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Abstract

In causal inference, weighting is commonly used for covariate adjustment. Pro-
cedurally, weighting can be accomplished either through methods that model the
propensity score, or methods that use convex optimization to find the weights that
balance the covariates directly. However, the computational demand of the balanc-
ing approach has to date precluded it from including broad classes of functions
of the covariates in large datasets. To address this problem, we outline a scalable
approach to balancing that incorporates a kernel representation of a broad class of
basis functions. First, we use the Nyström method to rapidly generate a kernel basis
in a reproducing kernel Hilbert space containing a broad class of basis functions of
the covariates. Then, we integrate these basis functions as constraints in a state-of-
the-art implementation of the alternating direction method of multipliers, which
rapidly finds the optimal weights that balance the general basis functions in the
kernel. Using this kernel balancing approach, we conduct a national observational
study of the relationship between hospital profit status and treatment and outcomes
of heart attack care in a large dataset containing 1.27 million patients and over
3,500 hospitals. After weighting, we observe that for-profit hospitals perform
percutaneous coronary intervention at similar rates as other hospitals; however,
their patients have slightly worse mortality and higher readmission rates.

1 Introduction

Weighting is commonly used to remove overt biases in observational studies and has useful properties,
such as its avoidance of explicit outcome modeling [26] and hence division between study design
and outcome analysis [29], as well as its ability in principle to examine multiple outcomes [22].
Typically, weighting approaches rely on regression modeling of the propensity score for probability
of treatment assignment [27]. However, this approach relies on strong modeling assumptions, and
can yield unstable estimators [18]. A recent balancing approach addresses both of these problems
by forgoing propensity score modeling and instead using convex optimization to directly find the
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weights of minimum dispersion that approximately balance the covariate distributions [45]. Despite
these appealing features, current algorithms for the balancing approach are impractical in the large
and ever-growing datasets commonly found in health sciences.

We propose a weighting approach blending an efficient kernel balancing method with a state-of-
the-art convex optimization algorithm. We draw on kernel balancing approaches from [39], [43],
and [16], which posit that the outcome regressions are located within a kernel representation of a
flexible function space. We use the Nyström approximation to efficiently compute the kernel basis in
linear time and space. Then, we add the basis functions as linear constraints in a quadratic program
(QP), which is efficiently solved via a recent specialized first-order alternating direction method of
multipliers [33]. The resulting weights are the stable balancing weights that approximately balance
functions of the covariates from the kernel. We show that the proposed method is computationally
efficient, has excellent estimator accuracy, and is practical in large-scale observational studies.

2 Estimation framework

2.1 Setup

Our setting is an observational study with n triplets (X,A, Y )
iid∼ P, where X ∈ Rd is a set of

observed baseline covariates, A is a binary indicator for treatment assignment, and Y ∈ R is a
real-valued outcome. Applying the potential outcomes framework for causal inference [23, 28], we
write Yi = AiY

1
i + (1−Ai)Y

0
i , where Y a

i is the potential outcome of unit i under treatment A = a;
a = 0, 1. In our observational study of hospital profit status and heart attack care, A = 1 if the patient
was admitted to a for-profit hospital, and A = 0 if admitted to another type of hospital. Our goal is to
estimate the average treatment effect on the treated (ATT),

E(Y 1 − Y 0 | A = 1).

Identification of the ATT relies on some standard assumptions: (i) consistency, Y = Y a if A = a,
(ii) exchangeability, A ⊥⊥ Y 0 | X , and (iii) positivity, P(A = 0 | X = x) > 0 a.s. [P] (see, e.g.,
Chapter 12 in Imbens and Rubin 17). Given these assumptions,

E(Y 1 − Y 0 | A = 1) = E(Y | A = 1)− E{E(Y | X,A = 0) | A = 1}
≡ E(Y | A = 1)− ψ.

The first term is simply the expectation of the observed outcomes of the treated sample. However,
ψ represents the mean conditional potential outcomes of the treated sample under control, which
was not observed, and thus its estimation relies on the aforementioned assumptions as well as
adjustment for differences in the covariates X . More formally, let fX|A=a(x) be the density of X
given A = a, and let µa(X) = E[Y | X,A = a] represent the outcome regression function. Then,
ψ =

∫
µ0(x)fX|A=1(x)dx. Our goal is to estimate the mean of Y in a control population (A = 0)

that has covariate distributions similar to the treated population (A = 1).

