3 (Yang and Deng, 2020) 0.933+0.045  0.950+0.021  0.944+0.017 - - - -

the effects of the region attention module, feature interactor, and
self-adaptive reasoning controller in SRDN, we respectively remove
these components (ERN is enabled in these experiments) and com-
pare the diagnostic performance to answer two interesting ques-
tions: (1)How can the regional attention module help tumor diagno-
sis? (2) Under which circumstance can graph reasoning help the diag-
nosis task?

For ablation experiments, as shown in Table 1: (1) If both
ERN and SRDN are removed (row 2 in Table 1), the baseline
recognition-diagnosis framework achieves an acceptable perfor-
mance for both recognition (IRA: 0.908+0.028, IDR: 0.930+0.034,
mAP5: 0.92240.031) and diagnosis (AUC: 0.92240.078, accuracy:
0.921+0.005, precision: 0.802+0.049, recall: 0.741+0.074) tasks.
This performance shows that the baseline framework is capable
of distinguishing different vertebrae and telling those invaded by
tumors from those not despite the MRI image characteristic vari-
ety, i.e., it has the potential to be used for FAVTD. Also, the benefit
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of ERN and SRDN for recognition and diagnosis performances are
demonstrated. (2) When ERN is enabled, the recognition perfor-
mance shows an increase of IRA: ~1.8%, IDR: ~0.9%, mAP;5: ~2.4%
(columns 1~3 of rows 1 and 2 in Table 1). This demonstrates the
projection-based sparse codes and the enhanced supervision strat-
egy in ERN help tackle the recognition challenges. (3) When SRDN
is enabled, the diagnosis performance increases by AUC: ~2.5%,
accuracy: ~1.0%, precision: ~3.5%, recall: ~1.9% (columns 4~7 of
rows 1 and 2 in Table 1). This demonstrates in general SRDN ben-
efits tumor diagnosis by exchanging features between vertebrae;
compared with the baseline method, SRDN can on average cor-
rectly diagnose ~9.2 more vertebrae out of the 920 vertebrae in
the testing dataset.

To further answer the two above-mentioned questions men-
tioning the components in SRDN, we carry out four experiments
shown in columns 3~6 in Table 1. In these experiments, we: (1)
disable both regional attention module and feature interactor in
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a) without regional attention (b) with regional attention

(

Fig. 8. The regional attention module highlights the most informative parts for di-
agnosis (Fig. 8(b)). As a contrast, locations outside the vertebrae could be wrongly
highlighted without regional attention (Fig. 8(a)).

SRDN (row 3, this case is actually “baseline+ERN’); (2) respectively
disable the feature interactor and regional attention module (rows
4 and 5); (3) disable the self-adaptive reasoning controller while
enable feature interacting (row 6). The results are analyzed below:

(1) By comparing the diagnostic results in rows 1, 2, 3, and 5,
it is shown that the attention mechanism can in general improve
diagnosis performance (row 1 VS rows 2/3/5). This first illustrates
the effectiveness of the regional attention module, which helps fo-
cus on the informative features inside the vertebrae contours. This
is also shown in Fig. 8, which shows that without the attention
module, the network may wrongly highlight regions outside the
vertebrae (Fig. 8(a)) and give a wrong diagnosis. Nevertheless, the
attentional mechanism solves this problem (Fig. 8(b)).

(2) By conducting experiments in rows 1, 4 (where the feature
interactor based on graph reasoning is disabled), and 6 (where the
feature interactor is enabled, but the self-adaptive reasoning con-
troller is disabled), we further explore the effect of graph reasoning
on diagnosis performance in condition that the attention module is
enabled. To our surprise, the diagnostic results in row 6 are worse
than those in row 4. This indicates that, although existing litera-
ture (Wang et al., 2017b; Chen et al., 2019b) claim that graph rea-
soning can prompt image classification performance, we find that
using graph reasoning without constraints may also harm classifi-
cation, which is probably due to the over-smoothing problem (ac-
tually, in the experiment in row 6, we found that features of all
vertebrae after reasoning are almost the same). However, row 1
gives a better performance than rows 4 and 6, which means that
guiding graph reasoning with weight constraints may produce bet-
ter results. Thus, adding constraints to graph reasoning (which can
be implemented as losses in CNN-based architectures) provides a
heuristic idea for overcoming the over-fitting problem in image
classification besides the re-weighted scheme based on manually
selected weights used in (Chen et al., 2019b).