In order to estimate the ATT given the propensity score π(X), weighting leverages the equality

E(Y 0 | A = 1) =
E
{

E(AY 0 | X)
}

P(A = 1)
=

1

P(A = 1)
E

{
(1−A) π(X)

1− π(X)
Y

}
, (1)

which holds under the assumptions of consistency and exchangeability. Mechanically, weighting
removes covariate imbalances by giving more or less emphasis to each unit’s Yi via the function
π(X)

1−π(X) . A simple yet general weighting estimator for E(Y 0 | A = 1) = ψ is given by

ψ̂ =
∑

{i|A=0}

ŵi(Xi)Yi for ŵi ≥ 0. (2)

2.2 Two classes of weighting approaches

In the modeling approach to weighting, we explicitly model the unknown propensity score π, typically
with logistic regression, and then construct the weights using the estimated π̂. We define a normalized
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version of the classic Horvitz-Thompson estimator as

ψ̂mod = Pn

{
π̂(X)(1−A)
1− π̂(X)

Y

}/
Pn

{
π̂(X)(1−A)
1− π̂(X)

}
. (3)

Model-based weighting estimator performance depends on how accurately π̂ is estimated. If a
parametric model captures the true π, asymptotic normality is attained with fast

√
n rates. However,

this requires strong functional form assumptions. Nonparametric models are a useful alternative
requiring weaker assumptions; however, they do not scale well to large datasets [44]. The more
recently introduced balancing approach [5, 15, 46] avoids explicit modeling of π and instead directly
solves for the weights wi that meet prespecified balance and dispersion criteria, guaranteeing balance
and yielding a more stable estimator. Zubizarreta [46] recently introduced stable balancing weights
(SBW), which are the solution to the QP

minimize
w∈Rnc

∑
{i|A=0}

(wi − w̄)2

subject to
∣∣∣∣ ∑
{i|A=0}

wiBb(Xi)−
1

nt

∑
{i|A=1}

Bb(Xi)

∣∣∣∣ ≤ δb, b = 1, 2, ...,M,

∑
{i|A=0}

wi = 1, w ≥ 0,

(4)

where w̄ = 1
nc

∑
{i|A=0} wi,B1, ..., BM areM real-valued basis functions of the covariates spanning

the model space containing the unknown true outcome model, and δb is the tolerance for the maximum
imbalance. By balancing approximately rather than exactly, the approach is more robust to data with
limited covariate overlap. Importantly, the degree of balance is customizable via modifying δb based
on subject matter expertise or a tuning algorithm [3, 6, 37].

2.3 Kernel balancing

There are many possible models of the relationship between covariates and outcomes, but the true
model is unknown. Thus, it is desirable to adjust for the largest possible set of basis functions
{B1, ..., BM} spanning a general model space for µa [3], such as the Reproducing Kernel Hilbert
Space (RKHS) [2, 32]. For a given Mercer kernel K : X × X → R, there exists a corresponding
feature map Φ : X → Q given by Φ(x) = [

√
λ1φ1(x),

√
λ2φ2(x), · · · ], where {λj} and {φj} are

the eigenvalues and eigenfunctions of the kernel operator, respectively such that
∫
K(x, y)φj(y)dy =

λjφj(x). Here, Q is an expanded, typically infinite-dimensional feature space. We assume that

µa(x) ∈ HK :=

{
g : g(x) =

∞∑
j=1

βjΦj(x)

}
,

so the true µa lies within the expanded feature spaceQ. By the “kernel trick"K(x, y) = Φ(x)⊤Φ(y),
there is no need to compute Φ(·) explicitly, since balancing only requires the dot product of the
transformed feature vectors Φj(·)s. Further, for any loss function L : R2 → R, monotone increasing
function Ω, and some τ > 0, by the representer theorem [35] the solution of the regularized problem

min
f∈HK

n∑
i=1

L(f(Xi), Yi) + τΩ(∥f∥) (5)

has the form

f̂(x) =

n∑
i=1

αiK(Xi, x),

for some αi ∈ R. Let K ∈ Rn×n be a kernel matrix such that Kij = K(Xi, Xj). Then, since
µa ∈ HK , the regularized problem (5) (with any nonzero degree of regularization) will produce
µ̂a(Xi) = Ki·α, where Ki· is the i-th row of K.
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Admitting the eigenvalue (spectral) decomposition K = UΛU⊤ where Λ is the diagonal matrix with
an ordered set of decreasing eigenvalues, [16] showed that the linear estimator (2)’s empirical bias
we wish to minimize through kernel balancing is given by

Bias(ψ̂;K) :=

(
ŵ⊤Uc −

1

nt
1⊤
nt
Ut

)
ΛU⊤α, (6)

where ŵ ∈ Rnc in (2), Uc (Ut) are rows of U corresponding to the control (treated) units, and 1nt
is

a vector of ones of length nt. As a result, rather than balancing all n columns of K, Wong and Chan
[39] and [16] proposed balancing the first r ≪ n eigenvectors of K; i.e., the first r columns of U .
While easier than balancing all n columns, this may still be prohibitive for large n due to the cost of
computing the eigenvalue decomposition. Thus, we need an effective approximation method for K.

3 Scalable and flexible weighting

3.1 Streamlining the kernel basis calculation

While the kernel approach is a flexible method of balancing covariates, the eigenvalue decomposition
of a dense n× n matrix is typically solved with algorithms requiring O(n2)-space and have O(n3)-
time complexity, making them impractical for large samples However, this can be surmounted via
low-rank matrix approximations like the Nyström method [9, 13, 38].

By using only a subset of columns of a large kernel matrix, the Nyström method can efficiently find
its low-rank approximation. First, we sample a set of column indices Im with m≪ n for a matrix
K ∈ Rn×n. While the Nyström method’s standard form selects the indices in Im are via uniform
random sampling, it is possible to use more sophisticated sampling approaches [e.g., 20]. Next, we
form a matrix C ∈ Rn×c with Cij = K(Xi, Xj), i ∈ {1, ..., n}, j ∈ Im, and a matrix W ∈ Rm×m

with Wij = K(Xi, Xj), i, j ∈ Im. Then, the standard Nyström approximation for K is

K̃ = CW+C⊤,

where W+ is the Moore-Penrose (pseudo) inverse of W .

Rank-restricted Nyström approximation. Small singular values in W may lead to unstable W+,
so usually one chooses l < m with the rank-restricted Nyström approximation [e.g., 13]. Assume W
admits the singular value decomposition (SVD) as W = UWΛWU⊤

W . Let Wl = UW,lΛW,lU
⊤
W,l be

the rank-l truncated SVD of W . Then,

K̃l = CW−1
l C = CUW,lΛ

−1
W,lU

⊤
W,lC

⊤ (7)

as the rank-l Nyström approximation for K.

Extra dimensionality reduction. Further dimensionality reduction is useful for improving computa-
tional speed with large n. Drawing from Wang et al. [36], let R = CUW,lΛ

−1/2
W,l which admits the

truncated SVD as R = ŨR,sΛ̃R,sṼ
⊤
R,s for s < l. Here, ṼR,s ∈ Rl×s contains the dominant s right

singular vectors of R. Then, we get

K̃s := DD⊤ where D = RṼR,s ∈ Rn×s (8)

as our rank-s Nyström approximation for K.

Given that s < l < m ≪ n, the time and space complexities of computing K̃l are O(m3 + nml)
and O(nm+m2), respectively. Crucial for scalability, these complexities are now linear in n. Thus,
(7) approximates the eigenvector-based kernel bases much more efficiently.

While optimal settings for s, l, and m are not certain, we draw from Wang et al. [36] by setting
l = ⌈m/2⌉ and s = l and gradually decreasing s until the problem becomes feasible.

3.2 Fast optimization of balancing weights

We now consider solving for the balancing weights in large samples. The alternating direction
method of multipliers (ADMM) is a popular convex optimization solution method thanks to its
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computational efficiency [4]. Despite its strengths, it cannot detect infeasibility, has convergence
rates that are sensitive to parameter and data settings, and loses speed gains on high-accuracy settings.
Recently, [33] introduced the operator splitting solver for quadratic programs (OSQP), a state-of-the-
art ADMM-based general QP solver that overcomes these limitations and is a convenient method for
finding the stable balancing weights in (4). In our setting, since the coefficient matrix is symmetric
quasi-definite and sparse, the algorithm can more efficiently solve the linear system of equations, and
since the linear system’s coefficient matrix is always non-singular regardless of step-size parameter
values, the algorithm maintains numerical stability without losing speed (see Appendix B for details).
Finally, since the relevant linear system’s coefficient matrix system is fixed across iterations and not
dependent on δ, the latter can be tuned much more efficiently via factorization caching. Moreover,
because the weighting solutions do not vary with small changes in δ, warm starting can provide even
more efficiency (see Appendix D.5 for experimental results).

3.3 Implementation and bounds on bias

Assume we have completed the rank-l Nyström approximation for K as in (7). For the matrix C let
Ct ∈ Rnt×m and Cc ∈ Rnc×m be rows of C for the treated and control units, respectively. Given
these, the stable kernel balancing weights can be found by solving the following QP:

minimize
w∈Rnc

z∈R1+nc+l

w⊤Inc
w − 1

nc
w⊤1nc

subject to Qw = z, z ∈ C(δ),
(9)

for Q = [1nc
Inc

CcUW,l]
⊤ and a set C(δ) = {z | l(δ) ≤ z ≤ u(δ)} where

l(δ) =
[
1 0nc

CtUW,l − δ
]⊤
, u(δ) =

[
1 1nc

CtUW,l + δ
]⊤
, δ = (δ1

√
σ1, ..., δl

√
σl) .

Here, Ir ∈ Rr×r is the r×r identity matrix, and 1r,0r ∈ R1×r are vectors of ones and zeros of length
r, respectively; δ = (δ1, ..., δl) is a vector of investigator-specified maximum tolerable imbalances;
CtUW,l ∈ R1×l is a row vector of means of each column of CtUW,l; and diag(σ1, ..., σl) = ΛW,l ∈
Rl×l. In (9), x ∈ Rnc , z, l, u ∈ R1+nc+l, and Q ∈ R(1+nc+l)×nc . In Appendix A, we describe
computation of the proposed estimator in detail.