Another interesting finding is that although SRDN generally im-
proves diagnosis performance, row 3 (without SRDN) shows rel-
atively high recall. This may be caused by the data near the de-
cision boundary of the diagnosis task, which accounts for quite a
few proportions in our relatively challenging dataset. As the train-
ing goes on, the boundary is continually moving. If it moves to-
wards where ‘the network tends to classify vertebrae as invaded by
tumors’, the results may contain more true positives but less true
negatives (i.e., higher recall but lower precision) and vice versa. In
the case in row 3, the decision boundary moves to such a location
that tends to produce positive diagnoses; as a result, the recall is
high at the expense of relatively lower accuracy and precision. In
contrast, SRDN prompts the boundary to move towards locations
where more vertebrae are correctly classified, i.e., SRDN is benefi-
cial to diagnosis and yields higher accuracy, precision, and AUC.

Inter-comparison experiments. We compare our work with
state-of-the-art works performing recognition (Zhao et al., 2019b;
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Yang et al., 2017; Ren et al.,, 2015) or diagnosis (Wang et al., 2017b)
task. As shown in rows 1, 8~12 in Table 1, RE-DECIDE outper-
forms all compared methods as well as the preliminary version DE-
CIDE in both recognition (first three columns) and diagnosis (last
four columns) tasks. (1) For recognition, IRA, IDR, and mAPy5 all
benefit from the enhanced supervision provided by the embed-
ded dictionary. For all different FOV's (including the most diffi-
cult FOV T10~L4), the recognition performance is higher than 90%
(Fig. 3(b)). Furthermore, by comparing with (Yang et al., 2017)
that uses dictionary learning as post-processing for landmark re-
finement, our embedded dictionary is more beneficial because it
exploits the projections and introduces the ensemble of multiple
predictions to improve vertebrae recognition discrimination. The
advantage of ERN is also shown by comparing RE-DECIDE with
Hi-scene (Zhao et al., 2019b); ERN provides more discrimination
and shows its robustness against the vertebrae appearance changes
brought about by the tumors. (2) For diagnosis, the superiority of
RE-DECIDE to the ablation experiment (Wang et al., 2017b) shows
that on one hand, SRDN improves the diagnostic discrimination;
on the other hand, the fully automatic end-to-end recognition-
diagnosis framework benefits tumor diagnosis. This framework not
only eliminates the tedious manual vertebrae extraction but also
shares the rich hierarchical features to the diagnosis network. In
this way, the workflow of our RE-DECIDE reinforces mutual bene-
fits between two tasks and improves tumor diagnosis performance.

Limitations. We list the limitations of our work for future re-
search. (1) Our SDRN tries to mimic the oncologists to use other
vertebrae’s diagnostic features to assist in diagnosing the “hard”
ones. However, this assistance is still not exactly the same as
the oncologists’ diagnosis procedure, e.g., the oncologists decide
whether to use other vertebrae’s diagnostic features to assist diag-
nosis based on their rich clinical experience; while SRDN decides
this based on the weight matrix E calculated by the inner produc-
tion of vertebrae features extracted by the antecedent CNNs. This,
in some rare cases, may lead to the propagation of wrong features
to other vertebrae via graph reasoning, i.e., if the antecedent CNNs
provide correct features, the propagation of these features can en-
hance performance, however, if wrong features are provided, the
features of vertebrae of different diagnostic labels may also be rel-
atively similar, which may also decrease the diagnosis performance
due to the feature exchange of their vertebrae. This may happen
in the test phase of some splits in our experiments. Other graph
reasoning strategies, as well as other specialized methods such as
metric learning, could further improve the diagnosis performance.
Also, our Re-DECIDE is not intended for tumors farther from the
vertebrae bodies. Moreover, our RE-DECIDE concerns giving a bi-
nary prediction for whether a vertebra is invaded by tumors; it
does not discuss the suspected case where the oncologists prefer
not to make a determinate diagnosis. (2) The mutual effects be-
tween the recognition task and the diagnosis task may bring dif-
ficulties to the interpretability of FAVTD. Although, as mentioned
above, the mutual effects are beneficial to both tasks, we observe
that changes in SRDN may also affect the recognition and vice
versa. For example, the recognition performance in rows 1, 3, 4, 5,
6, and 8 should be approximately the same, however, it still shows
a change of 1% in IRA. Similar issues also happen in the diagnosis
task. De-coupling the training of the two tasks may better clarify
the analysis and enhance interpretability.

4. Conclusion

In this paper, we have designed a reasoning discriminative
dictionary-embedded network (RE-DECIDE) as a novel computer
aided diagnosis (CAD) tool for fully automatic vertebrae tumor
diagnosis (FAVID) from MRI images. RE-DECIDE contains two
novel designs: (1) ERN uses feed-forward dictionary learning and
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projection-based enhanced supervision strategy to obtain discrim-
inative representations for vertebrae recognition and tackle the
FOV/characteristics challenges; (2) SRDN uses attentional module
and self-adaptive graph reasoning strategy for tumor diagnosis and
alleviates the tumor appearance variability challenges. The effec-
tiveness of RE-DECIDE, as well as its advantage to the state-of-the-
art, have been demonstrated by extensive experiments. Readers are
welcome to ask for the codes used in this work.
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