While in ADMM form, (9) corresponds to the balancing weights problem in (4) with the objective
function being the approximated kernel basis (CUW,l)ij as Bj(Xi) and sample variance of w

ζ(w) = 1
nc

∑
{i|A=0}

(
wi − 1

nc

∑
{i|A=0} wi

)
. we have s < l balancing constraints in the QP.

In the following proposition, we show the worst-case bound of the bias (6) for the weighting estimator
resulting from from the optimal solution to (9) (see Appendix C for the proof).
Proposition 3.1. If ∥α∥2 <∞, then we have the deterministic bound

Bias(ψ̂;K) ≲
l∑

b=1

δb + ∥K − K̃∥2 + ∥W+ −Wl∥F ,

where ∥ · ∥2 and ∥ · ∥F are the 2-norm and the Frobenius norm, respectively. Further, if we use the
extra dimensionality reduction, then, with high probability, the following bound

Bias(ψ̂;K) ≲
s∑

b=1

δb + ∥K −Ks∥∗

holds, where Ks is a rank-s truncated SVD of K and ∥ · ∥∗ is the trace norm.

By this proposition, the upper bound on bias is the sum of error due to residual covariate imbalance
after weighting and error due to kernel matrix approximation, with the former controllable via the
balancing constraints. Note that Wl and Ks are the best low-rank approximations for W+ and K,
respectively, with the corresponding ranks. The kernel matrix approximation error generally declines
with larger s, l, and m, and the bound of the residual error ∥K − K̃∥2 can be found; see, e.g., [13].

In Appendix D, we provide extensive simulation studies showing that the proposed approach has
excellent estimation accuracy and also demonstrates superior computational efficiency at sample sizes
up to 1 million and under a variety of covariate specifications, even relative to logistic regression.
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Panel B. Random Forest Approach
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Figure 1: Here, we plot the TASMDs between for-profit and control hospitals. The coordinates of
each dot represent the TASMD of a covariate before and after weighting.

4 A national study of heart attack care by hospital profit status

The effect of for-profit orientation on medical care is a central question in health economics. Medicare
pays hospitals more if heart attack patients receive percutaneous coronary intervention (PCI), which
may incentivize excessive and potentially unneccessary use. However, a reasonable alternative
hypothesis is that profit motives may improve clinical efficiency and spur technical and human capital
investments that lead to better outcomes and potentially reduced need for PCI. In fact, two studies
from the 1990s and early 2000s using small data samples reported opposing results [30, 31]; however,
these studies had fewer than 160,000 patients from small numbers of hospitals that were participating
in voluntary cardiac reporting systems, which may have altered provider behavior.

In contrast, we studied a larger sample of 1,273,636 Medicare beneficiaries admitted to hospitals for
heart attack between October 1, 2010 and November 30, 2019. There were 206,948 patients admitted
to 775 for-profit hospitals, while 1,066,780 patients were admitted to 2,763 control hospitals. The
kernel balancing incorporated 87 adjustment covariates describing the patients and the hospitals in
their county of residence, with the latter partially addressing selection bias due to patients choosing
where to live based on their medical needs. After weighting, we considered the samples balanced if
all target absolute standardized mean differences (TASMD) [6] were below 0.1.

4.1 Kernel balance results

Panel A of Figure 1 shows that the weighting algorithm successfully balanced all covariates, with
all TASMDs after weighting far below our standard of 0.1, and none above 0.03. The kernel basis
computation required only 32.3 seconds, while the OSQP algorithm solved for the stable kernel
balancing weights in just 132 seconds. Other methods encountered difficulties- the balancing problem
was too large for quadprog, while the kernel ridge regression implementation of the modeling
approach could not obtain a solution. While fast random forests via ranger did find a solution in the
modeling approach, it required much more time than kernel balancing, and as can be seen in Panel B
of Figure 1, the random forest approach was less successful at balancing even just simple covariate
means.

Table 1: PCI Use and Outcomes by Hospital Profit Status
Measure For-Profit Control Difference 95% CI
Received PCI 33.2 33.1 0.1 (-0.1, 0.3)
30-day Mortality 14.3 13.9 0.4 (0.2, 0.6)
30-day Readmission/Inpatient Death 19.2 18.2 0.9 (0.7, 1.1)
30-day Readmission Only 11.5 10.6 0.8 (0.6, 0.9)
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4.2 Heart attack treatment and outcomes

Table 1 shows treatment and outcomes by hospital profit status after weighting. For-profit hospitals
and control hospitals used PCI at almost the same rate, which aligns with [30], but conflicts with
Sloan et al. [31]. However, the latter used data from 1994-1995, and guideline-based care has become
more prominent since, perhaps leading to converging treatment practices. 30-day mortality was
slightly but significantly higher, while 30-day readmission was about 1% higher at for-profit hospitals,
a significant difference.

5 Summary and future work

We described a stable kernel balancing approach to weighting that scales to large datasets without
sacrificing estimator accuracy. We showed that the Nyström approximation makes it computationally
feasible to find a set of general functions of the covariates in RKHS, and described how the kernel
basis from the Nyström approximation can be efficiently balanced via a modern ADMM-based
convex optimization method. Using the method to study the relationship between hospital profit
status and heart attack care, we found for-profit hospitals have similar PCI rates, but worse patient
outcomes. Scalable and stable kernel balancing affords new opportunities to leverage the advantages
of the balancing approach to weighting for observational studies using big data.

There are several avenues for future work. First, the algorithm requires a choice of kernel and
parameters s, l, and m to form the kernel basis. While our simulations used heuristics from [36],
data-adaptive selection methods could be explored, possibly using balance quality after weighting
to adjust the parameters to improve balance. The impact of kernel approximation could be studied
by re-examining the large-scale results in [39] and [37] after adding the approximation step, giving
conditions for the validity of the bootstrap to conduct inference. Finally, while we used simple random
sampling for the Nyström approximation, future work could study how more complex sampling
schemes affect the kernel approximation bias of the estimator.
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APPENDIX

A Algorithm

Algorithm 1: Fast stable kernel balancing weights
input: Sample Z1, ..., Zn, vector δ, integers s < l < m≪ n, and kernel K(·, ·)

*Step 1: Form kernel bases
1 Sample a set Im of m≪ n indices in {1, ..., n}
2 Form C ∈ Rn×m with Cij = K(Xi, Xj), i ∈ {1, ..., n}, j ∈ Im, and W ∈ Rm×m with

Wij = K(Xi, Xj), i, j ∈ Im
3 Compute the rank-l truncated SVD Wl = UW,lΛW,lU

⊤
W,l

4 if dimensionality reduction then
5 Compute the rank-s truncated SVD of R = CUW,lΛ

−1/2
W,l as ŨR,sΛ̃R,sṼ

⊤
R,s

6 Compute D = RṼR,s

7 Compute Q, l(δ), u(δ) using (9)
*Step 2: Optimize weights with OSQP

8 Choose parameters ρ > 0, σ > 0, and α ∈ (0, 2); initialize w0, y0, z0, and ν0; and set k = 0
9 repeat

10 (w̃k+1, νk+1)← solve
[
−(1 + σ)Inc

−Q⊤

−Q ρ−1I

] [
w̃k+1

νk+1

]
= −

[
σwk − 1/nc1nc

zk − ρ−1yk

]
;

11 z̃k+1 ← zk + ρ−1(νk+1 − yk)
12 wk+1 ← αw̃k+1 + (1− α)wk

13 zk+1 ← ΠC(δ)
(
αz̃k+1 + (1− α)zk + ρ−1yk

)
14 yk+1 ← yk + ρ

(
αz̃k+1 + (1− α)zk − zk+1

)
15 w ← wk, k ← k + 1
16 until termination criterion satisfied;

output:
∑nc

i=1 wiYc,i, where Yc is an outcome vector for the control units

B OSQP for SBW

The above OSQP algorithm for obtaining the SBW is particularly well-suited to large-scale problems.
First, the most computationally expensive step of Algorithm 1 is solving the linear system in Step 10;
however, since the matrix

[
−(1+σ)Inc −Q⊤

−Q ρ−1I

]
is symmetric quasi-definite and sparse (with sparsity

2nc−1+(Kd+2)(2nc+1)
n2
c+(nc+Kd+1)(3nc+Kd+1) ≈

1
nc

), a number of efficient algorithms can be applied to this step. One
option is the QDLDL factorization procedure [8], which is the default linear system solver in OSQP,
while an alternative option is approximate minimum degree ordering [1]. Second, although the
investigator should carefully tune δ in the SBW algorithm to obtain the desired degree of balance, for
example using the bootstrap [6, 37], there are methods to execute this step with greater efficiency.
Although by necessity the bootstrap requires a number of iterations, the fact that the coefficient matrix
used in Step 3 of Algorithm 1 remains unchanged across iterations and does not depend on δ permits
the use of factorization caching; i.e., the factorization needs to only be performed once and the
resulting information can be stored for use in subsequent iterations. Also, small changes in δ tend not
to substantially affect SBW solutions, so warm starting can be used for added efficiency. Together, the
techniques of factorization caching and warm starting make OSQP a particularly efficient approach
to completing the SBW procedure. Finally, since the coefficient matrix in Step 10 of Algorithm 1 is
always non-singular regardless of the value of σ, some arbitrarily small σ can be chosen without a
detrimental effect on computation time.
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We remark that there exist alternative ADMM-based methods that could be applied; however, these
approaches require reformulation of our QP, which introduces many extra coefficients into the
optimization procedure and therefore may not be computationally efficient [33].

C Proof of Proposition 3.1

Proof. i) K̃l = CUW,lΛ
−1
W,lU

⊤
W,lC

⊤.

Let wt = 1
nt

1nt and ŨΛ−1
W,lŨ

⊤ ≡ CUW,lΛ
−1
W,lU

⊤
W,lC

⊤ = K̃l. Then essentially by the
Cauchy–Schwarz and triangle inequalities, we have∣∣(w⊤

c Uc − w⊤
t Ut

)
ΛU⊤α

∣∣
≤
∣∣∣(w⊤

c Uc − w⊤
t Ut

)
ΛU⊤α−

(
w⊤

c Ũc − w⊤
t Ũt

)
Λ−1
W,lŨ

⊤α+
(
w⊤

c Ũc − w⊤
t Ũt

)
Λ−1
W,lŨ

⊤α
∣∣∣

≤ ∥wc∥2
∥∥∥UcΛU

⊤ − ŨcΛ
−1
W,lŨ

⊤
∥∥∥
2
∥α∥2 +

∥∥∥UtΛU
⊤ − ŨtΛ

−1
W,lŨ

⊤
∥∥∥
2
∥α∥2

+
∣∣∣(w⊤

c Ũc − w⊤
t Ũt

)
Λ−1
W,lŨ

⊤α
∣∣∣

≲
∥∥∥K − K̃l

∥∥∥
2
∥α∥2 +

∣∣∣(w⊤
c Ũc − w⊤

t Ũt

)
Λ−1
W,lŨ

⊤α
∣∣∣ .

For the second term in the last display, it follows that

sup
α

∣∣∣(w⊤
c Ũc − w⊤

t Ũt

)
Λ−1
W,lŨ

⊤α
∣∣∣ ≤ ∥∥∥(w⊤

c Ũc − w⊤
t Ũt

)
Λ−1
W,l

∥∥∥
2
sup
α

∥∥∥Ũ⊤α
∥∥∥
2

≲
∥∥∥(w⊤

c Ũc − w⊤
t Ũt

)
Λ−1
W,l

∥∥∥
2

≤
c∑

k=1

δb,

where the first inequality follows by the Cauchy–Schwarz inequality and the second by the balancing
conditions and the fact that sup

α
∥α∥2 <∞. Also for the first term it follows that

sup
α

∥∥∥K − K̃l

∥∥∥
2
∥α∥2 ≲

∥∥∥K − K̃l

∥∥∥
2

≤ ∥K − K̃∥2 + ∥CW+C⊤ − CWlC
⊤∥2

≲ ∥K − K̃∥2 + ∥W+ −Wl∥F .

Putting the two pieces together, we have the desired bound

sup
α

∣∣(w⊤
c Uc − w⊤

t Ut

)
ΛU⊤α

∣∣ ≲ c∑
k=1

δb + ∥K − K̃∥2 + ∥W+ −Wl∥F .

ii) K̃s = DD⊤.

It can be shown that DD⊤ is the rank-s truncated SVD of K̃l [36]. Hence∥∥K −DD⊤∥∥
2
≤
∥∥K −DD⊤∥∥

∗
≲ ∥K −Ks∥∗

holds with probability at least 0.9 [36, Theorem 1]. Then result follows by the same logic as part i.
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D Numerical Experiment

We study the computational performance and estimation accuracy of several modeling and balancing
weighting methods. We extend the simulation design by Hainmueller [15] to encompass nonlinear
treatment assignment processes and sample sizes up to ten million.

D.1 Study design

Consider an observational study with continuous and binary covariates generated as follows[
X1

X2

X3

]
∼ N

([
0
0
0

]
,

[
2 1 −1
1 1 −0.5
−1 −0.5 1

])
, X4 ∼ Unif[−3, 3], X5 ∼ χ2

1, X6 ∼ Bern[0.5].

Using these six covariates, we generate the outcome and treatment variables as

Y = (X1 +X2 +X5)
2 + η, η ∼ N(0, 1), (10)

A = 1
{
X2

1 + 2X2
2 − 2X2

3 − (X4 + 1)3 − 0.5 log(X5 + 10) +X6 − 1.5 + ε > 0
}
, (11)

where ε ∼ N(0, σ2
ε). By adding more nonlinearity, (11) is extended from the treatment assignment

mechanism in Hainmueller [15]. We use σ2
ε = 30 in our setup.

We consider two covariate specifications with Xcor = (X1, X2, X3, X4, X5, X6) corresponding
to the setting where all covariates are correctly specified, and Xmis = (X1X3, X

2
2 , X4, X5, X6)

corresponding to the setting where some covariates are misspecified. The latter case is intended to
yield a misspecified propensity score in the modeling approach, and misspecified covariate balance
in the balancing approach. For each σ2

ε , we consider each interaction of treatment assignment
mechanism and accuracy of covariate specification. We consider five sample sizes: n ∈ {2 · 103, 5 ·
103, 104, 105, 106}. In this design, the ATT is equal to zero by construction. To separate design from
analysis and focus on computing scalability and speed, we based the weighting estimator (2) solely
on π̂; however, it can be augmented by an outcome model to form a doubly-robust estimator as in
[25].

D.2 Methods considered

Estimation of the ATT by weighting requires explicit modeling of π for ψ̂mod in the modeling
approach, or solving the QP (9) to obtain ψ̂bal in the balancing approach. We consider various
common methods, including some considered useful for large-scale modeling or optimization. For
practicality, we focus on methods that can be executed using readily available packages in R. For
consistent comparisons of balancing estimators, we fix δ = 0.0005 across all methods, although
in Section D.5 we evaluate the computational performance of the methods when selecting δ in a
data-driven fashion using the algorithm in [6].

We consider nine methods for ψ̂mod and seven methods for ψ̂bal totaling 16 methods classified into
six groups (see Table 2. For the modeling approach, Group M1 methods use logistic regression
(or GLM) to model the propensity score. Group M2 contains lasso algorithms where the tuning
parameter is selected via 10-fold cross validation. In Groups M1 and M2, the regression models
for π add quadratic terms and all pairwise products of the observed covariates. Group M3 includes
three common non-parametric algorithms: random forests, kernel ridge regression, and generalized
additive models using splines [21].3 For the balancing approach, Group B1 includes the widely-used
open-source QP solvers in R. Group B2 studies two well-known commercial solvers. Finally, Group
B3 includes three state-of-the-art ADMM-based solvers aimed at reducing processing time and used
with the kernel balancing approach. The kernel bases are constructed using the Gaussian kernel,
which projects into an infinite-dimensional extended feature spaceQ. For the Nyström approximation,
we used m = 100 and set other parameters via the heuristic described in Section 3.1. For OSQP, we
use the same parameters as Stellato et al. [33].

3When non-parametric methods are employed in the modeling approach, we must rely on either empirical
process conditions or cross fitting to estimate π̂. Here, we use the two-fold cross fitting in the same spirit of [see,
e.g., 7, 19].
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Table 2: Description of modeling and solution methods used in the simulation study.
Method R package Description

Modeling
Approach

M1. Logistic regression
glm Commonly used method to fit logistic

regression models in R

sgdglm Stochastic gradient descent methods for
estimation with big data [34]

M2. Regularized regression

glmnet Lasso via coordinate descent
[12]

biglasso Scalable lasso for big data
[42]

oem Lasso for tall (large n) data
[41]

penreg ADMM-based lasso implementation
[4] (admm.lasso in results)

M3. Non-parametric regression

ranger Fast implementation for Random Forests

DRR Fast implementation for Kernel Ridge
Regression (kernel.ridge in results)

bam Generalized additive model using splines
for big data [40]

Balancing
Approach

B1. Open-source solvers
quadprog Commonly-used QP solver based on the

dual method [14]

qpoases QP solver based on parametric
active-set algorithm [10]

B2. Commercial solvers
gurobi Large scale commercial optimizer

by Gurobi Optimization

Rmosek Large scale commercial optimizer
by Mosek ApS

B3. ADMM-based solvers

osqp Operator splitting solver for QP (OSQP)
[33]

pogs ADMM-based graph form solver (POGS)
[11]

scs Operator splitting conic solver (SCS)
[24]

D.3 Measures and settings

We assess estimator performance using the root-mean-squared error (RMSE) defined by{
1
S

∑S
j=1(ψ̂j − ψ)2

}1/2

averaged across S = 100 simulations, and quantify the computational
cost in average central processing unit (CPU) time across simulations, which we report in seconds
unless otherwise noted. Unless otherwise mentioned, each method is implemented in R using each
package’s internally available solvers and default settings for ease of performance comparisons
across methods. However, some algorithms may perform better under non-default settings. All
simulations were completed using the Harvard Faculty of Arts and Sciences Research Computing
(FASRC) clusters,4 with available memory fixed at 128GB. In the results tables, we write ‘F’ when
the optimization process failed in more than half the simulations, and ‘M’ when the system ran out of
memory in more than half the simulations.

4https://www.rc.fas.harvard.edu/about/cluster-architecture/
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Table 3: RMSE under weak overlap
X correctly specified (X) X transformed (X∗)

Method
n 2k 5k 10k 100k 1M 2k 5k 10k 100k 1M

ψ̂mod

glm 1.72 1.29 1.20 1.19 1.18 1.85 1.37 1.30 1.18 1.18
sgdglm 1.72 1.29 1.20 1.19 1.18 1.86 1.37 1.31 1.18 1.19
glmnet 2.20 1.18 0.68 0.23 0.12 4.57 1.79 0.67 0.39 0.35
biglasso 2.57 1.08 0.65 0.22 0.12 5.23 1.68 0.68 0.39 0.35
oem 3.37 1.27 0.79 0.26 0.12 6.47 2.97 0.79 0.40 0.35
admm.lasso 3.83 1.59 0.84 0.29 0.15 7.29 3.04 1.07 0.70 0.51
ranger 0.71 0.33 0.22 0.15 0.09 0.97 0.41 0.36 0.27 0.22
kernel.ridge 1.87 1.19 1.01 0.89 M 6.26 6.07 5.59 4.87 M
bam 2.84 1.31 1.20 1.19 1.18 3.37 1.95 1.25 1.19 1.18

ψ̂bal

quadprog 0.31 0.20 0.15 F F 0.51 0.34 0.33 F F
qpoases 0.32 0.22 0.15 F F 0.65 0.34 0.24 F F
gurobi 0.19 0.13 0.09 0.04 0.02 0.31 0.19 0.15 0.08 0.05
Rmosek 0.19 0.13 0.10 0.04 0.02 0.31 0.20 0.15 0.08 0.05
osqp 0.19 0.03 0.10 0.04 0.02 0.31 0.19 0.16 0.08 0.05
pogs 0.31 0.20 0.15 M M 0.59 0.36 0.29 M M
scs 0.25 0.22 0.19 0.15 0.10 0.55 0.38 0.25 0.18 0.15

D.4 Empirical results

RMSE. Table 3 shows results under weak overlap. The balancing estimators ψ̂bal substantially
outperform the modeling estimators ψ̂mod at all considered sample sizes regardless of covariate
specification; however, gaps between ψ̂bal and ψ̂mod are somewhat smaller when the covariates are
misspecified. We also note that the RMSE for kernel balancing is the same as or only slightly different
from the commercial solvers.

CPU time. Because the average CPU time did not appreciably vary across simulation settings, we
present only their averages in Table 4. The GLM and OSQP methods were fastest, taking only
seconds to find the optimal weights even in the largest sample size of one million. OSQP was faster
than the commercial solvers MOSEK and Gurobi, by about an order of magnitude compared to the
latter. In contrast, the lasso and non-parametric methods required much more time at that sample
size, in some cases hundreds of times more than GLM and OSQP. Among the ADMM-based solvers,
OSQP was much faster than SCS at the largest sample size. In our approach, forming the kernel basis
requires less computation time than solving the QP, demonstrating the efficiency of the Nyström
approximation.

Convergence and Memory. Several methods had computational difficulties at larger sample sizes,
particularly ψ̂bal approaches. At samples of 100,000 or more, the two open-source solvers failed to
converge, while the system ran out of memory when attempting to execute POGS, perhaps due to its
inability to accommodate sparse matrices. Among ψ̂mod approaches, the kernel ridge regression ran
out of memory at 1 million observations.

D.5 Time reduction via factorization caching and warm starting

Since the vectors l, u are the only parameters that vary in δ in Algorithm 1, we can speed up repeated
OSQP calls via factorization caching and warm starting. To illustrate this computational gain, we
solve a sequence of OSQP-based SBW problems using 100 values of δ equally spaced between 0.001
and 0.1 on the same data, and compare its computing time against two popular commercial solvers
gurobi and Rmosek (with the default setting of interior-point methods). We measure the cumulative
time for each solver at m = 1, 20, 40, 60, 80, 100 problem instances across different values of δ. We
repeat the simulation 100 times and present their average values in Web Figure 2.
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Table 4: Average CPU time across simulation settings
Time (in seconds unless otherwise noted)

Method
n 2k 5k 10k 100k 1M

ψ̂mod

glm <0.1 <0.1 <0.1 0.4 8.6
sgdglm <0.1 <0.1 <0.1 0.3 5.0
glmnet 1.0 1.8 4.4 18 362
biglasso 9.2 12 20 266 0.8hr
oem 38 81 224 0.6hr 5hr
admm.lasso 1.3 2.7 6.3 15 311
ranger 8.7 30 128 0.4hr 3hr
kernel.ridge 1.1 3.6 29 0.3hr M
bam 0.7 1.6 3.8 21 210

ψ̂bal

quadprog 0.9 15 119 F F
qpoases 48 127 392 F F
gurobi <0.1 <0.1 0.5 6.3 94
Rmosek <0.1 <0.1 <0.1 4.2 37
osqp <0.1 <0.1 <0.1 3.2 9.6
pogs 3.7 46 305 M M
scs <0.1 5.3 14.5 27 169

Figure 2: Average cumulative CPU time over multiple iterations of SBW calls

For gurobi and Rmosek, the cumulative time increases linearly with the number of iterations as
would be expected; i.e., m iterations took roughly m times as long as a single execution. However, m
iterations of the OSQP algorithm took much less time than m× (the execution time for a single run);
in fact, it is on average 2.4 times faster. This 2.4-fold time improvement demonstrates the benefits of
factorization caching and warm starting via OSQP when implementing SBW.
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